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Abstract. This paper presents a preference foundation for a family of probability weighting functions

that involves two parameters which reflect two independent aspects of probability attitude. The

first aspect, related to curvature, represents the diminishing effect of optimism and pessimism. The

second aspect, related to elevation, represents the strength or dominance of optimism relative to

pessimism. These two independent measures allow for comparative analyses between individuals and,

e.g., when comparing attitudes towards probabilities of gains and attitudes towards probabilities of

losses, a comparative analysis within individuals. Our empirical analysis shows that the new weighting

function fits elicited probability weights well, and that it can explain differences in the probabilistic

risk attitudes for gain probabilities compared to attitudes for probabilities of losses. We are therefore

able to provide a theoretical link between important measures for individual behavior used in the

psychology literature and well-established notions of probabilistic risk attitudes used in economics.
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1 Introduction

A pragmatic approach for the analysis of risk attitudes is offered by the classic expected utility

theory (von Neumann and Morgenstern 1944): there is a single measure, the utility function,

that captures all aspects of risk attitude. Then, risk averse (prone) choice behavior comes down

to concave (convex) utility and the degree of curvature of utility can be used to determine

absolute and relative measures of risk (Arrow 1951, Pratt 1964). A similar pragmatic approach

is offered by the dual theory (Yaari 1987): there is a single measure, the probability weighting

function, that captures risk attitudes. Now risk aversion (proneness) is equivalent to a convex

(concave) weighting function over cumulative probabilities.

Extensive empirical research has demonstrated that both the expected utility and the dual

theory approaches lack descriptive accuracy, and that theories which combine both measures,

thus the joint effect of the outcome sensitivity and the probability sensitivity components of

risk attitude, offer sufficient flexibility to account for the description of observed risk behavior.

These so-called rank-dependent theories include the rank-dependent utility model of Quiggin

(1981, 1982), the Choquet-expected utility model of Schmeidler (1989), the rank- and sign-

dependent model of Luce (1991), and the modern prospect theory of Tversky and Kahneman

(1992) and Starmer and Sugden (1989). Compared to the former, the two latter theories include

a further descriptively important aspect of risk behavior through the distinction of outcomes

into gains and losses from a reference point. The extreme sensitivity towards potential losses

relative to comparable gains is captured under the notion and interpretation of loss aversion

(Kahneman and Tversky 1979, Tversky and Kahneman 1992, Schmidt and Zank 2005, Zank

2008a).

This paper focuses on the role of the probability weighting functions for risk behavior and
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explores two aspects of probabilistic risk attitude. First, there is the widely documented sensi-

tivity to probabilities of extreme (best and worst) outcomes, revealed through overweighting of

small probabilities and underweighting of large probabilities, potentially caused by optimism

about obtaining best outcomes and pessimism about obtaining worst outcomes of prospects.

The second aspect refers to the observation that this sensitivity is diminishing with changes

towards more moderate cumulative, respectively, decumulative probabilities for these extreme

outcomes. Together, these two aspects can explain why, in the evaluation of prospects, extreme

outcomes receive large decision weights relative to objective probabilities and also comparatively

larger decision weights than those of intermediate outcomes with similar objective probabilities.

Recall that, in the dual theory, risk aversion is equivalent to a convex weighting function.

In the more general rank-dependent utility theory this is interpreted as probabilistic risk aver-

sion (Wakker 1994). Such a weighting function exhibits little sensitivity towards changes in

probabilities away from 0 where it is relatively flat, but exhibits extreme sensitivity towards

changes in probabilities away from 1 where it is relatively steep. As a result, relative to the

objective probabilities of outcomes, larger decision weights are obtained for equally likely and

lower ranked, less good, outcomes. This probabilistic attitude is known as pessimism (Wakker

2001). Similarly, probabilistic risk proneness or optimism, thus a concave weighting function

over cumulative probabilities, exhibits strong sensitivity away from 0 but relatively little sensi-

tivity away from 1. The corresponding decision weights decrease relative to the probabilities of

the corresponding outcomes, and equally likely lower ranked outcomes receive comparatively

less decision weight.

The most common empirical finding is that of strong sensitivity at probabilities close to 0

and similar strong sensitivity towards probabilities close to 1 (see Wakker 2001 for a discussion

and review of empirical evidence). This suggests that both optimism about obtaining best
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outcomes and pessimism about obtaining worst outcomes have significant influence on prob-

abilistic risk behavior.2 Because the sensitivity diminishes as probabilities are farther away

from the boundaries of the probability interval (Tversky and Kahneman 1992), less sensitivity

is observed for moderate probabilities. It seems, therefore, plausible to adopt inverse-S shaped

probability weighting functions that exhaustively divide the probability interval into a region

where the weighting function is concave (small probabilities) and a region where it is convex

(moderate and large probabilities). But while such curvature of the weighting function can

account for the diminishing sensitivity towards probabilities of outcomes it may not necessarily

induce large decision weights for extreme outcomes. An inverse-S shaped weighting function

can be completely below the 45-degree line depicting non-transformed probabilities, or it can

be completely above it. So, having an inverse-S shaped weighting function alone may not be

sufficient to explain all of the empirically observed sensitivity.

Sensitivity for probabilities of extreme outcomes, reflecting the effect of optimism and pes-

simism, are modeled through large decision weights for those outcomes. They are obtained if

the weighting function is above small probabilities, and if it is below large probabilities. In that

case we can say that small probabilities are overweighted and large ones are underweighted.

While reflecting sensitivity for probabilities of extreme outcomes, overweighting and under-

weighting does not imply diminishing sensitivity. It ensures, however, that an inverse-S curved

weighting function is sufficiently elevated, so that optimism and pessimism are fully accounted

for.

The importance of curvature and elevation of weighting functions has been discussed before.

Gonzalez and Wu (1999) provided psychological arguments for these separate components.

2Other aspects that seem to influence risk behavior are also discussed, e.g., in Viscusi, Magat, and Huber

(1987) and the recent review of Birnbaum (2008).
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They interpret the curvature of the weighting function as reflecting the ability of an individual

to discriminate between probabilities. For example, an expected utility maximizer discriminates

equally between probabilities: adding a 1% chance to the cumulative probability of any outcome

leads to the same decision weight in the evaluation of prospects. The weighting function under

expected utility is linear and continuous. By contrast, an individual who values a 1% probability

more if added to a 99% probability of a good outcome than if added to a 10% probability of

the same outcome, shows less ability to discriminate.

The interpretation given to elevation is that it reflects how attracted an individual is to

the chance domain of prospects. For example, individuals who have a medical profession may

be more confident when choosing among prospects involving particular health outcomes (or

reveal more optimism about such decisions) compared to decisions among prospects involving

business or financial investments.

Gonzalez and Wu (1999, p. 139) argued that curvature and elevation are logically indepen-

dent aspects and that this should be reflected in two separate measures within the weighting

function. Accordingly, they suggest that weighting functions involving two parameters, like the

one proposed by Goldstein and Einhorn (1987) and Lattimore, Baker and Witte (1992) and

the one proposed by Prelec (1998), where one parameter influences mainly curvature and one

mainly elevation, provide a plausible account for discriminability and attractiveness, and hence,

for observed probabilistic risk attitude in general. They do remark, however (see Gonzalez and

Wu 1999, p. 140), that a completely independent separation of curvature and elevation is not

possible for the previous parametric forms.

That such a separate modeling of curvature and elevation is warranted has also been il-

lustrated in Kilka and Weber (2001). They interpreted the parameters of the Goldstein and

Einhorn (1987) weighting function as source sensitivity and source preference, respectively (see
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Fox and Tversky 1995). They argued for a two-stage decomposition model for decision weights

under uncertainty, that is, for decision situations where probabilities of events are not given.

According to that model, in the first stage individuals assess probabilities (or beliefs) to the

events, and in the second stage they transform those probabilities by a weighting function (see

also Tversky and Fox 1995, Fox and Tversky 1998, Wakker 2004, and Abdellaoui, Vossmann

and Weber 2005, for further theoretical and empirical analyses). The experimental data col-

lected by Kilka and Weber support the interpretation that decision weights under uncertainty

and decision weights under risk are both depending on the source generating uncertainty or

risk. They found a significant effect for curvature (source sensitivity), but no significant effects

for elevation (source preference), when comparing decision weights generated from investments

in known stocks versus decision weights from investments in unknown stocks. Gonzalez and

Wu (1999) did interpersonal comparisons and found significant differences in both components.

More recently, in Abdellaoui, Vossmann and Weber (2005), no significant differences in the

curvature of the weighting functions for probabilities of losses compared to probabilities of

gains were found, but they found more elevation for loss probabilities (for a similar finding see

Abdellaoui 2000). It should be noted that, by adopting weighting functions which clearly sep-

arate between elevation and curvature, a much better accommodation of the current empirical

evidence can be obtained. Such a separation may also lead to more advanced measurement

instruments for these distinct components of probability weighting.

Our goal in this paper is to review the intuition regarding curvature and elevation by explor-

ing its relation to optimism and pessimism. As a result, we propose a new family of parametric

weighting functions in which there is a clear separation between the parameter controlling for

curvature and the parameter controlling for elevation. We estimate these parameters using

empirical data recently obtained by Abdellaoui, l’Harridon and Paraschiv (2008), and provide
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an axiomatic preference foundation for the new family of weighting functions by extending the

work of Diecidue, Schmidt and Zank (2008).

The results are structured as follows. In Section 2 general notation is presented. In Section

3 we review arguments supporting the two components of probability weighting functions,

namely curvature and elevation, and we relate them to optimism and pessimism. In Section 4

we present the new class of parametric weighting functions that capture measures for curvature

and elevation which are independent. In Section 5 we provide an empirical analysis leading to

estimates for the parameters of elevation and curvature. We provide data at the aggregate and

the individual level. Finally, in Section 6 we provide a preference foundation for the proposed

parametric inverse-S shaped probability weighting function in the framework of prospect theory.

Proofs are deferred to the Appendix.

2 Preliminaries

Let X denote the set of outcomes. For simplicity of exposition, we assume a finite set of

outcomes, such that X = {x1, . . . , xn}. Our results hold for general sets of outcomes if we

have at least four distinct outcomes. A prospect is a finite probability distribution over the set

X. Prospects can be represented by P = (p̃1, x1; . . . ; p̃n, xn) meaning that outcome xj ∈ X

is obtained with probability p̃j, for j = 1, . . . , n. Naturally, p̃j ≥ 0 for j = 1, . . . , n andPn
i=1 p̃i = 1.

Let L denote the set of all prospects. A preference relation < is assumed over L, and its

restriction to subsets of L (e.g., all degenerate prospects where one of the outcomes is received

for sure) is also denoted by <. The symbol Â denotes strict preference while ∼ denotes

indifference (4 and ≺ denote reversed weak and strict preferences, respectively). To further
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simplify the exposition, we assume that no two outcomes in X are indifferent, and further, that

outcomes are ordered from best to worst, i.e., x1 Â · · · Â xn.

It will be convenient to use an alternative notation for prospects, following Abdellaoui

(2002) and Zank (2008b). In the cumulative probabilities notation P = (p1, . . . , pn−1, 1), where

pj =
Pj

i=1 p̃i denotes the probability of obtaining outcome xj or better, j = 1, . . . , n. Similarly,

in the decumulative probabilities notation P = (1, 1−p1, . . . , 1−pn−1) where entries denote the

probability of obtaining outcome xj or less, j = 1, . . . , n. Note that we have dropped outcomes

from the (de)cumulative probability notation for prospects.

Recall, that under expected utility (EU) prospects are evaluated by

EU(p1, . . . , pn−1, 1) =
n−1X
j=1

pj[U(xj)− U(xj+1)] + U(xn),

with a utility function, U , which assigns to each outcome a real number and is monotone (that

is, U agrees with the preference ordering over outcomes). Utility is cardinal, i.e., it is unique

up to scale and location.

A more general model is rank-dependent utility (RDU) where a prospect P = (p1, . . . , pn−1, 1)

is evaluated by

RDU(p1, . . . , pn−1, 1) =
n−1X
j=1

w(pj)[U(xj)− U(xj+1)] + U(xn).

Utility is similar to EU, however, RDU involves a probability weighting function, w, which

is uniquely determined. Formally, a weighting function, w, is a mapping from the probability

interval [0, 1] into [0, 1] that is strictly increasing with w(0) = 0 and w(1) = 1. In this paper the

axiomatically derived weighting functions are continuous on [0, 1]. There is, however, empirical

and theoretical interest in discontinuous weighting functions at 0 and at 1 (Kahneman and

Tversky 1979, Birnbaum and Stegner 1981, Bell 1985, Cohen 1992, Chateauneuf, Eichberger
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and Grant 2007, Webb and Zank 2008). In the next section, we also use linear but discontinuous

weighting functions for illustrative purposes.

A weighting function, w, is convex if for all probabilities p, q, r such that p + q + r ≤ 1 we

have w(q+p)−w(q) ≤ w(q+r+p)−w(q+r). The weighting function is concave (linear) if for

all probabilities p, q, r such that p+q+r ≤ 1 we have w(q+p)−w(q) ≥ w(q+r+p)−w(q+r)

(w(q + p) − w(q) = w(q + r + p) − w(q + r)). Note that in all cases monotonicity and the

respective curvature imply that the weighting function is continuous on ]0, 1[. If w is strictly

convex then also continuity at 0 follows, and if w is strictly concave then also continuity at 1 is

implied (see also Schmidt and Zank 2008). In this paper there is specific interest in weighting

functions that are initially concave, say for probabilities in an interval [0, δ] for 0 < δ < 1,

and convex for remaining probabilities, thus, on [δ, 1]. We call these functions inverse-S shaped

weighting functions, reflecting the shape of the corresponding mapping.

Related to the curvature of weighting functions is the notion of probabilistic risk behavior

(see Wakker 1994, 2001, Abdellaoui 2002, Zank 2008b). A convex weighting function character-

izes probabilistic risk aversion (or pessimism) and a concave weighting function characterizes

probabilistic risk proneness (or optimism). A linear weighting function characterizes proba-

bilistic risk neutrality. Observe that, as EU is characterized by probabilistic risk neutrality,

optimism and pessimism are measuring probabilistic attitudes relative to EU as benchmark.

This is similar to the way concave or convex utility measures corresponding risk attitudes to-

wards (monetary) outcomes with the dual theory (Yaari 1987, so RDU with linear utility) as a

benchmark. Figure 1 depicts examples of continuous weighting functions of the form w(p) = pγ

corresponding to the previous notions of (a) optimism (0 < γ < 1), (b) neutrality (γ = 1), and

(c) pessimism (γ > 1), respectively.
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(b)

w(p) 

p 

(c)

(a)

0 

1 

1 

Figure 1: (a) optimistic, (b) pessimistic, (c) neutral probability attitudes.

Observe, that in Figure 1 the concave weighting function is never below the linear weighting

function and that the convex one is never above it. This holds in general and is natural because

optimism, respectively pessimism, is exhibited for all probabilities, thus, as a global property

of probabilistic risk attitude.

In the literature the previous EU and RDU formulae are sometimes displayed using decision

weights, hence, a weighted sum over utilities of outcomes of the form:

V (P ) =
nX

j=1

πjU(xj),

with the decision weights, πj, j = 1, . . . , n, explained next.

In the case of expected utility, the decision weights are the probabilities of obtaining the

respective outcome, i.e., πj = p̃j, j = 1, . . . , n. In the case of RDU, the decision weights are

differences in transformed cumulative probabilities as follows: π1 = w(p1) and πj = w(pj) −

w(pj−1), j = 2, . . . , n. One can infer from Figure 1, that optimism has the implication that the

decision weight of the best outcome is larger than the probability of obtaining that outcome,
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a feature called overweighting (i.e., w(p) > p for all p ∈]0, 1[). In the case of pessimism we

have underweighting (i.e., w(p) < p for all p ∈]0, 1[) of the probability of the worst outcome,

which leads to a decision weight of the best outcome which is larger than the probability of

obtaining that outcome. Observe that in general optimism and pessimism do not lead to similar

implications for decision weights of intermediate outcomes. This follows from the fact that w(p)

equals the decision weight of the best outcome, while for intermediate outcomes the decision

weights are not necessarily equal to the transformed probabilities of those outcomes.

Overweighting and underweighting of probabilities is intimately related to sensitivity to-

wards small and large probabilities. Recall that probabilistic risk neutrality acts as the bench-

mark for measuring optimism or pessimism. One can therefore think of a linear weighting func-

tion as exhibiting objective sensitivity. A weighting function exhibits (subjectively) increased

sensitivity towards extreme probabilities if w(p)/p > 1 for p ∈]0, ε[ and [1− w(p)]/(1− p) > 1

for p ∈]1− ε0, 1[ for some ε, ε0 > 0 arbitrary small. It exhibits reduced sensitivity if w(p)/p < 1

for p ∈]0, ε[ and [1 − w(p)]/(1 − p) < 1 for p ∈]1 − ε0, 1[ for some ε, ε0 > 0 arbitrary small.

For example the weighting functions proposed by Goldstein and Einhorn (1987), Tversky and

Kahneman (1992) and Prelec (1998) exhibit extreme sensitivity in the sense that w(p)/p and

[1−w(p)]/(1− p) are unbounded for p approaching 0 and 1, respectively (see Zank (2008a) for

a discussion). The class of weighting functions of Bell (1985), Cohen (1992), and Webb and

Zank (2008) too exhibit extreme sensitivity due to discontinuity of those weighting functions

at 0 and at 1. It is, however, the combination of increased sensitivity and concavity for small

probabilities of a weighting function followed by convexity for moderate and large probabilities

which has been most successful in accommodating the empirical findings regarding probabilistic

risk attitude (Tversky and Kahneman 1992, Prelec 1998, Abdellaoui 2000, Wakker 2001).

We conclude this section by recalling prospect theory. Here, and elsewhere (e.g., Section 6),
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it will be convenient to use a notation for prospects that mixes cumulative and decumulative

probabilities. Under prospect theory outcomes are interpreted as deviations from a reference

point. Assuming that for some 1 < k < n the outcome xk is the reference point, we call

x1, . . . , xk−1 gains and xk+1, . . . , xn losses. We can then write the prospect P as

P = (p1, . . . , pk, 1− pk, . . . , 1− pn−1).

One can think of p1, . . . , pk as being cumulated probabilities for gains and of 1−pk, . . . , 1−pn−1

as being cumulated probabilities for losses.

Under prospect theory (PT) probability weighting and the distinction into gains and losses is

relevant. There is a weighting functions for probabilities of gains, w+, and a (possibly different)

weighting for probabilities of losses, w−. A prospect P = (p1, . . . , pk, 1 − pk, . . . , 1 − pn−1) is

evaluated by

PT (p1, . . . , pk, 1−pk, . . . , 1−pn−1) =
k−1X
j=1

w+(pj)[U(xj)−U(xj+1)]+
n−1X
j=k

w−(1−pj)[U(xj+1)−U(xj)],

where we use the convention that U(xk) = 0.

The weighting functions under PT are uniquely determined and, in general, the utility

function is cardinal. Here, we have fixed the location of utility for the PT-model to simplify the

presentation. So, utility under PT is a ratio scale. However, the results that we derive below

do not depend on this restriction but apply more generally to PT with cardinal utility.

Similar to RDU, in prospect theory the decision weights are differences in transformed

cumulative probabilities of gains (i.e., π1 = w+(p1) and πj = w+(pj)−w+(pj−1), j = 2, . . . , k−

1), respectively, differences in transformed cumulative probabilities of losses (i.e., πj = w−(1−

pj−1)−w−(1−pj), j = k+1, . . . , n−1 and πn = w−(1−pn)). Note that PT reduces to RDU if

we have duality between the weighting functions, i.e., if w+(p) = 1−w−(1−p) for all p ∈ [0, 1],

or if we have only gains (only losses).
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3 Curvature and Elevation

In this section we look in more detail at the shape of probability weighting functions and discuss

the relation with the empirically observed probabilistic risk attitudes. For simplicity we assume

RDU and note that similar results hold for PT.

A common empirical finding is that of large decision weights for unlikely extreme outcomes

(Allais 1953, MacCrimmon and Larsson 1979, Kahneman and Tversky 1979). Such decision

weights indicate that individuals are extremely sensitive to changes in cumulative probabilities

close to 0 and 1. As a result, the typically estimated inverse-S shaped weighting functions are

sufficiently elevated so that overweighting of small probabilities and underweighting of large

probabilities is captured (Tversky and Kahneman 1992, Gonzalez and Wu 1999, Abdellaoui

2000, Bleichrodt and Pinto 2000, Abdellaoui, Vossmann and Weber 2005).

In general inverse-S shaped weighting functions need not cross the linear and continuous

weighting function, and can be completely above or completely below it (except at 0 and at

1). So, theoretically, we may observe optimistic behavior at 0 (or pessimistic behavior at 1)

without overweighting of small (underweighting of large) probabilities, hence without increased

sensitivity.

In this section we argue that the increased sensitivity towards extreme probabilities is

strongly related to optimism and pessimism about small probability best and worst outcomes,

respectively, and that optimism and pessimism are the possible sources of increased sensitiv-

ity. So, optimism, here, is interpreted not only as concavity of weighting functions over some

interval of probabilities but also as encompassing overweighting of small probabilities of best

outcomes. Similarly, pessimism is interpreted more broadly as including underweighting of

worst outcomes. To illustrate our motivation for this interpretation we initially take a look
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at the weighting functions discussed by Bell (1985), Cohen (1992), and, more recently, by

Chateauneuf, Eichberger and Grant (2007) and Webb and Zank (2008), which are linear and

(possibly) discontinuous at 0 and at 1. Their general form is

w(p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0 for p = 0,

αp+ β for 0 < p < 1,

1 for p = 1,

with 0 ≤ β < 1 and 0 < α ≤ 1− β. Figure 2 depicts such a weighting function in comparison

to the linear weighting function under expected utility. Recall that a linear weighting function

is seen as the benchmark for measuring optimism and pessimism.

 w(p) 

p 
0 

1 

1 

δ 

α+β 

β 

δ 

Figure 2: Optimism and pessimism for extreme outcomes.

One observes that the weighting function in Figure 2, which exhibits optimism and pessimism

for probabilities of extreme outcomes, has a graph that is rotated around (δ, δ). It exhibits

extreme sensitivity and overweighting of small, respectively, underweighting of large proba-

bilities. Note that β measures the deviation from expected utility due to optimism, and can

be thought of being an “absolute” index of optimism. Similarly, 1 − α − β measures the
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deviation from expected utility due to pessimism. The deviation due to optimism relative

to the total deviation from expected utility (i.e., relative to β + (1 − α − β)) is given by

the “relative” index of optimism δ = β/(1 − α). Note that at probability δ no deviation

from expected utility occurs, so that the two linear weighting functions in Figure 2 intersect.

The effects of optimism and pessimism appear to balance each other out at δ. This implies

RDU(δ, . . . , δ, 1) = δU(x1) + (1 − δ)U(xn) = EU(δ, . . . , δ, 1). Empirical studies, using more

general weighting functions, suggest that this intersection is around 1/3 (Prelec 1998, Abdel-

laoui 2000, Bleichrodt and Pinto 2000, Bleichrodt, Pinto and Wakker 2001, Abdellaoui, Barrios

and Wakker 2007).

Obviously, one can compare individuals on the basis of the (maximum) deviations from

expected utility caused by optimism and by pessimism, thus using as measures the indexes β

and 1−α−β, respectively. Or, as indicated above, one can make a comparison on the basis of

the absolute and the relative indexes of optimism, thus using β and δ as measures, respectively.

The relative index of optimism is closely related to the notion of elevation (as discussed

elsewhere, e.g., Gonzalez and Wu 1999, Diecidue, Schmidt and Zank 2008). To illustrate this

relation, consider two individuals who have the same total deviation from expected utility, 1−α,

but which differ in the absolute index of optimism, say β1 > β2. So, compared to individual 2,

individual 1 is more optimistic about the best outcome and also less pessimistic about the worst

outcome, which leads to an overall more optimistic probabilistic behavior. More precisely, the

weighting function of individual 1 results from that of individual 2 by a simultaneous increment

of the absolute index of optimism which exactly offsets the decrement of the absolute index of

pessimism. The implication of this is depicted in Figure 3.a, which shows that the two weighting

functions, w1, w2, corresponding to individual 1 and 2, respectively, have parallel graphs. Due

to this specific, more optimistic, attitude, w1 is more elevated than w2, such that δ1 > δ2.
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Figure 3.b depicts weighting functions of two individuals which too have different absolute

indexes of optimism but which have the same relative index of optimism δ. Individual 1 is more

optimistic and also more pessimistic. More precisely, compared to individual 2, individual 1’s

absolute index of optimism and 1’s total deviation from EU have increased proportionally. As

a result, the graph of the weighting function w1 is more rotated around (δ, δ) than the graph

of w2, indicating proportionally more sensitivity towards probabilities of extreme outcomes.

w(p) 

p
0 

1 

1 

δ1 

β2 
β1 
δ2 

δ1 δ2 

w1 

w2 

(a) 

w(p) 

p
0 

1 

1 

δ 

β2 
β1 

δ 

w1

w2 

(b) 

α1+β1

α2+β2

Figure 3: A comparison of elevation (a) and sensitivity (b)

The pragmatism of modeling probability transformations with a linear weighting function is

reflected in the fact that the effect of optimism and pessimism is completely absorbed in the

decision weights of the extreme outcomes. Remaining decision weights do not capture any of

those effects. This can be inferred from observing that, if the probabilities of the extreme out-

comes are fixed, then the original preferences restricted to such prospects can be represented

by expected utility, the model with probabilistic risk neutrality. This is in contrast to empirical

findings which suggest that the effect of optimism and pessimism, even though less pronounced,

16



is observed also for intermediate outcomes (e.g., Wu and Gonzalez 1996). This means that if

probabilities of extreme outcomes were fixed, the remaining effect of optimism and pessimism

on the probabilities of intermediate outcomes would need to be modeled by a linear weighting

function w̃ which results from the original weighting function w by a further rotation of the

45-degree line with fix point δ. This is illustrated in Figure 4, where the probabilities of ex-

treme outcomes are kept fixed (at δ/2 for x1 and at (1 + δ)/2 for xn) and the remaining effect

of optimism and pessimism for the probabilities of second best and second worst outcomes is

modeled.

w(p) 

p 
0 

1 

1 

δ 

β 
β 

δ 

w 

w 

α+ β 

α+ β 

~ 

~ ~ 

~ 

δ/2 (1+δ)/2 

Fig. 4: Adjustment for intermediate outcome probabilities.

The intuition behind Figure 4 is that the probabilistic behavior which lead to deviations from

expected utility modeled through w, causes a similar deviation from w, now modeled through

w̃. Because these deviations refer to the intrinsic optimistic and pessimistic attitudes of the

same individual, it is plausible to assume that the induced effect on decision weights of sec-

ond best/worst outcomes is proportional to the induced effect on the decision weights of the
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best/worst outcomes, as if the effects of optimism and pessimism were discounted at the same

rate. A consequence of this assumption is that relative optimism (i.e., δ = β/(1−α) = β̃/(1−α̃))

is the same for w and w̃, while α̃ and β̃ may, in general, depend on the probabilities at which the

extreme outcomes were kept fixed. Considering a repetition of this procedure for the decision

weights of subsequent intermediate outcomes, now with the probabilities fixed for best/worst

outcomes and for second best/worst outcomes, would lead to a further rotation of the 45-degree

line around the fix point δ. It is natural to assume that the adjustment for optimism and pes-

simism that occurs subsequently is even smaller, in accordance with the principle of diminish-

ing sensitivity (Tversky and Kahneman 1992). Hence, because of monotonicity of all involved

weighting functions, this process of diminishing adjustment for optimism and pessimism is ex-

pected to converge to a linear weighting function with fix point δ, reflecting relative optimism,

and slope 0 ≤ γ < 1, reflecting sensitivity or, as we argue in the next section, curvature.

4 Constant Relative Sensitivity

In this section we consider a class of weighting functions that models probabilistic risk atti-

tudes by maintaining the intuition of constant relative optimism and (increased) sensitivity as

illustrated in the previous section. These weighting functions can be thought of modeling the

adjustment for optimism and pessimism in a smoother manner compared to the discrete way

illustrated in the example presented in Figure 4 of the previous section. The constant relative

sensitivity (CRS) weighting functions have the form

w(p) =

⎧⎪⎪⎨⎪⎪⎩
δ1−γpγ, if 0 ≤ p 6 δ,

1− (1− δ)1−γ(1− p)γ, if δ < p ≤ 1,
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for 0 ≤ δ ≤ 1, 0 < γ. They exhibit the empirically founded inverse-S shape if 0 < δ < 1 and

γ < 1, and exhibit the opposite, less frequently found, S-shape if 0 < δ < 1 and γ > 1. The

functions are linear if γ = 1, concave if δ = 1 and γ < 1 or if δ = 0 and γ > 1, and convex if

δ = 1 and γ > 1 or if δ = 0 and γ < 1. It is easily verified that these weighting functions have

a fixed point at δ (in addition to 0 and 1), and that their derivative at δ is equal to γ. The

latter features establishes a natural connection to the linear discontinuous weighting functions

discussed in the previous section, and it reinforces the interpretation of the parameter δ as

an index of relative optimism reflecting elevation, and of γ as an index reflecting curvature.

Figure 5 depicts an inverse-S shaped CRS weighting function, w, and a linear and discontinuous

weighting function that is tangent to w at (δ, δ).

 w(p) 

p 
0 

1 

1 

δ 

δ(1- γ) 

δ 

w 

δ(1- γ) + γ 

Figure 5: A CRS inverse-S shaped weighting function

The CRS weighting functions are power functions on the interval [0, δ] and dual power functions

on the interval [δ, 1]. This suggests an interpretation for the parameter γ as degree of curvature

in much analogy to the measure of relative risk aversion in the case of power utility functions (see
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Arrow 1971 and Pratt 1964). The corresponding index of relative sensitivity of the weighting

function w is given by RS(w, p) =
−p[∂2w(p)/∂p2]

∂w(p)/∂p
for p ∈]0, δ], and by (the dual) RS(w, p) =

−(1− p)[∂2(1− w(p))/∂(1− p)2]

∂(1− w(p))/∂(1− p)
for p ∈]δ, 1[. The index is constant throughout ]0, 1[ and

equals 1 − γ. This explains the name for this family of weighting functions and indicates the

relationship between relative sensitivity and the curvature of these weighting functions.

The CRS weighting functions allow for a comparative analysis based on the index of relative

sensitivity, 1− γ, and the index of relative optimism, δ. If <1 and <2 describe the preference

relations of two individuals with RDU (or PT) preferences and CRS probability weighting func-

tions, then individual 1 exhibits more relative sensitivity than individual 2 iff 1−γ1 > 1−γ2 (or

equivalently, γ1 < γ2). Similarly, individual 1 exhibits more relative optimism than individual

2 iff δ1 > δ2.

w(p) 

p
0 

1 

1 

δ 

δ 

w1 

w(p) 

p
0 

1 

1 

δ2 

δ1

w2 

w1 

w2 

δ2 δ1 

(a) (b) 

Figure 6: w1 is more curved than w2 (a), w1 is more elevated than w2 (b).

To establish the relationship with curvature and elevation of the corresponding weighting func-
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tions, note that if δ1 = δ2, then w1 displays more curvature than w2 iff individual 1 exhibits

larger relative sensitivity than individual 2 (see Figure 6.a), and if γ1 = γ2 then w1 is more

elevated than w2 iff individual 1 exhibits more relative optimism than individual 2 (see Figure

6.b).

One observes that, in Figure 6.a, w1 is more concave than w2 for probabilities in the interval

[0, δ], hence individual 1 is more optimistic than individual 2 about obtaining best outcomes

which have cumulative likelihood below δ. However, for probabilities in [δ, 1], w1 is more convex

than w2, and thus individual 1 is more pessimistic about outcomes with cumulative likelihood

exceeding δ. Because w1 is steeper near the endpoints of the probability interval this shows

that individual 1 exhibits more increased sensitivity than individual 2.

In Figure 6.b, w1 is above w2 for all probabilities except at 0 and 1, hence, w1 is more

elevated than w2. Because in this case γ1 = γ2 and δ1 > δ2 we can write w2(p) = (δ2/δ1)w1(p)

for all p ∈ [0, 1[, showing that w2 is a convex transformation of w1. This means that overall,

individual 2 is more pessimistic than individual 1, or equivalently that individual 1 is more

optimistic than individual 2 (see Wakker 1994, 2001), reinforcing the interpretation of higher

elevation as indicative for a more optimistic probabilistic attitude.

5 Parameter Estimates

In this section we analyze data obtained from an experiment presented in Abdellaoui, L’Haridon

and Paraschiv (2008). This analysis gives some flavor of the empirical potential of the CRS

weighting function. Sixty-one subjects took part in the experiment. All subjects were under-

graduate students in economics and management at the Institut Universitaire de Technologie of

Paris. In order to obtain high quality data with little noise, answers were collected in computer
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assisted individual sessions. Subjects were told that there were no right or wrong answers,

and they were allowed to take a break at any time during the experiment. Their responses

to the tasks were entered in the computer by an interviewer so that participants could focus

exclusively on the tasks. Subjects were paid 10 euros (approximately 16 US-Dollars at the time

of the experiment) for completing the tasks, and a real incentive procedure was implemented to

further improve motivation for half of the sample. As discussed in Abdellaoui, L’Haridon and

Paraschiv (2008), no significant difference in behavior was observed between the two samples.

The elicitation method for decision weights used in the experiment is based on Abdellaoui,

Bleichrodt and L’Haridon (2008). This method consists of two stages. In the first stage utility

is elicited for a fixed probability, and then, in the second stage, decision weights associated with

the different probabilities are obtained. This two-step elicitation procedure was applied at the

individual level for both probabilities of gains and for probabilities of losses. All measurements

were based on the elicitation of certainty equivalents for binary prospects. The experiment also

included other tasks related to choice under uncertainty, not reported here. The relevant data

for the analysis here are five elicited decision weights for probabilities of gains and five decision

weights for probabilities of losses, both corresponding to probabilities pi = 0.05, 0.25, 0.5, 0.75

and 0.95.

w(pi) vs. pi p1 = 0.05 p2 = 0.25 p3 = 0.5 p4 = 0.75 p5 = 0.95

w+(pi) 0.11 0.26 0.42 0.63 0.79

IQR w+(pi) 0.05− 0.16 0.17− 0.32 0.35− 0.50 0.52− 0.75 0.63− 0.89

w−(pi) 0.07 0.26 0.44 0.65 0.82

IQR w−(pi) 0.03− 0.13 0.19− 0.34 0.36− 0.54 0.54− 0.73 0.74− 0.90
Table 1: Median elicited decision weights and corresponding interquartile ranges

Table 1 above, presents the median elicited decision weights for the five different gain, respec-
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tively, loss probabilities. Interquartile ranges are presented underneath each median decision

weight. The results are consistent with an inverse-S shaped probability transformation for both

gain probabilities and loss probabilities: overweighting of small probabilities and underweight-

ing of moderate and large probabilities is observed. Interquartile ranges show considerable

variations at the individual level, which is consistent with existing findings in the literature

(e.g., Wu and Gonzalez 1996).

Table 2 below presents the results of a parametric fitting of individual decision weights

using a linear probability weighting function. Consistent with the data in Table 1, we found

both optimism for gain probabilities and pessimism for loss probabilities. The relative index of

optimism for gains δ+ is lower than the relative index of pessimism for losses, δ−. This result is

compatible with the experimental results of Tversky and Kahneman (1992) and of Abdellaoui

(2000). However, we did not find significant differences between the relative index of optimism

for gain probabilities and the relative index of pessimism for probabilities of losses (p = 0.45,

one-tail paired t-test). The parameters β+ and β− are significantly different from 0, and there is

no significant difference between the gain parameter and the loss parameter (p = 0.07, one-tail

paired t-test).

Linear Weighting Parameters α β 1− α− β δ = β/(1− α)

Gain Probabilities 0.76 0.08 0.18 0.26

IQR 0.56− 0.87 0.01− 0.14 0.07− 0.32 0.11− 0.51

Loss Probabilities 0.82 0.05 0.14 0.30

IQR 0.63− 0.91 −0.01− 0.11 0.06− 0.26 0.08− 0.55

Table 2: Median parameter estimates; linear weighting and corresp. interquartile ranges

In Table 3 below we present the parametric fitting results for the CRS probability weighting
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functions for gain probabilities and for loss probabilities.

CRS-parameters δ γ RS = 1− γ

Gain Probabilities 0.28 0.53 0.47

IQR 0.15− 0.51 0.32− 0.65

Loss Probabilities 0.35 0.58 0.42

IQR 0.10− 0.63 0.38− 0.72
Table 3: Median parameter estimates; CRS weighting and corresp. interquartile ranges

We observe that subjects exhibited more relative pessimism for probabilities of losses than rela-

tive optimism for probabilities of gains (δ− > δ+), but this difference is not significant (p = 0.37,

one-tailed paired t-test). These results are consistent with findings for the linear probability

weighting function. It should be noted that there is considerable variation at the individual

level for loss probabilities. The evaluated RS was significantly higher for gain probabilities than

for probabilities of losses (p = 0.03, one-tail paired t-test). This suggests that subjects were

more sensitive to probabilities of gains than to probabilities of losses.

For a better comparison of explanatory power for the different weighting functions, we

evaluated the best fits at the individual level. For each individual the best fit corresponds to

the parametric form which provided the maximum likelihood for the elicited decision weights.

The corresponding findings are given in Table 4 below.

Weighting Function Linear CRS

Gain Probabilities 43 (16) 18 (9)

Loss Probabilities 22 (5) 39 (18)

Table 4: Number of best fits weighting function with significantly better fits in parentheses

One observes that most of the decision weighting for gain probabilities in Table 1 is found for

intermediate ranged probabilities (i.e., 25%, 50% and 75%). As a results, it is not surprising
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to see that the linear specification of the probability weighting function is the best parametric

form for gain probabilities. For probabilities of losses, however, the opposite finding is obtained:

the CRS specification best fitted the data.

In order to get a clearer picture on how the two parametric specifications compare, we also

evaluated significant best fits on the basis of a likelihood-ratio test. For gain probabilities, 16

subjects had decision weights significantly better described by the linear specification while

only 9 subjects had their decision weights significantly better described by the CRS specifica-

tion. Note that 36 subjects (59% of the sample) have decision weights compatible with both

specifications.

For probabilities of losses, only 5 subjects had decision weights significantly better explained

by the linear specification while 18 subjects had decision weights significantly better described

by the CRS specification; 38 subjects (62% of the sample) had decision weights compatible

with both specifications.

To summarize we note that both the CRS and linear probability weighting function are

compatible with a majority of the exhibited probabilistic risk behavior. But, we also found that

the CRS probability weighting function seems a better choice for explaining the probabilistic

risk behavior for probabilities of losses.

6 A Preference Foundation

This section presents an axiomatic preference foundation for prospect theory preferences with

CRS weighting functions. The adopted notation for prospects is that of cumulative probability

distributions, with exceptions made for clearly specified contexts. We are interested in condi-

tions for a preference relation, <, on the set of prospects L in order to represent the preference
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relation by a function V . That is, V assigns to each prospect a real value, such that for all

P,Q ∈ L,

P < Q⇔ V (P ) ≥ V (Q).

A requirement for such a representation V is that< is a weak order, i.e. < is complete (P < Q or

P 4 Q for all P,Q ∈ L) and transitive (P < Q and Q < R implies P < R for all P,Q,R ∈ L).

Further requirements are those of monotonicity (or first order stochastic dominance) and

continuity in probabilities. The preference relation < satisfies Jensen-continuity on the set of

prospects L if for all prospects P Â Q and R there exist ρ, µ ∈ (0, 1) such that3

ρP + (1− ρ)R Â Q and P Â µR+ (1− µ)Q.

The preference relation satisfies monotonicity (in cumulative probabilities) if P Â Q whenever

pj ≥ qj for all j = 1, . . . , n and P 6= Q. A monotonic weak order that satisfies Jensen-

continuity on L also satisfies the stronger Euclidean-continuity on L (see Abdellaoui 2002,

Lemma 18). Further, the three conditions taken together imply the existence of a continuous

function V : L→ IR, strictly increasing in each cumulative probability, that represents <. The

latter follows from results of Debreu (1954).

Next, we focus on the additive separability conditions for the representing function V .

This requires an independence condition for common cumulative probabilities. To define this

property we introduce some useful notation. For i ∈ {1, . . . , n − 1}, P ∈ L and σ ∈ [0, 1],

we denote by σiP the prospect that agrees with P except that pi is replaced by σ. Whenever

this notation is used it is implicitly assumed that pi−1 ≤ σ ≤ pi+1 (respectively, σ ≤ pi+1 if

3The ρ-probability mixture of P with R is the prospect ρP+(1−ρ)R = (ρp1+(1−ρ)r1, . . . , ρpn+(1−ρ)rn).

Note that this definition is independent of whether probabilities are cumulative or decumulative. In the case of

the cumulative probabilities notation we, obviously, have ρpn + (1− ρ)rn = 1.
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i = 1 and pi−1 ≤ σ if i = n − 1) to ensure that σiP ∈ L. The preference relation < satisfies

comonotonic independence if σiP < σiQ⇔ ρiP < ρiQ for all σiP, σiQ, ρiP, ρiQ ∈ L.

The next lemma follows from results of Wakker (1993).

Lemma 1 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by an additive function

V (P ) =
n−1X
j=1

Vj(pj),

with continuous strictly monotonic functions V1, . . . , Vn−1 : [0, 1]→ IR which are bounded

except maybe V1 and Vn−1 which could be unbounded at extreme probabilities (i.e., V1 may

be unbounded at 0 and Vn−1 may be unbounded at 1).

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence.

The functions V1, . . . , Vn−1 are jointly cardinal, that is, they are unique up to location and

common scale. ¤

Next we focus on the condition that, if added to Lemma 1 determines the CRS weighting

function. Recall that the CRS weighting functions are either concave for probabilities below

some δ and convex for probabilities exceeding δ (or they are convex below δ and concave

above δ). In general, the exact value of δ is unknown. But a large body of empirical research

over the past two decades suggests that the value of δ is around probability 0.33 for the gain

weighting function. For the loss weighting function the value seems, somewhat higher, around

0.4, however, compared to probabilities for gains, there much less empirical evidence for loss

probabilities.
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As the probability δ separates the probability interval into a range of probabilities with

optimistic behavior and a range with pessimistic behavior, it also indicates for which out-

comes the corresponding decision weights are mainly influenced by optimism and for which

outcomes the decision weights are mainly influenced by pessimism. One can, therefore, dis-

tinguish prospects by the maximum number of outcomes for which optimism is determining

the decision weights. Accordingly, we denote by Lm the set of prospects for which the m best

outcomes x1, . . . , xm (m = 1, . . . , n − 1) have decision weight reflecting optimistic behavior

while the n−m remaining outcomes have decision weights reflecting pessimistic behavior, i.e.,

Lm = {(p1, . . . , pn−1, 1) ∈ L : pm < δ ≤ pm+1}. The set L0 = {(p1, . . . , pn−1, 1) ∈ L : δ ≤ p1}

contains all prospects where decision weights are determined exclusively by pessimistic behav-

ior.

We now look at the effect on preferences caused by probability mixtures of prospects from

Lm with the the prospect that gives xm+1 for sure, which we denote by Cm = (c1, . . . , cm−1, 1)

with c1 = · · · = cm = 0 and ci = 1 otherwise. The preference relation < satisfies proportional

invariance (for changes in probabilities) away from δ if

P < Q⇔ σP + (1− σ)Cm < σQ+ (1− σ)Cm,

whenever P,Q, σP + (1− σ)Cm, σQ+ (1− σ)Cm ∈ Lm, m = 0, . . . , n− 1.

The intuition behind this invariance property is revealed when observing that, in the sec-

ond preference above, the probability of obtaining any of the outcomes in P and Q has been

reduced proportionally and the resulting probability mass is given to outcome xm+1. Upon re-

flection, one observes that the cumulative probabilities of the best m outcomes in the prospects

P and Q of the first preference, p1, . . . , pm, and q1, . . . , qm, are reduced proportionally to

σp1, . . . , σpm, σq1, . . . , σqm, and, in a dual manner, the decumulative probabilities of the re-
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maining n − m outcomes, 1 − pm, . . . , 1 − pn−1, 1 − qm, . . . , 1 − qn−1, are similarly reduced

proportionally to σ(1− pm), . . . , σ(1− pn−1), σ(1− qm), . . . , σ(1− qn−1), in the second prefer-

ence. This reflects the idea that the effect of optimism and the opposite effect due to pessimism

keep the balance, thereby indicating constant relative optimism. Or, put differently, that the

sensitivity towards proportional changes in cumulative probabilities of “good” outcomes is of

similar magnitude to the sensitivity towards similar proportional changes in (de)cumulative

probabilities of “bad” outcomes.

The next theorem considers the implications of the proportional invariance property when

added to Lemma 1. It shows that RDU holds with a weighting functions of the following form

w(p) =

⎧⎪⎪⎨⎪⎪⎩
apγ, if 0 ≤ p 6 δ,

1− b(1− p)γ, if δ < p ≤ 1,
,

with b, γ > 0 and (due to continuity at δ) a = [1 − b(1 − δ)γ]/δγ. This family of weighting

functions is more larger than the CRS-family because it does not require differentiability at δ

for δ ∈]0, 1[. This aspect is discussed further following the main theorem below.

Before presenting the theorem we note that RDU with such a “generalized CRS” weighting

function implies proportional invariance away from δ ∈ [0, 1].

Theorem 2 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by RDU with weighting function

w(p) =

⎧⎪⎪⎨⎪⎪⎩
apγ, if 0 ≤ p 6 δ,

1− b(1− p)γ, if δ < p ≤ 1,

with b, γ > 0, 0 ≤ δ ≤ 1 and positive a = [1− b(1− δ)γ]/δγ.

(ii) The preference relation < is a Jensen-continuous monotonic weak order that satisfies

comonotonic independence and proportional invariance away from δ ∈ [0, 1].
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The parameters b, γ and δ are uniquely determined and the utility function U is cardinal. ¤

It should be noted that Theorem 2 characterizes the class of RDU preferences with weighting

functions which can be termed general CRS weighting functions. Our interest was on a specific

subfamily which in addition to proportional invariance away from δ also satisfies “constant

relative optimism” in the sense that decision weights generated by proportional changes away

from δ influenced by optimism (i.e., changes for probabilities in [0, δ]) are proportional to

decision weights generated by corresponding dual changes away from δ influenced mainly by

pessimism. Formally, we require that for any integer s = 1, 2, . . . we have the following relation

between decision weights:

w(
rδ

s
)− w(

(r − 1)δ
s

)

δ/s
=

w(1− r(1− δ)

s
)− w(1− (r − 1)(1− δ)

s
)

(1− δ)/s
,

for all r = 1, . . . , s. This condition, which is not determined by specific choice behavior, is

inspired from the the idea that the effect of optimism and pessimism observed at extreme

probabilities has similar effect on subsequent probabilities due to constant relative optimism,

although the effect is discounted due to reduced (or increased) sensitivity away from 0 and 1

modeled through the “rate of decay” parameter γ (see the discussion relating to Figure 4 in

Section 3 above). The implications of this condition for the weighting function in Theorem 2

(after substitution and some elementary calculus) is that b = (1 − δ)γ, which gives a = δ1−γ,

and thus the desired CRS weighting function is obtained.

In Theorem 2 we considered RDU. As mentioned before, similar results are obtained in

the case of prospect theory (PT). If all outcomes are gains or all outcomes are losses the

corresponding preference foundations follow as corollaries from Theorem 2. In the case that we

have gains and losses, we can obtain preference foundations by requiring proportional invariance

away from δ+ for probabilities of gains and, separately, proportional invariance away from δ−
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for probabilities of losses. For these preference conditions to take effect we must then require

that there are at least 2 gains and at least 2 losses, hence, accounting for the reference point,

overall there are at least 5 strictly ranked outcomes. The remaining conditions in Statement

(ii) of Theorem 2 remain unaltered, and a preference foundation for PT with CRS weighting

functions is obtained.

To conclude this section it is well worth noting that, in the definition of the proportional

invariance condition, δ was assumed exogenously given. We have chosen to present the property

in this simplified version for convenience of exposition, and it should be noted that the property

can be formulated more generally without an exogenously given parameter of relative optimism

δ following the ideas presented recently in Diecidue, Schmidt and Zank (2008).

The CRS function provides a clear common link between the behavioral probabilistic risk

concepts of optimism and pessimism, which are important for economic analyses and applica-

tions, and the concepts of curvature and elevation, which are important behavioral concepts

in the psychology literature. Our measure of (relative) sensitivity resembles a clear analogy

to the measure of (relative) risk aversion for utility which is central in economics. The results

provides a natural link between results and interpretations given in the related economics and

psychology literature and, we think, a further opportunity to profit form the dialog between

scientists in these different fields of science.

7 Appendix: Proofs

Proof of Theorem 2: That statement (i) implies statement (ii) follows from the specific form

of the representing functional. Jensen-continuity, weak order, and comonotonic independence

as well as monotonicity follow immediate. Proportional invariance away from δ follows from
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substitution of the RDU-functional with a generalized CRS weighting function.

Next we prove that statement (ii) implies statement (i). Obviously statement (ii) in Lemma

1 is satisfied, hence, there exists an additively separable functional representing the preference

<. We restrict the attention to the case that p1 > 0 and pn−1 < 1 to avoid the problem of

dealing with unbounded V1, Vn−1. To show that our additive functional in fact is a RDU form

with a generalized CRS weighting function we use results presented Diecidue, Schmidt and

Zank (2008). If δ = 0 (or δ = 1), then proportional invariance comes down to Diecidue, et al.’s

common ratio invariance for cumulative (or decumulative) probabilities, and we apply their

Theorem 1 to obtain RDU with power weighting function, w(p) = pγ (or dual power weighting

function, w(p) = 1− (1− p)γ).

Next assume that 0 < δ < 1. We apply the results of Diecidue, et al. (2008) presented

in their Theorem 3. First we observe that proportional invariance implies the common ratio

invariance properties used by Diecidue, et al. We thus obtain, from the proof of their Theorem

3, that RDU holds with a weighting function of the form

w(p) =

⎧⎪⎪⎨⎪⎪⎩
apc if p < δ

1− b(1− p)d if p > δ

,

with c, b, d > 0, and a = 1/δc − b(1 − δ)d/δc. Further, applying proportional invariance away

from δ gives that c = d =: γ.

Uniqueness results follow from Theorem 3 of Diecidue et al. (2008). This completes the

proof of Theorem 2. ¤
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