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Abstract

Virtually all standard econometric texts quote the F-test statistic
for fixed effects, but offer no comment on the importance of the nor-
mality assumption when T (the number of time periods) is fixed, or
small relative to N (the number of cross-sections). Wooldridge (2002)
is an exception who notes that the asymptotic distribution (large N,
fixed T ) is unknown under non-normality. The result in this paper
fills the gap in the literature by deriving the limit distribution of the
appropriately normalised F-test statistic in the context of static panel
data, under non-normality of the errors, when N → ∞ and T fixed.
Three results emerge: (i) the F test statistic asymptotically equiva-
lent to the random effects test statistic; (ii) the nature of the limit
distribution ensures that the commonly used F distribution still pro-
vides asymptotically valid inferences; and, (iii) the asymptotic theory
appears to provide a good guide to sampling behaviour even in quite
small samples.

1 Introduction

There is a huge statistics and econometrics literature on analysis of variance
testing. However, it appears that the details of the asymptotic properties of
the commonly used F -test for fixed effects remains incomplete. Virtually all
standard econometric texts quote this test, but offer little or no comment
on the finite sample importance of the normality assumption when T (the
number of time periods) is fixed, or small relative to N (the number of
cross-sections). However, Wooldridge (2002, p.274) does remark that the
asymptotic distribution (large N, fixed T ) is unknown under non-normality.

This paper derives the limit distribution of the appropriately normalised
F -test statistic for fixed effects in the context of static panel data, under non-
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normality of the errors, when N →∞ and T fixed. Three results emerge: (i)
the F -test statistic is asymptotically equivalent to the random effects test
statistic; (ii) the nature of the limit distribution ensures that the standard
F -test procedure will still deliver asymptotically valid inferences; and, (iii)
Monte Carlo evidence suggests that the procedure performs remarkably well
even in quite small samples under non-normality.

The plan of this paper is as follows. Section 2 introduces the notation
and the F -test statistic for fixed effects in static panel data models. Section 3
analyses the asymptotic behaviour of this test statistic. Section 4 illustrates
the main findings by reporting the results of a small Monte Carlo study and
Section 5 concludes.

2 The Notation, Model and Test Statistic

2.1 Notation and Model

Consider the following fixed effect model

yit = αi + x
0
itβ + uit, i = 1, ..., N, t = 1, ..., T (1)

where, for the purposes of the current analysis, αN ≡ 0, the innovations,
uit, are independently and identically distributed with zero mean and finite
constant variance, 0 < σ2 <∞, and xit = (1,x∗0it)0 is a ((K + 1)× 1) vector
of regressors. By stacking (1) for all t (for each i), we obtain

yi = αi +Xiβ + ui, i = 1, ..., N (2)

where yi = (yi1, ..., yiT )
0, ui = (ui1, ..., uiT )0, αi = αiιT , with ιT a (T × 1)

vector of ones, and Xi = (xi1, ...,xiT )
0, a (T ×K 0) matrix with K 0 = K+1.

Stacking again, the model for all individuals becomes

y = Dα+Xβ + u, (3)

where y = (y01, ...,y0N )
0 is a (NT × 1) vector, α = (α1, ...,αN−1)0 is a ((N −

1) × 1) vector, D =

·
IN−1 ⊗ ιT

0

¸
is a (NT × (N − 1)) matrix, X =

(X01, ...,X0N)
0 is a (NT × K 0) matrix, and u = (u01, ...,u0N)

0 is a (NT × 1)
vector.

In general, define the projection matrices, PZ = Z(Z
0Z)−1Z0 andMZ =

INT −PZ, for any (NT × S) matrix Z of full column rank, with Z̃ =MDZ
being the residual matrix from a multivariate least squares regression of
Z on D which is, of course, the within transformation except for the N th

set of T cross sectional observations. For example, conformably with X,
X̃ =(X̃01, ..., X̃0N−1,X

0
N )

0, where X̃i has rows (xit − x̄i)0 , i = 1, ..., N − 1,
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and x̄i = T−1
PT
t=1 xit and similarly for ỹ.

1 Then the fixed-effect (least
squares dummy variable) estimator of β in (3) is given by

β̃ = (X0MDX)
−1X0MDy (4)

= (X̃0X̃)
−1
X̃0ỹ

and the corresponding estimator of α is

α̃ = (D0MXD)
−1D0MXy. (5)

The null model of H0 : α = 0, is the pooled regression model of

y = Xβ + u. (6)

2.2 The F-statistic and Assumptions

Naturally, and as described by econometric text books, the joint test for
α = 0 will be based on the statistic

FN =
(RSSR −RSSU )/(N − 1)
RSSU/(N(T − 1)−K) , (7)

where RSSR is the restricted sum of squares (from the pooled regression
(6)) and RSSU is the unrestricted sum of squares (from the fixed effects
regression (3)). This can also be expressed as

FN =

√
Nα̃0

¡
N−1D0MXD

¢√
Nα̃

(N − 1) σ̃2

where σ̃2 = RSSU/(N(T − 1)−K) is consistent for σ2.
In the absence of normality, the asymptotically validity of the F -test

procedure would usually rest on WN = (N − 1)FN having a limiting χ2

distribution. However, this can not obtain with T fixed and N → ∞,
since neither the dimension of α̃ nor N−1D0MXD is bounded. Indeed,
as Wooldridge (2002, p274) remarks:

“Under the classical linear model assumptions (which require
... normality of the uit), we can test the equality of the [fixed
effects] using a standard F test for T of any size. ... Unfortu-
nately, the properties of this test as N → ∞ with T fixed are
unknown without the normality assumption.”.

1To see this, note that

PD =

µ
IN−1 ⊗ T−1ιT ι0T 0

0 0

¶
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In the subsequent analysis this is addressed by developing the asymptotic
analysis with N → ∞ and T fixed, since it is for this case that the limit
distribution of the F -test statistic has previously been unknown. To proceed,
the following high-level assumptions are made:

Assumption 1:

{Xi,ui} is an independent sequence with E (ui|Xi) = 0.
Assumption 2:

(i) X0X/N −QN = op(1), where QN = E (X0X/N) is O(1) and uniformly
positive definite;

(ii) X̃0X̃/N−Q̃N = op(1), where Q̃N = E
³
X̃0X̃/N

´
is O(1) and uniformly

positive definite.

Assumption 3:

(i) Q
−1/2
N

1√
N
X0u d→ N(0,σ2I);

(ii) Q̃
−1/2
N

1√
N
X̃0u d→ N(0,σ2I).

Assumption 1 imposes a strong exogeneity assumption on Xi, ruling out
(for example) lagged dependent variables, and it also implies that E(X̃0iui) =
0. Together with Assumption 2, consistency of the pooled and fixed ef-
fects estimators for β is guaranteed. If weakened to E (X0iui) = 0, or even
E (xituit) = 0 (zero contemporaneous correlation), least squares estimation
of (3) generally becomes inconsistent rendering the F -test statistic asymp-
totically invalid, anyway (see, for example, the discussion in Wooldridge,
2002, Sections 10.5 and 11.1). Assumptions 3 (i) and (ii) result from condi-
tions discussed, for example, by White (2001, p.120), and justify asymptotic
normality of the pooled and fixed effect estimators. (Note that Assumptions
2 and 3 also ensure that both X0u/N and X̃0u/N are op(1).)

3 Asymptotic Distribution of FN

The result is stated in the following Proposition:

Proposition 1

σ2
√
N (FN − 1) =

√
N

N(T − 1)

Ã
NX
i=1

v2i −
NX
i=1

TX
t=1

u2it

!
+ op(1),
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where vi =
³PT

t=1 uit

´
are independent random variables, so that

√
N (FN − 1) d→ N

µ
0,

2T

T − 1
¶
.

Proof. Define FN =
RN

σ̃2
, where RN = (RSSR − RSSU )/(N − 1), so

that

σ2
√
N(FN − 1) = σ2

σ̃2
√
N
¡
RN − σ̃2

¢
.

where σ̃2 − σ2 = op(1). Consider
√
N
¡
RN − σ̃2

¢
: By the Frisch—Waugh

theorem, RRSU is identical to that obtained from Ordinary Least Squares
estimation of ỹ = X̃β + ũ, so that

RSSU = u0MDMX̃MDu

= u0
¡
MX̃ −PD

¢
u

sinceMDMX̃MD =MD

¡
MX̃ −PD

¢
=MX̃−PD. Therefore, as RSSR =

u0MXu and σ̃2 = 1
N(T−1)−K

£
u0
¡
MX̃ −PD

¢
u
¤
, RN − σ̃2 can be expressed

as

RN − σ̃2 = −u
0PXu
N − 1 +

u0PX̃u
N − 1 +

u0PDu
N − 1

− 1

(T − 1)−K/N
·
u0u
N
− u

0PX̃u
N

− u
0PDu
N

¸
=

u0PDu
N

− 1

T − 1
u0u
N

+
1

T − 1
u0PDu
N

+Op(N
−1)

=
1

NT

NX
i=1

v2i −
1

N(T − 1)
NX
i=1

TX
t=1

u2it +
1

NT (T − 1)
NX
i=1

v2i +Op(N
−1)

=
1

N(T − 1)

Ã
NX
i=1

v2i −
NX
i=1

TX
t=1

u2it

!
+Op(N

−1),

by Assumptions 2 and 3 and noting that N
N(T−1)−K = 1

(T−1) + O(N
−1),

u0PDu =
1

T

PN−1
i=1

³PT
t=1 uit

´2
, so that

u0PDu
N − 1 =

1

(N − 1)T
N−1X
i=1

v2i

=
1

NT

NX
i=1

v2i +Op(N
−1).
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Therefore

√
N
¡
RN − σ̃2

¢
=

√
N

N(T − 1)

Ã
NX
i=1

v2i −
NX
i=1

TX
t=1

u2it

!
+ op(1)

=
1

(T − 1)√N
NX
i=1

WiT + op(1)

where
1√
N

PN
i=1WiT is asymptotically equivalent to the familiar test indica-

tor for random effects; see, for example, Breusch and Pagan (1980), Chesher
(1984) and Honda (1985). Since, by assumption, the uit are independently

and identically distributed so are the WiT =
³PT

t=1 uit

´2 −PT
t=1 u

2
it. Then,

writing WiT =
PP

t6=s uituis = u0iAui, where A =ιT ι
0
T − IT , it is easy to

determine that E(WiT ) = 0 and

var(WiT ) = 2σ4tr
¡
A2
¢

= 2σ4T (T − 1) <∞

where tr(.) signifies trace. Thus, a standard Central Limit Theorem yields,
√
N
¡
RN − σ̃2

¢ d→ N

µ
0,
2σ4T

T − 1
¶
, which is the familiar result for the stan-

dard random effects test indicator. Finally, since σ̃ − σ2 = op(1), it follows
that

√
N (FN − 1) d→ N

µ
0,

2T

T − 1
¶
. (8)

3.1 Asymptotic validity of the F-test

Here it is shown that conventional testing procedure for fixed effects, based
on F distribution critical values, will still provide asymptotically valid in-
ferences, despite non-normality. Let ξN ∼ F (n1, n2) , an F distribution
with n1 and n2 degrees of freedom, respectively, where n1 = N − 1 and
n2 = N(T − 1)−K. Then

sup
z

¯̄̄̄
Pr

µq
N(T−1)
2T (ξN − 1) ≤ z

¶
− Pr

µq
N(T−1)
2T (FN − 1) ≤ z

¶¯̄̄̄
→ 0.

To see this, define Φ (z) to be the standard normal distribution function.
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Then, by the triangle inequality,

sup
z

¯̄̄̄
Pr

µq
N(T−1)
2T (ξN − 1) ≤ z

¶
− Pr

µq
N(T−1)
2T (FN − 1) ≤ z

¶¯̄̄̄
≤ sup

z

¯̄̄̄
Pr

µq
N(T−1)
2T (ξN − 1) ≤ z

¶
− Φ (z)

¯̄̄̄
+sup

z

¯̄̄̄
Pr

µq
N(T−1)
2T (FN − 1) ≤ z

¶
− Φ (z)

¯̄̄̄
.

By Proposition 1, the second term of the right hand side is o(1). The first
term is also o(1) from elementary distribution theory, as follows. Observe

that ξN can be defined as ξN =
χ2n1/n1

χ2n2/n2
, where χ2n1 is chi-squared with n1

degrees of freedom independent of χ2n2 , and n1 = N−1 and n2 = N (T − 1)−
K. Now,

√
N (ξN − 1) =

√
N
¡
χ2n1/n1 − χ2n2/n2

¢
χ2n2/n2

,

with E
h√
N
¡
χ2n1/n1 − χ2n2/n2

¢i
= 0 and var

h√
N
¡
χ2n1/n1 − χ2n2/n2

¢i
=

2N

n1
+
2N

n2
. Since, (i) χ2n1/n1−χ2n2/n2 can be represented as sums of squares

of (scaled) independent standard normal random variables, (ii) 0 <
2N

n1
+

2N

n2
→ 2T

T − 1 = O(1), and, (iii) χ
2
n2/n2

p→ 1, a suitable central limit theorem

yields q
N(T−1)
2T (ξN − 1) d→ N (0, 1)

and the result follows. Therefore, using critical values from the F distribu-
tion, in conjunction with the statistic FN , becomes increasingly like using

critical values from the N

µ
1,

2T

N(T − 1)
¶
distribution, which is the asymp-

totic distribution of the FN .
In the next section, the preceding analysis is supported by the results of

a small Monte Carlo experiment which illustrates the asymptotic robustness
of the F -test to non-normality.

4 Monte Carlo Simulation

In order to shed light on the relevance of the asymptotic analysis for finite
sample behaviour, this section reports the results of a small Monte Carlo
experiment which investigates the (null) sampling behaviour of FN , under a
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variety of error distributions using N = 5, 20, 50, T = 5, with 5000 replica-
tions. The null model used here is

yit =
3X
k=1

xit,kβk + uit

where xit,1 = 1, xit,2 is drawn from a uniform distribution on (1, 31) inde-
pendently for i and t, and xit,3 is generated following Nerlove (1971), such
that

xit,3 = 0.1t+ 0.5xit−1,3 + υit,

where the value xi0,3 is chosen as 5 + 10υi0, and υit is drawn from the uni-
form distribution on (−0.5, 0.5) independently for i and t, in order to avoid
any normality in regressors. Also, observe that the regression design is not
quadratically balanced.2 Table 1 shows the value of the maximum leverage
point and the number of leverage points3, confirming that the regressors
used are not quadratically balanced.

[Table 1 about here]

Without loss of generality, the coefficients are set as βk = 1 for k =
1, 2, 3 and the error terms, uit, are all iid(0, 1) in the experiments. They
are drawn from the following distributions and standardised: (i) standard
normal distribution (SN); (ii) Student’s t distribution with 5 degrees of
freedom (t(5)); (iii) uniform distribution over the unit interval (UN); (iv)
mixture normal distribution from either N (−1, 1) and N (+1, 1) with and
equal probability of 0.5 (MN); (v) log-normal distribution (LN); and, (vi)
chi-square distribution with 2 degrees of freedom (χ2(2)).

The theoretical results of Section 3 imply that asymptotically valid infer-
ences based on FN can be made with reference to a F (N − 1, 4N − 2) dis-
tribution. To illustrate this, Figures 1−6 present Q-Q plots of FN (obtained
from the Monte Carlo experiments) against quantiles from the reference F
distribution.

[Figures 1-6 about here]

In general, these confirm the asymptotic validity of using the F (N − 1, 4N − 2)
distribution, in this case, in conjunction with FN (a procedure which is exact
under normality). Agreement between the empirical and reference quantiles

2The results of Ali and Sharma (1996) show that, with a quadratically balanced design,
the effects of non-normality on the F -test for linear restrictions in the linear model is
minimal. Hence the Monte Carlo design guards against that possibility.

3Denoting the diagonal elements of PX as ht, and the average of ht as h̄, following
Belsley et al. (1980), we call ht is a high leverage point if ht/h̄ > 2.
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is not so clear in the case of log-normal errors, which exhibits a very high
coefficient of skewness (6.185), but appears adequate for χ2(2) errors, whose
coefficient of skewness is 2.

The Q-Q plots presented above, examine the quality of the reference
distribution as a whole. Of perhaps more concern is the ability of the refer-
ence distribution to model empirical significance levels. Table 2 shows the
estimated significance levels of the standard F -test procedure which uses
the statistic FN in conjunction with critical values from a F (N − 1, 4N − 2)
distribution designed to give nominal significance levels of 1%, 5% and 10%,
respectively.

[Table 2 about here]

This procedure will be exact under normality, since FN is an exact pivot,
and the results reflect this. Under non-normality such a procedure is only
asymptotically valid, although it performs well (in terms of agreement be-
tween estimated and nominal significance levels) for all designs. However,
and as noted above, with LN errors it appears somewhat less satisfactory
with N = 5, 20.4 This problem disappears when N = 50.

These results not only support the asymptotic analysis of Section 3, but
also suggest that standard F -test procedure (as reported in standard econo-
metric texts) remains robust to non-normality even in quite small samples,
except in cases of extreme skewness of the error distribution. In the latter
case, and since FN is asymptotically pivotal, the results of Beran (1988) im-
ply that improved finite sample performance may be obtained through the
use of bootstrap critical values; see Yamagata (2004) who provides evidence
which confirms this.

5 Conclusions

This paper has addressed an apparent gap in the econometrics literature - as
identified, for example, by Wooldridge (2002) - by providing the limit distri-
bution of the standard F -test statistic for fixed effects, in a static panel data
model, under non-normality and fixed time periods. It has been shown, in
fact, that the commonly cited test procedure remains asymptotically valid.
Moreover, Monte Carlo evidence has been presented which suggests that
the asymptotic results provide an excellent guide to finite sample behaviour
even in quite small samples, under non-normality.

For the applied worker, then, the standard F -test procedure appears
quite robust to non-normality even in small samples but (if required) further
finite sample improvement may be afforded by the use of bootstrap critical
values.

4However, under highly skewed χ2(2) errors, , there is still very good agreement between
estimated and nominal significance levels.
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Table 1: Leverage Points

N 5 20 50

The value of maximum leverage point 4.6 5.4 5.7
The number of leverage points 1 5 16

Table 2: Estimated Significance Levels of FN

1% 5% 10%
N 5 20 50 5 20 50 5 20 50
SN 0.88 1.14 0.96 4.70 4.44 4.68 9.82 9.40 9.76
t(5) 0.70 0.92 1.18 4.40 4.74 4.90 9.22 9.76 9.56
UN 0.96 1.08 0.84 5.60 5.46 4.86 10.28 10.20 9.78
MN 1.28 0.96 1.02 5.38 5.18 4.80 10.04 10.58 10.28
LN 0.70 1.02 1.68 3.72 4.46 4.96 8.06 8.30 9.44

χ2(2) 0.76 1.12 1.14 4.88 4.94 4.90 9.54 9.58 10.24
Notes:

Single (resp. double) underline denotes that the rejection frequency is not consistent

with the true significance level being between -1 (resp. -0.5)% and +1 (resp. +0.5) %

from its nominal level.
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Figure 1: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: SN
Errors
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Figure 2: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: t(4)
errors
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Figure 3: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: UN
errors
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Figure 4: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: MN
errors
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Figure 5: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: LN
errors
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Figure 6: Q-Q plots of FN to F (N − 1, 4N − 2) distribution: χ2 (2)
errors
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