
MATHEMATICS FOR ECONOMISTS
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SETS, NUMBERS, AND FUNCTIONS

Sets

De¯nition 1 A set is a collection of objects thought of as a whole.

² Describe a set by enumeration: list all the elements of the set e.g. S = f2; 4; 6; 8; 10g =

f4; 10;6; 2;8g

² Describe a set by property: state the property shared by all the elements in the set,

e.g.

S = fx : x is an even number between 1 and 11g

² x 2 S: x is in the set S .

² x 62 S: x is not in the set S.

Examples

fx : x is a ¯rm producing computersg (\computer industry")

fx : x is a bundle of goods a consumer can a®ordg

(\budget set")

De¯nition 2 If all the elements of a set X are also elements of a set Y , then X is a

subset of Y : X µ Y

f4; 8; 10g µ f2; 4; 6; 8; 10g

f2; 4; 6; 8; 10g µ f2; 4; 6; 8; 10g

Computer industry µ IT industry.

De¯nition 3 If all the elements of a set X are also elements of a set Y , but not all the

elements of Y are in X, then X is a proper subset of Y : X ½ Y
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De¯nition 4 Two sets X and Y are equal if they contain exactly the same elements:

X = Y .

X µ Y and Y µ X implies and is implies by X = Y .

Venn Diagram

² Universal Set: the set that contains all possible objects under consideration
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De¯nition 5 The intersection of the two sets X and Y is the set of elements that are

in both X and Y :

X \ Y = fx : x 2 X and x 2 Y g
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If A = f2; 4; 6; 8g; B = f3; 4; 6; 7g, A \B = f4; 6g
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De¯nition 6 The empty set is the set with no elements: ;.

A set with only one element is a singleton

A \D = ;

fx : 2x+ 3 = 1g
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De¯nition 7 The union of two set X and Y is the set of elements in one or the other

of the sets:

W = X [ Y = fx : x 2X or Y g

If A = f2; 4; 6; 8g; B = f3; 4; 6; 7g, A [B = f2; 3;4; 6;7; 8g
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De¯nition 8 The relative di®erence of X and Y , X ¡ Y , is the set of elements of X

that are not also in Y .

X ¡ Y = fx : x 2 X and x 62 Y g

If A = f2; 4; 6; 8g; B = f3; 4; 6; 7g, A¡B = f2; 8g

'

&

$

%

'

&

$

%

U

A C

5



'

&

$

%

'

&

$

%

U

A D

6



Necessary and su±cient conditions.
\If the GDP of Germany is twice as large as that of England, then the GDP of England

is less than that of Germany."

A = \the GDP of Germany is twice as large as that of England."

B = \the GDP of England is less than that of Germany."

² A) B

If A, then B.

A implies B.

(Whenever A is true, B is true.)

² A is a su±cient condition for B.

(The truth of A guarantees the truth of B.)

² A only if B

B is a neccessary condition for A.

(If B is not true, then A is not true.)
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² x: GDP of England, y: GDP of Germany.

A: 2x = y, B: x < y

A = fx;y : 2x = yg

(the set of all the objects that satisfy the condition A)

B = fx; y : x < yg

(the set of all the objects that satisfy the condition B)

A µ B
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Suppose A) C and C ) A.

(C = \The economy of England is half that of Germany.")

(x = 1=2y))

² A() C

² A if and only if C . (A i® C.)

² A is equivalent to C

² A is a neccessary and su±cient condition for C

² A implies and is implied by C

² C = fx; y : x = 1=2yg;A µ C and C µ A, A = C.

Example

E = Demark is in the Euro Zone.

F = Demark's interest rate is set by the European Central Bank.
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Numbers
Natural numbers: N = f1;2; 3; : : :g

(arise naturally from counting objects).

² Closed under addition and multiplication:

x;y 2 N ) x+ y 2N; xy 2N

² Not closed under substraction and division:

x; y 2N; x · y ) x¡ y · 0 62 N

2; 3 2 N; 2
3

62 N

Integers: I = f: : : ;¡3;¡2;¡1; 0;1; 2;3; : : :g

² Closed under addition, substraction, multiplication,

but not division.

Rational numbers:

Q = fa
b
: a 2 I; b 2 I ¡ f0gg

² I ½ Q: choose b = 1.

² In¯nitely many rational numbers between any two integers, e.g., 1 and 2:

1 +
1
c
; c 2 N

Irrational numbers: numbers that cannot be expressed as

ratios of integers. e.g.
p
2 (between 1 and 2, not rational).
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Real numbers (R): Union of rational and irrational numbers.

² extending along a line to in¯nity in both directions with no breaks or gaps: the real

line.

Intervals: subsets of R,

a; b 2 R; a < b

² Closed interval: [a; b] = fx 2 R : a · x · bg

² Half-open intervals:

(a; b] = fx 2 R : a < x · bg

[a; b) = fx 2 R : a · x < bg

² Open interval: (a; b) = fx 2 R : a < x < bg
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The Cartesian product of two sets X and Y , X£Y , is the set of ordered pairs formed

by taking in turn each element in X and associating with it each element in Y .

X £ Y = f(x;y) : x 2 X; y 2 Y g

X = f1; 2; 3g; Y = fa; bg,

X £ Y = f(1; a); (1; b); (2; a); (2; b); (3; a); (3; b)g

(1;
p
2) 2 Q£N?

(1;
p
2) 2 N £Q?
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The Cartesian product of R with itself.

R £R = f(x1; x1) : x1 2 R;x2 2 Rg = R2

² All points in R2:

-

6

0

(a1; a2)

(b1; b2)

x2

s

s

x1

² x = (x1; x2) = 0: x1 = 0 and x2 = 0

x = (x1; x2) 6= 0: x1 6= 0 or x2 6= 0

² Graph of [2; 3] £ [1; 2]?

² Distance between a = (a1; a2) and b = (b1; b2)

d(a; b) =
q
(a1 ¡ b1)2 + (a2 ¡ b2)2 (Pythagorean Theorem)
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De¯nition 9 An ²-neighborhood of a point a 2 R2 is the set

N²(a) = fx 2 R2 : d(a;x) < ²g

N²[(2; 3)] = f(x1; x2) 2 R2 :
q
(x1 ¡ 2)2 + (x2 ¡ 3)2 < ²g.

Graph?

De¯nition 10 Given two points x = (x1; x2); x0 = (x01; x02) 2 R2, a convex combina-

tion of x and x0 is

¸x+ (1 ¡ ¸)x0 = (¸x1 + (1 ¡ ¸)x01; ¸x2 + (1 ¡ ¸)x02)

= (x01 + ¸(x1 ¡ x01); x02 + ¸(x2 ¡ x02);

for some ¸ 2 [0; 1]. (point on line segment between x and x0.)

De¯nition 11 A set X ½ R2 is convex if for any two points x; x0 2 X, ¸x+(1¡¸)x0 2 X

for all ¸ 2 [0; 1].

(A set is convex if any convex combination of any two points in the set is in the set.)
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Functions

De¯nition 12 Given two sets X and Y , a function (mapping) f from X to Y , f :

X ! Y , is a rule that associates each element of X with one and only one element of Y .

(\element of X you pick determines the element of Y you get.")

(\Consumption is a function of income.")

² X : domain

² For each x 2 X , y = f (x) 2 Y : the image of x

(value of f at x).

² f (X) = fy 2 Y : y = f (x); x 2 Xg: the range

Examples

1. X: set of countries, Y ½ R, f : \the GDP of"

f(UK) = 21;000

2. X = R;Y = R, y = f (x) = 2x+ 3

3. y2 = 2x+ 3: association of x 2 X and y 2 Y ,

but y is not a function of x

² Di®erent x 2 X may have the same image

e.g., y = f (x) = x2

² If each x has a di®erent image: the function is one-to-one

can be inverted: x = f¡1(y)

f¡1(y): inverse function

(the rule that associates the image of x with x)
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e.g.,

y = f(x) = 2x+ 3 ) x = f¡1(y) =
y ¡ 3
2

De¯nition 13 The Composite function of two functions f : X ! Y and g : Y ! Z

is

g ± f : X ! Z

or

z = g(f (x))

² The range of f must be a subset of the domain of g.

Examples

1. \Consumption is a function of income."

\income is a function of age."

\Consumption is a function of age."

2. y = f (x) = 2x + 3; z = g(y) = y2

z = g(f(x)) = g ± f (x) = (2x+ 3)2
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Types of R! R functions

f : R ! R ½ R£R

Graph of f : f(x;f (x)) : x 2 R; f(x) 2 Rg ½ R2.

² Identity function: f (x) = x

² Constant functions: f (x) = a

² Linear functions: f (x) = ax + b

² Quadratic functions: f (x) = ax2 + bx+ c

² Power functions: f(x) = axb

² Exponential functions: f (x) = bx, b: base

If b = e ¼ 2:718 (Napier's constant) f(x) = ex = exp(x).

If y = bx, x: the logarithm of y to base b: x = logb y

² Logarithmic functions: f(x) = logb x

If b = e, f (x) = ln x: natural logarithm

² Absolute Value: f (x) = jxj = x if x ¸ 0

= ¡x if x < 0
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De¯nition 14 X µ R or R2 and convex, Y µ R

The function f : X ! Y is concave if for any x; x0 2 X, ¸ 2 [0; 1]

f (¸x + (1 ¡ ¸)x0) ¸ ¸f (x) + (1 ¡ ¸)f (x0)

It is strictly concave if the inequality holds when ¸ 2 (0; 1).
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De¯nition 15 The function f : X ! Y is convex if for any x;x0 2 x, ¸ 2 [0; 1]

f (¸x + (1 ¡ ¸)x0) · ¸f (x) + (1 ¡ ¸)f (x0)

It is strictly convex if the inequality holds when ¸ 2 (0; 1).
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De¯nition 16 y = f (x) : R! R is

increasing if ¹x > x̂) f (¹x) ¸ f (x̂).

strictly increasing if ¹x > x̂) f (¹x) > f(x̂).

decreasing if ¹x > x̂) f (¹x) · f (x̂).

strictly decreasing if ¹x > x̂) f (¹x) < f(x̂).

monotonic if it is strictly increasing or strictly decreasing.

GDP is growing: GDP= f (time) is increasing.

y = f(x) = 2x+ 3; y = f (x) = x2 ¡ 2x

De¯nition 17 y = f (x1; x2) : R2 ! R is increasing

in x1 if ¹x1 > x̂1 ) f (¹x1; ¹x1) ¸ f (x̂1; ¹x2)

in x2 if ¹x2 > x̂2 ) f (¹x1; ¹x1) ¸ f (¹x1; x̂2)

y = f (x1; x2) = 2x1 +
1
x2
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Implicit Functions

y = f(x) = 3x2: an explicit function.

y ¡ 3x2 = 0: its equivalent implicit function

General form : F (x; y) = 0

e.g., utility function: U(x; y)

) U(x;y) = c (constant): an indi®erence curve

Not all equations of the form F (x; y) = 0 are implicit functions.

F (x; y) = x2 + y2 = 9
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Problem Set I

1. De¯ne the relationships (µ, ½, =), if any, among the following sets:

A = fx : 0 · x · 1g

B = fx : 0 < x < 1g

C = fx : 0 · x < 1g

D = fx : 0 · x2 · 1g

E = fx : 0 · x < 1=2 and 1=2 · x · 1g

Is x 2 C a necessary condition for x 2 D? Is it su±cient?

Is x 2 E a su±cient condition for x 2 D?

2. Let

X = fx 2 N : x · 20 and x=2 2 Ng

Y = fx 2 N : 10 · x · 24 and x=2 2 Ng

What are X\Y , X[Y , X¡Y , Y ¡X , (X[Y )¡ (X\Y ), and (X\Y )¡ (X [Y )?

3. The overall e®ect of a change in the price of a good on the demand for it is the sum

of two separate e®ects: the substitution e®ect (demand for the good will increase

when price falls because it becomes cheaper relative to is substitues); and the income

e®ect (a fall in the price of a good increases the consumer's real income, leading to

an increase in demand if the good is a normal good and a fall in demand if the good

is an inferior good).

In a Venn diagram, illustrate the relationship among the following four sets

(i) the set of goods for which demand increases when prices fall.

(ii) the set of goods for which demand falls when prices fall.
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(iii) the set of normal goods.

(iv) the set of inferior goods.

4. Describe X £ Y algebraically and graphically for

(i) X = [¡1;1]; Y = (¡1; 1).

(ii) X = fx 2 R : x > 3g, Y = fx 2 R : x < ¡1g.

(iii) X = fx : x · 4; x=2 2Ng, Y = fx : x < 9; x=3 2 Ng.

5. A consumer's budget set is

B = f(x;y) 2 R2 : p1x+ p2y · m; x ¸ 0; y ¸ 0g

where p1; p2 > 0 are prices and m > 0 is income. Is the set convex? What about

the set

f(x; y) 2 R2 : 2x + y · 4; x ¸ 0; y ¸ 0g [ f(x; y) 2 R2 : x + 2y · 4; x ¸ 0; y ¸ 0g

6. For ² = 0:1, describe the ²-neighborhood N²[(¡1; 1)].

7. What is the range of the function y = f(x) = x2 + 4 if the domain is

(i) [1; 4], (ii) R.

8. Suppose quantity demanded q as a function of price p is given by

q = 8 ¡ 2p

Is total revenue as a function of price concave or convex? Can the demand function

and the revenue function be inverted?
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9. Let X be the set of countries and Y the set of positive real numbers. De¯ne the

funtion f : X ! Y to be \y is the GDP of x". Is f one-to-one?

10. Which of the following implicitly de¯nes y as a function of x:

F (x; y) = ex + 1=y = 0

F (x; y) = 2jx + 2yj = 0

F (x; y) = jxj ¡ 2jyj = 0

11. Is g ± f (a) concave or convex (b) increasing or decreasing if

(i) f : R2 ! R : f (x1; x2) = 2x1 ¡ 3x2

g : R! R : g(y) =
yp
2

?

(ii) f : R ! R : f (x) =
x4

4

g : R! R : g(y) = 4 ¡ 2
p
y ?

(iii) f : R ! R : f(x) =
x4

9
¡ 3

g : R! R : g(y) = 3
q
y + 3 ?
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UNIVARIATE CALCULUS AND
OPTIMIZATION

f : R! R : y = f(x)
Continuity
(The idea: will a small change in x cause a drastic change in y?)

De¯nition 18 Suppose f is well-de¯ned to the left of the point x = a. The left-hand

limit of a function f(x) at the point x = a exists and is equal to LL

lim
x!a¡

f(x) = LL

if for any ² > 0, however small, there exists some ± > 0, such that jf (x)¡LLj < ² for all

x 2 (a ¡ ±; a).

² f (x) = ln x: not de¯ned to the left of x = 0.

² Left-hand limit exists at x = 2 for

f (x) =

8
>><
>>:

x x < 2

2x x ¸ 2
?
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De¯nition 19 Suppose f is well-de¯ned to the right of the point x = a. The right-hand

limit of a function f(x) at the point x = a exists and is equal to LR

lim
x!a+

f (x) = LR

if for any ² > 0, however small, there exists some ± > 0, such that jf(x)¡LRj < ² for all

x 2 (a; a + ±).

De¯nition 20 Suppose f (x) is well-de¯ned on an open interval containing the point x =

a. The limit of f (x) at the point x = a exists and is equal to L

lim
x!a f(x) = L

if for any ² > 0, however small, there exists some ± > 0, such that jf (x) ¡ Lj < ² for all

x 2 (a ¡ ±; a+ ±) except possibly a.

²
lim
x!a f(x) exists () lim

x!a¡
f (x) = lim

x!a+
f (x)
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De¯nition 21 Suppose f (x) is well-de¯ned on an open interval containing the point x =

a. f (x) is continuous at x = a if limx!a f (x) exists, and limx!a f (x) = f (a)

De¯nition 22 Suppose f (x) is well-de¯ned on an open interval containing the point x =

a. f (x) is continuous at x = a if for any ² > 0 however small, there exists some ± > 0

such that if jx¡ aj < ±, then jf (x) ¡ f(a)j < ².

Examples

f (x) = 2x

f (x) =
1
x

f (x) =

8
>><
>>:

+1; x · 0

¡1; x > 0

f (x) = jxj

Bertrand competition Two ¯rms, ¯rms 1 and 2, produce an identical product and

compete in prices. Each ¯rm sets a price and then meet whatever demand exists for its

product at that price. If one ¯rm charges a lower price, then all consumers will purchase

from that ¯rm. If the two ¯rms charge the same price, consumers' purchases will be split

evenly btween the two ¯rms. The demand function is given by y = 20 ¡ 2p and the cost

function for both ¯rms is C(y) = 4y. Suppose ¯rm 2 charges a price p2 = 7. Derive ¯rm

1's pro¯t as a function of its price.
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Derivatives and Di®erentials
y = f(x)

How y changes in response to a (small) change in x?

Rate of change? e.g., \marginal cost", \marginal tax rate".

De¯nition 23 Given two points P = (x1; f (x1)) and Q = (x2; f(x2)) on the graph of a

function f (x) where x2 = x1 + ¢x, the secant line is the straight line joining the two

points. The slope of the secant line is

f (x2) ¡ f (x1)
x2 ¡ x1

=
f (x1 + ¢x) ¡ f (x1)

¢x

27



De¯nition 24 f (x) is well-de¯ned on an open interval containing x = x1. The deriva-

tive of f (x) at the point x1 is

dy
dx

= f 0(x1) = lim
¢x!0

f (x1 + ¢x) ¡ f (x1)
¢x

f is di®erentiable at x = x1 and f 0(x1) the slope of the graph of f (x) at the point

(x1; f (x1)) if the derivative exists at x = x1, i.e.,

lim
¢x!0¡

f(x1 + ¢x) ¡ f (x1)
¢x

= lim
¢x!0+

f(x1 + ¢x) ¡ f (x1)
¢x

(\rate of change" when the change is \very small".)

Examples

f (x) = x2

f (x) = jxj

Income tax function

T (x) =

8
>>>>>><
>>>>>>:

0 0 · x < 5000

0:15(x ¡ 5000) 5000 · x < 15; 000

0:15 ¢ 10;000 + 0:25(x ¡ 15; 000) x ¸ 15; 000

For f to be di®erentiable at x1, lim¢x!0 f (x1+¢x) must exist and lim¢x!0 f (x1+¢x) =

f (x)

Theroem 1 If f (x) is di®erentiable, then f(x) must be continuous at x = x1.
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Rules of Di®erentiation

² f (x) = c, a constant, ) f 0(x) = 0

² f (x) = ax + b) f 0(x) = a

² f (x) = xn ) f 0(x) = nxn¡1

² f (x) = cg(x) ) f 0(x) = cg0(x)

² f (x) = h(x) + g(x) ) f 0(x) = h0(x) + g0(x)

f (x) = h(x) ¡ g(x) ) f 0(x) = h0(x) ¡ g0(x)

² f (x) = g(x)h(x) ) f 0(x) = g0(x)h(x) + g(x)h0(x)

² y = f (u); u = g(x); y = f (g(x)) = h(x)

) h0(x) = f 0(u)g0(x) or
dy
dx

=
dy
du
du
dx

² f (x) =
g(x)
h(x)

) f 0(x) = g
0(x)h(x) ¡ g(x)h0(x)

[h(x)]2

² f (x) = ex ) f 0(x) = ex

²
f (x) = lnx) f 0(x) = 1

x

Examples

f(x) = 3x5 + 6x3 + 2

f(x) =

vuut x2

2(x+ 1)

f(x) = ln(x3 +
1
x
)

f (x) = e
p
x

29



² The derivative of a function y = f(x),

dy=dx = f 0(x) = lim
¢x!0

f (x +¢x) ¡ f(x)
¢x

is also a function of x. Can take its derivative

d(dy=dx)
dx

=
df 0(x)
dx

=
d2y
dx2

= f 00(x)

² f 0(x): ¯rst derivative, f 00(x): second derivative.

De¯nition 25 If the ¯rst two derivatives of a function exist, then the function is twice

di®erentiable.

Theroem 2 A twice di®erentiable function is convex i®, at all points on its domain,

f 00(x) ¸ 0

(slope of the graph is increasing.)

Theroem 3 A twice di®erentiable function is strictly convex i® f 00(x) > 0 except

possibly at a single point.

e.g. f (x) = x4.

Theroem 4 A twice di®erentiable function is concave i®, at all points on its domain,

f 00(x) · 0

Theroem 5 A twice di®erentiable function is strictly concave i® f 00(x) < 0 except

possibly at a single point.
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Examples: Graphs and convexity/concavity of the following.

f (x) = 2x2 ¡ 4x + 3

f (x) = x3

f (x) = ¡x4

f (x) = lnx

f (x) = ex

f (x) = 1
x

Marginal Revenue of a monopolist The market demand function is given by q(p),

which is decreasing in the market price p. Show that the marginal revenue of a monopolist

in this market is lower than the market price at every level of output. If q(p) = 20¡ 1=2p,

graph the total revenue function and derive the monopolist's marginal revenue function.
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De¯nition 26 If f 0(x1) is the derivative of y = f(x) at x1, then the total di®erential

at x1 is

dy = df (x1; dx) = f 0(x1)dx

(a function of both x and dx).

² f 0(x1): rate of change.

² dy = f 0(x1)dx: \magnitude" of change

¢y = f 0(x1)¢x: good approximation if ¢x small.

(dy;dx short-hand for ¢y;¢x very small.)

32



Unconstrained Optimization

² Given y = f (x), we optimize it by ¯nding a value of x at which it takes on a

maximum or minimum value (extreme values)

Optimizing: rational economic behavior

(rational agents should not consistently choose suboptimal options.)

² Unconstrained optimization: can choose any x 2 R.

² Constrained optimization: can choose x 2 subset of R:

De¯nition 27 x¤ is a global maximum if f(x¤) ¸ f (x), for all x. x̂ is a local

maximum if there exists ² > 0, however small, such that f (x̂) ¸ f (x), for all x 2

[x̂ ¡ ²; x̂ + ²].

De¯nition 28 x¤ is a global minimum if f (x¤) · f (x), for all x. x̂ is a local mini-

mum if there exists ² > 0, however small, such that f(x̂) · f (x), for all x 2 [x̂¡ ²; x̂+ ²].

² x¤ a global max (min) ) x¤ a local max (min).
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Theroem 6 If the di®erentiable function f takes a local extreme value (maximum or

minimum) at a point x¤, then f 0(x¤) = 0.

² f 0(x¤) = 0: ¯rst-order condition

² Necessary: dy = f 0(x¤)dx.

If f 0(x¤) > 0, choose dx > 0 ) dy > 0: y increases.

f (x¤) not maximum.

If f 0(x¤) < 0, choose dx < 0 ) dy > 0: y increases.

f (x¤) not maximum.

² Not Su±cient: e.g., f(x) = x3, f 0(x) = 3x2, f 0(0) = 0

f (0) not max or min: f (0) < f (x) for x > 0, f (0) > f (x) for x < 0.

f (x) is \stationary" at x = 0.

De¯nition 29 ¹x is a stationary point of a di®erentiable f (x) if f 0(¹x) = 0.

fextreme valuesg ½ fstationary pointsg
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² Need second-order conditions to distinguish di®erent

stationary points.

Theroem 7

(i) If f 0(x¤) = 0 and f 00(x¤) < 0, then f has a local maximum at x¤.

(ii) If f 0(x¤) = 0 and f 00(x¤) > 0, then f has a local minimum at x¤.

² f 0(x¤) = 0 and f 00(x¤) < 0 su±cient but not necessary

e.g., f (x) = ¡x4 · 0 for all x, max at x = 0

f 0(x) = ¡4x3; f 00(x) = ¡12x2 ) f 0(0) = 0; f 00(0) = 0.

² f 0(x¤) = 0 and f 00(x¤) · 0 not su±cient,

e.g., f (x) = x3 at x = 0

Examples.

f (x) = 2x3 ¡ 1
2
x2 + 2

f(x) =
1
2
x4 ¡ 3x3 + 2x2

f(x) = x lnx¡ x; for x > 0
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Theroem 8

(i) Suppose f(x) is concave. Then x¤ is a global maximum of f (x) i® x¤ is a stationary

point, i.e., f 0(x¤) = 0.

(ii) Suppose f (x) is convex. Then x¤ is a global minimum of f (x) i® x¤ is a stationary

point, i.e., f 0(x¤) = 0.

Examples

f (x) = e3x2¡6x

f (x) = x + e¡x

f(x) =
p
x ¡ 2x (x ¸ 0)

f (x) = ln(x + 4) (x > ¡4)

Pro¯t-maximizing monopolist. For a monopolist who faces a market demand function

q = 25¡1=2p and has a cost function c(q) = 20+2q+0:5q2, what are the pro¯t-maximizing

price and output?
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Constrained Optimization
Upper bounds

max
x
f (x) s:t: x · a

(¯rm chooses production level to max pro¯t subject to capacity.)

3 possibilities:

² no max.

² the constraint is binding and solution x¤ = a.

² the constaint is slack and the solution is a stationary point f 0(x¤) = 0.

Theroem 9 If x¤ maximizes f(x) subject to x · a, then

(i) f 0(x¤) ¸ 0

(ii) x¤ · a

(iii) either f 0(x¤) = 0 or x¤ = a.

If f (x) is concave, then (i)-(iii) are necessary and su±cient.

Examples

max
x
f(x) = ¡x2 + 2x s:t: x · 2

max
x
f(x) = ¡x2 + 6x s:t: x · 2
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Lower bounds

max
x
f (x) s:t: x ¸ b

(e.g. minimum production level or non-negativity constraint.)

3 possibilities:

² no max.

² the constraint is binding and solution x¤ = b.

² the constaint is slack and the solution is a stationary point f 0(x¤) = 0.

Theroem 10 If x¤ maximizes f (x) subject to x ¸ b, then

(i) f 0(x¤) · 0

(ii) x¤ ¸ b

(iii) either f 0(x¤) = 0 or x¤ = b.

If f (x) is concave, then (i)-(iii) are necessary and su±cient.

Examples

max
x
f(x) = ¡x2 + 2x s:t: x ¸ 2

max
x
f(x) = ¡x2 + 6x s:t: x ¸ 2
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Lagrangian Method

max
x
f (x) s:t: g(x) ¸ 0

² L(x) = f(x) + ¸g(x)

² ¸: Lagrange multiplier

Theroem 11 If x¤ maximizes f (x) subject to g(x) ¸ 0, then

(i) L0(x¤) = 0 (stationarity)

(ii) g(x¤) ¸ 0 (constraint)

(iii) ¸ ¸ 0 (non-negativity)

(iv) either ¸ = 0 or g(x¤) = 0 (complementary slackness).

(either the constraint is not binding (¸ = 0) or it is g(x¤) = 0) If both f (x) and g(x) is

concave, then (i)-(iv) are necessary and su±cient.

Examples.

max
x

[¡x2 + 2x] s:t: x2 · 4

max
x

[6 lnx ¡ 2x] s:t: x2 ¡ 3x + 2 · 0
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Constrained minimization

max
x
f(x) s:t: g(x) ¸ 0 () min

x
[¡f(x)] s:t: g(x) ¸ 0

Example

min
x

[e2x¡4 ¡ 2x] s:t: x+ 3 · 0

Price-regulated monopolist A monopolist faces a demand function q = 20¡ 1=2p and

has a cost function c(q) = 8q. The monopolist however is not free to set the price as the

industry is regulated and the regulator stipulates that the price cannot be higher than

$20 or lower than $15. What are the monopolist's pro¯t-maximizing price and output?
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Problem Set II

1. Continuity is a necesary but not su±cient condition for di®erentiability. True or

False?

2. For each of the following functions, (a) determine whether it is continuous, (b)

determine whether it is di®erentiable, (c) sketch its graph.

(i) f (x) =
1
x ¡ 2

(ii) f(x) = j3x ¡ 9j

(iii) f (x) =

8
>><
>>:

2; x · 3

1; x > 3

(iv) f (x) =

8
>><
>>:

x; x · 3

3 ¡ x; x > 3

(v) f (x) =

8
>><
>>:

3x; x < 2

8 ¡ x; x ¸ 2

3. For each of the following functions, (a) ¯nd the ¯rst and second derivatives where

they exist, (b) determine whether it is convex or concave, (c) sketch its graph.

(i) f (x) = 2x3 + 3x2 + 2

(ii) f (x) =
1
x + 1

(for x 6= ¡1)

(iii) f (x) = ln(
2

2x + 1
) (for x > ¡1

2
)

(iv) f(x) = e
p
x (for x ¸ 0)
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4. Consider the following income tax structure:

The ¯rst $5,000 of income is not subject to any tax.

The next $15,000 is subject to a tax rate of 25%.

The next $30,000 is subject to a tax rate of 40%.

Any additional income is subject to a tax rate of 50%.

(i) Find and graph the tax function T (y), de¯ned on y ¸ 0.

(ii) Determine the points of nondi®erentiability.

(iii) Graph the marginal tax function.

5. For each of the functions below, identify (a) stationary points, (b) any local maxima

or minima, (c) any global maxima or minima.

(i) f(x) = ¡4x3

(ii) f(x) = 4x3 ¡ 1
3
x2 + 9

(iii) f (x) = x4 ¡ 8x2

(iv) f(x) = x2 + x¡2 where x 6= 0

(v) f (x) = ln(1 + x2)

(vi) f (x) = e¡x
2

6. Consider a ¯rm in a competitive industry which takes the market price p = $36 as

given and has a cost function c(q) = 3q2 + 1. Find the pro¯t maximizing output.

7. Solve the following problems.

(i) max
x
f (x) = ¡x2 + 8x s:t: x · 2
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(ii) max
x
f (x) = ¡x2 + 8x s:t: x · 6

(iii) max
x
f(x) = ¡1

x
¡ 4x s:t: x ¸ 2

(iv) max
x
f (x) = ¡ 1

x
¡ x

9
s:t: x ¸ 2

(v) min
x

[x2 ¡ 3x+ 4] s:t: x2 · 4

(vi) max
x

[15 lnx¡ 3x] s:t: x2 ¡ 8x+ 7 · 0

(vii) min
x

[e3x¡9 ¡ 3x] s:t: x ¡ 2 · 0

8. A monopolist faces a demand function q = 12 ¡ 1=3p and has a cost function

c(q) = 6q. The monopolist however is not free to set the price as the industry is

regulated and the regulator stipulates that the price cannot be higher than $18 or

lower than $12. What are the monopolist's pro¯t-maximizing price and output?
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LINEAR ALGEBRA

Linear function (equation): y = ax+ b

Example: qD = ¡2p+ 10

qD: quantity demanded for milk, p: market price of milk

Graph: all values of (qD ; p) satisfying the equation: straight line

(simple, could be a good approximation of reality)

qS = 4p¡ 8, qS: quantity supplied of milk.

Equilibrium qD = qS = q

q = ¡2p+ 10

q = 4p¡ 8

Solution: Values of (q; p) satisfying both equations,

Graphically, the intersection.

q; p: unknowns

q+ 2p = 10

q ¡ 4p = 8
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A system of 2 simultaneous equations in 2 unknowns

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

² Graph of a11x1 + a12x2 = b1

² There may be one, none, or in¯nitely many solutions

(intersections).

x1 + x2 = 1

x1 + x2 = 2

) No solution.

x1 + x2 = 1

2x1 + 2x2 = 2

) In¯nitely many solutions.

² General principles on ¯nding solutions?

² Systems of n simultaneous equations in n unknowns?
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Matrix Algebra

De¯nition 30 A matrix is a rectangular array of numbers enclosed in parentheses, con-

ventionally denoted by a capital letter. The number of rows (say m) and the number of

columns (say n) determine the order of the matrix (m£ n).

P =

2
664
2 3 4

3 1 5

3
775 ; Q =

2
6666664

2 3

4 3

1 5

3
7777775

A general 2 £ 2 matrix.

A =

2
664
a11 a12

a21 a22

3
775

De¯nition 31 An array that consists of only one row or column is known as a vector.

·
2 3 5

¸
;

2
6666664

2

3

5

3
7777775

De¯nition 32 A matrix that has the same number of rows and columns is a square

matrix.
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De¯nition 33 A square matrix that has only nonzero entries on the main diagonal and

zero everywhere else is a diagonal matrix.

A diagonal matrix whose diagonal elements are one is the identity matrix, denoted by

In where n is the order of the matrix.

2
6666664

2 0 0

0 1 0

0 0 7

3
7777775
; I3 =

2
6666664

1 0 0

0 1 0

0 0 1

3
7777775

De¯nition 34 A square matrix with all its entries being zero if the null matrix.

2
6666664

0 0 0

0 0 0

0 0 0

3
7777775
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De¯nition 35 The sum of two matrices is a matrix, the elements of which are the

sums of the corresponding elements of the matrices. Two matrices are conformable for

addition or substraction if they are of the same order.

2
664
a11 a12 a13

a21 a22 a23

3
775+

2
664
b11 b12 b13

b21 b22 b23

3
775 =

2
664
a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b33

3
775

Car production A car manufacturer who produces 3 di®erent models in 3 di®erent

plants A, B, and C in the ¯rst half and second half of the year as follows

First Half
Model 1 Model 2 Model 3

Plant A 27 44 51

Plant B 35 39 62

Plant C 33 50 47

Second Half
Model 1 Model 2 Model 3

Plant A 25 42 48

Plant B 33 40 66

Plant C 35 48 50

Summarize the total production for the whole year.
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De¯nition 36 Scalar multiplication is carried out by multiplying each element of the

matrix by the scalar.

P =

2
664
2 3 4

3 1 5

3
775 ) 3P =

2
664
6 9 12

9 3 15

3
775

3P = P + P +P

De¯nition 37

(i) Two matrices A and B of dimensions m£n and n£ l respectively are conformable to

form the product matrix C = AB, since the number of columns of A is equal to the number

of rows of B. (ii) The product matrix AB is of dimension m£ l and its ijth element, cij

is obtained by multiplying the elements of the ith row of A by the corresponding elements

of the jth column of B and adding the resulting products.

A =

2
664
a11 a12

a21 a22

3
775 ; x =

2
664
x1

x2

3
775 ) Ax =

2
664
a11x1 + a12x2

a21x1 + a22x2

3
775

The product of any matrix A and a conformable identity matrix I is equal to the original

matrix A.
2
664
a11 a12 a13

a21 a22 a23

3
775

2
6666664

1 0 0

0 1 0

0 0 1

3
7777775
=

2
664
a11 a12 a13

a21 a22 a23

3
775
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Example Determine the revenue of a car park on a given Monday, Tuesday, and Wednes-

day based on the following data.

Number of cars Number of buses

Monday 30 5

Tuesday 25 5

Wednesday 35 15

The parking charge is $4 per car and $8 per bus.

De¯nition 38 The transpose matrix, AT is the original matrix A with its rows and

columns interchanged.

P =

2
664

2 3 4

3 1 5

3
775 ; P

T =

2
6666664

2 3

3 1

4 5

3
7777775

De¯nition 39 A matrix A that is equal to its transpose AT is a symmetric matrix.

2
6666664

1 5 6

5 2 0

6 0 4

3
7777775

De¯nition 40 The inverse matrix A¡1 of a square matrix A of order n is the matrix

such that

AA¡1 = A¡1A = In
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De¯nition 41

Any matrix A for which A¡1 does not exist is singular.

A matrix A for which A¡1 exists is non-singular.

Let A be n£ n, x and b be n£ 1

Ax = b

is a (linear) matrix equation and

de¯nes a system of n simultaneous equations in n unknown, x.

If A is nonsingular,

A¡1Ax = A¡1b ) Inx = A¡1b ) x = A¡1b

De¯nition 42 The determinant of a 2 £ 2 matrix

A =

2
664
a11 a12

a21 a22

3
775

is given by (a11a22 ¡ a21a12) and is denoted by jAj or detA.

The inverse of a 2 £ 2 matrix.

A =

2
664
a11 a12

a21 a22

3
775 ) A¡1 =

1
jAj

2
664
a22 ¡a12

¡a21 a11

3
775

Theroem 12 A is singular i® jAj = 0.
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System of 2 simultaneous equations in 2 unknowns

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Let

A =

2
664
a11 a12

a21 a22

3
775 ; x =

2
664
x1

x2

3
775 ; b =

2
664
b1

b2

3
775

) Ax = b) x = A¡1b
2
664
x1

x2

3
775 =

1
a11a22 ¡ a21a12

2
664
a22 ¡a12

¡a21 a11

3
775

2
664
b1

b2

3
775

Example 8
>><
>>:

2x+ 3y = 5

4x¡ 7y = 8

8
>><
>>:

2x + 3y = 1

10x+ 15y = 12

Linear Production Technology A ¯rm produces two outputs, y1 and y2, with two

inputs, x1 and x2. aij denote the amount of input i required to produce 1 unit of output

j. 2
664
a11 a12

a21 a22

3
775 =

2
664
3 1

2 5

3
775

Find the quantities of x1 and x2 needed to produce 20 units of y1 and 15 units of y2.

Suppose we are given the quantities of the inputs: x1 = 10; x2 = 20. Find the quantities

of y1 and y2 that can be produced.

52



Quadratic Forms

De¯nition 43 Given a 2 £ 2 matrix A and a 2 £ 1 vector x,

A =

2
664
a11 a12

a21 a22

3
775 ; x =

2
664
x1

x2

3
775

the quadratic form is

q(x) = xTAx = x =
·
x1 x2

¸
2
664
a11 a12

a21 a22

3
775

2
664
x1

x2

3
775

= a11x21 + (a12 + a21)x1x2 + a22x22

De¯nition 44

(i) q(x) and A are positive de¯nite if q(x) = xTAx > 0, for all x 6= 0.

(ii) q(x) and A are positive semi-de¯nite if q(x) = xTAx ¸ 0, for all x 6= 0.

(iii) q(x) and A is negative de¯nite if q(x) = xTAx < 0, for all x 6= 0.

(iv) q(x) and A negative semi-de¯nite if q(x) = xTAx · 0, for all x 6= 0.
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Theroem 13 Suppose A is symmetric.

A is positive de¯nite i® a11 > 0, a22 > 0 and jAj > 0.

A is negative de¯nite i® a11 < 0, a22 < 0 and jAj > 0.

A is positive semi-de¯nite i® a11 ¸ 0, a22 ¸ 0, and jAj ¸ 0.

A is negative semi-de¯nite i® a11 · 0, a22 · 0, and jAj ¸ 0.

A symmetric ) a12 = a21

q(x) = a11x21 + 2a12x1x2 + a22x22

= a11(x21 +
2a12
a11
x1x2 +

a212
a211
x22) ¡ a

2
12

a11
x22 + a22x

2
2

= a11(x1 +
a12
a11
x2)2 +

a11a22 ¡ a212
a11

x22

Examples

The quadratic forms and \de¯niteness" of

2
664
4 2

2 1

3
775 ;

2
664

¡1 0

0 ¡1

3
775 ;

2
664

¡1 1

1 ¡1

3
775
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Problem Set III

1. Find the value of x; y and z.

2
664

3 2

x+ y 1

3
775 =

2
664
3 2y

2 y¡ z

3
775

3

2
664
3 y

2 1

3
775 ¡ 2

2
664
4 2

x 1

3
775 =

2
664
z 0

2 1

3
775

2
664
3 y

2 1

3
775

2
664
x 2

1 3

3
775 =

2
664
z 0

2 7

3
775

2
6666664

3 0 2

0 y 1

0 z 10

3
7777775

2
6666664

x

1

0

3
7777775
+ 3

2
6666664

2

¡1

¡3

3
7777775
=

2
6666664

4

1

0

3
7777775

2. Solve the matrix equation Ax = b for the following pairs of matrix A and column

vector b.

(i) A =

2
664

3 ¡1

2 4

3
775 ; b =

2
664
1

2

3
775

(ii) A =

2
664
4 2

2 1

3
775 ; b =

2
664
3

2

3
775
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(iii) A =

2
664
2 3

1 2

3
775 ; b =

2
664
1

2

3
775

3. A ¯rm produces two outputs, y1 and y2, with two inputs, x1 and x2. aij denote the

amount of input i required to produce 1 unit of output j.

2
664
a11 a12

a21 a22

3
775 =

2
664
2 3

1 2

3
775

Find the quantities of x1 and x2 needed to produce 20 units of y1 and 15 units of

y2. Suppose we are given the quantities of the inputs: x1 = 20; x2 = 12. Find the

quantities of y1 and y2 that can be produced.

4. Fine the quadratic forms and \de¯niteness" of the following.

2
664

4 0

0 3

3
775 ;

2
664

3 ¡2

¡2 7

3
775 ;

2
664

¡1 2

2 ¡1

3
775
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MULTIVARIATE CALCULUS AND
OPTIMIZATION

f : R2 ! R : y = f (x1; x2)
Partial Derivatives

De¯nition 45 The partial derivatives of y = f (x1; x2) with respect to x1 and x2 are

f1(x1; x2) =
@y
@x1

=
@f (x1; x2)
@x1

= lim
¢x1!0

f (x1 +¢x1; x2) ¡ f (x1; x2)
¢x1

f2(x1; x2) =
@y
@x2

=
@f (x1; x2)
@x2

= lim
¢x2!0

f (x1; x2 + ¢x2) ¡ f (x1; x2)
¢x2

Examples

U(x1; x2): utility function, U1(x1; x2): marginal utility.

F (K;L): production function, FL(K;L): marginal product of labor.
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² f1(x1; x2), f2(x1; x2) are functions of x1; x2.

² Taking partial derivatives of the partial derivatives:

f11(x1; x2) =
@f1(x1; x2)
@x1

; f12(x1; x2) =
@f1(x1; x2)
@x2

f21(x1; x2) =
@f2(x1; x2)
@x1

; f22(x1; x2) =
@f2(x1; x2)
@x2

² f11(x1; x2); f22(x1; x2): second partial derivatives

f12(x1; x2); f21(x1; x2): cross partial derivatives

Hessian Matrix

H(x1; x2) =

2
664
f11(x1; x2) f12(x1; x2)

f21(x1; x2) f22(x1; x2)

3
775

Theroem 14 (Young's Theorem) If f (x1; x2) has continuous ¯rst and second partial

derivatives, then f12(x1; x2) = f21(x1; x2)

The Hessian matrix is symmetric.

Examples. Hessian matrices of

f (x1; x2) = 5x21x
4
2

f (x1; x2) = lnx1x2

f (x1; x2) = e5x1+x
4
2
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De¯nition 46

The ¯rst-order total di®erential for y = f (x1; x2) is

dy = f1(x1; x2)dx1 + f2(x1; x2)dx2

Allowing both x1; x2 to change (i.e., change in all \directions")

Implicit function: F (x;y) = 0

Fxdx+ Fydy = 0

dy
dx

= ¡Fx
Fy

Utility function U(x;y). Slope of indi®erence curve (MRS)?

Indi®erence curve: U(x; y) = c

Uxdx+ Uydy = 0

dy
dx

= ¡Ux
Uy

Indi®erence curves downward-sloping if marginal utilities positive.

Examples: Total di®erentials and slopes of indi®erence curves of

u = U(x1; x2) = 5x2=31 x
1=3
2

u = U(x1; x2) = ln(2x1 + 3x2)2
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Second-order total di®erential

dy = f1(x1; x2)dx1 + f2(x1; x2)dx2

(function of x1; x2; dx1; dx2)

d[dy] =
@[dy]
@x1
dx1 +

@[dy]
@x2
dx2

=
@[f1dx1 + f2dx2]

@x1
dx1 +

@ [f1dx1 + f2dx2]
@x2

dx2

= [f11dx1 + f21dx2]dx1 + [f12dx1 + f22dx2]dx2

= f11dx21 + 2f12dx1dx2 + f22dx22

Theroem 15 y = f (x1; x2) is twice di®erentiable.

It is strictly convex if for all (x1; x2) 2 R2 and (dx1; dx2) 6= 0

d2y = f11dx21 + 2f12dx1dx2 + f22dx22 > 0

It is strictly concave if for all (x1; x2) 2 R2 and (dx1; dx2) 6= 0

d2y = f11dx21 + 2f12dx1dx2 + f22dx22 < 0
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Theroem 16 y = f (x1; x2) is twice di®erentiable.

It is convex i® for all (x1; x2) 2 R2,

d2y = f11dx21 + 2f12dx1dx2 + f22dx22 ¸ 0

It is concave i® for all (x1; x2) 2 R2,

d2y = f11dx21 + 2f12dx1dx2 + f22dx22 · 0

Let
dx =

2
664
dx1

dx2

3
775 ) dxT = [dx1; dx2]

d2y = dxTH(x1; x2)dx

Theroem 17

y = f (x1; x2) is twice di®erentiable with Hessian H(x1; x2).

(i) f (x1; x2) is strictly convex if H(x1; x2) is positive de¯nite for all (x1; x2) 2 R2.

(ii) f (x1; x2) is strictly concave if H(x1; x2) is negative de¯nite for all (x1; x2) 2 R2.

(iii) f (x1; x2) is convex i® H(x1; x2) is positive semi-de¯nite for all (x1; x2) 2 R2.

(iv) f (x1; x2) is concave i® H(x1; x2) is negative semi-de¯nite for all (x1; x2) 2 R2.

61



Theroem 18

y = f (x1; x2) is twice di®erentiable with Hessian H(x1; x2).

(i) f (x1; x2) is strictly convex if f11 > 0, f22 > 0 and jH j > 0 for all (x1; x2) 2 R2.

(ii) f (x1; x2) is strictly concave if f11 < 0, f22 < 0 and jH j > 0 for all (x1; x2) 2 R2.

(iii) f (x1; x2) is convex i® f11 ¸ 0, f22 ¸ 0, and jH j ¸ 0 for all (x1; x2) 2 R2.

(iv) f (x1; x2) is concave i® f11 · 0, f22 · 0, and jH j ¸ 0 for all (x1; x2) 2 R2.

Examples

f (x1; x2) = x21 + x22

f (x1; x2) = x21 + x22 ¡ 5x1x2

f (x1; x2) = x41 + x42

f (x1; x2) =
p
x1 + x2

f (x1; x2) = 5 ¡ (x1 + x2)2

f (x1; x2) = 3x1 + x22
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Functions with Economic Applications
De¯nition 47

A function f : R2 ! R is homogeneous of degree k if

f (®x1; ®x2) = ®kf (x1; x2)

Examples

f (x1; x2) = x1x22: homogeneous of degree 3.

f (x1; x2) = x
1=4
1 x

1=2
2 : homogeneous of degree 3=4.

f (x1; x2) = xa1x
1¡a
2 (Cobb-Douglas): homogeneous of degree 1.

f (x1; x2) = x21 + x22: homogeneous of degree 2.

f (x1; x2) = x
1=4
1 x

1=2
2 + x1: not homogeneous.

² A production function F (K;L) is homogeneous of degree k.

Then the production function exhibits

increasing returns to scale if k > 1

decreasing returns to scale if k < 1

constant returns to scale if k = 1.

Theroem 19 If f is homogeneous of degree k, then its ¯rst partial derivatives are homo-

geneous of degree (k ¡ 1).

f (®x1; ®x2) = ®kf (x1; x2)

@f(®x1;®x2)
@x1

= ®f1(®x1; ®x2);
@®kf (x1; x2)
@x1

= ®kf1(x1; x2)

Example: f (x1; x2) = x
1=3
1 x

2=3
2
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Theroem 20 If y = f(x1; x2) is a production (utility) function which is homogeneous of

degree k and has continuous ¯rst partial derivatives, then along any ray from the origin

the slope of all isoquants (indi®erence curves) is equal.

The ratio x1=x2 constant along any ray from the origin.

To show

slope of isoqauant =
dx2
dx1

=
f1(x1; x2)
f2(x1; x2)

depends only on the ratio x1=x2.

We know

f1(®x1;®x2) = ®k¡1f1(x1; x2); f2(®x1;®x2) = ®k¡1f2(x1; x2)

Choose ® = 1=x2

f1(x1=x2;1)
f2(x1=x2;1)

=
(1=x2)k¡1f1(x1; x2)
(1=x2)k¡1f2(x1; x2)

=
f1(x1; x2)
f2(x1; x2)

Example:

f (x1; x2) = x
1=3
1 x

2=3
2
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De¯nition 48 A function is homothetic if it is a monotonic transformation of some

homogeneous function.

f (x1; x2) homothetic if f (x1; x2) = Q[h(x1; x2)]

h(x1; x2) homogeneous, Q(z) monotonic.

Example:

f (x1; x2) = 1 + x1=31 x
2=3
2

Theroem 21 y = f (x1; x2) is a homothetic production (utility) function i® along any

ray from the origin the slope of all isoquants (indi®erence curves) is equal.

f (x1; x2) homothetic:

f (x1; x2) = Q[h(x1; x2)]

h(x1; x2) homogeneous, Q(z) monotonic.

f1(x1; x2) = Q0[h(x1; x2)]h1(x1; x2)

f2(x1; x2) = Q0[h(x1; x2)]h2(x1; x2)

dx2
dx1

=
f1(x1; x2)
f2(x1; x2)

=
Q0[h(x1; x2)]h1(x1; x2)
Q0[h(x1; x2)]h2(x1; x2)

=
h1(x1; x2)
h2(x1; x2)

=
h1(x1=x2; 1)
h2(x1=x2; 1)
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Unconstrained Optimization

² Given y = f(x1; x2), ¯nd values of x1; x2 at which f takes on an extreme value.

² Unconstrained optimization: can choose any x 2 R2.

² constrained optimization: can choose x 2 subset of R2.

De¯nition 49 (i) At (x¤1; x¤2) we have a local maximum of f (x1; x2) if there exists ²,

however small, such that f (x¤1; x¤2) ¸ f (x1; x2) for all (x1; x2) 2 N²(x¤1; x¤2).

(ii) At (x¤1; x¤2) we have a local minimum of f (x1; x2) if there exists ², however small, such

that f (x¤1; x¤2) · f (x1; x2) for all (x1; x2) 2 N²(x¤1; x¤2).

De¯nition 50 (i) At (x¤1; x¤2) we have a global maximum of f (x1; x2) if f (x¤1; x¤2) ¸

f (x1; x2) for all (x1; x2) 2 R2.

(ii) At (x¤1; x
¤
2) we have a global minimum of f(x1; x2) if f(x¤1; x

¤
2) · f (x1; x2) for all

(x1; x2) 2 R2.

Global max (min) ) local max (min)
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De¯nition 51 (¹x1; ¹x2) is a stationary point of f (x1; x2) if

f1(x1; x2) = f2(x1; x2) = 0.

Theroem 22 If at (x¤1; x¤2) we have a local maximum or minimum of f (x1; x2), then

f1(x¤1; x¤2) = f2(x¤1; x¤2) = 0.

² dy = f1dx1 + f2dx2: can make dy > 0 if f1 6= 0 or f2 6= 0.

Theroem 23 y = f (x1; x2) is twice di®erentiable with Hessian H(x1; x2).

(i) If f1(x¤1; x
¤
2) = f2(x¤1; x

¤
2) = 0 and H(x¤1; x

¤
2) is negative de¯nite, then f has a local

maximum at (x¤1; x
¤
2).

(ii) If f1(x¤1; x¤2) = f2(x¤1; x¤2) = 0 and H(x¤1; x¤2) is positive de¯nite, then f has a local

minimum at (x¤1; x¤2).

Example.

f (x1; x2) = ¡x31 + 6x1 ¡ x22, local max at (
p
2; 0).

f (x1; x2) = ¡x41 ¡ x42 (condition su±cient, not necessary).
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Theroem 24

(i) If y = f (x1; x2) is concave for all (x1; x2) 2 R2, then f has a global maximum at

(x¤1; x¤2) i® f1(x¤1; x¤2) = f2(x¤1; x¤2) = 0.

(ii) If y = f (x1; x2) is convex for all (x1; x2) 2 R2, then f has a global minimum at

(x¤1; x¤2). i® f1(x¤1; x¤2) = f2(x¤1; x¤2) = 0.

Examples.

f (x1; x2) = ¡x21 ¡ x22,

f (x1; x2) = ¡x21 + 4x1x2 ¡ x22
Pro¯t-maximizing input choice A competitive ¯rm produces output y using two in-

puts, labor L and capital K. The production function is given by F (K;L) = K0:6L0:2.

The ¯rm takes the input and output prices as given and they are: output price p = 100,

price of labor w = 10, and price of capital r = 20. What are the pro¯t-maximizing input

levels?
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Constrained Optimization
Standard Consumer Problem

max
x1;x2
U (x1; x2)

s:t: p1x1 + p2x2 · y

(p1x1 + p2x2 · y de¯nes a subset of R2)

Constrained Maximization

max
x1;x2
f (x1; x2) s:t: g(x1; x2) ¸ 0

Lagrangian Method

L(x1; x2) = f (x1; x2) + ¸g(x1; x2)

¸: Lagrange multiplier
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Theroem 25

If (x¤1; x¤2) maximizes f (x1; x2) subject to g(x1; x2) ¸ 0, then

(i) L1(x¤1; x¤2) = L2(x¤1; x¤2) = 0 (stationarity)

(ii) g(x¤1; x¤2) ¸ 0 (constraint)

(iii) ¸ ¸ 0 (non-negativity)

(iv) either ¸ = 0 or g(x¤1; x¤2) = 0 (complementary slackness).

(either constraint is not binding (¸ = 0) or it is (g(x¤1; x¤2) = 0).

If both f (x1; x2) and g(x1; x2) are concave, then (i)-(iv) are necessary and su±cient.

Examples

max
x1;x2

[ln x1 + lnx2] s:t: 2x1 + 3x2 · 12

(utility maximization subject to budget constraint.)

max
x1;x2

[¡(x1 ¡ 1)2 ¡ (x2 ¡ 2)2] s:t: x1 + x2 · 4

max
x1;x2

[ln x1 + lnx2] s:t: 2x1 + 3x2 ¸ 12
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Constrained Minimization

max
x1;x2
f (x1; x2) s:t: g(x1; x2) ¸ 0 ()

min
x1;x2

[¡f (x1; x2)] s:t: g(x1; x2) ¸ 0

Examples.

min
x1;x2

[2x1 + 3x2] s:t: 2
p
x1x2 ¸ 1

(cost minimization subject to an output level.)
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Problem Set IV

1. Hessian matrices of

f(x1; x2) = 2x21 ¡ 3x42

f (x1; x2) = x31 ¡ 6x1x2

f(x1; x2) = 7x31x
4
2

f(x1; x2) = 3 lnx1x2 + x21

f (x1; x2) = 8e5x1+x
3
2

2. Total di®erentials and slopes of indi®erence curves of

u = U(x1; x2) = 4 lnx1 + 3 lnx2

u = U (x1; x2) = 5x4=31 x
2=3
2 + 3

u = U (x1; x2) = 4 ln(7x1 + 3x2)

3. Determine the convexity/concavity of the following functions.

f (x1; x2) = 3x21 + 5x22

f (x1; x2) = 3x21 + 3x22 ¡ 5x1x2

f (x1; x2) = ¡x41 ¡ 2x42

f (x1; x2) =
p
x1 +

p
x2

f (x1; x2) = (x1 + x2)2 ¡ 100x1 ¡ 50x2

f (x1; x2) = ¡x31 + 6x2
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4. If y = 43=2xay2=3 is homogeneous of degree 7=6, ¯nd the value of a.

5. Which of the following are homothetic but not homogeneous

(i) f (x1; x2) = ex
2
1x2.

(ii) f (x1; x2) = ¡ ln(x1 + x2).

(iii) f(x1; x2) = x21 + x
2
2 + x1x2.

(iv) f (x1; x2) = ¡4x31x2 + 7x21x
2
2.

(v) f(x1; x2) =
q
x1x22 + 2.

6. For each of the functions below, identify (a) stationary points, (b) any local maxima

or minima, (c) any global maxima or minima.

f (x1; x2) = ¡3x1 + 4x2.

f (x1; x2) = ¡3x21 ¡ 4x22.

f (x1; x2) = ¡3x21 + 4x22.

f (x1; x2) = x31 ¡ 3x1 + x22.

f (x1; x2) = x21 ¡ x1x2 + x22.

f (x1; x2) = x31 + x1x2 ¡ x22.

7. A competitive ¯rm produces output y using two inputs, labor L and capital K. The

production function is given by F (K;L) = K0:4L0:4. The ¯rm takes the input and

output prices as given and they are: output price p = 10, price of labor w = 2, and

price of capital r = 2. What are the pro¯t-maximizing input levels?
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8. Solve the following problems.

max
x1;x2

[lnx1 + 2 lnx2] s:t: 3x1 + 5x2 · 18

max
x1;x2

[2x1 + 4x2] s:t: lnx1 + lnx2 ¸ ln 8

max
x1;x2

[30 ¡ x21 ¡ x22] s:t: x1 + x2 ¸ 10

min
x1;x2

[(x1 ¡ 3)2 + (x2 ¡ 5)2] s:t: x1 + x2 · 10
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Constrained Optimization (With Equality Constraints)

max
x1;x2
f (x1; x2) s:t: ax1 + bx2 = c

(ax1 + bx2 = c de¯nes a subset of R2)

Standard Consumer Problem

max
x1;x2
U (x1; x2)

s:t: p1x1 + p2x2 = y

Example:

max
x1;x2

(lnx1 + lnx2)

s:t: 3x1 + x2 = 180

Method I (by substitution)

ax1 + bx2 = c) x2 =
c¡ ax1
b

An equivalent unconstrained univariate optimization problem

max
x1
f(x1;

c¡ ax1
b

)
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Method II (Lagrangian Method)

L(x1; x2) = f(x1; x2) + ¸(c¡ ax1 ¡ bx)

¸: Lagrange multiplier

Theroem 26

If (x¤1; x¤2) maximizes f (x1; x2) subject to ax1 + bx2 = c, then

(i) L1(x¤1; x¤2) = L2(x¤1; x¤2) = 0 (stationarity)

(ii) ax¤1 + bx¤2 = c (constraint)

If f (x1; x2) is concave, then (i)-(ii) are necessary and su±cient.

Constrained Minimization

max
x1;x2
f (x1; x2) s:t: ax1 + bx2 = c()

min
x1;x2

[¡f(x1; x2)] s:t: ax1 + bx2 = c

Solve the following problems.

max
x1;x2

[lnx1 + 2 lnx2] s:t: 3x1 + 5x2 = 18

max
x1;x2

[30 ¡ x21 ¡ x22] s:t: x1 + x2 = 10

min
x1;x2

[(x1 ¡ 3)2 + (x2 ¡ 5)2] s:t: 2x1 + x2 = 10
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INTEGRATION

² \Expected Utility"

Lottery: [(x1; p1); (x2; p2)]

Eu(x) = p1u(x1) + p2u(x2)

Continuous probability distribution F (x) over [a; b], density f (x)

Eu(x) =
R b
a u(x)f(x)dx

² u(t) instantaneous utility at t 2 [a; b]

Life-time utility =
R b
a u(t)dt

² Solving \di®erential equations".

² \Consumer Surplus".
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Inde¯nite Integrals

De¯nition 52 A function F (x) is an inde¯nite integral (or antiderivative) of the

function f (x) if F 0(x) = f (x) for all x. We usually write F (x) =
R
f(x)dx. f(x) is called

the integrand.

Rules of Integration

² Power Rule
Z
xndx =

xn+1

n+ 1
+C; n 6= ¡1

² Linear Rule

Z
[®f(x) § ¯g(x)]dx = ®

Z
f (x)dx § ¯

Z
g(x)dx

² Exponential Rule
Z
exdx = ex +C

² Logarithmic Rule
Z 1
x
dx = lnx +C

Z
(lnx)dx = x lnx ¡ x+ C

² Integration by Substitution

f (x) = g(h(x))h0(x)

)
Z
f(x)dx =

Z
g(h(x))h0(x)dx =

Z
g(h(x))dh(x) =

Z
g(h)dh

(h0(x) =
dh(x)
dx

)
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General log rule
Z f 0(x)
f (x)

dx = ln f (x) + C

² Integration by Parts

f (x) = g(x)h0(x)

)
Z
f (x)dx =

Z
g(x)h0(x)dx =

Z
g(x)dh(x)

= g(x)h(x) ¡
Z
h(x)dg(x) = g(x)h(x) ¡

Z
h(x)g0(x)dx

Examples

Z
(x2 +

2
x
+ 3ex)dx =

1
3
x3 + 2 lnx + 3ex + C

Z 2x
x2 + 1

dx

Z
xexdx
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De¯nite Integrals

De¯nition 53 A partition of a closed interval [a; b] is any decomposition of [a; b] into

subintervals of the form

[x0; x1]; [x1; x2]; [x2; x3]; : : : ; [xn¡1; xn]

where

a = x0 < x1 < x2 < x3 < ¢ ¢ ¢ < xn¡1 < xn = b

For i = 1; 2; : : : ; n the length of [xi¡1; xi] is denoted by ¢i = xi ¡ xi¡1.

De¯nition 54 Let [x0; x1]; [x1; x2]; [x2; x3]; : : : ; [xn¡1; xn] be a partition of [a; b] and wi 2

[xi¡1; xi] for i = 1; 2; : : : ; n. Then
nX

i=1
f (wi)¢i

is a Riemann sum of f (x).
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De¯nition 55 f (x) is integrable on the interval [a; b] if for any ² > 0, there exists

± > 0 such that

j
nX

i=1
f (wi)¢i ¡ Lj < ²

for any partition of [a; b] such that max¢i < ± and for any wi 2 [xi¡1; xi]. This value is

called the de¯nite integral of f (x) from a to b and denoted

Z b

a
f (x)dx

(= lim
max¢i!0

nX

i=1
f (wi)¢i)

² Area under the graph
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Theroem 27 (Fundamental Theorem of Calculus)

Suppose f (x) is continuous on a closed intervale [a; b]

(i) If we de¯ne

F (x) =
Z x
a
f(t)dt

for all x 2 [a; b], then F (x) is an antiderivative of f (x), i.e., F 0(x) = f (x).

(ii) If F (x) is an antiderivative of f (x), then

Z b
a
f(x)dx = F (b) ¡ F (a)

-

6

x

f(x)

F (x)

y

xa x +¢x
r rr

Given f (x), function F (x) = area under graph of f from a to x

F 0(x) = lim
¢x!0

F (x+ ¢x) ¡ F (x)
¢x

= f (x)
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Properties of Integrals

² If a < b < c
Z c
a
f (x)dx =

Z b
a
f (x)dx +

Z c
b
f (x)dx

²

Z b

a
f (x)dx = ¡

Z a

b
f (x)dx

Examples

Z 1

0
2xdx

Z 1

0
(x3 + ex)(3x2 + ex)dx

² Suppose a ¯rm begins at time t = 0 with a capital stock K(0) = 500; 000 and, in

addition to replacing any depreciated capital, is planning to invest in new capital

at the rate I(t) = 600t2 over the next ten years. What would be the capital stock

at the end of the ten years if the plan is carried out?

² The demand function for a product is q = 15¡3p1=2. Compute the consumer surplus

at price p = 9.
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Problem Set V

1. Find the inde¯nite integrals (antiderivatives) of the following.

f (x) = (x2 +
2
x
+ 3ex)

f (x) =
2x
x2 + 1

f (x) = xex

f(x) = 2e2x +
14x

7x2 + 5

f (x) = 6x2(x3 + 2)99

2. Evaluate the following de¯nite integrals

Z 1

5
3x2dx

Z 1

¡1
2exdx

Z 2

1
6xex

2
dx

Z 64

0
(x1=2 + 5x¡2=3)dx

Z 5

1

2x3 + 1
x4 + 2x

dx

Z 4

0
(

1
x + 1

+ 2x)dx

3. Suppose an economy's net investment °ow is I(t) = 10t1=2. Letting K(0) =

5;000;000 be the current stock of capital, ¯nd the level of capital ¯ve years from

now.
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4. The demand function for a product is q = 10¡2p1=2. Compute the consumer surplus

at prices p = 4 and p = 1.
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