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Abstract

Vulnerability to poverty, which broadly captures the susceptibility to becom-
ing poor in the future, has become an integral part of any deprivation assessment.
In this paper, we take a fresh look at measuring vulnerability, where we separate
out the identification part of whether an individual is vulnerable, from their level
of vulnerability. Given the substantial informational challenges that one faces in
the context of measuring vulnerability, our framework allows for different informa-
tion sets for identification and aggregation. These challenges lead us to propose
identification rules based on the future probability of falling into poverty. We ax-
iomatically characterise these identification rules along with a widely used measure
of vulnerability. Using a simple societal measure we show that societal vulnerability
can be decomposed into vulnerabilities arising from the different shocks. Further,
we provide an empirical illustration of the identification and measurement rules
proposed in this paper using real-world data from Bangladesh.
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1 Introduction

Vulnerability to poverty, which captures the susceptibility of households and individuals

to fall into poverty in the future, is fast becoming an integral part of any deprivation

assessment. The Human Development Report (UNDP, 2014, p.10) noted that “Vulnera-

bility threatens human development and unless it is systematically addressed, by changing

policies and social norms, progress will be neither equitable nor sustainable.”Goals to re-

duce vulnerability recognise the uncertainty individuals face in their daily livelihoods

(O’Brien et al.,2018), however successful policy design and implementation require effec-

tive identification of the vulnerable and their level of vulnerability. Since vulnerability is

associated with uncertainties regarding future outcomes, both the identification and the

measurement of vulnerability is likely to be a complex and informationally demanding

exercise.

This paper puts forth a systematic way of addressing these two distinct questions

of (a) identifying the vulnerable, and (b) measuring the level of vulnerability that each

individual faces. In recent years although there has been significant development in our

understanding of how to measure and estimate vulnerability (see Calvo 2018; Gallardo,

2017 and Fuji, 2016) for comprehensive reviews), several empirical papers have used ad-

hoc rules for identifying the vulnerable (Hohberg et al. 2018, Dang and Lanjouw 2018).

Our identification rule is based on an individual’s probability of falling into poverty in the

future which has been widely used in vulnerability measurement (Vo, 2018; Imai et al.,

2011; Chaudhuri et al. 2002; Pritchett et al. 2000). We explicitly take into consideration

the informational constraints that are inherent in the nature of vulnerability. Our pro-

posed rule is particularly attractive in a context where policy-makers choose a different

and perhaps coarser set of information to screen the vulnerable and a more richer set of

information to deduce their level of vulnerability.

Once we identify who the vulnerable are, we are faced with a second non-trivial

problem of assessing their level of vulnerability to poverty. In our second contribution to

the literature, we axiomatically characterise the widely used Foster Greer and Thorbecke

(FGT ) class of vulnerability measures (Chaudhuri 2003; Hoddinott and Quisumbing,

2003) to assess individual vulnerability.1 Hence, our paper can be viewed as providing a

1The FGT class of vulnerability measure is essentially the expected Foster, Greer and Thorbecke
(1984) poverty measure. Several studies employ the FGT class of vulnerability measures such as Ward
(2016), Celidoni and Procidano (2015), Zhang and Wan (2006), among others.
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theoretical underpinning to much of the applied work in the context of vulnerability.

Our proposed method for identification has broad similarities with the counting ap-

proach to multidimensional deprivation (Alkire and Foster, 2011; Atkinson, 2003), where

an individual is identified as multidimensionally poor if they are above a certain thresh-

old based on the weighted number of dimensions the individual is deprived. In a similar

vein, we can identify vulnerable individuals using a threshold (or cut-off) based on the

probability of income losses resulting in poverty in the future. The loss of income in the

future can be related to adverse income shocks an individual may face, such as, sudden

illness or death (health shocks), extreme weather events (natural shocks), or a combi-

nation of these shocks, among others. We can, therefore, map the deprivations arising

from the future outcomes of income to possible adverse shocks faced by the individual.

From this perspective, our proposed framework is similar to the choice under uncertainty

literature (Gilboa, 2009; Luce and Raiffa, 1957), with each individual facing a probability

distribution over future outcomes. Studies such as Knippenberg and Hoddinott (2017),

Haq (2015), Gloede et al. (2013), and Heltburg and Lund (2009) have used information

on discrete shocks to examine vulnerability.

In addition to identifying the vulnerable, we measure their level of vulnerability using

the FGT vulnerability measure. In our framework, this measure is more suitable since, in

line with the choice under uncertainty literature, it treats the different outcomes, which

represents the various adverse shocks, as independent of each other. Thus, the impact of

each of these adverse shocks on the vulnerability of the individual is independent of any

other shocks. This, however, does not rule out the possibility of simultaneous multiple

shocks since they can be represented as one future outcome. The greater the exposure

to these adverse shocks and the income losses associated with them, the higher will be

the vulnerability of the individual to poverty. In our framework, a simple average of

the vulnerability across all individuals is chosen as a measure of societal vulnerability.

We demonstrate that societal vulnerability can then be decomposed into vulnerability

arising out of the different adverse income shocks. This should be particularly useful for

shock-responsive social protection programmes (O’Brien et al. 2018) since policy-makers

can now identify the key shocks that determine vulnerability in their society.

Recent studies such as Dang and Lanjouw (2017), Chakravarty (2016), and de la

Fuente et al. (2015) have used a vulnerability line, which is similar in concept to a poverty
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line, to identify the vulnerable. While intuitively appealing, this approach ignores the ex-

ante nature of vulnerability since it is operationalised using ex-post data.2 It also requires

longitudinal data which are not easily available for many developing countries.3 A slightly

different route to identifying the vulnerable, which we refer as the standard approach, is

taken by many empirical studies such as Ward (2016), Imai et al. (2011), Jha and Dang

(2010), Zhang and Wan (2009), Christiaensen and Subbarao (2005), Chaudhuri (2003),

where the level of vulnerability for each individual is first computed using an estimated

future income or consumption. Those with vulnerability above a certain threshold are

identified as vulnerable.4 Apart from arbitrarily setting the vulnerability threshold, this

approach calibrates an individual’s vulnerability level even for identifying whether the

individual is vulnerable or not. As a result, identification of the vulnerable becomes

informationally as demanding as measuring their level of vulnerability since for each

individual we now need information on both the exposure to the different shocks and

the associated income shortfalls with each shock to estimate their vulnerability. Such

information can be both difficult and expensive to gather.5

In this paper, we contribute to the current literature in several ways. We propose and

axiomatically characterise an identification rule based on probabilities associated with

various adverse income shocks resulting in poverty.6 Going a step further, if we consider

a richer set of criteria which includes the probabilities and the income shortfall associated

with each of these adverse shocks, then we can adopt the FGT vulnerability measure

that we axiomatise in this paper as an identifying rule. This is exactly what the standard

approach in the literature does. In that case, as mentioned before, the identification rule

and the vulnerability measure for the individual are the same. Finally, we show that a

simple societal measure has the advantage of being the sum of the vulnerabilities arising

2The issue of measuring vulnerability in an ex-post sense also arises when vulnerability is conceptu-
alised as downside spell (see Asheim et al. 2020).

3The data issues concerning measurement of vulnerability have been discussed in Heltberg and Lund
(2009) and Patel et al. (2017).

4Cisse and Barrett (2018) use a similar framework to estimate resilience which is just the opposite of
vulnerability.

5Since this information is not easy to collect always, a coarser information set may be preferred
for identification. For instance, in the current pandemic and consequent lockdown, for benefit transfer
schemes in India, vulnerable households were identified using coarse information based on occupations
prone to income shocks (Das and Mishra, 2020).

6Most vulnerability assessments, typically collect data on the exposure to adverse shocks that people
experience (see Erman et al., 2018; Gerlitz et al., 2014; Korboe, 2011; World Bank, 2007), which can
be used to calibrate the probability of different future outcomes, rather than the detailed income losses
under those shocks.
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from the different shocks. These theoretical results are then applied to a real-world data

set from Bangladesh.

The plan of the paper is as follows. In the next section, we develop the notations and

illustrate through numerical examples our proposed concept of identifying the vulnerable

and measuring the vulnerability of those individuals and the whole society. In Section

3, we explore the identification rules in greater detail and discuss axioms to characterise

our proposed identification rules. Section 4, provides an axiomatic characterisation of

the FGT class of individual vulnerability measures. In the following section, we discuss

the societal vulnerability measure and its decomposition into vulnerability arising from

different shocks. An empirical illustration of our proposed framework, using data from

Bangladesh, is provided in Section 6 of the paper. It demonstrates how we can apply the

identification methods discussed in this paper to real-world data. The final section draws

the arguments of the paper together with some brief remarks.

2 Concept of Vulnerability Measure

2.1 Notation

Consider a society of N individuals. Each individual i faces a future deprivation level d

drawn from [0, 1] according to some probability distribution with finite support.7 Let P

denote the set of all probability distributions over [0, 1] with finite support. Whenever

individual i’s future deprivation is drawn according to a probability distribution P i ∈ P ,

individual i faces a corresponding lottery Li
m = (pi1, d

i
1; ..., p

i
m, d

i
m), where {di1, ..., dim} is

the support of P i and pis is the probability of facing the deprivation level dis for each s, such

that pis > 0 for all s and
∑m

s=1 p
i
s = 1.8 Let L denote the set of all lotteries corresponding

to the probability distributions in P . For ease of exposition, without any loss of generality,

we will carry out the analysis in the rest of the paper using the lottery space L instead

of the probability distribution space P . For any lottery Li
m = (pi1, d

i
1; ..., p

i
m, d

i
m), the

number of positive deprivations that individual i faces is either m or m − 1. This is

because individual i can also face no deprivation (d = 0) in the future with a positive

probability. If an individual faces a deprivation, say d, with certainity, we denote it by

7In our context, d = (z − y)/z if y ≤ z, where y is the future income earned and z is the future
poverty line, otherwise d = 0.

8Note that, for any dik and dil in the support of P i, dik ̸= dil if k ̸= l.
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the degenerate lottery (1, d). To reduce notational burden, when there is no scope for

confusion, we shall drop the superscript i and subscript m from the lotteries and the

associated probabilities and deprivations when dealing with an individual.

In identifying the vulnerable, we consider the degenerate lottery (1, 0), where the

individual will not fall into poverty for sure, as not vulnerable under all identification

rules. Hence, our identification function will be on the domain LI = L\(1, 0). A general

identification rule is a function ρ : LI → [0, 1]. For a given θ ∈ [0, 1] , an individual i

facing a lottery Li ∈ LI is identified as vulnerable based on an identification rule ρ if

ρ(Li) ≥ θ. If θ = 0, an individual is identified as vulnerable if they fall into poverty in any

of the future outcomes with positive probability. This is known as the union approach.

On the other hand, when θ = 1, we have the intersection approach where an individual is

deemed vulnerable if the individual is deprived in all outcomes in the future with positive

probability. Once we identify the individual as vulnerable, we then use the lottery the

individual faces to come up with the level of vulnerability an individual faces. Thus, for

any individual i, vulnerability is measured by V : L → [0, 1]. Finally, if ρ(L) < θ or

L = (1, 0), V (L) = 0.9

Individual vulnerability can be aggregated to form the societal vulnerability. At the

societal level, with N individuals, the social vulnerability is measured by a function

V S : LN → [0, 1].

2.2 Vulnerability Measure

In this section, we present our vulnerability measure and illustrate it with an example.

Similar to the theoretical and empirical literature on vulnerability (Calvo and Dercon,

2013; Dutta, Foster and Mishra, 2011; Chaudhuri, 2003) we have divided the assessment

of vulnerability into three steps: (i) identify who is vulnerable, (ii) measure the vulnera-

bility of those who are identified as vulnerable and (iii) aggregate the vulnerability of all

individuals to measure the societal vulnerability. We view them as inter-linked steps to

measure overall vulnerability.

The P-rule that we propose for identification formalizes a common understanding of

9While we distinguish between the identification rule ρ(L) and the individual vulnerability measure
V (L), it is possible that the functional forms of ρ(L) and V (L) are the same. This is common in empirical
applications as mentioned in the previous section. Hence, the FGT vulnerability measure, characterised
in our paper, can also be seen as an identification rule.
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vulnerability which is the probability of an individual becoming deprived in the future.

For any lottery L = (p1, d1; ...; pm, dm) ∈ L:

(i) let rL = (rL1 , ..., r
L
m) be the associated deprivation identification vector such that,

for each s:

rLs =

 1 if ds > 0

0 otherwise

(ii) let pL = (p1, ..., pm) be the associated probability vector.

It is clear that rL partitions the lottery into binary outcomes: deprived and the non-

deprived, where those outcomes with positive deprivation are assigned the highest possible

value of one. Thus, while identifying whether an individual is vulnerable or not, we do

not distinguish between the different future positive deprivations by the extent of their

deprivation. The P-rule identification function, ρP : LI → [0, 1], is defined as:

Definition 1 ρP : LI → [0, 1] is a vulnerability identification rule such that, for any

L,L′ ∈ LI :

(i) if pL · rL > pL′ · rL′
, then ρP (L) > ρP (L′);

(ii) if pL · rL = pL′ · rL′
, then ρP (L) = ρP (L′).

Individual i is vulnerable if the scalar product pL · rL ≥ θ, where θ ∈ [0, 1] is the

threshold (or cutoff) value. ρP (Li) = 1 would mean that individual i is certainly going

to be deprived in the future whereas ρP (Li) = 0, will mean individual i will certainly not

be deprived.

In the second step, we present the Foster-Greer-Thorbecke (FGT ) vulnerability mea-

sure, which aggregates across all deprivation an individual faces in a lottery L = (p1, d1; ...; pm, dm)

to assess the individual’s vulnerability using the following function:

V (L) =


m∑
s=1

ps(ds)
α if ρ(L) ≥ θ

0 otherwise

(1)

where α > 0. For the α = 0 case, there will be no difference between the aggregation rule

proposed in (1) and the P-rule identification strategy given by ρP (L).
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In the third step, we take a simple aggregation of individual vulnerabilities to measure

societal level of vulnerability. The societal vulnerability measure for each (L1, ..., LN) ∈

LN is represented as

V S(L1, ..., LN) =
1

N

N∑
i=1

V (Li) (2)

Note that the societal average does not consider the distribution of vulnerability across

the population. However, the simple formulation has the great advantage of being able

to decompose vulnerability into different population subgroups. Hence, policy-makers

would be able to target vulnerable groups based on region, gender, ethnicity, or any

other population-based characteristics. One could allow more general functions such as a

weighted average of individual vulnerabilities, or an average which takes into account the

correlation among vulnerabilities (Calvo and Dercon, 2013). However, if we want to have

some notion of decomposability in our societal measure, where the societal vulnerability

is the sum of vulnerabilities of sub-populations, then we would be limited to a narrower

set of functions (Foster and Shorrocks, 1991), which includes the simple average that we

consider here.

2.3 Illustrated Examples

Example 1 For a society with N = 3 individuals, consider the following lotteries faced

by each of the individuals: L1 = (0.1, 0.1; 0.8, 0; 0.1, 0.2), L2 = (0.3, 0; 0.7, 0.8), and L3 =

(0.5, 0.6; 0.25, 0.4; 0.25, 0.2). Thus rL
1
= (1, 0, 1), rL

2
= (0, 1), rL

3
= (1, 1, 1), pL1

=

(0.1, 0.8, 0.1), pL2
= (0.3, 0.7) and pL3

= (0.5, 0.25, 0.25).

First, let us begin with Stage 1. Let the threshold value be θ = 0.5. Then using P-rule

identification strategy we find pL1 •rL1
= 0.2 < 0.5. Hence, individual 1 is not considered

vulnerable. On the other hand pL2 • rL2
2 = 0.7 > 0.5, which implies that individual 2 is

vulnerable. Similarly, for the third individual, pL3 • rL3
= 1 > 0.5, which indicates that

individual 3 is also vulnerable.

In stage 2, we assess individual vulnerability using (1) and α = 1; V (L1) = 0, V (L2) =

0.56 and V (L3) = 0.45.

In stage 3, the overall societal vulnerability will be V S(L1, L2, L3) = 1/3(V (L1)+V (L2)+

V (L3)) = 0.34.

In this example, although individual 2 is deprived only in one future outcome, com-
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pared to individual 1 who is deprived in two outcomes, we identify individual 2 as vulner-

able but not individual 1. This is because the probability associated with the outcome in

which individual 2 is deprived is far higher than the combined probability of the two out-

comes in which individual 1 is deprived. Thus, individual 2 is more likely to be deprived

in the future than individual 1.

The P-rule identification strategy, however, can sometimes lead to counter-intuitive

results, where vulnerability rankings can change under different threshold values repre-

sented by θ. We demonstrate this by an example below.

Example 2 Suppose the lotteries faced by two individuals are:L1 = (5/6, 0.3; 1/6, 0), and

L2 = (2/3, 0; 1/3, 0.95).

Note that rL
1
= (1, 0), pL1

= (5/6, 1/6), rL
2
= (0, 1) and pL2

= (2/3, 1/3). Thus,

pL1 • rL1
= 0.83 and pL2 • rL2

= 0.33.

For θ = 0.5, ρ(L1) > 0.5 > ρ(L2). Hence for α = 1, V (L1) = 0.25 > V (L2) = 0.

For θ = 0.3, ρ(L1) > ρ(L2) > 0.3. Hence for α = 1, V (L1) = 0.25 < V (L2) = 0.32.

In Example 2, the reversal of ranking of the vulnerability of the two individuals under

different values of θ happens because of the identification rule, where an individual is

identified as vulnerable based on the probability of deprivation in the future and not

on their deprivation level. Such ranking reversal happens in other contexts too, such as

for multidimensional poverty where this issue has been highlighted by Pattanaik and Xu

(2018).

One way to overcome this problem, as suggested by Pattanaik and Xu (2018), is to

take into account a broader set of information that includes the deprivation associated

with each shock, along with the probability of the shock, in the identification function

itself. This method is implicitly followed widely in the empirical literature on vulnerability

where under the standard approach vulnerability of each individual based on the FGT

measure is calibrated and a threshold applied, above which individuals are identified as

vulnerable. In this paper we have axiomatically characterise the FGT measure mainly

to capture the level of vulnerability of an individual, however, it can be considered an

example of a vulnerability identification function that identifies individuals based on

both the probability of an adverse shock and the resulting deprivation from these shocks.

While the use of such function does not lead to ‘inconsistencies’, this approach uses the

8



same function and data for identification of the vulnerable and for measuring their level

of vulnerability.

Following Sen (1976, 1979, 1981), however, the identification of who is vulnerable

could be considered as a distinct and separate exercise to measuring the level of vul-

nerability of individuals. This can be partly due to the different objectives of the two

processes and partly driven by the different information set one may have. A policy-

maker, for instance, may decide to have a broader and to some extent a looser set of

criteria to identify the vulnerable for enrollment in social protection programmes and

yet may undertake a different exercise using detailed information to measure the level

of vulnerability of those identified as vulnerable for evaluative purposes.10 The separate

process of identification and measuring vulnerability can also arise from data constraints,

with information on the exposure to different shocks more readily available, while data

on the impact of these shocks requiring significantly more effort to gather. Hence, despite

the ‘inconsistencies’, there may be reasonable grounds to consider separate functions for

identification and measuring individual vulnerability.

3 Characterising Identification Rules

Using two new axioms we axiomatically characterise the P-rule which identifies vulnerable

individuals based on the probability of falling into poverty in the future. The first axiom

captures the notion that if each of two lotteries with two possible outcomes has only one

outcome where an individual is deprived, then the lottery which has a higher probability of

the deprived outcome should be ranked higher in terms of being identified as vulnerable

compared to the other lottery. In other words, if we identify the lottery with lower

probability of the deprived outcome as vulnerable, then so should the other lottery.

Axiom 1 Probability Dominance (A1): Consider two lotteries L = (p1, d1; p2, d2), L
′ =

(p′1, d
′
1; p

′
2, d

′
2) ∈ LI such that d1 = d′1 = 0 (so d2 > 0 and d′2 > 0). Then:

(i) ρ(L′) > ρ(L) if p′2 > p2;

(ii) ρ(L′) = ρ(L) if p′2 = p2.
10Vulnerability assessments typically collect data on the exposure to different hazards that people

experience (see Erman et al. (2018), Gerlitz et al. (2014), Korboe (2011), World Bank (2007)) rather
than the detailed income losses under those hazards.
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Consider the following two lotteries faced by two different individuals, L = (0.4, 0.8; 0.6, 0),

and L′ = (0.7, 0.1; 0.3, 0), where each lottery has deprivation with positive probability.

The axiom implies, L′ should be identified as vulnerable relative to L, since the individual

has a higher probability of falling into deprivation in lottery L′. Note that we are not

taking into account the actual deprivation an individual may face. A plausible justifica-

tion might be situations where policy-makers want to identify the vulnerable for targeting

purposes and provide them the same level of support irrespective of their level of depri-

vation. This is the case for most social protection programmes such as unemployment

benefits or disaster reliefs.

The intuition for the next axiom is quite straight forward. Consider two lotteries L

and L′ such that the probability of falling into poverty in the future is the same, then,

both L and L′ should be equally identified as vulnerable. On the other hand if the

probability of falling in to poverty is higher in L′, then L′ should be ranked higher in

terms of being identified as vulnerable compared to L. Before we state the axiom, we

define the concept of probability transfer.

Definition 2 Consider any L = (p1, d1; ...; pm, dm) ∈ LI and any dm+1 > 0 such that

dm+1 ̸∈ {d1, ..., dm}. Let L′ ∈ LI be such that L′ = (p1, d1; ...; pk − δ, dk; ...; δ, dm+1) for

some δ ∈ (0, pk], where we let L
′ = (p1, d1; ...; pk−1, dk−1; pk+1, dk+1; ...; pm, dm+1) if δ = pk.

Then we say that L′ is derived through a probability transfer from L.

Note that L′ is derived through a probability transfer from L means that the prob-

ability of the additional deprivation outcome in L′ has been transferred from one of the

outcomes in L. Based on this definition we can now state the axiom formally.

Axiom 2 Probability Transfer (A2): Consider L = (p1, d1; ...; pm, dm) ∈ LI . If L′ ∈ LI

is a lottery derived through a probability transfer from L, then

ρ(L′)

 > ρ(L) if dm = 0

= ρ(L) if dm > 0

Consider lotteries, L = (0.3, 0; 0.7, 0.1) and L′ = (0.3, 0; 0.3, 0.1; 0.4, 0.5), where L′ is

derived from L through a probability transfer. Then according to the axiom of probability

transfer, we should treat these two lotteries the same when it comes to the identification

of being vulnerable or not. Note that, although in L′ there is a new higher deprivation
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outcome (whose probability is transfered from another positive deprivation outcome), by

considering the lotteries to be the same for identifying the vulnerable, this axiom ignores

the distribution of the probabilities over the future positive deprivation outcomes.

Given axioms (A1) and (A2), we can establish the following result.

Proposition 1 An identification rule ρ satisfies axioms of Probability Dominance (A1)

and Probability Transfer (A2) if and only if ρ = ρP .

Proof of Proposition 1: It can be verified that ρP satisfies axioms of Prob-

ability Dominance (A1) and Probability Transfer (A2). Suppose now that ρ satis-

fies axioms of Probability Dominance (A1) and Probability Transfer (A2). Pick any

L = (p1, d1; ...; pm, dm), L
′ = (p′1, d

′
1; ...; p

′
n, d

′
n) ∈ LI . Then we only need to consider two

possibilities: (i) pL · rL > pL′ · rL′
; (ii) pL · rL = pL′ · rL′

.

(i) pL · rL > pL′ · rL′
: In this case there exists l such that d′l = 0. Without loss of

generality let d′1 = 0. By applying (A2) repeatedly, ρ(L′) = ρ((p′1, 0; (1− p′1), d
′
2)).

Suppose ds > 0 for all s. By repeated application of (A2), ρ(L) = ρ((1, d1)). Let 0 <

d < d′2. Then (A2) implies that ρ((1, d)) = ρ((p′1, d; (1− p′1), d
′
2)) > ρ((p′1, 0; (1− p′1), d

′
2)).

By (A2), we also have ρ((1, d)) = ρ((1, d1)). Hence, ρ(L) > ρ(L′).

Suppose there exists k such that dk = 0. Without loss of generality, let d1 = 0. By

applying (A2) repeatedly, we get ρ(L) = ρ((p1, 0; (1− p1), d2)). We also have (1− p1) =

pL ·rL > pL′ ·rL′
= (1−p′1). Then (A1) implies that ρ((p1, 0; (1−p1), d2)) > ρ((p′1, 0; (1−

p′1), d
′
2)). Hence, ρ(L) > ρ(L′).

(ii) pL · rL = pL′ · rL′
: We only need to consider L ̸= L′.

Suppose ds > 0 for all s and d′l > 0 for all l. By applying (A2) repeatedly,we get

ρ(L) = ρ((1, d1)) and ρ(L′) = ρ((1, d′1)). Then ρ(L) = ρ(L′) if d1 = d′1. If d1 ̸= d′1, then

(A2) implies that ρ((1, d1)) = ρ((1, d′1)) and hence, ρ(L) = ρ(L′).

Suppose there exist i, j such that di = d′j = 0. Without loss of generality let d1 =

d′1 = 0. By repeated application of (A2), we have ρ(L) = ρ((p1, 0; (1 − p1), d2)) and

ρ(L′) = ρ((p′1, 0; (1−p′1), d
′
2)). We also have (1−p1) = pL ·rL = pL′ ·rL′

= (1−p′1). Then

(A1) implies that ρ((p1, 0; (1− p1), d2)) = ρ((p′1, 0; (1− p′1), d
′
2)). Hence, ρ(L) = ρ(L′). ■

Note that the P-rule identification strategy uses only the information on the proba-

bility of the various adverse outcomes in the future. One can also consider other identi-

fication rules based on the information needed, such as including information about the
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maximum deprivation in the future that an individual will face along with the probability

of future deprivations to identify whether the individual is vulnerable or not.

4 Characterising Individual’s Vulnerability Measure

In this section we axiomatically characterise the popular FGT class of vulnerability mea-

sures. While discussing our axioms, we highlight where there are strong similarities with

related literature in multidimensional poverty and choice under uncertainty.

In the context of multidimensional poverty, Alkire and Foster (2011), suggest a thresh-

old based on the weighted number of dimensions to decide whether one is poor or not.

In a similar spirit, we consider an identification rule ρ and a threshold θ which partitions

the lottery space L into Lρθ and L\Lρθ such that, for any lottery L, ρ(L) ≥ θ if L ∈ Lρθ

and ρ(L) < θ if L ∈ L\Lρθ. So, an individual with lottery L is identified as vulnerable if

L ∈ Lρθ and not vulnerable if L ∈ L\Lρθ. The cutoff value θ is exogenously determined

by policy-makers, practitioners or analysts, based on what they think is appropriate for

their context. In the empirical literature on vulnerability, θ = 0.5 is often considered as

the threshold value.

Let L+ be the set of lotteries whose supports contain only positive deprivations, i.e.

L+ = {L = (p1, d1; ...; pm, dm) ∈ L : ds > 0 for all s}.

If an individual is going to suffer positive deprivations in all possible future outcomes,

it seems reasonable to identify such an individual as vulnerable. In order to incorporate

this idea in our characterisation of the individual vulnerability measure, we will require

the vulnerability identification strategy to adopt a rule ρ and a threshold θ such that,

an individual facing a lottery from L+ is always identified as vulnerable, i.e. L+ is a

subset of Lρθ. Note that, this does not preclude an individual facing a lottery with zero

deprivation in one of the outcomes from being identified as vulnerable.

In this section, we take for given that individuals are already identified as vulnerable or

not, using identification rules such as ρE and threshold θ that we discussed in the previous

section. We propose this identification aspect as the first axiom for characterising the

vulnerability measure V .

Axiom 3 Focus (A3): V (L) = 0 for all L ∈ L \ Lρθ.

12



The following axiom is similar to the monotonicity property under choice under uncer-

tainty literature, where an increase in the probability of ‘good’ outcomes relative to ‘bad’

outcomes is preferable (Luce and Raiffa, 1957, p.29). In our context, it means vulnera-

bility should increase when the probability associated with a high deprivation outcome

increases relative to an outcome with lower deprivation. On the other hand, to reduce

vulnerability we have to ensure that the individual becomes less likely to fall into high

deprivation in the future.

Axiom 4 Monotonicity (A4): Consider any L = (p1, d1; ...; pk, dk; pl, dl; ...; pm, dm) ∈ Lρθ

such that dk > dl. Let L′ ∈ L be such that L′ = (p1, d1; ...; pk + δ, dk; pl − δ, dl; ...; pm, dm)

for some δ ∈ (0, pl], where we let L′ = (p1, d1; ...; pk + pl, dk; ...; pm, dm) if δ = pl. Then

V (L) < V (L′) if L′ ∈ Lρθ.

The above axiom also captures the spirit of the monotonicity property in multidimen-

sional poverty literature (Alkire and Foster, 2011).

For the next axiom, we use the notion of convex combination of two lotteries which

we define as follows:

Definition 3 Consider L = (p1, d1; ...; pm, dm), L
′ = (p′1, d

′
1; ...; p

′
n, d

′
n) ∈ L. Let D =

{d1, ..., dm} and D′ = {d′1, ..., d′n}. For any λ ∈ (0, 1), λL+(1−λ)L′ is defined as follows:

(a) Suppose D ∩D′ = ∅. Then λL+ (1− λ)L′ =

(λp1, d1; ...;λpm, dm; (1− λ)p′1, d
′
1; ...; (1− λ)p′n, d

′
n).

(b) Suppose D ⊆ D′. W.l.o.g. let d1 = d′1, ..., dm = d′m. Then λL+ (1− λ)L′ =

(λp1 + (1− λ)p′1, d1; ...;λpm + (1− λ)p′m, dm; (1− λ)p′m+1, d
′
m+1; ...; (1− λ)p′n, d

′
n).

(c) Suppose D′ ⊆ D. W.l.o.g. let d1 = d′1, ..., dn = d′n. Then λL+ (1− λ)L′ =

(λp1 + (1− λ)p′1, d1; ...;λpn + (1− λ)p′n, dn;λpn+1, dn+1; ...;λpm, dm).

(d) Suppose D ∩ D′ ̸= ∅, D ̸⊆ D′ and D′ ̸⊆ D. W.l.o.g. let d1 = d′1, ..., dl = d′l and

D ∩D′ = {d1, ..., dl}. Then λL+ (1− λ)L′ =

(λp1 + (1− λ)p′1, d1; ...;λpl + (1− λ)p′l, dl;λpl+1, dl+1; ...;λpm, dm;

(1− λ)p′l+1, d
′
l+1; ...; (1− λ)p′n, d

′
n).
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Thus, for each deprivation ds belonging to the support of lottery L but not L′, the

probability associated with this deprivation in the convex combination will be λps. Sim-

ilarly, for each deprivation d′k belonging to the support of L′ but not L, the probability

associated with this deprivation in the convex combination will be (1 − λ)p′k. On the

otherhand, for each deprivation d common to the support of L and L′, the probability

associated with this deprivation in the convex combination will be λpi+(1−λ)p′j, where

di = d′j = d.

The next axiom is similar to the axiom of decomposability in Dutta, Foster and Mishra

(2011) in the context of measuring vulnerability. The intuition is that any additional

uncertainties that are not captured through the lotteries do not impact vulnerability.

Suppose depending upon the policies government undertakes, one ends up with lottery L

with probability λ or lottery L′ with probability (1−λ). One could claim that this extra

layer of uncertainty arising out of government policy can lead to more vulnerability than

the expected value of vulnerabilities arising from the two lotteries. The following axiom

rules out such possibilities. This axiom is similar to the axiom of ‘reduction of compound

lotteries’ in the choice under uncertainty literature (Luce and Raiffa, 1957, p.28). Hence,

the vulnerability of a convex combination of lotteries should be the same as the convex

combination of the vulnerability of each of the lotteries.11

Axiom 5 Decomposability (A5): Consider any two lotteries L,L′ ∈ Lρθ and any λ ∈

(0, 1). Then V (λL+ (1− λ)L′) = λV (L) + (1− λ)V (L′) if λL+ (1− λ)L′ ∈ Lρθ.

As in the choice under uncertainty literature, the implication of this axiom would

be to make the vulnerability measure linear in probabilities. Thus, it will allow us to

generate the von Nueman-Morgenstern expected utility structure for the vulnerability

measure.

Next we consider an axiom that addresses the issue of change in the gap between the

vulnerability measures of two situations when all the deprivations in both situations are

scaled up or down. Consider two situations represented by the lotteries L and L′. Suppose

all deprivations in the two lotteries are reduced by the same proportion. This reduction

in deprivation can happen due to better provision of insurance or social safety options

to protect against adverse outcomes. Then the size of the change in the gap between

the vulnerability measures of the two situations should depend only on the initial gap

11This axiom can be derived from more fundamental axioms (Gilboa, 2009, Chapter 8).
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in the vulnerability measures and the proportionality factor by which the deprivations

have been changed. To formulate this axiom, for each lottery L = (p1, d1; ..; pm, dm) ∈ L,

we denote the proportionate change in deprivations as Lλ = (p1, λd1; ..; pm, λdm) for any

λ > 0. The formal statement of the axiom is as follows:

Axiom 6 Scale Invariance (A6): Consider any L,L′, L̃, L̃′ ∈ Lρθ. Suppose V (L′) −

V (L) = V (L̃′)−V (L̃). Then V (L′
λ)−V (Lλ) = V (L̃′

λ)−V (L̃λ) for every λ > 0 such that

Lλ, L
′
λ, L̃λ, L̃

′
λ ∈ Lρθ.

Note that, while the level of vulnerability might be reduced with better insurance

or social safety net, the change in vulnerability would be the same in both situations.

In other words, better social safety nets will not lead to differential impacts in terms of

vulnerability faced by individuals.

The next axiom consists of two technical conditions about the continuity of the vulner-

ability measure on Lρθ with respect to the deprivations. The first condition requires the

vulnerability measure of degenerate lotteries (1, d), where 0 < d ≤ 1, to be continuous.

To formally state the second condition, for each L = (p1, d1; ...; pm, dm) ∈ L with ds > 0

for all s, each k ∈ {1, ...,m} and each x ∈ [0, 1] with x ̸= ds for all s ̸= k, we will denote

by Lkx the lottery that is obtained from L by replacing dk with x. Then the condition

requires the vulnerability measure of Lkx to be continuous at x = 0 if Lk0 ∈ Lρθ.

Axiom 7 Continuity (A7): The individual vulnerability measure V satisfies the following

two conditions:

(i) V ((1, d)) is continuous on (0, 1];

(ii) For each lottery L = (p1, d1; ...; ...; pm, dm) ∈ L+, and each k ∈ {1, ...,m}, V (Lk0) =

lim
x→0+

V (Lkx) if Lk0 ∈ Lρθ and lim
x→0+

V (Lkx) exists.

Our final axiom is about the normalisation of the vulnerability measures of degenerate

lotteries with positive deprivation.

Axiom 8 Normalisation (A8): V ((1, 1)) = 1 and lim
d→0+

V ((1, d)) = 0 if lim
d→0+

V ((1, d))

exists.

The six axioms we have proposed in this section characterises the individual vulnera-

bility measure based on the FGT class of vulnerability measures as stated in Proposition

2 below.
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Proposition 2 Suppose the vulnerability identification rule ρ and threshold θ are such

that L+ ⊆ Lρθ. Then the individual vulnerability measure V satisfies axioms of Focus

(A3), Monotonicity (A4), Decomposability (A5), Scale Invariance (A6), Continuity (A7)

and Normalisation (A8) if and only if, for each lottery L = (p1, d1; ...; pm, dm) ∈ L, V (L)

is of the following form:

V (L) =


m∑
s=1

ps(ds)
α if L ∈ Lρθ

0 if L ∈ L \ Lρθ

where α is some positive real number.

Proof of Proposition 2: See Appendix A

When α < 1, for a given probability distribution, the increase in deprivation by

0 < δ < 1 amount, increases overall vulnerability by less than δ units. The opposite

would be true for α > 1. Note that the vulnerability measure in Proposition 2 can

also be interpreted as an expected poverty measure. The individual poverty measure is

f(d) = dα, which has an Arrow-Pratt constant relative risk aversion value of −(α − 1).

Thus, α > 1 is the counterpart of a risk averse individual in the choice under uncertainty

framework. Under risk aversion getting the expected values is better than facing the

lottery itself, and here facing the lottery would make the individual more vulnerable than

facing the expected value of the lottery with certainty.

5 Discussion: Shocks and Vulnerability

In this section we show that our measure of vulnerability can be linked to the adverse

shocks individuals face. While we have formulated our vulnerability measure interms of

the von-Neuman-Morgenstern framework, we can interpret the lotteries as arising out

of different shocks, i.e. the deprivations and probabilities associated with them can be

viewed respectively as the outcomes of the shocks and probabilities of those shocks.

For example, consider the following lottery L3 = (0.5, 0.3; 0.2, 0.4; 0.3, 0) faced by an

individual. Each of the positive deprivations and their associated probabilities in lottery

L3 can be thought of as arising from adverse shocks and the probabilities of the occurrence

of those shocks. Thus, the deprivation of 0.3 and the associated probability of 0.5 in
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L3 could be thought of a result of health shocks which can occur with probability 0.5.

From Proposition 2 we know that for any individual i, faced with lottery Li
m, if they are

identified as vulnerable, the vulnerability level is given by V (Li
m) =

∑m
s=1 ps(d

i
s)

α. Hence,

for our lottery, if the individual is identified as vulnerable, then the level of vulnerability

when α = 1 is V (L3) = 0.5× 0.3+0.2× 0.4, which is composed of the deprivation arising

from the different shocks and their associated probabilities.

Under our framework, the deprivation associated with each shock need not be dis-

tinct. Suppose, for example, an individual faces health shocks, law and order shocks

and natural shocks with the following probabilities of occurrence (0.5, 0.1, 0.4) and as-

sociated deprivations of (0.3, 0.3, 0.8). Note that for both health shocks and law and

order shocks, the future deprivation is same, although they have different probabilites

of occurence.This can be represented as lottery L4 = (0.6, 0.3; 0.4, 0.8). The vulnera-

bility of lottery L4, assuming the individual is identified as vulnerable, and α = 1, is

V (L4) = 0.6 × 0.3 + 0.4 × 0.8, which is equivalent to a representation interms of the

shocks where V (L4) = 0.5 × 0.3 + 0.1 × 0.3 + 0.4 × 0.8 =
∑π

s=1 psds, where π is the

number of shocks that individual faces under lottery L4. Thus at the individual level,

vulnerability can be decomposed in terms of shocks. Note that the number of shocks

captured in a lottery can be different from the number of future deprivations the lottery

represents.

Since societal vulnerability is a simple average of individual vulnerabilities, we can

decompose the societal vulnerability into different shocks. Given that for any individual

i not identified as vulnerable V (Li
m) = 0, societal vulnerability can then be represented

as,

V S =
1

N

q∑
i=1

πi∑
s=1

pL
i
m

s (dL
i
m

s )α, (3)

where, N is the total population, q is the number of individuals identified as vulnerable,

and πi is the number of shocks that the individual i with lottery Li
m faces. We can

rewrite equation (3) as,

V S =
T∑

sh=1

V sh, (4)

17



where T = max{πi : i = 1, .., N}, and

V sh = (1/N)

q∑
i=1

pL
i
m

s (dL
i
m

s )α (5)

is the vulnerability associated with each shock at the societal level. This decomposition

is particularly useful if we are interested in understanding how different shocks contribute

to societal vulnerability. Note that within (4), there are two layers of decomposability.

First, the axiom of Decomposability (A4) allows us to decompose the individual vulner-

ability into vulnerabilities arising from each of the different shocks, which essentially is

the expected deprivation from the various adverse shocks. The second decomposability

implicit in (2) allows us to separate the societal vulnerability in terms of individual vul-

nerabilities. These two layers of decomposability, thus, imply that we can separate overall

societal vulnerability into vulnerabilities arising from each different shock for each indi-

vidual. Failure of either of these two decomposability properties will mean that societal

vulnerability cannot be represented as in (4).

The decomposability properties both at the individual and societal level, also allow us

to decompose vulnerability interms of incidence and intensity as has been done by Alkire

and Foster (2011) in the context of multidimensional poverty. Suppose α > 0 and q is the

number of individuals identified as vulnerable. Using individual vulnerability measure as

given in Proposition 2, we can write the societal vulnerability as

V S =
q

N
.

q∑
i=1

πi∑
s=1

p
Li
m

s (d
Li
m

s )α

q
= H.Iα (6)

whereH is the head-count ratio and Iα is the intensity of vulnerability since it captures

the average expected poverty of those who are identified as vulnerable. In this sense, the

our vulnerability measure mirrors the adjusted head-count ratio proposed by Alkire and

Foster (2011) in the context of multidimensional poverty. We can easily expand this

analysis for α = 0. Similar to 6 societal vulnerability can be written as

V S =
1

N

q∑
i=1

πi∑
s=1

pL
i
m

s . (7)

Equation (7) implies
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V S =
q

N
.

q∑
i=1

πi∑
s=1

p
Li
m

s

q
= H.I0 (8)

where H is the head-count ratio of the vulnerable, and I0 is the average probability

with which those identified as vulnerable will fall into poverty in the future and thus

reflects the intensity of the vulnerability.

Finally, in our discussion we map various shocks into future probability of occur-

rence and deprivation, which can include correlated shocks. For instance, suppose future

poverty arises out of the following : Income shocks; Natural shocks; and Health shocks

or a combination of these shocks. The vulnerability framework proposed here can accom-

modate these specific and correlated shocks and would map them into the probability

and deprivation associated with the full set of shocks which are:Income shocks; Natural

shocks; Health shocks; Income and Natural shocks; Income and Health shocks; Natural

and Health shocks; and Income, Natural, and Health shocks. For empirical applica-

tions, however, we may consider just a few shocks, which may not include the full set of

correlated shocks.

6 Empirical Illustration

In this section, we apply the vulnerability assessment framework developed in this paper

to real-world data. By the very nature of this exercise, this is not a full-scale empirical

application. The intention is to demonstrate how the P-rule identification criteria along

with the FGT vulnerability measure can be used in the assessment of vulnerability.

Data: Our data comes from the Hrishipada Daily Diary project in Bangladesh where

main income earners of 70 households kept a record of the daily income and expenditures,

from May 2015 to December 2018, resulting in over 567,000 data points.12 In assessing

vulnerability, we define income as any earnings during the sample period, which includes

wages from jobs and profits from businesses, loans taken, savings withdrawn, and gifts

and transfers received. For the self-employed, we do subtract from their income, the

legitimate expenses that one has to incur to keep their business running. To smoothen

12Rutherford (2017, 2016) provides a detailed description of the data. More information on the financial
diary project and data can be found at https://sites.google.com/site/hrishiparadailydiaries/home. We
have dropped one household due to very few observations and another household due to extremely high
income.
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out the noise in daily income, we aggregate the daily information into weekly income.

Per capita income is defined as household income divided by household size. Table

A1 (Appendix A), provides some basic information on the data. There is considerable

variation in terms of the number of observations that we have for each household. For

our empirical illustration, we focus on 2017 and 2018 since they have the highest number

of households.

Empirical Strategy: To capture negative income shocks that individuals face each

year, we consider three possible future outcomes resulting from shocks of varying inten-

sity based on Ferreira and Sanchez-Paramo (2017) poverty lines. These outcomes are

deprivations due to (i) extreme shocks (income less than $1.90 per day), (ii) moderate

shocks (income between $1.90 and $3.20 per day), (iii) mild shocks (income between $3.20

and $5.50 per day).13 Any income above $5.50 per day, is not deprived.

Synthetic Distribution method : To capture the probability of different shocks and the

associated losses we assume that weekly income of individual i, yit, follows a log normal

distribution, thus ln yit ∼ N(µi, σ
2
i ). Using regression methods one can then estimate

the mean and variance of the income of the individual. Since our data does not have

information on household characteristics, we estimate just a trend regression

ln yit = α + βX i
t + εi (9)

where X i
t represents the number of weeks till income yit was earned.

14 For each individual

we then generate a synthetic income distribution of over 550,000 data points from on

a normal distribution of mean µi = E(ln yit | X i
t) and variance σ2

i = E(ε2i | X i
t).

15

The probability for individual i of experiencing shock s is pis = ni
s/n

i
T , where ni

s is the

number of income that comes under shock s, and ni
T is the total number of observations.

Individual i can then be identified as vulnerable using the P-rule, if ρE =
∑m

s=1 p
i
s is

above a certain threshold θ which takes the values 0, 0.25, 0.5, 0.75 and 1, as alternative

13Due to informational constraints, we have framed the different states in this nested manner. However,
our theoretical model provides a general framework where there is no need for such restrictions. For
instance, if we had information on health shocks, or unemployment shocks, or natural shocks (flood or
drought), then there is no reason why these different states should be nested in the way that we see in
our application.

14For each household, we take into account all available information till that point, including from
previous years. While we use simple regression to demonstrate our method, one could use a more
sophisticated estimation of mean and variance based on data availability.

15In our case, for each household we have drawn 567,216 incomes from a normal distribution with
mean and variance specific to the household. This is the same number as the total observations we have.
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thresholds in identifying the vulnerable. We also compare our results with the standard

approach, where individual vulnerability is calibrated first and then those individuals

whose vulnerability level is above 0.5 is identified as vulnerable

Next, the level of vulnerability of those who are identified as vulnerable is computed

from the synthetic distribution. The average income under shock s is yis =
∑ni

s
t=1 y

i
st/n

i
s,

where yist is a generated income under shock s, and ni
s is the number of such incomes.

To compute individual vulnerability arising from shocks, we use the FGT vulnerability

measure which is given as follows

V i =
πi∑
s=1

pis

(
z − yis

z

)α

. (10)

In all our calibrations of vulnerability we consider z = 1397.69 taka.16

In assessing societal vulnerability, under the assumption that each member of a house-

hold has the same level of vulnerability, we multiply the individual vulnerability with the

household size to get the total vulnerability of that household. The average of the vul-

nerability of all the individuals in society is the societal vulnerability.

Results: We undertake two calibration exercises. First, for the year 2017, we identify

the vulnerable and measure the societal vulnerability for different levels of θ along with

the standard approach. Second, for the years 2017 and 2018, we assess the contribution

of the different shocks to societal vulnerability.

In our first exercise, individual vulnerability (10) is calibrated for α = 1 and α = 2.

The results are presented in Table 1 below:

16We have taken 2011 as the base year and the PPP Exchange rate as US $ 1 = Taka 24.849. The
deflators for 2017 used was 146.10 and for 2018 was 154.20. Hence, US $5.50 per person per day translated
to 1397.69 Bangladeshi taka per person per week.
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Table 1: Levels of Vulnerability in Hrishipada, Bangladesh: 2017

Vulnerability

(FGT, α = 1)

Vulnerability

(FGT, α = 2)

Vulnerable

Individuals

Head-

count
Societal Intensity Median Societal Intensity Median

θ = 0 284 0.969 0.417 0.431 0.425 0.253 0.261 0.191

θ = 0.25 245 0.836 0.416 0.498 0.425 0.252 0.302 0.191

θ = 0.50 232 0.792 0.413 0.522 0.425 0.252 0.318 0.191

θ = 0.75 228 0.778 0.412 0.530 0.425 0.251 0.323 0.191

θ = 1 115 0.392 0.258 0.657 0.000 0.177 0.452 0.000

Standard

Approach
127 0.433 0.295 0.680 0.000 0.206 0.475 0.000

As expected, the number of individuals who are identified as vulnerable, and the re-

sulting headcount ratio reduces as θ increases. By making the identifying criteria for

vulnerability more stringent through a higher threshold, fewer people are identified as

vulnerable. Note that the number of vulnerable individuals and the headcount ratio for

each threshold is the same under α = 1 and α = 2. This is because in our empirical

illustration, the FGT vulnerability measure does not have any role to play in the identifi-

cation stage. Its role is to assess an individual’s level of vulnerability once the individual

has been identified as vulnerable.

Based on equation (6), for both α = 1 and α = 2, we decompose societal vulnerability

into the head-count ratio and the intensity of vulnerability. What is evident is that these

two aspects work in the opposite direction. Thus, as θ increases, the headcount ratio

decreases, whereas the intensity of vulnerability increases. With increasing θ we only

identify individuals as vulnerable whose probability of being deprived in the future is

very high. For instance, under α = 2, as we move from θ = 0 to θ = 0.25, there is

hardly any change in the societal vulnerability despite a 15 percentage points decline in

the headcount ratio because the intensity of vulnerability had also increased. Beyond

θ = 0.75, we find that the reduction in the head-count dominates the increase in the

intensity resulting in big changes to societal vulnerability.

We find large differences between the standard approach and results based on our

framework. For α = 1, under the standard approach, societal vulnerability is 0.30 and

around 43 percent of the population is identified vulnerable, which is in sharp contrast
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to the method proposed in our paper, where based on a θ = 0.5 threshold value, the

head-count is 79 percent and societal vulnerability is 0.41. The standard approach thus

significantly underestimates both the incidence and the level of vulnerability. The story

is similar for α = 2 too. We also find a difference between the standard approach and our

proposed method for the vulnerability of the median individual, particularly for lower

values of θ.

Another advantage of our framework is that we can decompose the overall vulner-

ability to investigate which shocks are contributing most to the societal vulnerability.

Equation (4) shows how societal vulnerability V S can be decomposed as the sum of the

vulnerabilities arising from different shocks. The relative contribution of a shock m to

societal vulnerability is V m/V S, where V m is based on (5). Our second calibration exer-

cise presents the relative contribution (in percentage) of extreme shocks, moderate shocks

and mild shocks to societal vulnerability for 2017 and 2018 in the table below for different

values of θ and α = 1 for the FGT measure.

Table 2: Decomposition of Vulnerability based on Shocks: 2017-2018

2017 2018

Extreme

Shocks

Moderate

Shocks

Mild

Shocks

Extreme

Shocks

Moderate

Shocks

Mild

Shocks

θ = 0 47.50 36.53 15.97 41.39 42.86 15.75

θ = 0.25 47.65 36.64 15.71 41.45 42.91 15.64

θ = 0.50 47.95 36.72 15.33 41.57 43.02 15.41

θ = 0.75 48.07 36.80 15.13 41.67 43.13 15.20

θ = 1 66.26 30.09 3.66 48.59 46.57 4.84

Table 2 displays some interesting patterns. In 2017, for all values of θ, over 47 percent

of the vulnerability is arising from extreme shocks, followed by another 36 percent from

moderate shocks and around 16 percent from mild shocks. This strong contribution of the

extreme shocks to vulnerability implies that most people in this sample are likely to fall

into extreme poverty in the future. Further, comparing 2017 and 2018, we see that 2018

is better since, for all the threshold except θ = 1, less of the vulnerability is emanating

from extreme shocks. Instead, the majority of the vulnerability in 2018 is coming from

moderate shocks reflecting the fact that per capita income and median income in 2018

23



are higher compared to 2017. In a more general setting, where vulnerability arises from

various shocks such as health, economic or natural shocks, this ability to decompose

vulnerability in terms of the contribution of the shocks, can be extremely useful from a

policy perspective.

7 Conclusion

The main innovation of the paper is in bringing a clear identification part to the mea-

surement of vulnerability within a unified framework of measuring individual and societal

vulnerability. We have proposed a probability based identification criteria, which can be

easily applied. The analytical framework is based on mapping the different outcomes an

individual faces in the future to the shocks. In a broader sense, our framework could

be considered to be closely linked to the counting approach in the literature on multi-

dimensional poverty since the analytical structure of measurement of vulnerability and

multidimensional poverty is very similar with the former based on different adverse shocks

that an individual faces and the latter based on the different dimensions of deprivation

an individual is evaluated on.

The computation of vulnerability of those identified as vulnerable is an integral part

of our proposed framework to measure vulnerability. For that purpose, we have axiomat-

ically characterised the FGT vulnerability measure which is widely used in empirical

applications in this area. Our characterisation, thus, provides the axiomatic foundations

for many of the empirical work on vulnerability. As in the standard empirical litera-

ture on vulnerability, in our proposed framework the FGT vulnerability measure can

also be viewed as an identification rule which uses a richer set of information to identify

the vulnerable. In addition, we demonstrate that societal vulnerability can be decom-

posed into vulnerabilities arising from different shocks. This should help policy-makers to

understand the sources of vulnerability in their society and prioritise policy accordingly.

Through a real-world application using data from Bangladesh, we demonstrate how

the P-rule identification strategy along with the FGT measure can be used to identify

the vulnerable and measure societal vulnerability. By considering identification to be a

distinct part of the measurement of vulnerability we obtain very different results com-

pared to the standard approach in calibrating vulnerability. A realistic approach towards
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identifying the vulnerable and measuring their vulnerability has to keep in mind the sub-

stantial informational challenges when estimating future shocks. This paper is a step

towards addressing these challenges.
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A Appendix

Before we proceed with the proof of Proposition 2, we present a lemma which will be

used in the proof of the proposition.

Lemma: Suppose the vulnerability identification rule ρ and threshold θ are such that

L+ ⊆ Lρθ, and the individual vulnerability measure V satisfies axioms of Focus (A3),

Monotonicity (A4), Decomposability (A5), Continuity (A7) and Normalisation (A8).

Then there exists a continuous and increasing function f : [0, 1] → [0, 1] such that

f(1) = 1, f(0) = 0 and

V (L) =
m∑
s=1

psf(ds) for each L = (p1, d1; ...; pm, dm) ∈ Lρθ. (Eq-A1)

Proof of Lemma: For each m ≥ 1, let L+m be the set of lotteries in L+ with exactly

m different deprivations. Also, for each m ≥ 2, given any L = (p1, d1; ...; pm, dm) ∈

L+m, let Lm−1 = (p1/(1 − pm), d1; ...; pm−1/(1 − pm), dm−1) ∈ L+m−1. Then we have

(1− pm)Lm−1 + pm(1, dm) = L.

Since (1, d) ∈ L+1 for each d ∈ (0, 1] and we know from (A7) that lim
d→0+

V ((1, d))

exists, for each d ∈ [0, 1], define f(d) as follows:

f(d) =

 V ((1, d)) if d ̸= 0

lim
x→0+

V ((1, x)) if d = 0

Then (A7) and (A8) imply that f is continuous on [0, 1], f(1) = 1 and f(0) = 0.

We will now prove the following:

V (L) =
m∑
s=1

psf(ds) for all L = (p1, d1; ...; pm, dm) ∈ L+, (Eq-A2)

which is equivalent to showing that

V (L) =
m∑
s=1

psf(ds) for each m ≥ 1 and each L = (p1, d1; ...; pm, dm) ∈ L+m. (Eq-A3)



For any L = (1, d) ∈ L+1, we have

V (L) = V ((1, d)) = f(d).

So (Eq-A3) holds for m = 1. For each L = (p1, d1; p2, d2) ∈ L+2, we have

V (L) = V ((1− p2)L1 + p2(1, d2))

= (1− p2)V (L1) + p2V ((1, d2)) [by (A5)]

= p1f(d1) + p2f(d2).

So (Eq-A3) also holds for m = 2. We will now complete the proof of (Eq-A3) for any

m ≥ 1 by induction. Consider any m ≥ 3 and assume that (Eq-A3) holds for m−1. Then

it suffices to show that (Eq-A3) holds for m. Pick any L = (p1, d1; ...; pm, dm) ∈ L+m.

Then we have

V (L) = V ((1− pm)Lm−1 + pm(1, dm))

= (1− pm)V (Lm−1) + pmV ((1, dm)) [by (A5)]

= (1− pm)

[(
p1

1− pm

)
f(d1) + ...+

(
pm−1

1− pm

)
f(dm−1)

]
+ pmf(dm)

=
m∑
s=1

psf(ds).

We will next show that f is increasing on [0, 1]. Consider any

L = (p1, d1; ...; pk, dk; pl, dl; ...; pm, dm) ∈ L+ such that dk > dl. Let L
′ ∈ L+ be such that

L′ = (p1, d1; ...; pk + δ, dk; pl − δ, dl; ...; pm, dm) for some δ ∈ (0, pl). Then it follows from

(A4) that V (L) < V (L′), which together with (Eq-A2) imply

pkf(dk) + plf(dl) < (pk + δ)f(dk) + (pl − δ)f(dl)

=⇒ f(dl) < f(dk). (Eq-A4)

Since the lottery L was picked arbitrarily, dk and dl can be any deprivations from (0, 1]

such that dk > dl. Hence, we can conclude from (Eq-A4) that, for all d, d′ ∈ (0, 1] with

d > d′, f(d) > f(d′). It then follows from lim
d→0+

f(d) = f(0) that f is increasing on [0, 1].

For each L = (p1, d1; ...; pm, dm) ∈ L+ and each k ∈ {1, ...,m}, (Eq-A2) implies that



lim
x→0+

V (Lkx) exists and

lim
x→0+

V (Lkx) =
∑

s∈{1,...,m}\{k}

psf(ds) + pkf(0).

Hence, it follows from (A7) that, for each lottery L = (p1, d1; ...; pm, dm) ∈ Lρθ \ L+,

V (L) =
m∑
s=1

psf(ds). This completes the proof of the Lemma. ■

Proof of Proposition 2: It can be checked that, if V has the form given in the

proposition, then V satisfies axioms of Focus (A3), Monotonicity (A4), Decomposability

(A5), Scale Invariance (A6), Continuity (A7) and Normalisation (A8). Suppose now

that V satisfies axioms of Focus (A3), Monotonicity (A4), Decomposability (A5), Scale

Invariance (A6), Continuity (A7) and Normalisation (A8). Then we know from the

Lemma that V satisfies (Eq-A1), with f as defined in the proof of the Lemma, such that

f is continuous and increasing on [0, 1], f(1) = 1 and f(0) = 0.17

Since (1, d) ∈ Lρθ for each d ∈ (0, 1], it follows from (A6) that, for all a, b, â, b̂ ∈ (0, 1]

and any λ > 0 such that λa, λb, λâ, λb̂ ∈ (0, 1], f satisfies the following:

[
f(a)− f(b) = f(â)− f(b̂)

]
=⇒

[
f(λa)− f(λb) = f(λâ)− f(λb̂)

]
. (Eq-A5)

Equation (Eq-A5) implies that there is some function H such that, for all λ > 0,

f(λa)− f(λb) = H(f(a)− f(b), λ) whenever a, b, λa, λb ∈ (0, 1]. (Eq-A6)

Since f is continuous and increasing on [0, 1], f(1) = 1 and f(0) = 0, it can be checked

that the function H is continuous in the first argument and

{u : u = f(a)− f(b) for some a, b ∈ (0, 1]} = (−1, 1).

Let u, v ∈ (−1, 1) be such that u + v ∈ (−1, 1). We will show that there exist

a, b, c ∈ (0, 1] such that u = f(a) − f(b), v = f(b) − f(c) and u + v = f(a) − f(c) by

considering four exhaustive possibilities.

(i) Suppose u, v ≥ 0. Since u + v ∈ (−1, 1), there exist a, c ∈ (0, 1] such that

17It is worth pointing out that, without (A7), the remaining axioms would still imply that V ((1, d)) is
increasing on (0, 1], and hence continuous almost everywhere on (0, 1].



f(a) − f(c) = u + v ≥ 0. Then f(a) − f(c) ≥ u and f(a) − f(c) ≥ v. So there exist

b, b′ ∈ [c, a] such that f(a)− f(b) = u and f(b′)− f(c) = v because f is continuous and

increasing. Then f(a)− f(b) + f(b′)− f(c) = u + v, which implies f(b) = f(b′). Hence,

b = b′ because f is increasing.

(ii) Suppose u ≥ 0 ≥ v and u + v ≥ 0 (the v ≥ 0 ≥ u and u + v ≥ 0 case can be

treated similarly). Clearly, −v ≥ 0 and −v ∈ (−1, 1). Also, −v + (u + v) = u ∈ (−1, 1)

and −v + (u + v) ≥ 0. Then we know from (i) that there exist a, b, c ∈ (0, 1] such that

−v = f(c) − f(b), u + v = f(a) − f(c) and u = −v + (u + v) = f(a) − f(b). Hence, we

get v = f(b)− f(c), u = f(a)− f(b) and u+ v = f(a)− f(c).

(iii) Suppose u ≥ 0 ≥ v and u+v ≤ 0 (the v ≥ 0 ≥ u and u+v ≤ 0 case can be treated

similarly). Clearly, −v ≥ 0 ≥ −u, −(u+v) ≥ 0 and −u,−v,−(u+v) ∈ (−1, 1). Then we

know from (ii) that there exist a, b, c ∈ (0, 1] such that −v = f(c)−f(b), −u = f(b)−f(a)

and −(u + v) = f(c) − f(a). Hence, we get u = f(a) − f(b), v = f(b) − f(c) and

u+ v = f(a)− f(c).

(iv) Suppose u, v ≤ 0. Then −u,−v,−(u + v) ≥ 0 and −u,−v,−(u + v) ∈ (−1, 1).

Then we know from (i) that there exist a, b, c ∈ (0, 1] such that −u = f(b) − f(a),

−v = f(c)−f(b) and−(u+v) = f(c)−f(a). Hence, we get u = f(a)−f(b), v = f(b)−f(c)

and u+ v = f(a)− f(c).

Consider any u, v ∈ (−1, 1) such that u + v ∈ (−1, 1), and let a, b, c ∈ (0, 1] be such

that u = f(a)− f(b), v = f(b)− f(c) and u + v = f(a)− f(c). It follows from (Eq-A6)

that, for all λ > 0 such that λa, λb, λc ∈ (0, 1],

f(λa)− f(λb) = H(u, λ);

f(λb)− f(λc) = H(v, λ);

f(λa)− f(λc) = H(u+ v, λ).

Thus, we get H(u + v, λ) = H(u, λ) + H(v, λ). This is the Cauchy equation and its

solution is given by H(u, λ) = ϕ(λ)u (see, for example, Corollary 8 in Section 1 of Aczel

(1987)). Then equation (Eq-A6) can be rewritten as:

f(λa)− f(λb) = ϕ(λ)[f(a)− f(b)] whenever a, b, λa, λb ∈ (0, 1].

Note that ϕ(λ) ̸= 0 because f is increasing. Since f is continuous and



lim
b→0+

f(λb) = lim
b→0+

f(b) = f(0) = 0, we get the following from the above equation:

f(λa) = ϕ(λ)f(a) whenever a, λa ∈ (0, 1]. (Eq-A7)

Given any u > 0, it is clear that u = a/b for some a, b ∈ (0, 1]. Define the function F

by:

F (u) =
f(a)

f(b)
for all u > 0, where a, b ∈ (0, 1] and a/b = u.

Suppose a, b, a′, b′ ∈ (0, 1] are such that a/b = a′/b′. Let ηa = a′/a > 0 and ηb = b′/b > 0.

Then we have ηaa = a′ and ηbb = b′. This implies that ηa = ηb because ηaa/ηbb = a′/b′ =

a/b. Let η = ηa = ηb. Then we get f(ηa)/f(ηb) = f(a′)/f(b′). From equation (Eq-A7)

we also have
f(ηa)

f(ηb)
=

ϕ(η)f(a)

ϕ(η)f(b)
=

f(a)

f(b)
.

Thus, we can conclude that f(a)/f(b) = f(a′)/f(b′). This proves that F is well-defined.

Furthermore, since f is continuous and increasing, it can be verified that F is also con-

tinuous and increasing.

Next, we will show that F satisfies the following:

[F (u)− F (v) = F (û)− F (v̂)] =⇒ [F (λu)− F (λv) = F (λû)− F (λv̂)] for all u, v, û, v̂, λ > 0.

(Eq-A8)

Suppose u, v, û, v̂, λ > 0 are such that F (u)−F (v) = F (û)−F (v̂). Let η ∈ (0, 1] be such

that ηw, ηλw ∈ (0, 1] for each w ∈ {u, v, û, v̂}. For each w ∈ {u, v, û, v̂}, we then have

the following:

F (w) = F

(
ηw

η

)
=

f(ηw)

f(η)
;

F (λw) = F

(
ληw

η

)
=

f(ληw)

f(η)
.

So we get

f(ηu)− f(ηv)

f(η)
=

f(ηû)− f(ηv̂)

f(η)

=⇒ f(ηu)− f(ηv) = f(ηû)− f(ηv̂).



It then follows from (Eq-A5) that

f(ληu)− f(ληv) = f(ληû)− f(ληv̂)

=⇒ f(ληu)− f(ληv)

f(η)
=

f(ληû)− f(ληv̂)

f(η)
.

Hence, F (λu)− F (λv) = F (λû)− F (λv̂)

We know from Theorem 1 in Section 2 of Aczel (1987) that the general solutions of

any continuous and non-constant function F satisfying (Eq-A8) are given by either

F (u) = β log u+ γ for all u > 0, (Eq-A9)

where β ̸= 0 and γ are constants, or

F (u) = βuα + γ for all u > 0, (Eq-A10)

where α ̸= 0, β ̸= 0 and γ are constants.

From the definition of F it can be checked that F (1) = 1. Then we get γ = 1 and

β > 0 in (Eq-A9). This implies that F (u) < 0 for u sufficiently close to 0 if F is given

by (Eq-A9). However, it can be verified from the definition that F (u) > 0 for all u > 0.

Hence, (Eq-A9) can be ruled out.

From the definition of F it can be verified that lim
u→0+

F (u) = 0. Then we must have

γ = 0 in (Eq-A10). This together with F (1) = 1 imply that β = 1 in (Eq-A10). Also,

α > 0 in (Eq-A10) because F is increasing. Thus, we get

f(d) =
f(d)

f(1)
= F (d) = dα for all d ∈ (0, 1].

Then we have f(d) = dα for all d ∈ [0, 1] because f(0) = 0 = 0α.

Therefore, it follows from (A3) and equation (Eq-A1) that, for each lottery L =

(p1, d1; ...; pm, dm) ∈ L, V (L) is of the following form:

V (L) =


m∑
s=1

ps(ds)
α if L ∈ Lρθ

0 if L ∈ L \ Lρθ



where α is some positive real number. ■

Empirics: We present below a Table providing descriptive information on the data

we have used for our empirical illustration.

Table A1: Descriptive Statistics of Hrishipada Daily Diary Project, Bangladesh: 2015-

2018

2015 2016 2017 2018

Weekly Income per capita (BangladeshTaka) 1629.99 1703.27 2020.85 2532.73

Variance of Weekly Income per capita 5523.89 4202.40 7512.63 11234.10

Weekly Median Income (BangladeshTaka) 588.00 616.83 662.50 665.00

Average number of weeks per household 14.28 50.94 37.13 51.97

Number of Households 40 49 70 59

Average Household Size 4.25 4.23 4.19 4.15


