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1 Introduction

The theory of growth-optimal investments, or capital growth theory, is a
fascinating subject having a rich and peculiar history. The central question
in this field is how to invest in order to achieve the highest (asymptotic)
growth rate of wealth in the long run. The first publication in this strand of
literature was that by Kelly [30], who considered the case of Arrow securities
(the payoff of security i is 1 if the “state of the world” is i and 0 otherwise)
interpreted as a “horse race model”. It was shown that the growth optimal
investment strategy could be found by the maximization of the expected log-
arithm of the portfolio return: the Kelly portfolio rule. Kelly arrived at his
results from information theory, and his paper was entitled “A new inter-
pretation of information rate”. The history of Kelly’s discovery is described
in various papers and books, including popular ones (see, e.g., Poundstone
[42]). This discovery has been developed and extended by various authors, in
particular by Breiman [6], Algoet and Cover [1] and Hakansson and Ziemba
[27]. The paper by Algoet and Cover [1] contains the most advanced and
general mathematical treatment of capital growth theory. An authoritative
reference providing extensive coverage of the field is the volume [33] edited
by MacLean et al. A comprehensive exposition of these questions is given in
the textbook ”Elements of information theory” by Cover and Thomas [10]
(Chapter 16 ”Information theory and portfolio theory”). A elementary in-
troduction to the field can be found in Chapters 17 and 18 in Evstigneev et
al. [21].

When speaking of those who contributed to capital growth theory, one
must necessarily mention the name of Claude Shannon—the famous founder
of the mathematical theory of information. Although he did not publish on
investment-related issues, his ideas, expressed in his lectures on investment
problems in MIT in the 1960s, strongly influenced his collaborators: Kelly,
Breiman, Cover and others, who became the classics of the theory of growth
optimal investments. For the history of these ideas and a related discussion
see Cover [9].

Cover’s [9] biographical note on Shannon mentions a discussion between
Shannon and another famous scholar, mathematical economist Paul Samuel-
son. Cover writes:

... In the mid 1960s, Shannon gave a lecture on maximizing the

growth rate of wealth and gave a geometric Wiener example.
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At about this time, Shannon and Samuelson (a Nobel Prize winner-

to-be in economics) held a number of evening discussion meetings on

information theory and economics. It is not clear what was said in

these meetings, but Samuelson seems to have become set in his views.

He published several papers arguing strongly against maximizing the

expected logarithm as an acceptable investment criterion. (It hap-

pens that maximizing the expected logarithm is the prescription for

the growth-rate optimal portfolio.)

For example, Samuelson (1969) wrote: Our analysis enables us to

dispel a fallacy that has been borrowed into portfolio theory from in-

formation theory of the Shannon type. Samuelson goes on to argue

that growth rate optimal policies do not achieve maximum utility un-

less one has a logarithmic utility for money. Of course this is the case,

but it does not deny the fact that log optimal wealth has an objective

property: it has a better growth rate than that achieved by any other

strategy. Since growth rate optimal policies achieve a demonstrably

desirable goal, growth rate optimal portfolios should only have a util-

ity interpretation as an afterthought. In fact, Samuelson (1979) wrote

a paper entitled “Why we should not make mean log of wealth big

though years to act are long.” This is a two page paper in words of

one syllable that makes the point that maximizing the expected log

of wealth is not appropriate. The growth optimal portfolio literature

has been slow to develop. It is possible that Samuelson’s eloquent

admonitions had their effect.

In this discussion, Samuelson and those who followed his views later pre-
sumed implicitly or explicitly that the problem of growth-optimal invest-
ments was equivalent to the problem of the maximization of logarithmic
utility functionals. By and large this presumption was true in those models
which were considered at the time of the above discussion—half a century
ago. More recent studies have shown that this is not the case in more ad-
vanced and realistic models, in particular, those describing financial markets
with frictions—transaction costs and trading constraints. Growth-optimal
investment strategies over an infinite time horizon cannot be constructed by
using a consecutive ”myopic” maximization procedure step by step from t to
t+ 1 (t = 0, 1, 2, ...).

A similar situation is characteristic for Evolutionary Finance—a rapidly
developing area of research that emerged in the 2000s, see the surveys in
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[20], [22] and an elementary introduction into the subject in [21, Chapter
20]. Evolutionary Finance may be viewed as a version of the capital growth
theory with endogenous equilibrium asset prices. Counterparts of the growth-
optimal investment strategies in that context are the so-called unbeatable
strategies [2, Sect. 6]. The problem of the identification of such strategies
cannot be reduced (except for some trivial cases) to any single-agent opti-
mization problem involving the maximization of logarithmic or any other
functionals.

The objective of this paper is to extend the classical capital growth the-
ory to models of financial markets with transaction costs and portfolio con-
straints. As a framework for the analysis we use von Neumann-Gale dynam-
ical systems—a class of random dynamical systems generated by homoge-
neous convex set-valued operators (see the definitions in the next section).
In our model, random states of these systems are contingent portfolios, and
paths are self-financing trading strategies. The self-financing conditions are
described in terms of random cones in spaces of admissible portfolio vectors.
The main focus is on rapid paths, that are defined in terms of sequences of
dual variables—consistent price systems, generalizing the notion of an equiv-
alent martingale measure in the frictionless setting. Rapid paths may be
regarded as counterparts of benchmark strategies (Platen [40], Platen and
Heath [41]) or numeraire portfolios (Long [31]). They possess a number of
important properties, in particular, it can be shown that they exhibit the
fastest asymptotic growth rate of wealth with probability one.

The paper is organized as follows. Section 2 describes von Neumann-
Gale dynamical systems and outlines their applications to capital growth
theory. Section 3 states the main assumptions and results. Section 4 contains
some lemmas needed for the proof of the main result (Theorem 1), which
is conducted in Section 5. Section 6 establishes the property of growth-
optimality of infinite rapid paths. In Section 7, we introduce and analyze a
model of a financial market with transaction costs and portfolio constraints
to which the results of this paper can be applied. The Appendix assembles
some auxiliary technical results used in the paper.
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2 Von Neumann-Gale dynamics applied to

Finance

Let (Ω,F , P ) be a complete probability space and F0 ⊆ F1 ⊆ ... ⊆ F a
sequence of σ-algebras containing all sets in F of measure zero. The σ-
algebra Ft is interpreted as the class of events occurring prior to time t.
Vector functions of ω ∈ Ω measurable with respect to Ft represent random
vectors depending on these events. For each t = 0, 1, ..., let Xt(ω) be a closed
pointed cone6 in an mt-dimensional linear space Rmt and for each t = 1, 2, ...,
let (ω, a) 7→ At(ω, a) be a set-valued operator assigning a non-empty set
At(ω, a) ⊆ Xt(ω) to each ω ∈ Ω and a ∈ Xt−1(ω). Throughout the paper,
the following conditions of homogeneity and convexity will be imposed on
the operator At(ω, ·). For each ω, we have

λAt(ω, a) ⊆ At (ω, λa) (1)

for all a ∈ Xt−1(ω), λ ∈ [0,∞) and

θAt (ω, a) + (1− θ)At (ω, a′) ⊆ At (ω, θa+ (1− θ) a′) (2)

for all a, a′ ∈ Xt−1(ω) and θ ∈ [0, 1]. (A linear combination of two sets in a
vector space is the set of pairwise linear combinations of their elements.)

We will denote for shortness by L∞
(
Ft,Rk

)
the space L∞

(
Ω,Ft, P,Rk

)
of essentially bounded Ft-measurable functions of ω ∈ Ω with values in Rk.
The norm ||x(ω)||∞ of a vector function x(ω) in L∞

(
Ft,Rk

)
is defined as the

essential supremum esssup |x(ω)|, where |·| stands for the sum of the absolute
values of the coordinates of a finite-dimensional vector. We say that a vector
function x(ω) is a random state of the system at time t and write x ∈ Xt
if x ∈ L∞ (Ft,Rmt) and x(ω) ∈ Xt(ω) almost surely (a.s.). The mappings
(ω, a) 7→ At(ω, a) generate a multivalued stochastic dynamical system. A
sequence of random states x0 ∈ X0, x1 ∈ X1, ... is called a path (trajectory)
of this dynamical system if

xt(ω) ∈ At (ω, xt−1(ω)) (a.s.). (3)

Relation (3) can be written in the form

(xt−1(ω), xt(ω)) ∈ Zt(ω) (a.s.), (4)

6A set X in a linear space is called a cone if it contains with any its elements x, y any
non-negative linear combination λx+µy (λ, µ ≥ 0) of these elements. The cone X is called
pointed if the inclusions x ∈ X and −x ∈ X imply x = 0.
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where
Zt(ω) = {(a, b) ∈ Xt−1(ω)×Xt(ω) : b ∈ At(ω, a)} (5)

is the graph of the set-valued mapping At (ω, ·). Clearly conditions (1) and
(2) hold if and only if Zt(ω) is a cone contained in Xt−1(ω) ×Xt(ω). Since
At (ω, a) 6= ∅ for all a ∈ Xt−1(ω), the projection of Zt(ω) on Xt−1(ω) coin-
cides with Xt−1(ω). It is assumed that the cones Xt(ω) and Zt(ω) depend
Ft-measurably7 on ω, which means that they are determined by events oc-
curring prior to time t. The dynamics of the system under consideration
can equivalently be described both in terms of the mappings At (ω, ·) and in
terms of the cones Zt(ω). A sequence x0 ∈ X0, x1 ∈ X1, ... is a path if and
only if

(xt−1, xt) ∈ Zt, t = 1, 2, ..., (6)

where
Zt = {(x, y) ∈ Xt−1 ×Xt : (x(ω), y(ω)) ∈ Zt(ω) (a.s.)}. (7)

Such dynamical systems were first considered (in the deterministic case)
in the context of the modeling of economic growth by von Neumann [50] and
Gale [24]. Important contributions to the field were made by Radner [43],
Morishima [36], Rockafellar [46], Nikaido [38], Makarov and Rubinov [34],
and others. For reviews of the field see [36], [38] and [34].

The classical theory of von Neumann-Gale dynamics was purely determin-
istic. First attempts to build its stochastic generalization were undertaken
in the 1970s by Dynkin [15, 16, 17], Radner [45] and their collaborators.
However, the initial attack on the problem left many questions unanswered.
Substantial progress was made only in the late 1990s, and final solutions
to the main open problems were obtained only in the 2000s—see [19] and
references therein.

At about the same time it was observed [14] that stochastic analogues
of von Neumann-Gale dynamical systems provide a natural and convenient
framework for the modeling of financial markets with frictions—transaction
costs and portfolio constraints. This observation not only gave a new momen-
tum to studies in the field and posed new interesting questions, but also made
it possible to find a key to the solution of old problems. The new, financial
interpretation of the mathematical notions and objects at hand amazingly
suggested the way of proofs in [19] that could not be found earlier.

7A set A(ω) ⊆ Rk is said to depend Ft-measurably on ω if the graph {(ω, a) : a ∈ A(ω)}
of the set-valued mapping ω 7→ A(ω) belongs to the σ-algebra Ft ⊗ B(Rk), where B(·)
stands for the Borel σ-algebra.
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A central goal in the theory of von Neumann-Gale dynamics is to single
out and investigate a class of trajectories that grow faster in a certain sense
than others. The key notion here is that of a rapid path. To give its definition
let us first define the important notion of a dual path. Let X∗t (ω) denote the
dual cone of Xt(ω):

X∗t (ω) = {p ∈ Rmt : pa ≥ 0, a ∈ Xt(ω)},

where pa is the scalar product of the vectors p and a in Rmt . For shortness, we
will use the notation L1(Ft,Rk) for the space L1(Ω,Ft, P,Rk) of integrable Ft-
measurable vector functions with values in Rk. A dual path (dual trajectory)
is a sequence of vector functions p1(ω), p2(ω), ... such that for all t = 1, 2, ...
we have pt ∈ L1(Ft,Rmt−1),

pt(ω) ∈ X∗t−1(ω) (a.s.), (8)

and for almost all ω,

p̄t+1(ω)b ≤ pt(ω)a for all (a, b) ∈ Zt(ω). (9)

Here, p̄t+1(ω) := Etpt+1(ω) and Et(·) = E(·|Ft) is the conditional expectation
given Ft.

Denote by Z×t (ω) the cross-dual cone for Zt(ω):

Z×t (ω) = {(c, d) ∈ Rmt−1 × Rmt : db− ca ≤ 0 for all (a, b) ∈ Zt(ω)}. (10)

The definition of a dual path can be reformulated as follows. This is a se-
quence p1(ω), p2(ω), ... such that for all t = 1, 2, ..., we have pt ∈ L1(Ft,Rmt−1),
condition (8) holds and

(pt(ω), p̄t+1(ω)) ∈ Z×t (ω) (a.s.). (11)

Let us say that a dual path p1, p2, ... supports a path x0, x1, ... if

pt+1xt = 1 (a.s.) (12)

for all t = 0, 1, .... A trajectory is called rapid if there exists a dual trajectory
supporting it. What matters in (12) is that pt+1xt is a strictly positive
constant (independent of time and random factors). The value 1 for this
constant is chosen only for the sake of convenience.
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The term ”rapid” is motivated, in particular, by the fact that for each
t = 1, 2, ...

Et
pt+1yt
ptyt−1

=
p̄t+1yt
ptyt−1

≤ p̄t+1xt
ptxt−1

= 1 (a.s.) (13)

for all paths y0, y1, ... with ptyt−1 > 0 (a.s.). This means that the path
x0, x1, ... maximizes the conditional expectation given Ft of the growth rate
pt+1yt/ptyt−1 over each time period (t − 1, t], the maximum being equal to
1. The growth rate is measured in terms of the dual variables pt, which in
economic and financial applications typically represent prices.

Let us outline a model of this kind. At each time t = 0, 1, 2, ..., there
are mt assets in the market. A (contingent) portfolio of assets is an Ft-
measurable random vector yt(ω) = (y1t (ω), ..., ymt

t (ω)). Those portfolios yt for
which yt(ω) ∈ Xt(ω) (a.s.) are admissible at time t. An investment/trading
strategy is a sequence of admissible portfolios (yt)t≥0. The main focus is on
self-financing strategies defined by the condition

(yt−1(ω), yt(ω)) ∈ Zt(ω) (a.s.), (14)

where Zt(ω) ⊆ Rmt−1×Rmt is the given closed cone depending Ft-measurably
on ω. The cones Zt(ω), t = 1, 2, ..., define the self-financing constraints.
Condition (14) means that the portfolio yt−1 can be transformed to yt by
buying and selling assets under transaction costs. Self-financing strategies
are nothing but paths in the von Neumann-Gale dynamical system with the
transition cones Zt(ω). We will deal only with such strategies, and so in
what follows, ”self-financing” will be omitted.

Rapid paths may be viewed as a generalization of benchmark strategies
(Platen [40], Platen and Heath [41]) or numeraire portfolios (Long [31]).
Their idea goes back to the notion of a competitive path in models of economic
dynamics: such paths maximize profits over each time period (t− 1, t)—see
Malinvaud [35], Radner [44], Gale [25], Peleg [39], Dasgupta and Mitra [12],
and especially the paper by Clark [8] linking this strand of literature to
finance and containing further references.

Dual paths are analogous to consistent price systems, generalizing the
concept of an equivalent martingale measure involved in classical no-arbitrage
criteria (Jouini and Kallal [32], Cvitanić and Karatzas [11], Schachermayer
[48], Guasoni et al. [26], Kabanov and Safarian [28] and others).

A basic example of the transition cone Zt(ω) in the financial market
model with (proportional) transaction costs can be described as follows. Let
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Sit(ω) < S
i

t(ω) be the vectors of the asset i’s bid and ask prices: you pay

S
i

t(ω) when you buy and you get Sit(ω) when you sell. The cone Zt(ω) consists
of pairs of portfolios (x, y) satisfying

m∑
i=1

S
i

t(y
i − xi)+ ≤

m∑
i=1

Sit(x
i − yi)+ , (15)

where a+ := max{a, 0}. It is assumed here that the number of assets mt does
not depend on t: mt = m. The inequality (15) means that asset purchases
are made only at the expense of sales of available assets (under transaction
costs).

Questions of asset pricing and hedging in the above basic framework were
considered in the seminal paper by Jouini and Kallal [32]. The model and
the results of Jouini and Kallal were extended in various directions by many
authors. Kabanov [29] proposed a geometric approach that made it possible
to extend the theory to models allowing direct (unmediated by cash) trades
between assets, and therefore, applicable to currency markets. We refer the
reader to the book by Kabanov and Safarian [28] for a detailed review of
this area of research. For more recent work see the paper [23] and references
therein.

Important examples of the portfolio admissibility constraints are given
by margin requirements, that are present in one form or another in all real-
world financial markets. Only those portfolios x = (x1, ..., xm) are regarded
as admissible for which

M
m∑
i=1

S
i

t(−xi)+ ≤
m∑
i=1

Sit(x
i)+, (16)

whereM is some constant (margin). Condition (16) means that an admissible
portfolio can always be liquidated in such a way that its long positions would
compensate its short positions with excess, as specified in (16). The purpose
of such requirements is to exclude (or at least to reduce) the possibility of
the investor’s bankruptcy as a result of sudden price jumps. Clearly property
(16) automatically guarantees the absence of arbitrage opportunities, which
makes superfluous any considerations involving the no-arbitrage hypothesis
as such.

In the above example it is assumed that portfolio positions are measured
in terms of (”physical”) units of assets. However, it is often more convenient

9
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to specify positions of a portfolio in monetary terms. In models of this kind,
the coordinates xi and yi of portfolio vectors x and y indicate the values of
asset holdings at time t expressed in terms of the current market prices Sit .
The transition cone Zt(ω) consists of pairs of portfolios (x, y) such that

m∑
i=1

(1 + λ+t,i)(y
i − Sit

Sit−1
xi)+ ≤

m∑
i=1

(1− λ−t,i)(
Sit
Sit−1

xi − yi)+ , (17)

where λ+t,i(ω) ≥ 0 and 1 > λ−t,i(ω) ≥ 0 are the transaction cost rates for
buying and selling asset i, respectively. The inequality in (17), as well as in
(15), expresses the self-financing condition, meaning that purchases of assets
can be made only at the expense of sales of other assets. The simplest margin
requirements in this setting take on the following form:

M
N∑
i=1

xi− ≤
N∑
i=1

xi+, (18)

If portfolio positions are specified in monetary terms, then the variables pit
constituting a dual path may be interpreted as market consistent discount
factors.

The framework in which the transition cones Zt(ω) are described it terms
of portfolio values has the following advantage. Practically all models that
can be used for practical computations are based on some assumptions of
stationarity: ”tomorrow” must to some extent resemble ”today”. In the
framework of (17), a natural assumption of this kind is that the process of
asset returns (Sit − Sit−1)/Sit−1 is stationary, which is a common hypothesis
in finance (lying in the basis, e.g., of the Black-Scholes formula). Analogous
conditions for (15) would mean stationarity of the price process—a less plau-
sible hypothesis, having a number of implications that might be viewed as
paradoxical (e.g. the phenomenon of ”volatility-induced growth”, see [13]
and [21, Sect. 18.4]).

A detailed description and analysis of a financial market model of the
above type is given in Section 7.

3 Assumptions and results

Let us formulate the assumptions that will be used in this paper. Let |·|
denote the norm of a vector in a finite-dimensional space defined as the sum
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of the absolute values of its coordinates. For a finite-dimensional vector a,
we will denote by B(a, r) the ball {b : |b− a| ≤ r}.

Let us introduce the following conditions.
(A1) For every t = 0, 1, ..., there exists an Ft-measurable random vector

qt(ω) ∈ X∗t (ω) satisfying.

Ht(ω)−1|a| ≤ qt(ω)a ≤ Ht(ω)|a|, a ∈ Xt(ω), ω ∈ Ω, (19)

where Ht(ω) ≥ 1 is an Ft-measurable function with E lnHt (ω) <∞.
This condition implies, in particular, that the cone Xt(ω) is pointed.
(A2) For every t = 1, 2, ..., ω ∈ Ω and a ∈ Xt−1(ω), there exists b ∈ Xt(ω)

such that (a, b) ∈ Zt(ω).
(A3) There exist constants Kt (t = 1, 2, ...) such that |b| ≤ Kt |a| for any

(a, b) ∈ Zt(ω) and ω ∈ Ω.
(A4) For each t = 1, 2, ..., there exists a bounded Ft-measurable vector

function z̊t = (̊xt, ẙt) such that for all ω ∈ Ω, we have

(̊xt(ω), ẙt(ω)) ∈ Zt(ω), (20)

and
B(ẙt(ω), εt) ⊆ Xt(ω), (21)

where εt > 0 is some constant.
Theorems 1 and 2 we formulate below hold under the assumptions (A1)

- (A4).
Theorem 1. Let x0(ω) be a vector function in X0 such that B(x0(ω), δ) ⊆

X0(ω) for some constant δ > 0. There exists an infinite rapid path with initial
state x0.

This result generalizes to general cones Xt(ω) the analogous result in [5]
pertaining to the case, where Xt(ω) are the standard non-negative cone Rmt

+ .
The proof of Theorem 1 is based on a previous result [4, Theorem 1] on

finite rapid paths. We formulate it as Theorem 2 below. The versions of
the basic definitions for a finite time horizon are as follows. Let N > 1 be
a natural number. A path over the finite time horizon from 0 to N is a
sequence x0 ∈ X0, ..., xN ∈ XN satisfying (6) for all t = 1, ..., N . A dual path
p1, p2, ..., pN+1 is a sequence of vector functions such that

p1 ∈ L1(F1,Rm0), ..., pN ∈ L1(FN ,RmN−1), pN+1 ∈ L1(FN ,RmN ),

pt(ω) ∈ X∗t−1(ω) (a.s.), t = 1, 2, ..., N + 1,
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and
(pt(ω), p̄t+1(ω)) ∈ Z×t (ω) (a.s.), t = 1, ..., N. (22)

A dual path p1, p2, ..., pN+1 supports a path x0, x1, ..., xN if (12) holds for
t = 0, ..., N . A trajectory x0, x1, ..., xN is called rapid if there exists a dual
trajectory p1, p2, ..., pN+1 supporting it.

Theorem 2. Let x0(ω) be a vector function in X0 such that B(x0(ω), δ) ⊆
X0(ω) for some constant δ > 0. For each N ≥ 1, there exists a finite rapid
path x0, ..., xN with the initial state x0.

This theorem extends to general random cones Xt(ω) earlier results ob-
tained in [18] (also for the finite-horizon case) in a setting whereXt(ω) = Rmt

+ .
Remark 1. To prove Theorem 1 we construct an infinite rapid path by

passing to the limit from finite ones, whose existence is stated in Theorem
2. The latter theorem is proved in [4, Theorem 1] under the assumptions
(A1) - (A4). However, not all of these assumptions are needed to deduce
the former result from the latter. In the course of the proof of Theorem 1
given in Section 3, we rely only upon conditions (A3) and (A4) and the fact
that the cones Xt(ω) are pointed; assumptions (A1) and (A2) are not used.

An important property of infinite rapid paths is their asymptotic growth-
optimality holding under a fairly general assumption (A5) we formulate
below. Let us say that a path (xt)

∞
t=0 is asymptotically growth-optimal if

for any other path (x′t)
∞
t=0 there exists a supermartingale (ξt)

∞
t=1 such that

|x′t| / |xt| ≤ ξt.
The property of asymptotic optimality, as defined above, has the following

important implications. If |yt|/|xt| ≤ ξt, t = 1, 2... (a.s.), where ξt is a
supermartingale, the following assertions hold.

(a) With probability one

sup
t

|yt|
|xt|

<∞,

i.e. no strategy can grow asymptotically faster than x0, x1, ... (a.s.).
(b) The strategy x0, x1, ... a.s. maximizes the exponential growth rate

lim sup
t→∞

1

t
ln |xt|.

(c) We have

sup
t
E
|yt|
|xt|

<∞ and sup
t
E ln

|yt|
|xt|

<∞, (23)
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and moreover, supt in (23) can be replaced by supτ where τ ranges through
the set of all stopping times with respect to the filtration F0 ⊆ F1 ⊆ ... ⊆ F .

Assertion (a) follows from a.s. convergence of non-negative supermartin-
gales; (b) is immediate from (a); the first part of (c) holds because ξt is
a non-negative supermartingale; the second part of (c) is obtained by us-
ing Jensen’s inequality and the supermartingale property: E(ln ξt+1|Ft) ≤
lnE(ξt+1|Ft) ≤ ln ξt. The possibility of replacing supt by supτ in (23) follows
from Doob’s optional sampling theorem.

Note that the above properties (a)–(c) remain valid if |xt| and |yt| are
replaced by φt(ω, xt) and φt(ω, yt) respectively with any function φt(ω, b),
possibly random and depending on t, which satisfies the following condition
(L).

(L) There exist non-random constants 0 < s ≤ S such that s|b| ≤
φt(ω, b) ≤ S|b| for all t, ω and b ∈ Xt(ω).

We now introduce condition (A5).
(A5) There exist a real number γ > 0 and a natural number l such that

for every t ≥ 0 and every random vector yt ∈ Xt, one can find random vectors
yt+1 ∈ Xt+1,...,yt+l ∈ Xt+l satisfying with probability one

(yt (ω) , yt+1 (ω)) ∈ Zt+1 (ω) , ..., (yt+l−1 (ω) , yt+l (ω)+y (ω)) ∈ Zt+l (ω) (24)

for all y ∈ Lmt+l

t+l with |y(ω)| ≤ γ|yt(ω)|.
Theorem 3. Let condition (A5) and condition (A3) with a constant

Kt = K independent of t hold. Let mt ≤ m where m is some fixed number.
Then any rapid path is asymptotically growth-optimal.

4 Three lemmas

We begin with three simple lemmas needed for the proof of Theorem 1.
Lemma 1. Let X be a cone in Rk, d an element in X∗, and y a vector

in X such that B(y, ε) ⊆ X. Then

dy ≥ ε

k
|d|. (25)

Proof. We have d(y − h) ≥ 0 for any h with |h| ≤ ε. Consequently,

dy ≥ max
|h|≤ε

dh = εmax
i
|di| ≥ ε

k
|d| [d = (d1, ..., dk)],
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which yields (25). �
Put

Ct :=
mt||̊xt||∞

εt
(t ≥ 1), C0 := m0δ

−1, (26)

and
Ct := Ct−1...C1C0 (t ≥ 1),

where δ is the constant for which B(x0(ω), δ) ⊆ X0(ω). Define

Kt := Kt...K1||x0||∞ (t ≥ 1).

Lemma 2. Let (xt)
N
t=0 be a rapid path and (pt)

N+1
t=1 a dual path supporting

it (1 ≤ N ≤ ∞). Then
|xt| ≤ Kt (a.s.), (27)

for all t for which xt is defined and

E|pt| ≤ Ct (28)

for all t for which pt is defined.
Proof. Inequality (27) is immediate from (A3). To prove (28) we write

||̊xt||∞E|pt| ≥ E|pt||̊xt| ≥ Eptx̊t ≥ E p̄t+1ẙt = E pt+1ẙt ≥ E
εt
mt

|pt+1| (29)

(t ≥ 1). Here the third inequality holds because (pt(ω), p̄t+1(ω)) ∈ Z×t (ω)
(a.s.) and (̊xt(ω), ẙt(ω)) ∈ Zt(ω). The last inequality is valid by virtue
Lemma 1 since pt+1(ω) ∈ X∗t (ω) (a.s.) and B(ẙt(ω), εt) ⊆ Xt(ω). From (29)
and (26) we get E|pt+1| ≤ CtE|pt| (t ≥ 1) and it remains to observe that
E|p1| ≤ m0δ

−1. Indeed, by virtue of (25),

1 = p1x0 ≥
δ

m0

|p1| (a.s.) (30)

because p1(ω) ∈ X∗0 (ω) (a.s.) and B(x0(ω), δ) ⊆ X0(ω). Consequently,

|p1| ≤ m0δ
−1, (31)

which completes the proof. �
Lemma 3. For each t = 1, 2, ... and for almost all ω, if

(c, d) ∈ Z×t (ω) and d ∈ X∗t (ω), (32)
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then
|d| ≤ Ct|c|. (33)

Proof. This follows from the inequalities

|c| ||̊xt||∞ ≥ |c||̊xt(ω)| ≥ cx̊t(ω) ≥ dẙt(ω) ≥ εt
mt

|d| (34)

holding for almost all ω and all (c, d) satisfying (32). Note that the third
inequality in (34) is valid because (c, d) ∈ Z×t (ω) and (̊xt(ω), ẙt(ω)) ∈ Zt(ω),
and the fourth is a consequence of Lemma 1. �

Remark 2. We point to a distinction between Lemmas 2 and 3. Rela-
tions (28) and (29) hold in terms of expectations while (33) and (34) are valid
for almost all ω and all (c, d) satisfying (32). It might seem that the former
lemma is a direct consequence of the latter, but one has to be cautious here:
we know that (pt(ω), p̄t+1(ω)) ∈ Z×t (ω) (a.s.), but it is not assumed that
(pt(ω), pt+1(ω)) ∈ Z×t (ω) (a.s.).

5 Proof of the main result

Denote by Pt the set of Ft-measurable mt−1-dimensional vector functions
pt(ω) such that E|pt(ω)| <∞ and pt(ω) ∈ X∗t−1(ω) (a.s.). LetQt be the set of
Ft-measurable mt-dimensional vector functions qt(ω) such that E|qt(ω)| <∞
and qt(ω) ∈ X∗t (ω) (a.s.).

To alleviate notation we will often omit ”ω” when this does not lead to
ambiguity.

Proof of Theorem 1. By virtue of Theorem 2, for each natural number N
there exist a finite rapid path x0(N), ..., xN(N) with x0(N) = x0 and a dual
path p1(N), ..., pN+1(N) supporting it.

We will construct by induction for each t = 1, 2, ... a triplet of vector
functions

(xt, pt, qt) ∈ Xt × Pt ×Qt (35)

such that
(pt, qt) ∈ Z×t (a.s.), (36)

(xt−1, xt) ∈ Zt (a.s.), (37)

ptxt−1 = 1 (a.s.), (38)
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qt−1 − Et−1pt ∈ X∗t−1(ω) (a.s.), if t ≥ 2, (39)

and a sequence of integer-valued Ft-measurable random variables

t < N t
1 < N t

2 < ... (40)

such that

xt(N
t
k)→ xt, pt(N

t
k)→ pt, qt(N

t
k)→ qt (a.s.) as k →∞, (41)

and N t
1, N

t
2, ... is a subsequence of N t−1

1 , N t−1
2 , ... which can be represented as

N t
m = N t−1

k(m), (42)

where 0 < k(1) < k(2) < ... are Ft-measurable integer-valued random vari-
ables.

Define
qt(N) := Etpt+1(N) (0 ≤ t ≤ N). (43)

Observe that for each t = 1, 2, ... and N ≥ t, we have

|xt(N)| ≤ Kt (a.s.), E|pt(N)| ≤ Ct, E|qt(N)| ≤ Ct+1, (44)

(pt(N), qt(N)) ∈ Z×t (a.s.), (45)

(xt−1(N), xt(N)) ∈ Zt (a.s.), (46)

pt(N)xt−1(N) = 1 (a.s.), (47)

qt−1(N) = Et−1pt(N) (a.s.), (48)

where the inequalities in (44) follow from (27), (28) and (43), relations (45)
– (47) hold because p1(N), ..., pN+1(N) is a dual path supporting the path
x0(N), ..., xN(N), and (48) is valid by the definition of qt−1(N).

Note that relations (45) - (47) will remain valid if we replace N ≥ t by
any random N(ω) ≥ t. This is also true for (48) if N(ω) is Ft−1-measurable.
Indeed, we have

qt−1(N(ω), ω) =
∑
m

1{N(ω)=m}qt−1(m,ω) =
∑
m

1{N(ω)=m}Et−1pt(m,ω)

= Et−1
∑
m

1{N(ω)=m}pt(m,ω) = Et−1pt(N(ω), ω) (a.s.). (49)

16



Let us construct a triplet (35) and a sequence (40) satisfying for t = 1
all the conditions (36) – (42) except for (39). We will apply Proposition
A.1 (see the Appendix) to the sequence of 3n-dimensional F1-measurable
random vectors w1(N) = (x1(N), p1(N), q1(N)) (N ≥ 1). For each N =
1, 2, ..., these vectors satisfy conditions (44) with t = 1, which implies that
lim inf E|w1(N)| < ∞. By virtue of Proposition A.1, there exists a vector
function w1 = (x1, p1, q1) and a sequence of F1-measurable integer-valued
functions 1 < N1

1 < N1
2 < ... satisfying (35) and (41) with t = 1. Since the

sets Z×t (ω) and Zt(ω) are closed, the relations

(p1(N
1
k ), q1(N

1
k )) ∈ Z×1 , k = 1, 2, ... (a.s.), (50)

(x0, x1(N
1
k )) ∈ Z1, k = 1, 2, ... (a.s.), (51)

p1(N
1
k )x0 = 1, k = 1, 2, ... (a.s.) (52)

yield in the limit (36) – (38) for t = 1. Note that ||x1||∞ < ∞ because
(x0, x1) ∈ Z1 (a.s.), and so ||x1||∞ ≤ K1||x0||∞.

Suppose a triplet (35) and a sequence (40) satisfying (36) – (42) are
constructed for some t ≥ 1; let us construct such a triplet and a sequence for
t + 1. Since N t

k(ω) ≥ t + 1, relations (45) – (48) (with t + 1 in place of t)
imply

(pt+1(N
t
k), qt+1(N

t
k)) ∈ Z×t+1 (a.s.), (53)

(xt(N
t
k), xt+1(N

t
k)) ∈ Zt+1 (a.s.), (54)

pt+1(N
t
k)xt(N

t
k) = 1 (a.s.), (55)

qt(N
t
k) = Etpt+1(N

t
k) (a.s.) (56)

for all k = 1, 2..... The last equality holds because the integer-valued random
variable N t

k is Ft-measurable (see (49)). By the construction of the triplet
(xt, pt, qt) and the sequence N t

k, we have

qt(N
t
k)→ qt (a.s.), xt(N

t
k)→ xt (a.s.). (57)

By virtue of (56) and (57), we have

Etpt+1(N
t
k) = qt(N

t
k)→ qt (a.s.). (58)

We apply the conditional version of the multidimensional Fatou’s lemma (see
the Appendix, Proposition A.3) to the sequence of Ft+1-measurable random
vectors pk(ω) := pt+1(N

t
k(ω), ω) whose values belong to the cone C(ω) :=
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X∗t (ω) (a.s.), depending Ft-measurably on ω. The conditional expectations
Et|pk(ω)| are finite (a.s.) because

Et|pt+1(N
t
k(ω), ω)| = Et

∑
m

1{Nt
k=m}|pt+1(m,ω)|

=
∑
m

1{Nt
k=m}Et|pt+1(m,ω)| <∞ (a.s.)

(cf. (49)), where Et|pt+1(m,ω)| < ∞ (a.s.) since E|pt+1(m,ω)| < ∞.
Furthermore, Etpk(ω) → qt(ω) (a.s.) by virtue of (58)). Consequently,
Proposition A.3 can be applied, and we obtain that there exists a sequence
1 < k1(ω) < k2(ω) < ... of Ft+1-measurable integer-valued functions and an
Ft+1-measurable vector function pt+1(ω) ∈ C(ω) (a.s.) such that

pkl → pt+1 (a.s.) as l→∞, (59)

qt − Etpt+1 ∈ C(ω) (a.s.). (60)

Since qt ∈ Qt, inequality (60) implies that pt+1 ∈ Pt+1. Indeed, we
have ẙt(ω) ∈ Xt(ω) and qt − Etpt+1 ∈ C(ω) = X∗t (ω) (a.s.), consequently,
qtẙt − Etpt+1ẙt ≥ 0 (a.s.), which yields

||̊yt||∞ E|qt| ≥ Eqtẙt ≥ EEtpt+1ẙt = Ept+1ẙt ≥
εt
mt

E|pt+1|.

The last inequality follows from Lemma 1 because pt+1(ω) ∈ C(ω) = X∗t (ω)
(a.s.) and B(ẙt, εt) ⊆ Xt(ω) (a.s.).

By setting nt+1
l := N t

kl
, we obtain a sequence

t+ 1 < nt+1
1 < nt+1

2 < ... (61)

of Ft+1-measurable integer-valued functions such that

pt+1(n
t+1
l )→ pt+1, xt(n

t+1
l )→ xt (a.s.) as l→∞ (62)

by virtue of (59) and (57). Note that the first inequality in (61) holds because
nt+1
1 = N t

k1
> N t

1 > 1. In view of (53) – (55), we get

(pt+1(n
t+1
l ), qt+1(n

t+1
l ) ∈ Z×t+1 (a.s.), (63)

(xt(n
t+1
l ), xt+1(n

t+1
l ) ∈ Zt+1 (a.s.), (64)
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pt+1(n
t+1
l )xt(n

t+1
l ) = 1 (a.s.). (65)

Since the sequence p(l) := pt+1(n
t+1
l ) converges for almost all ω, it is

bounded for almost all ω. By virtue of (63) and Lemma 3, the sequence
q(l) := qt+1(n

t+1
l ) is a.s. bounded too. Lemma 3 can be applied because by

definition, qt+1(N) = Et+1pt+2(N), and so qt+1(N) ∈ X∗t+1 (a.s.) (recall that
pt+2(N) ∈ X∗t+1 (a.s.)).

For x(l) := xt+1(n
t+1
l ), we have |x(l)| ≤ Kt+1 (a.s.) according to (27).

Therefore we can apply Proposition A.1 to the sequence of Ft+1-measurable
random vectors vl := (x(l), q(l)). By virtue of this proposition, there exists
a sequence 1 < l(1) < l(2) < ... of Ft+1-measurable integer-valued random
variables and Ft+1-measurable random vectors xt+1 ∈ Xt+1 (a.s.) and qt+1 ∈
X∗t+1 (a.s.) for which

x(l(m)) = xt+1(n
t+1
l(m))→ xt+1, q(l(m)) = qt+1(n

t+1
l(m))→ qt+1 (a.s.). (66)

Since the sets Z×t+1(ω) and Zt+1(ω) are closed, it follows from (63) – (66) and
(62) that

(pt+1, qt+1) ∈ Z×t+1 (a.s.), (67)

(xt, xt+1) ∈ Zt+1 (a.s.), (68)

pt+1xt = 1 (a.s.). (69)

We have |xt+1| ≤ Kt+1 (a.s.) because |x(l)| ≤ Kt+1 (a.s.). Since qt+1 ∈
X∗t+1 (a.s.) and (pt+1, qt+1) ∈ Z×t+1 (a.s.), by Lemma 3 we get |qt+1| ≤
Ct+1|pt+1|, and so qt+1 ∈ Qt+1 as long as pt+1 ∈ Pt+1, which was shown
above. Thus the triplet (xt+1, pt+1, qt+1) ∈ Xt+1×Pt+1×Qt+1 satisfies all the
conditions listed in (36) – (39) (with t+ 1 in place of t).

It remains to define the sequence N t+1
m , m = 1, 2, ..., of Ft+1-measurable

random integers by

N t+1
m := nt+1

l(m) = N t
k(l(m)) [nt+1

l := N t
k(l)]. (70)

The sequence N t+1
m is strictly increasing in m because the sequences N t

k, k(l),
nt+1
l and l(m) are strictly increasing. We have N t+1

1 > t+ 1 since N t
1 > t and

k(l) > 1. By using formulas (66) and (62), we obtain

xt+1(N
t+1
m )→ xt+1, pt+1(N

t+1
m )→ pt+1, qt+1(N

t+1
m )→ qt+1 (a.s.).

Thus the sequence N t+1
m possesses all the properties required for t+ 1 in (41)

and (42) (the latter follows from (70)).
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We have constructed for each t = 1, 2, ..., vector functions xt(ω), pt(ω),
qt(ω) satisfying (35) – (39). Consider the sequences x0, x1, ... and p1, p2, ....
It follows from (37) that the former is a path. Let us show that the latter is
a dual path. The inequalities (39) (with t + 1 in place of t) and (36) imply
that there exists a vector function ht ∈ Qt such that for almost all ω,

qt(ω) = (Etpt+1)(ω) + ht(ω), ht(ω) ∈ X∗t (ω), (71)

and (pt(ω), qt(ω)) ∈ Z×t (ω). The last inclusion means that qt(ω)b ≤ pt(ω)a
for all (a, b) ∈ Zt(ω). Taking into account (71), we get

b(Etpt+1)(ω) + bht(ω) ≤ apt(ω), (a, b) ∈ Zt(ω). (72)

Since b ∈ Xt(ω) as long as (a, b) ∈ Zt(ω), we obtain that bht(ω) ≥ 0 (see
(71)). Consequently, we get

b(Etpt+1)(ω) ≤ apt(ω), (a, b) ∈ Zt(ω),

i.e. (pt(ω), (Etpt+1)(ω)) ∈ Z×t (ω), which proves that p1(ω), p2(ω), ... is a dual
path. It remains to observe that p1, p2, ... supports x0, x1, ... by virtue of (38).
�

6 Growth-optimality of rapid paths

Proof of Theorem 3. Let x0, x1, ... be a rapid path supported by a dual path
p1, p2, .... Let us first observe that for any path (yt) the sequence pt+1yt
(t = 1, 2, ...) is a non-negative supermartingale with respect to the filtration
F1 ⊆ F2 ⊆ .... This is immediate from the relations:

Etpt+1xt = p̄t+1xt ≤ ptxt−1 (a.s.), t = 1, 2, ...,

following from (9).
Further, consider any y ∈ Lmt+l

t+l with |y(ω)| ≤ γ|yt(ω)|. By using (9) and
(24), we have

pt+lyt+l−1 ≥ p̄t+l+1(yt+l + y) = p̄t+l+1yt+l + p̄t+l+1y ≥ p̄t+l+1y (a.s.) (73)

because p̄t+l+1yt+l ≥ 0 (a.s.). The last inequality is valid since yt+l (ω) ∈
Xt+l (ω) and pt+l+1 (ω) ∈ X∗t+l (ω) (a.s.), which yields pt+l+1yt+l ≥ 0 (a.s.)
and so p̄t+l+1yt+l ≥ 0 (a.s.). Put

y =
p̄t+l+1

|p̄t+l+1|
γ|yt|. (74)
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Then |y(ω)| = γ|yt(ω)| and y ∈ Lmt+l

t+l . Consequently, (73) can be applied to
y defined by (59). Observe that

p̄t+l+1y =
||p̄t+l+1||2

|p̄t+l+1|
γ|yt| ≥ |p̄t+l+1|(mt+l)

−1γ|yt|, (75)

where || · || is the Euclidean norm in Rmt+l (we use the inequality || · || ≥
| · |/√mt+l). Further, the equality pt+l+1xt+l = 1 implies p̄t+l+1xt+l = 1, and
so

|p̄t+l+1||xt+l| ≥ 1, (76)

and it follows from (A3) with a constant Kt = K independent of t that

|xt+l| ≤ K l|xt|. (77)

By combining (76) and (77), we get

|p̄t+l+1| ≥ K−l|xt|−1, (78)

and by using (75), (73) and (78), we obtain

pt+lyt+l−1 ≥ K−l(mt+l)
−1γ|yt||xt|−1 ≥ K−lm−1γ|yt||xt|−1 (a.s.), (79)

which yields

pt+1yt ≥ Et+1pt+lyt+l−1 ≥ K−lm−1γ|yt||xt|−1 (a.s.). (80)

Since pt+1yt is a non-negative supermartingale, the proof is complete. �

7 A financial market model

In this section we consider a model for a financial market with transaction
costs and portfolio constraints in which the cones Xt(ω) and Zt(ω) are poly-
hedral. We check conditions (A1)-(A5) guaranteeing that Theorems 1, 2,
and 3 can be applied to the model. Additionally, we verify assumption (L)
and the following conditions (F) and (A4′) that will be used in our further
work.

(F) There exist Ft-measurable random vectors ft,p(ω), p = 1, ..., P , such
that for each ω we have ft,p(ω) 6= 0,

Xt(ω) =

{
a : a =

P∑
p=1

ft,p(ω)cp for some cp ≥ 0, p = 1, ..., P

}
. (81)
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and

θt|c| ≤ |
P∑
p=1

ft,p(ω)cp | ≤ Θt|c|, c = (c1, ..., cP ) ∈ RP
+, (82)

where 0 < θt < Θt (t = 0, 1, ...) are constants and P is a natural number.
(A4′) For every t ≥ 1 there exist a strictly positive constant αt > 0

and a bounded vector function ẑt(ω) = (x̂t−1(ω), ŷt(ω)) such that x̂t−1(ω) is
Ft−1-measurable, ŷt(ω) is Ft-measurable and B(ẑt(ω), αt) ⊆ Zt(ω) for all ω.

Clearly (A4′) implies (A4).
We consider a market where m assets are traded at dates t = 1, 2, . . ..

Random vectors a(ω) ∈ Rm are interpreted as (contingent) portfolios of
assets. Positions ai(ω) of the portfolio a(ω) = (a1(ω), ..., am(ω)) ∈ Rm are
measured in terms of their values in the market prices. We omit ω in the
notation where it does not lead to ambiguity.

For each t = 0, 1, ... and i = 1, . . . ,m the following Ft-measurable random
variables are given: margin requirement coefficients for long and short posi-
tions 0 < µ+

t,i < µ−t,i, market asset prices St,i > 0, transaction cost rates for
selling and buying assets 0 ≤ λ+t,i < 1, λ−t,i ≥ 0, dividend or interest yield rates
for long and short positions 0 ≤ D+

t,i ≤ D−t,i. We denote by Rt,i = St,i/St−1,i
the return on asset i.

Portfolio constraints in the model are specified by the cones

Xt(ω) =

{
a ∈ Rm :

m∑
i=1

µ+
t,i(ω)ai+ ≥

m∑
i=1

µ−t,i(ω)ai−

}
. (83)

The random variables µ±t,i can be used to define margin requirements as in
the following two particular cases of (83):

Xt(ω) = {a ∈ Rm : |a+| ≥ Ut|a−|} , or (84)

Xt(ω) =

{
a ∈ Rm :

m∑
i=1

(1− λ+t,i(ω))ai+ ≥ Ut

m∑
i=1

(1 + λ−t,i(ω))ai−

}
, (85)

where Ut > 1 are constants. In both (84) and (85), Ut can be interpreted as
a margin requirement coefficient: a trader must be able to liquidate the long
positions of her portfolio to cover the short positions with excess determined
by Ut. In (84) no transaction costs are taken into account in the liquidation
value. In (85), there are proportional transaction costs specified in terms of
λ±t,i.
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Trading in the market under consideration proceeds as follows. At each
date t, the trader receives the dividend on her portfolio a(ω) purchased at the
previous date. The amount of dividend is specified by the function dt(ω, a)
defined by the formula

dt(a) =
m∑
i=1

(D+
t,ia

i
+ −D−t,iai−).

Here D±t,i specify the amount of dividend received or returned for each unit
of cash invested in asset i. (We assume that dividends on short positions
must be returned.) The dividends received or returned for a physical unit of
asset i are D±t,iSt−1,i.

After that, the trader rearranges her portfolio a(ω) with added dividend
to a portfolio b(ω) subject to the self-financing constraint ψt(ω, a, b) ≥ 0,
where

ψt(a, b) =
m∑
i=1

(1− λ+t,i)(Rt,ia
i − bi)+ −

m∑
i=1

(1 + λ−t,i)(Rt,ia
i − bi)− + dt(a).

The first sum represents the amount of money the trader receives by selling
assets, the second sum is the amount of money she pays for buying assets,
including transaction costs.

The above description of the model corresponds to the cones

Zt(ω) := {(a, b) ∈ Xt−1(ω)×Xt(ω) : ψt(ω, a, b) ≥ 0} . (86)

As a liquidation value function, which appears in condition (L), we can use

φt(ω, b) =
m∑
i=1

(1− λ+t,i(ω))bi+ −
m∑
i=1

(1 + λ−t,i(ω))bi−. (87)

Conditions under which the function (87) satisfies (L) are given in Proposi-
tion 10 below.

A natural instance of this model is when asset 1 represents cash deposited
with a bank account and the other assets are shares of stock. Then St,1 =
1 and λ±t,1 = 0 (the value is expressed in terms of cash and there are no
transaction costs for cash). The random variables D±t,1 are interest rates for
lending and borrowing and the random variables D±t,i, i ≥ 2, are dividend
yield rates on stock. Different dividend yield rates for long and short positions
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correspond to the situation when some assets pay dividends in a currency
different from asset 1 and there is a bid-ask spread in the exchange rates.

Observe that Zt(ω) is indeed a cone: clearly it contains with any vector
(a, b) all vectors λ(a, b), where λ ≥ 0. Also it is convex, since the function
ψt(a, b) is concave as follows from the representation

ψt(a, b) =
m∑
i=1

[(1− λ+t,i)(Rt,ia
i − bi) +D+

t,ia
i]

−
m∑
i=1

[(λ−t,i + λ+t,i)(Rt,ia
i − bi)− + (D−t,i −D+

t,i)a
i
−],

where the first sum is a linear function of a, b and the second sum is a convex
function of a, b.

We introduce the following assumptions. To shorten the notation, we put
Λ+
t,i = 1− λ+t,i and Λ−t,i = 1 + λ−t,i.

(B1) For each t, there exist constants Rt, Rt, Λt, Λt, Dt such that 0 <
Rt ≤ Rt,i(ω) ≤ Rt, 0 < Λt ≤ Λ+

t,i(ω), Λ−t,i(ω) ≤ Λt, D
−
t,i(ω) ≤ Dt for all i, ω.

(B2) For each t, there exists a constant µt such that µ−t,i(ω)/µ+
t,j(ω) ≥ µt

for all ω, i 6= j, and µt > νt, where νt := max{(Λt+1Rt+1+Dt+1)/(Λt+1Rt+1+
Dt+1); Λt/Λt} and Dt ≥ 0 is a constant such that Dt ≤ D+

t,i(ω) for all ω, i.
Observe that for the particular examples of the cones Xt(ω) in (84) and

(85), if condition (B1) is satisfied then (B2) will hold if Ut > νt for each t.
Proposition 9. Let conditions (B1) and (B2) hold. Then the cones

Xt(ω) satisfy condition (F) and the cones Zt(ω) satisfy conditions (A2),(A3)
and (A4′).

To prove Proposition 9 we will need the following auxiliary result .
Lemma 1. Let conditions (B1), (B2) hold. Then
(a) For each t there exists a constant C1

t > 0 such that if a ∈ Xt(ω) then
|a+| − νt|a−| ≥ C1

t |a|.
(b) For each t there exists a constant C2

t such that if a ∈ Xt−1(ω),
b ∈ Xt(ω) and |b| ≤ C2

t |a|, then (a, b) ∈ Zt(ω).
Proof . (a) Consider the non-random cone X̃t = {a ∈ Rm : µt|a−| ≤ |a+|}.

Condition (B2) implies that Xt(ω) ⊆ X̃t. Observe that since µt > 1 we
have X̃t ∩ (−X̃t) = {0}. The continuous function ht(a) = |a+| − νt|a−| is
strictly positive on the compact set X̂t = X̃t ∩ {a : |a| = 1}. Indeed, since
ht(a) ≥ (µt−νt)|a−| on X̃t, then the equality ht(a) = 0 would imply |a−| = 0,
and hence |a+| = ht(a) = 0, so that |a| = 0. Then ht(a) attains a strictly
positive minimum on X̂t, which can be taken as C1

t .
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(b) Let b ∈ Xt(ω). It is straightforward to check that for any numbers
x, y we have (x − y)+ ≥ x+ − y+ and (x − y)− ≤ x− + y+. Using this, we
obtain for any a ∈ Xt−1(ω)

ψt(a, b) ≥
∑
i

((Λ+
t,iRt,i +D+

t,i)a
i
+ − (Λ−t,iRt,i +D−t,i)a

i
−)−

∑
i

(Λ+
t,i + Λ−t,i)b

i
+

≥ (ΛtRt +Dt)|a+| − (ΛtRt +Dt)|a−| − 2Λt|b+|
≥ (ΛtRt +Dt)(|a+| − νt−1|a−|)− 2Λt|b|
≥ C1

t−1(ΛtRt +Dt)|a| − 2Λt|b|.

Then statement (b) can be fulfilled with the constant C2
t = C1

t−1(ΛtRt +
Dt)/(2Λt), since in that case ψt(a, b) ≥ 0, implying (a, b) ∈ Zt. �

Proof of Proposition 9. Let us show that the cones Xt satisfy (F). We first
show that each cone Xt is polyhedral. Put ft,i,j = ei − (µ+

t,i/µ
−
t,j)ej for i 6= j,

where ei is the i-th basis vector in Rm. Suppose a ∈ Xt(ω), a 6= 0. Denote
by I = {i : ai > 0}, J = {j : aj < 0} the sets of indices of positive and
negative coordinates of a and put δ = (

∑
j∈J µ

−
t,j|aj|)/(

∑
i∈I µ

+
t,ia

i). Clearly,
δ ≤ 1 as a ∈ Xt. Then

a = δ
∑
i∈I

∑
j∈J

aiµ−t,j|aj|∑
k∈J

µ−t,k|ak|
ft,i,j + (1− δ)

∑
i∈I

aiei.

Hence the cone Xt can be represented in the form (81) with m2 generators:
ft,i,j and ei for i, j = 1, ...,m, j 6= i.

Since ft,p(ω) 6= 0, we can assume without loss of generality that all the
generators ft,p(ω) of the cone Xt(ω) are normalized: |ft,p(ω)| = 1. Then the
second inequality in (82) will hold with Θt = 1.

To prove the first inequality in (82), observe that the minimum of the
continuous function v(c, f1, . . . , fP ) := |

∑
p cpfp| is strictly positive on the

compact set {(c, f) : c ∈ RP
+, |c| = 1, fp ∈ X̃t, |fp| = 1, p = 1, . . . , P}. Then

θt can be taken equal to this minimum.
Condition (A2) follows from statement (b) of Lemma 1 since for any

a ∈ Xt−1(ω), 0 ≤ C2
t |a| and so (a, 0) ∈ Zt(ω).

Let us prove (A3). Suppose (a, b) ∈ Zt. Since for any numbers x, y we
have (x− y)+ ≤ x+ + y− and (x− y)− ≥ y+ − x+, we obtain

0 ≤ ψt(a, b) ≤
∑
i

((Λ+
t,i + Λ−t,i)Rt,i +D+

t,i)a
i
+ +

∑
i

(Λ+
t,ib

i
− − Λ−t,ib

i
+)

≤ (2ΛtRt +Dt)|a|+ Λt|b−| − Λt|b+| ≤ (2ΛtRt +Dt)|a| − C1
t Λt|b|,

(88)
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where in the last inequality we used that b ∈ Xt(ω) and according to state-
ment (a) of Lemma 1, we have Λt|b+| −Λt|b−| ≥ Λt(|b+| − νt|b−|) ≥ C1

t Λt|b|.
This implies the validity of (A3) with the constantKt = (2ΛtRt+Dt)/(C

1
t Λt).

Now we will prove condition (A4′). Let x̂ = (1, ..., 1) ∈ Rm. Put
ẑt = (x̂, ŷt) with ŷt = (C2

t /2)x̂. Observe that there exists δt > 0 such that
B(ẑt, δt) ⊂ R2m

+ and therefore B(ẑt, δt) ⊂ Xt−1 ×Xt. Since |ŷt| < C2
t |x̂|, then

one can find 0 < αt ≤ δt such that |yt| ≤ C2
t |xt| for any zt = (xt−1, yt) ∈

B(ẑt, αt). Then statement (b) of Lemma 1 implies zt ∈ Zt for such zt. Hence,
the pair (ẑt, αt) satisfies condition (A′4). �

Let us check condition (A1). In the proof of Lemma 1, we observed
that the cones Xt(ω) is contained in the non-random cone X̃t = {a ∈ Rm :
µ|a−| ≤ |a+|}. Put qt = e, where e = (1, ..., 1) ∈ Rm. Indeed, qt ∈ X∗t (ω)
since for any a = (a1, ..., am) ∈ Xt(ω)

qt(ω)a =
m∑
i=1

ai = |a+| − |a−| ≥ (µt − 1)|a−| ≥ 0.

Note that the continuous function qt(a) =
∑m

i=1 a
i is strictly positive on the

compact set X̂t = X̃t ∩ {a : |a| = 1}. Indeed, since qt(a) ≥ (µt − 1)|a−|
on X̃t, the equality qt(a) = 0 would imply |a| = 0. Then qt(a) attains a
strictly positive minimum Qt ≤ 1 on X̂t. Define Ht = Q−1t . Therefore, for
any a ∈ Xt(ω)

H−1t |a| ≤ qt(ω)a ≤ Ht|a|,

which implies that assumption (A1) is satisfied. Therefore all conditions
(A1)-(A4) are satisfied and then Theorems 1 and 2 hold.

Let us assume that assumptions (B1) and (B2) hold with constants µt,
Rt, Rt, Λt, Λt, Dt not depending on t. Under these assumptions the following
assertion is valid, guaranteeing that Theorem 3 holds in the model at hand.

Proposition 10. (a) The cones Zt(ω) satisfy condition (A3) with con-
stant K not depending on t and condition (A5) with l = 1,

(b) the function φt(ω, b) defined in (87) satisfies condition (L).
Proof. (a) From the proof of statement (a) of Lemma 1 one can see that

if the constants from condition (B1) do not depend on t, then it is possible
to choose C1

t independent of t. Then (88) implies that Kt can be chosen
independent of t.

Let us prove that (A5) holds. It follows from the proof of Lemma 1 that
the constant C2

t can be chosen independent of t. Let γ = C2/(m + 1) and
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consider any yt ∈ Xt. Put yt+1 = γ|yt|x̂, where x̂ = (1, ..., 1) ∈ Rm. Then
B(yt+1, γ|yt|) ⊆ Rm

+ ⊆ Xt+1. Hence for any y ∈ Xt+1 such that |y| ≤ γ|yt| we
have yt+1 +y ∈ Xt+1 and |yt+1 +y| ≤ C2|yt|. Hence, statement (b) of Lemma
1 implies that (yt, yt+1 + y) ∈ Zt+1, so condition (A5) holds with l = 1.

(b) Finally, we prove that the function φt(ω, b) satisfies condition (L).
The second inequality in condition (L) holds with S = 1. Let us prove the
first inequality. Since Xt(ω) ⊆ X̃t = {a ∈ Rm : µ|a−| ≤ |a+|}, for every
b ∈ Xt(ω) we have

φt(ω, b) ≥ Λ|b+| − Λ|b−| ≥
(
Λ− Λ/µ

)
|b+|.

Condition (B2) implies that µΛ > Λ. Using that and |b+| ≥ |b−|, the above
inequality yields φt(ω, b) ≥ s |b| with constant s =

(
Λ− Λ/µ

)
/2 > 0. �

Appendix

Let (Ω,F , P ) be a probability space and wN(ω) (ω ∈ Ω, N = 1, 2, ...) a
sequence of random vectors in Rn.

Proposition A.1. If lim inf |wN(ω)| < ∞ a.s. (which is so, in partic-
ular, when lim inf E|wN(ω)| < ∞), then there exists a sequence of integer-
valued random variables N1(ω) < N2(ω) < ... and a random vector w(ω)
such that

limwNk(ω)(ω) = w(ω) (a.s.) (89)

and
E|w(ω)| ≤ lim inf E|wN(ω)|. (90)

Proof. Define ξ(ω) = lim inf |wN(ω)|. Since ξ(ω) < ∞ (a.s.), for almost
all ω there exists a sequence ν = (Nk)

∞
k=1 of natural numbers Nk and a vector

w ∈ Rn such that

Nk < Nk+1, lim |wNk
(ω)| → ξ(ω), limwNk

(ω) = w, |w| = ξ(ω), (91)

Denote by A the set of (ω, v, w) satisfying (91). This set is measurable with
respect to F × B(N∞) × B(Rn), where N∞ := N × N × ... is the product
of a countable number of copies of the discrete space N := {1, 2, ...} with
the product topology. By virtue of Aumann’s measurable selection theorem
(see e.g. [7]), there exist measurable ν(ω) = (Nk(ω))∞k=1 and w(ω) such that
(ω, ν(ω), w(ω)) ∈ A for almost all ω. This yields (89) and (90) because
E|w(ω)| = Eξ(ω) = E lim inf |wN(ω)| by Fatou’s lemma. �
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Let C be a pointed closed cone in Rn. We write a ≤C b if b− a ∈ C.
Proposition A.2. Let pk(ω), k = 1, 2, ..., be integrable random vectors

with values in C such that the sequence Epk(ω) converges a.s. to a vector
q ∈ Rn. Then there exists a sequence of integer-valued random variables
1 < k1(ω) < k2(ω) < ... and an integrable random vector p(ω) such that

lim
l→∞

pkl(ω)(ω) = p(ω) (a.s.)

and
Ep(ω) ≤C q.

Proposition A.2 is a version of the multidimensional Fatou’s lemma for
unconditional expectations, extending the classical Schmeidler’s [49] result
from the case C = Rn

+ to the case of a general cone C. Proposition A.3 is an
analogous result for conditional expectations. For proofs of these propositions
(under somewhat more general assumptions) see [3].

Let G be a sub-σ-algebra of F and let C(ω) be a pointed closed convex
cone in Rn depending G-measurably on ω. A random vector p(ω) is said to be
conditionally integrable (with respect to the σ-algebra G) if E[|p(ω)| |G] <∞
(a.s.), where | · | stands for a norm in Rn.

Proposition A.3. Let pk(ω), ω ∈ Ω, k = 1, 2, ..., be conditionally
integrable random vectors such that pk(ω) ∈ C(ω) (a.s.) and the conditional
expectations E[pk(ω)|G] converge a.s. to a random vector q(ω). Then there
exists a sequence of integer-valued random variables 1 < k1(ω) < k2(ω) < ...
and a conditionally integrable random vector p(ω) such that

lim
l→∞

pkl(ω)(ω) = p(ω) (a.s.)

and
E[p(ω)|G] ≤C(ω) q(ω) (a.s.).
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[26] Guasoni, P., Rásonyi, M. and Schachermayer, W., Consistent price sys-
tems and face-lifting pricing under transaction costs, Annals of Applied
Probability, 18 (2008) 491–520.

[27] Hakansson, N.H. and Ziemba, W.T., Capital growth theory, in: Jarrow,
R., Maksimovic, A.V. and Ziemba, W.T. (Eds.), Handbooks in Opera-
tions Research and Management Science, Vol. 9, Finance, Chapter 3,
Elsevier, Amsterdam, (1995) 65–86.

[28] Kabanov, Yu.M. and Safarian, M., Markets with Transaction Costs.
Mathematical Theory, Springer, Berlin, 2009.

[29] Kabanov, Yu.M., Hedging and liquidation under transaction costs in
currency markets, Finance and Stochastics 3 (1999) 237–248.

[30] Kelly, J.L., A new interpretation of information rate, Bell System Tech-
nical Journal 35 (1956) 917–926.

[31] Long, J.B., The numeraire portfolio, Journal of Financial Economics
26 (1990) 29–69.

[32] Jouini, E. and Kallal, H., Martingales and arbitrage in securities markets
with transaction costs, Journal of Economic Theory 66 (1995) 178–197.

[33] MacLean, L. C. , Thorp, E. O. and Ziemba, W. T. (Eds.), The Kelly
Capital Growth Investment Criterion: Theory and Practice, World Sci-
entific, Singapore, 2010.

[34] Makarov, V.L. and Rubinov, A.M., Mathematical Theory of Economic
Dynamics and Equilibria, Springer-Verlag, Berlin, 1977.

[35] Malinvaud, E., Capital accumulation and efficient allocation of re-
sources, Econometrica 21 (1953) 233–268.

[36] Morishima, M., Equilibrium, Stability and Growth: A Multisectorial
Analysis, Oxford University Press, Oxford, 1964.

[37] Natanson, I.P., Theory of Functions of a Real Variable, N.Y., Ungar,
1961.

[38] Nikaido, H.: Convex Structures and Economic Theory, Academic Press,
London, 1968.

31

https://projecteuclid.org/euclid.aoap/1206018195
https://doi.org/10.1016/S0927-0507(05)80047-7
https://www.springer.com/gb/book/9783540681205
https://link.springer.com/article/10.1007/s007800050061
https://doi.org/10.1002/j.1538-7305.1956.tb03809.x
https://doi.org/10.1016/0304-405X(90)90012-O
https://doi.org/10.1006/jeth.1995.1037
https://doi.org/10.1142/7598
https://www.springer.com/gb/book/9781461298885
https://www.jstor.org/stable/1905538
http://www.oxfordscholarship.com/view/10.1093/0198281455.001.0001/acprof-9780198281450
https://www.amazon.co.uk/gp/search?index=books&linkCode=qs&keywords=9780486806433
https://www.elsevier.com/books/convex-structures-and-economic-theory/nikaido/978-1-4832-3003-0


[39] Peleg, B., On competitive prices for optimal consumption plans, SIAM
Journal of Applied Mathematics 26 (1974) 239–253.

[40] Platen, E., A benchmark approach to finance, Mathematical Finance 16
(2006) 131-151.

[41] Platen, E. and Heath, D., A benchmark approach to quantitative finance,
Springer Heidelberg Dordrecht London New York, 2006.

[42] Poundstone, W., Fortune’s Formula: The Untold Story of the Scientific
Betting System That Beat the Casinos and Wall Street, Hill and Wang
Publ., 2006.

[43] Radner, R., Paths of economics growth that are optimal with regard
only to final states: A ’Turnpike Theorem’, Review of Economic Studies
28 (1961) 98-104.

[44] Radner, R., Efficiency prices for infinite horizon production programmes,
Review of Economic Studies 34 (1967) 51–66.

[45] Radner, R., Balanced stochastic growth at the maximum rate. In: Con-
tributions to the von Neumann Growth Model, Conference Proceed-
ings, Institute for Advanced Studies, Vienna, 1970), Zeitschrift für Na-
tionalökonomie 1 (1971) 39–53.

[46] Rockafellar, R. T.: Monotone processes of convex and concave type,
Memoirs of Amer. Math. Soc. 77, American Mathematical Society,
Providence, RI, 1967.

[47] Saadoune, M. and Valadier, M., Extraction of a ”good” subsequence
from a bounded sequence of integrable functions. J. Convex Analysis 2
(1995) 345-357.

[48] Schachermayer, W., The fundamental theorem of asset pricing under
proportional transaction costs in finite discrete time, Mathematical Fi-
nance 14 (2004) 19–48.

[49] Schmeidler, D., Fatou’s lemma in several dimensions, Proceedings of the
American Mathematical Society 24 (1970) 300–306.

32

https://doi.org/10.1137/0126021
https://doi.org/10.1111/j.1467-9965.2006.00265.x
https://www.springer.com/gp/book/9783540262121
https://www.amazon.co.uk/Fortunes-Formula-Scientific-Betting-Casinos/dp/0809045990
https://www.jstor.org/stable/pdf/2295707.pdf
https://www.jstor.org/stable/2296570
https://link.springer.com/chapter/10.1007/978-3-662-24667-2_5
https://bookstore.ams.org/memo-1-77
https://pdfs.semanticscholar.org/0013/6b45b0be3ca5615ffd0d3273f4c90ff6d0e6.pdf
https://doi.org/10.1111/j.0960-1627.2004.00180.x 
https://doi.org/10.1090/S0002-9939-1970-0248316-7
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