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Abstract

First-order asymptotic analyses of the Generalized Method of Moments (GMM) estimator and its
associated statistics are based on the assumption that the population moment condition identifies
the parameter vector both globally and locally at first order. In linear models, global and first-
order local identification are equivalent but in nonlinear models they are not. In certain econometric
models of interest, parameters are globally identified but only identified locally at second order.
In these scenarios the standard GMM inference techniques based on first-order asymptotics are
invalid, see Dovonon and Renault (2013) and Dovonon and Hall (2016). In this paper, we explore
how to perform inference in moment condition models that only identify the parameters locally
to second order. For inference about the parameters, we consider inference based on conventional
Wald and LM statistics, and also the Generalized Anderson Rubin (GAR) statistic (Anderson and
Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright, 2000) and the KLM statistic
(Kleibergen, 2002, 2005). Both the GAR and KLM statistics have been proposed as methods of
inference in the presence of weak identification and are known to be “identification robust” in the
sense that their limiting distribution is the same under first-order and weak identification. For in-
ference about the model specification, we consider the identification-robust J statistic (Kleibergen,
2005) and the GAR statistic. In each case, we derive the limiting distribution of statistics under
both null and local alternative hypotheses. We show that under their respective null hypotheses the
GAR, KLM and J statistics have the same limiting distribution as would apply under first-order or
weak identification, thus showing their identification robustness extends to second-order identifica-
tion. We explore the power properties in detail in two empirically relevant models with second-order
identification. In the panel autoregressive (AR) model of order one, our analysis indicates that the
Wald test of whether the AR parameter is one has superior power to the corresponding GAR test
which, in turn, dominates the KLM and LM tests. For the conditionally heteroskedastic factor
model, we compare Kleibergen’s (2005) J and the GAR statistics to Hansen’s (1982) overidentify-
ing restrictions test (previously analyzed in this context by Dovonon and Renault, 2013) and find
the power ranking depends on the sample size. Collectively, our results suggest that tests with
meaningful power can be conducted in second-order identified models.

Keywords: Generalized Method of Moments estimation, First-order identification failure, Identification-
robust inference



1 Introduction

Generalized Method of Moments (GMM) is a popular method for estimating the parameters of
econometric models based on the information in population moment conditions. In his seminal
article introducing GMM, Hansen (1982) proves the consistency of the estimator and provides
a framework for inference based on first-order asymptotic statistical arguments. This original
framework includes confidence intervals for the parameters and the overidentifying restrictions
statistic that can be used to test the model specification, and it has been subsequently extended to a
wide variety of inference procedures, similarly based on first-order asymptotic arguments. However,
the statistical arguments that justify these inference techniques are predicated on certain regularity
conditions among which are the assumptions that the population moment condition is valid and
identifies the parameters both globally and also locally at first order.

Over the last 25 years, there has been a growing awareness that this first-order asymptotic
theory may provide a poor approximation to the finite sample behaviour of GMM-based statistics
in finite samples. Attention has focussed primarily on cases where the assumed identification
conditions fail or are close to failure. To derive alternative approximations to the behaviour of
GMM-based statistics under this scenario, Staiger and Stock (1997) introduced the concept of weak
identification. Within this framework, parameters are globally and first-order locally identified in
finite samples but the information provided by the population moment declines (at a prescribed
rate) as the sample size increases resulting in the parameters being globally unidentified in the limit.
Under weak identification, the large sample properties of the conventional GMM-based statistics are
different from those derived in Hansen’s (1982) analysis, see Staiger and Stock (1997) and Stock and
Wright (2000). Furthermore, once the possibility of weak identification is admitted, the conventional
approach to constructing confidence intervals based on GMM estimators - “estimator plus/minus a
multiple of the standard error” - is invalid, see Dufour (1997). This has led to a focus on inferences
based on so-called “identification robust” statistics whose distribution is invariant to the quality of
the identification. Leading examples of such statistics are the generalized Anderson-Rubin (GAR)
statistic (Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright,
2000), the KLM statistic (Kleibergen, 2002, 2005), the J statistic (Kleibergen, 2005), and the
conditional likelihood ratio statistic ( Moreira, 2003; Kleibergen, 2005). In each case, inferences are
performed by inverting the statistic in question to calculate parameter values consistent with the
null hypothesis at the chosen level of confidence/significance.

However, weak identification and its variants are not the only way in which first order local
identification can fail.1 In linear models, first-order local and global identification are the same, but
in nonlinear models, they are not: identification can fail at first order locally but hold at a higher
order. In this paper, we focus on the case where parameters are globally identified, identification
fails locally at first order but holds at second order. This pattern of identification has been shown
to arise in a number of situations in statistics and econometrics such as: ML for skew-normal
distributions, Azzalini (2005); ML for binary response models based on skew-normal distributions,
Stingo, Stanghellini, and Capobianco (2011); ML for missing not at random (MNAR) models,
Jansen and et al (2006); GMM estimation of conditionally heteroskedastic factor models, Dovonon
and Renault (2009, 2013); GMM estimation of panel data models using second moments, Madsen
(2009), Bun and Kleibergen (2016); ML estimation of panel data models, Kruiniger (2014).

Within this second-order identification framework, GMM estimators are consistent but the lim-
iting distribution of statistics based on the estimator is both different from its first-order asymptotic

1For a recent review of methods for inference under weak identification and its extensions, see Hall (2015).
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counterpart and also sensitive to the nature of the first-order identification failure. Local identifi-
cation relates to the behaviour of the population moment condition as the parameter moves away
from the true value. First order identification can fail in some or all directions, and the large sample
behaviour of GMM-based statistics is sensitive to the number of directions in which local identifica-
tion is at second order and not first order. For the case where first order identification only fails in
one direction, the limiting distribution of the GMM estimator has been characterized by Dovonon
and Hall (2016), extending earlier results by Sargan (1983) and Rotnitzky, Cox, Bottai, and Robins
(2000) for estimators obtained respectively by IV in a nonlinear in parameters model and Maximum
Likelihood. Dovonon and Renault (2009, 2013) derive the limiting distribution of the overidenti-
fying restrictions statistic for an arbitrary number of directions in which local identification is at
second and not first order.

In this paper, we study the power of commonly used test procedures when the parameter of
interest is only locally second order identified. We analyze tests on the value of the parameter itself
and the specification of the moment function. To conduct tests on the parameter of interest, we
employ the traditional Wald and Lagrange multiplier (LM) statistics as well as the identification
robust GAR and KLM statistics. For tests on the specification of the moment function, we use
the GAR statistic and Kleibergen’s (2005) J statistic (hereafter denoted as the K-J statistic). For
each type of test, we define the appropriate local alternatives and derive the limiting distributions
of all tests under both null and local alternatives. We also illustrate the power properties of the
tests in two empirically relevant models: the panel autoregressive model of order one and the
conditionally heteroskedastic factor model. For the panel data model, it is well known that the
autoregressive parameter is plagued by identification issues if the autoregressive parameter is one.
Bun and Kleibergen (2016) construct a specific moment equation which second order identifies
the autoregressive parameter at this value. For the conditionally heteroskedastic factor model,
Dovonon and Renault (2013) establish that the parameters are second-order identified by a moment
condition used as a basis for testing for a common factor structure. Because of the second order
identification, GMM estimators have a quartic root convergence rate and so we observe a very slow
convergence of the finite sample distributions of the tests towards their limiting distributions under
local alternatives. We therefore focus on the finite sample distributions of the tests for varying
numbers of observations. For the panel autoregressive model, the Wald statistic has a surprising
amount of discriminatory power and dominates the other tests, although the GAR statistic exhibits
comparable power in large samples. The powers of the KLM and LM statistics are much less than
that of the GAR statistic which is explained by the second-order identification. Because of it, the
parameter of interest is not well identified and it is known that the GAR statistic compares favorably
to the KLM statistic in such settings in terms of power. For the conditionally heteroskedastic factor
model, we compare the power properties of K-J and the GAR tests with those of Hansen’s (1982)
overidentifying restrictions test, previously analyzed in this context by Dovonon and Renault (2013).
Our results indicate that the power ranking is sensitive to the sample size: in small to moderate
sample sizes the K-J test dominates the other two, which have comparable power; but in large
sample sizes this ranking is reversed.

The paper is organized as follows. In the second section, we set up notation, introduce the con-
cept of second order identification and the two running examples of the panel autoregressive model
and the conditionally heteroskedastic factor model. In the third section, we introduce the different
test statistics and their limiting distributions under the null hypothesis. In the fourth section, we
discuss these distributions under appropriate local alternatives. The fifth section explores the finite
sample power properties of the tests. Finally the sixth section concludes. All proofs are relegated
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to a mathematical appendix.

2 Second-order identification: definition and examples

Suppose it is desired to estimate a parameter vector θ0 ∈ Θ ⊂ R
p that indexes an econometric

model. This model may explain behaviour of individual economic agents in a population and so be
estimated from a random sample from that population or the model may explain the behaviour of
economic variables over time and be estimated from time series data. Second-order identification
can arise in either case, as demonstrated by our two examples below, and our results apply equally in
both scenarios. However, certain definitions are different in the two cases. For ease of presentation,
we first describe GMM estimations for the case where the data are obtained from a random sample,
and then briefly note how those definitions need to be adapted for time series in footnote 3 below.

To this end, let X denote a random vector with probability distribution P and sample space X
modeling the variables in the econometric model. We consider the case where this model implies
the following population moment condition:

E[f(X, θ0)] = 0, (1)

where f : X × Θ → R
k is twice continuously differentiable in θ almost everywhere and k ≥ p.

Associated with this population moment condition is a matrix G(θ0) known as the Jacobian and
defined via: G(θ) = E [q(X, θ)], q(θ̄) = ∂f(X, θ)/∂θ′

∣∣
θ=θ̄

. Let {xi, i = 1, . . . , N} be a random

sample of observations for X, and define the sample moment function to be f̄N (θ) = 1
N

∑N
i=1 fi(θ)

where fi(θ) ≡ f(xi, θ).
Following Hansen (1982), we define a GMM estimator of θ0 based on (1) as:

θ̂(WN ) = arg min
θ∈Θ

Nf̄N(θ)′WN f̄N(θ), (2)

where WN is k×k weighting matrix that converges in probability toW , a symmetric positive definite
matrix W . As emphasized by the notation, the GMM estimator depends on the choice of weighting
matrix. Hansen (1982) shows that the optimal choice of weighting matrix is one that satisfies
W = {Vff (θ0)}−1 where Vff (θ0) = V ar[f(X, θ0)], assumed nonsingular throughout. This optimal
choice is implemented via a two-step procedure in which a first-step GMM estimation is used to
obtain a preliminary - “first-step GMM” - estimator, θ̂1,s = θ̂(WN ), based on a sub-optimal choice
of WN . This first-step GMM estimator is used to construct a consistent estimator of V ar[f(X, θ0)],
the inverse of which is used as weighting matrix on a second-step estimation. Defining

V̂ff (θ) =
1

N

N∑

i=1

[
fi(θ) − f̄N (θ)

] [
fi(θ) − f̄N (θ)

]′

and
Q(θ, θ̄) = Nf̄N (θ)′V̂ff (θ̄)

−1f̄N (θ),

the two-step GMM estimator is:
θ̂N = arg min

θ∈Θ
Q(θ, θ̂1,s). (3)

Within this framework, two statistics are naturally of interest: θ̂N and the overidentifying
restrictions test statistic Q(θ̂N , θ̂1,s). The former is the basis for inference about θ0 and the latter
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can be used to assess if the data are consistent with (1) being true in the population, often thought
of as a test of the model specification.2 Hansen (1982) establishes the limiting properties of both

these statistics under a set of regularity conditions.3 Specifically, he shows that θ̂N is consistent for
θ0,

N1/2(θ̂N − θ0)
d→ N(0, Vθ), (4)

where Vθ = {G(θ0)
′Vff (θ0)

−1G(θ0)}−1, and

Q(θ̂, θ̂1,s)
d→ χ2

k−p. (5)

For our purposes here, it suffices to highlight three of these regularity conditions. To this end,
it is useful to condense our notation and write m(θ) = E [f(X, θ)]. The aforementioned three
conditions are then:

(i) m(θ0) = 0 so that the estimation is based on valid information;

(ii) m(θ̄) 6= 0 for all θ̄ 6= θ0 so that θ0 is globally identified;

(iii rank{G(θ0)} = p so that θ0 is first-order locally identified.4

Of these three, the consistency of the GMM estimator only requires (i) and (ii) to hold; but the
distributional results in (4) and (5) require all three conditions to hold.

As noted in the introduction, first-order local identification is not a necessary condition for
global identification in nonlinear models. In this paper we focus on the case where first-order local
identification fails but the parameters are identified at second order. To formally introduce this
scenario, we let

Hs(θ̄) = E

[
∂2fs(X, θ)

∂θ∂θ′

∣∣∣∣
θ=θ̄

]
, s = 1, 2 . . . , k

where fs(X, θ) is the s-th element of f(X, θ). The following assumption defines the identification
configuration maintained throughout our analysis.

Assumption 1. (a) ∀θ ∈ Θ, m(θ) = 0 ⇔ θ = θ0; (b) For all u in the range of G(θ0)
′ and all v

in the null space of G(θ0),

(
G(θ0)u+ (v′Hs(θ0)v)1≤s≤k = 0

)
⇒ (u = v = 0).

Assumption 1(a) combines conditions (i) and (ii) above, and provides the necessary and sufficient
identification condition for consistent estimation of θ0 . Assumption 1(b) is the second-order local
identification condition introduced by Dovonon and Renault (2009). This is a sufficient condition for
local identification that extends the standard first-order local identification (property (iii) above).
If rank {G(θ0)} = p, then the null space of G(θ0) is the null vector and Assumption 1(b) holds

2Although some caution needs to be exercised in interpreting the outcome of this test, see Newey (1985) and Hall
(2005)[Section 5.1].

3If the model involves (stationary ergodic) time series then X is replaced by Xt in (1) with t denoting the
time index, and replacing i in the definitions above. In this case the optimal choice of weighting matrix is

Vff = limT→∞
V ar

h

N−1/2
PN

t=1
f(Xt)

i

and V̂ff(θ) by a member of the class of Heteroskedasticty Autocorre-

lation Covariance (HAC) estimators, for example see Andrews (1991).
4Sometimes referred to as the rank condition for identification.
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trivially. If G(θ0) is rank deficient, this assumption ensures that the direction of the parameter
that belongs to the range of G(θ0)

′ is identified by the first order approximation of the moment
function whereas the direction in the null space of the Jacobian is identified by the second-order
approximation. In the extreme case where G(θ0) = 0, the whole parameter vector is identified by
the second-order terms in the expansion of the moment function.

Dovonon and Renault (2009) establish that the components of the GMM estimator in the
direction of the range of G(θ0)

′ have the standard rate of convergence (
√
N) while the components

in the direction of the null space of G(θ0) have a non-standard rate of convergence (N1/4) and
those rates are sharp. It is thus evident that the distributional result in (4) does not apply if local
identification holds at second but not first order, and Dovonon and Renault (2013) show that (5) is
similarly invalid. We return to this issue in the next section. To conclude this section, we consider
two examples where first-order identification fails but Assumption 1 holds.

2.1 Panel data example

Consider the first-order linear dynamic panel data model

yi,t = ci + θ0yi,t−1 + uit i = 1, . . . , N, t = 2, . . . , T, (6)

where ci denotes the (unobserved) fixed effect, T equals the number of time periods andN equals the
number of cross section observations. The assumptions commonly used to identify the parameters
of this model are that the error terms are independently distributed from each other and the fixed
effect so that

E[ui,tui,s] = 0, s 6= t; t = 2, . . . , T,
E[ui,tci] = 0, t = 2, . . . , T,

E[ui,tyi,1] = 0, t = 2, . . . , T.
(7)

Based on these assumptions, different moment functions have been proposed to identify the autore-
gressive parameter of which the most commonly used are, perhaps, those proposed by Anderson and
Hsiao (1981), Arellano and Bond (1991), Ahn and Schmidt (1995) and Blundell and Bond (1998).
All these moment conditions have difficulty identifying the autoregressive parameter when its true
value is close to one and the variance of the initial observations and/or fixed effects becomes large,
see Bun and Kleibergen (2016). Bun and Kleibergen (2016) show that a non-linear combination
of these moment conditions does, however, identify the autoregressive parameter in such settings.
This non-linear combination leads to so-called robust moments that do not depend on the initial
observations and fixed effects. Bun and Kleibergen (2016) show that for T = 4 the specification of
the sample moment function associated with these robust moments is:

f̄N (θ) = aθ2 + bθ + d, (8)

where

a =
1

N

N∑

i=1

(
(∆yi,2)

2

0

)
, b = − 1

N

N∑

i=1

(
(yi,3 − yi,1)

2

∆yi,2∆yi,3

)
, d =

1

N

N∑

i=1

(
(yi,4 − yi,1)∆yi,3

∆yi,2∆yi,4

)
.
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Under the assumptions above, the expectation of these terms is given by:

E[a] =

(
E[(ci − (1 − θ0)yi,1)

2] + σ2
2

0

)
,

E[b] =

(
(1 + θ0)

2E[(ci − (1 − θ0)yi,1)
2) − θ20σ

2
2 − σ2

3

−θ20E[(ci − (1 − θ0)yi,1)
2]

)
,

E[d] =

(
θ0(1 + θ0 + θ20)E[(ci − (1 − θ0)yi,1)

2] + θ20(θ0 − 1)σ2
2 + θ0σ

2
3

θ20E[(ci − (1 − θ)yi1)
2]

)
.

(9)

with σ2
t = E[u2

it]. If we assume mean-stationarity5 - so that E[(ci − (1 − θ)yi1)
2] = 0 - and the

errors are homoskedastic - σ2
t = σ2 - then these expected values simplify to

E[a] = σ2

(
1
0

)
, E[b] = −σ2

(
θ20 + 1

0

)
, E[d] = σ2

(
θ20(θ0 − 1) + θ0

0

)
.

(10)
From (8) and (10), it follows that if θ0 = 1 then:

m(θ0) = 02×1, G(θ0) = 02×1, H1(θ0) = 2σ2, H2(θ0) = 0, (11)

where we have emphasized the dimensions of the null vectors for clarity. It can be seen from (11)
that if θ0 = 1 then this model is not first-order locally identified but satisfies Assumption 1 and so is
second-order locally identified. In our subsequent analysis of this model, we focus on the inference
about whether or not θ0 = 1.

2.2 Conditionally heteroskedastic factor models

Conditionally heteroskedastic factor (CHF) models are widely used to study the volatility of finan-
cial asset returns.6 Within this approach, the volatility of a vector of assets is assumed to derive
from two sources: a latent common factor that exhibits conditional variation and an idiosyncratic
component that is conditionally homoskedastic. In practice, the number of latent factors is assumed
to be smaller than the number of assets and thus the CHF model provides a relatively parsimonious
way of capturing the conditional variances and covariances of the assets.

Before basing inferences on the model, it is important to assess whether the sample covariance
structure is consistent with this type of specification. Engle and Kozicki (1993) propose a general
methodology for testing for common features in economic time series based on the GMM overi-
dentifying restrictions test, and propose using it to test the valdity of the CHF model. However,
they base their decision rule on standard first-order asymptotic behaviour of the overidentifying
restrictions test. Dovonon and Renault (2013) show that this theory is invalid in this case because
the moment condition in question only identifies the parameters locally to second order.

To elaborate, consider the following CHF model for the p× 1 vector of asset returns Yt+1:

E [Yt+1 |Ft] = 0, (12)

V ar [Yt+1 |Ft] = ΛDtΛ
′ + Ω, (13)

5See Blundell and Bond (1998).
6The approach is introduced in Diebold and Nerlove (1989); see also inter alia Engle, Ng, and Rothschild (1990),

Fiorentini, Sentana, and Shephard (2004) and Doz and Renault (2006).
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where Dt is a L×L diagonal matrix with `th diagonal element equal to σ2
`,t for ` = 1, 2, . . . , L, Λ is

a p× L matrix, and Ω is a p× p symmetric positive semi-definite matrix. The stochastic processes

{Yt}t≥0 and
{
σ2
`,t

}
1≤`≤L,t≥0

are adapted with respect to the increasing filtration {Ft}t≥0. It is

assumed that rank(Λ) = L and V ar[σ2
`,t] > 0 for all ` = 1, 2, . . . , L. If L < p then the factors can

be viewed as “common features” in the sense that there are fewer sources of conditional variation
than the number of assets.

Engle and Kozicki’s (1993) test for common features can be motivated as follows. If L < p then
there exists θ0 6= 0 such that E[(θ′0Yt+1)

2 |Ft] = µ, for some constant µ, and so for any k× 1 vector
zt ∈ Ft, with k > p, θ0 satisfies

m(θ0) = 0 (14)

where m(θ) = E[ft(θ)],
ft(θ) = zt{(θ′Yt+1)

2 − c(θ)}, (15)

and c(θ) = E[(θ′Yt+1)
2]. Clearly (14) only identifies θ up to some normalizing constant, and so in

practice some normalization needs to be adopted. However for our purposes here, we can sidestep
this issue.7 The population moment condition in (14) can be used as a basis for estimation of θ0,
and the existence of the common feature can be tested by testing whether (14) holds using the
overidentifying restrictions statistic.

However, the population moment condition in (14) does not locally identify θ0 at first order.
Dovonon and Renault (2013) show that

G(θ) = 2E [ (zt − E[zt]) θ
′
0 (ΛDtΛ

′ + Ω) ] , (16)

and that under the assumptions above,

E[(θ′0Yt+1)
2 |Ft] = µ ⇔ θ′0Λ = 0. (17)

Therefore, G(θ0) is the null matrix by construction under the null hypothesis of the test. However,
θ0 is second-order locally identified under plausible conditions because

Hs(θ) = Λ′CsΛ, (18)

where Cs is the L × L diagonal matrix with `th main diagonal element equal to Cov[zs,t, σ
2
`,t].

Dovonon and Renault (2013) argue this rank condition can be ensured by picking a sufficiently
broad group of instruments zt such that at least one instrument is correlated with every possible

linear combination of the volatilities
{
σ2
`,t

}
.8

Finally, we emphasize that in this model, the value of θ0 is not of primary interest: the key issue
is whether m(θ0) = 0.

3 Test statistics and their limiting distributions under their

null hypotheses

In this section, we consider methods for testing two types of hypotheses in models that satisfy
Assumption 1. In the first type, the null hypothesis takes the form: H0 : θ0 = θ∗. Notice that

7See Dovonon and Renault (2013) for further discussion and also Section 5.2 for an example.
8Specifically, they assume rank{Cov[zt , dt]} = L where dt = (σ2

`,t, σ
2

`,t, . . . , σ
2

L,t).
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under this H0 the value of θ0 is completely specified. In the second type of hypothesis, the null
takes the form H0 : m(θ0) = 0; tests of this hypothesis are often interpreted as tests of whether
the model specification is correct. We first present all the test statistics and then provide their
limiting distributions under their respective null hypotheses.

3.1 Test statistics and their null hypotheses

To present the statistics, we introduce the following notation: q̄N(θ) = N−1
∑N

i=1 qi(θ) and qi(θ̄) =
∂fi(θ)/∂θ

′
∣∣
θ=θ̄

.

Test statistics for H0 : θ0 = θ∗:

Newey and West (1987) propose a number of statistics for testing whether θ0 satisfies a set of
nonlinear restrictions based on GMM estimators. Here we consider two: the Wald and Lagrange
Multiplier (LM) statistics. Specializing to our null hypothesis, the Wald statistic is:

WaldN(θ∗) = N(θ̂N − θ∗)
′q̄N(θ̂N )′V̂ff (θ̂N )−1q̄N(θ̂N )(θ̂N − θ∗), (19)

and the LM statistic is,

LM(θ∗) = Nf̄N (θ∗)
′V̂ff (θ∗)

−1q̄N(θ∗)
(
q̄N(θ∗)

′V̂ff (θ∗)
−1q̄N(θ∗)

)−1

q̄N(θ∗)
′V̂ff (θ∗)

−1f̄N (θ∗). (20)

Under certain regularity conditions which include global identification and first-order local identifi-
cation, Newey and West (1987) show that the Wald and LM statistics both converge to a χ2

ρ where
ρ is the number of restrictions which is p in our case here.

Kleibergen (2005) introduces a modified version of the LM statistic:

KLM(θ∗) = Nf̄N(θ∗)
′V̂ff (θ∗)

−1D̂N (θ∗)
(
D̂N (θ∗)

′V̂ff (θ∗)
−1D̂N (θ∗)

)−1

D̂N (θ∗)
′V̂ff (θ∗)

−1f̄N (θ∗),

(21)
where D̂N(θ) a k × p-dimensional matrix:

vec
(
D̂N (θ)

)
= vec (q̄N(θ)) − V̂qf (θ)V̂ff (θ)−1f̄N (θ), (22)

with V̂qf (θ) = N−1
∑N

i=1 vec [qi(θ) − q̄N(θ)]
[
fi(θ) − f̄N(θ)

]′
. Kleibergen (2005) shows thatKLM(θ∗)

converges to a χ2
p distribution under H0 regardless of whether θ0 is first order locally identified or

weakly identified.
Stock and Wright (2000) propose using the GAR statistic:9

GAR(θ∗) = Q(θ∗, θ∗). (23)

Stock and Wright (2000) show that GAR(θ∗) converges to χ2
k distribution under H0 regardless of

whether θ0 is first order locally identified or weakly identified. However, the implicit null of the

9Anderson and Rubin (1949) introduce the statistic in the context of linear models, and Dufour (1997) and
Staiger and Stock (1997) advocate using this original version of the statistic for inference in linear models with weak
identification.
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GAR statistic is larger than H0 : θ0 = θ∗ as we discuss below.

Test statistics for H0 : m(θ0) = 0:

Kleibergen (2005) proposes testing this null using the statistic

J(θ0) = Nf̄N (θ0)
′V̂ff (θ0)

−1/2MV̂ff (θ0)−1/2D̂N (θ0)
V̂ff (θ0)

−1/2f̄N(θ0), (24)

where MA = Ik − A(A′A)−1A′. Kleibergen (2005) shows that under H0 the limiting distribution
of J(θ0) is χ2

k−p irrespective of whether θ0 is first-order locally or weakly identified. The test is
performed by searching to see if there are any values of θ0 for which J(θ0) is less than the appropriate
critical value.

As noted by Kleibergen (2005),

GAR(θ) = KLM(θ) + J(θ)

and so the GMM-AR can be viewed as a joint test of θ0 = θ∗ and m(θ0) = 0.

3.2 Limiting distributions under the null

For our analysis of both types of statistics, the structure of the Jacobian is important. We define
r = rank{G(θ0)}. Since our focus is on cases where θ0 is globally identified and only locally
identified at second order, we assume r < p and that the model satisfies Assumption 1. Note that

if 0 < r < p then there exists a nonsingular p× p matrix R = (R1

... R2) such that the p× r matrix
R1 and p× (p− r) matrix R2 satisfy:

rank {G(θ0)R1} = r and G(θ0)R2 = 0. (25)

The matrices R1 and R2 are key to our analysis below because they give respectively the directions
of possible fast convergence estimation and the directions of slower convergence estimation. If r = 0
(as in the CHF example) then we set R = R2 = Ip and R1 = 0. In the subsequent analysis, we set
D = G(θ0)R1.

We also impose the following conditions.

Assumption 2. θ0 is an interior point of Θ.

Let Nε denote an ε-neighbourhood of θ0.

Assumption 3. (i) ‖m(θ)‖ <∞, ‖G(θ)‖ <∞ and ‖Hs(θ)‖ <∞ for s = 1, 2, . . . , k for all θ ∈ Nε;
(ii) f̄N (θ) converges uniformly in probability to m(θ) and the partial derivatives up to order 2 of
f̄N(θ) converge in probability uniformly to those of m(θ) over Nε.

Assumption 4.
√
N

(
f̄N (θ0)

vec(q̄N (θ0)R2)

)
d−→
(

ψf
vec(ψq)

)
∼ N(0, V ),

9



where V =

(
Vff (θ0) Vf2(θ0)
V2f (θ0) V22(θ0)

)
, with

V2f (θ) = E {[(qi(θ) − µq(θ))R2][fi(θ) − µf(θ)]
′} , Vf2(θ) = V2f(θ)

′,

V22(θ) = E {[qi(θ) − µq(θ)]R2R
′
2[qi(θ) − µq(θ)]} , µf (θ) = E(fi(θ)) and µq(θ) = E(qi(θ)).

Assumption 4 is a high-level condition that can apply whether the model involves random vector
X or a time series process Xt, in the latter case V is the long run variance of the relevant random
vector.

Under Assumptions 1(a) and certain other regularity conditions, θ̂1,s and θ̂N are consistent.
Since this is not the focus of our analysis, we do not document the required conditions here, and
instead adopt the following high-level assumption.10

Assumption 5. θ̂1,s
p→ θ0 and θ̂N

p→ θ0.

Given the consistency of θ̂N , it follows from Assumption 3 that q̄N(θ̂N )R1
p−→ D.

We now present the limiting distributions of the test statistics presented in Section 3.1.

Test statistics for H0 : θ0 = θ∗:

For the Wald statistic, we consider only the case where r = p− 1 because to our knowledge this
is the only case for which the limiting distribution of the GMM estimator is tractable. For what
follows, it is useful to introduce the following additional notation:

P = D̃
(
D̃′D̃

)−1

D̃′, D̃ = Vff (θ0)
−1/2D, Md = Ik − P,

B = (R′
2Hs(θ0)R2)1≤s≤k , B̃ = Vff (θ0)

−1/2B, and α = B̃√
B̃′MdB̃

.

Theorem 1. If Assumptions 1-5 hold, r = p− 1 and θ0 = θ∗ then

WaldN(θ∗)
d→ W

where
W = W0(S, S1) ≡ (S1 + αSI(S ≤ 0))′ P (S1 + αSI(S ≤ 0)) + 4S2

I(S ≤ 0),

and: S1 ∼ N(0, Ik), S ∼ N(0, 1), S1 and S are independent and I(·) is the usual indicator function.

The limiting distribution is evidently non-standard, reflecting the non-standard behaviour of the
GMM estimator in this case (see Dovonon and Hall (2016)[Theorem 1]). Although non-standard
this distribution can easily be simulated, along similar lines to the method proposed for simulating
the distribution of the GMM estimator in Dovonon and Hall (2016).11 In the special case when r = 0
and p = 1 then the distribution simplifies. In this case, we set D = 0, P = 0 and B = (Hs(θ0))1≤s≤k,
and the distribution of the Wald test is as follows.

Corollary 1. If the conditions of Theorem 1 hold and in addition r = 0 and p = 1 then W =
W0(S) ≡ 4S2

I(S ≤ 0) where S is defined in Theorem 1.

10For example, see Hansen (1982), Newey and McFadden (1994) or Hall (2005)[Chapter 3].
11Dovonon and Hall (2016) also discuss at length how to estimate R2.
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Corollary 1 provides the limiting distribution of the Wald test for the test of H0 : θ0 = 1 in our
panel data example in Section 2.1. Notice that this limiting distribution involves a point mass of
0.5 for the event WaldN(θ∗) = 0. We can use our panel data example to provide some intuition for
why the distribution takes the form it does. In this setting, the Wald statistic is:

WaldN (1) = N(θ̂ − 1)q̄N(θ̂)′V̂ff (θ̂)
−1q̄N(θ̂)(θ̂ − 1). (26)

Using a Mean Value expansion of q̄N(θ̂) around q̄N(1), it can be shown that12

WaldN (1) = N(θ̂ − 1)44σ4V −1
1,1 (27)

where V −1
1,1 is the (1, 1) element of {Vff (1)}−1. If we define ζ via N1/4(θ̂ − 1) = ζ + op(1) and set

e = V −1
1,1 then it is shown in the mathematical appendix that, under H0, the first order conditions

of the GMM estimation imply that ζ satisfies the following condition:

ζ

(
ζ2 +

1

e1/2σ2
S

)
= 0. (28)

If S > 0 then there is no real value of ζ that can set the term in parentheses to zero, and so the
solution must be ζ = 0. However, if S < 0 then

ζ2 =
1

e1/2σ2
|S|,

sets the term in parentheses to zero. Thus, we have

ζ2 = I(S ≤ 0)
1

e1/2σ2
|S|, (29)

Using (29) in (27), it follows that

WaldN(1) = ζ44σ4e + op(1),

WaldN(1)
d→

{
I(S ≤ 0)

1

e1/2σ2
|S|
}2

4σ4e = 4S2
I(S ≤ 0). (30)

The Wald test principle is based on testing whether the unrestricted estimator satisfies the
restrictions in question. In contrast, the test principles behind the LM, KLM and GAR statistics are
based on the restricted model. In our case here, the null hypothesis completely specifies the value of
θ0 and so calculation of these statistics does not involve a GMM estimation per se. Therefore, while
our analysis assumes identification fails locally at first order in an arbitrary number of directions, it
does not require the parameters to be locally identified at second order - although the results still
hold if that is the case.

The following theorem gives the limiting distribution of the LM statistic in (20).

Theorem 2. If Assumption 4 holds, ψ̃′
qψ̃q is nonsingular with probability one, V̂ff (θ0) and q̄N(θ0)R1

converge in probability to Vff (θ0) and D, respectively, and θ0 = θ∗ then:

LM(θ∗)
d−→ L ≡ ψ′

fVff (θ∗)
−1ψ̃q

(
ψ̃′
qVff (θ∗)

−1ψ̃q

)−1

ψ̃qVff (θ∗)
−1ψf ,

where ψ̃q = (D
... ψq). If in addition ψf and ψq are uncorrelated, then L = χ2

p.

12See equation (58) in the mathematical appendix.
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Theorem 2 gives the asymptotic distribution of the LM statistic under H0 when the first order lo-
cal identification condition is violated. Only in the special case where

√
Nq̄N(θ0)R2 and

√
Nf̄N (θ0)

are asymptotically uncorrelated (and hence independent) is this distribution χ2
p and so the same

as would be the case if θ0 is identified locally at first order. A comparison of Theorems 1 and 2
indicates that the limiting distributions of the Wald and LM statistics are different if identification
fails locally at first order but holds at second order. In contrast, Newey and West (1987) show the
two statistics are asymptotically equivalent under the null when θ0 is first order locally identified.

The following theorem gives the limiting distributions of the KLM and GAR statistics in (21)

and (23) respectively. We first introduce some notation. Let ψ̂q be the k × p matrix with its
(l, m)-entry given by

ψ̂q,lm = Cov[qi,lm(θ0), fi(θ0)]{Vff (θ0)}−1ψf ,

l = 1, . . . , k and m = 1, . . . , p. Let εq = ψq − ψ̂qR2,

ψ̄q =

{
εq if r = 0

(D
... εq) if r > 0

and V̂2f (θ0) be the sample counterpart of V2f(θ0) as defined in Assumption 4. We have:

Theorem 3. (i) If Assumption 4 holds, ψ̄′
qψ̄q is nonsingular with probability one, V̂2f(θ0), V̂ff (θ0)

and q̄N(θ0)R1 converge in probability to V2f(θ0), Vff (θ0) and D, respectively, and θ0 = θ∗ then

KLM(θ∗)
d→ χ2

p; (ii) If
√
Nf̄N (θ0)

d→ N ( 0, Vff (θ0) ), V̂ff (θ0) converges in probability to Vff (θ0)

and θ0 = θ∗ then GAR(θ∗)
d→ χ2

k.

From Theorem 3 it follows that the limiting distributions of the KLM and GAR statistics un-
der second-order local identification are the same as under first-order local identification and weak
identification. Therefore both statistics are robust to all three forms of identification.

Test statistics for H0 : m(θ0) = 0:

The following theorem presents the limiting distributions of J(θ0) and GAR(θ0) under this null
hypothesis.

Theorem 4. (i) If Assumptions 4 holds, ψ̄′
qψ̄q is nonsingular with probability one, V̂2f(θ0), V̂ff (θ0)

and q̄N(θ0)R1 converge in probability to V2f(θ0), Vff (θ0) and D, respectively, then J(θ0)
d→ χ2

k−p;

(ii) If
√
Nf̄N (θ0)

d→ N ( 0, Vff (θ0) ) and V̂ff (θ0) converges in probability to Vff (θ0) then GAR(θ0)
d→

χ2
k.

From Theorem 4 it follows that the limiting distribution of the K-J statistic under second-order
local identification is the same as under first-order local identification and weak identification, and so
it is robust to all three forms of identification. This contrasts with Hansen’s (1982) overidentifying
restrictions test statistic which Dovonon and Renault (2013) show converges in distribution to a
mixture of χ2

k−q, q = 0, 1, . . . , p, distributions if θ0 is only locally identified at second order. The

limiting distribution of the GAR(θ0) follows trivially from the asymptotic normality of
√
Nf̄N (θ0).
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4 The large sample behaviour of the test statistics under

local alternatives

In this section, we explore the local power properties of the tests. To this end, we index the data
generation process by N and so now replace X by XN . The distribution of XN is denoted by PN
and this distribution implies the population moment condition

EN [f(XN , θN)] = µN , (31)

where EN [ · ] denotes expectation under PN , {θN} is a sequence of parameter values and {µN} is a
sequence of k × 1 vectors. It is assumed that as N → ∞ the following all hold: PN → P , θN → θ0
and µN → 0k×1. Recall that P is the probability distribution of X in Section 2, and so the limit
process satisfies the population moment condition (1). As in Section 2, it is assumed further that
under P , θ0 is identified locally at second order.

To analyze the behaviour of the tests under local alternatives, we must also modify certain of
the assumptions. To this end, we introduce the following definitions:

mN (θ) = EN [f(XN , θ)] , GN(θ) = EN [q(XN , θ)] , HN(θ) = EN [h(XN , θ)] ,

H(θ) = E [h(X, θ)] , h(XN , θ̇) =
∂vec{q(XN , θ)}

∂θ′

∣∣∣∣
θ=θ̇

, h̄N(θ) = N−1
N∑

i=1

h(xi, θ).

We replace Assumption 3 by the following condition.

Assumption 6. (i) ‖mN (θ)‖ < ∞, ‖GN(θ)‖ < ∞, ‖HN(θ)‖ < ∞ for θ ∈ Nε; (ii) over a
neighborhood Nε, the following hold: f̄N (θ), mN (θ) converge uniformly (in probability PN for the
former) to m(θ); q̄N(θ), GN(θ) converge uniformly (in probability PN for the former) to G(θ),
h̄N(θ), HN(θ) converge uniformly (in probability PN for the former) to H(θ).

We must also modify our assumptions about the behaviour of the Jacobian. It is worth mentioning
that, even if the rank property of the Jacobian at θ0 under P (the data distribution under the
null) is known, this does not necessarily imply the rank property under θN because of the lack of
continuity of the rank function.

Assumption 7.
GN(θN )R1 = D+ o(1), and GN(θN )R2 = N−ξA,

where R ≡ (R1

...R2) is the nonsingular p× p matrix partitioned into r and (p− r)-column matrices
R1 and R2 as defined by (25). D is a p× r matrix of rank r, A is a k × p− r matrix and ξ > 0.

Under this assumption, the Jacobian is local to zero in the directions of the parameter that are
identified locally only at the second order. The specific choice of ξ likely depends on the model in
question. We show below that ξ = 1/2 is the appropriate choice in both our examples in Section 2.
For our analysis of tests of H0 : θ0 = θ∗, we restrict ξ > 1/4 to ensure that the drift in the Jacobian
decreases faster than the rate of convergence of the second order identified parameters. Such a
restriction is particularly useful to derive the asymptotic distribution of the Wald test statistic.
Finally, we replace Assumption 4 by the following condition.
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Assumption 8.

√
N

(
f̄N (θN ) − µN

vec
[
q̄N(θN )R2 −N−ξA

]
)

d−→
(

ψf
vec(ψq)

)
∼ N(0, V )

under PN , with V given in Assumption 4.

Section 4.1 covers tests of H0 : θ0 = θ∗; Section 4.2 considers the tests of H0 : m(θ0) = 0.

4.1 Local power of tests of H0 : θ0 = θ∗

For this null hypothesis, the natural sequence of local is given by (31) with µN = 0 for all N . In
this case, the population moment condition is satisfied at a different parameter value for each N
that is,

mN (θN ) = 0. (32)

To explicitly define the sequence of parameter θN under the local alternative, we take into account
the rate of convergence of estimators under the null. Under the second-order identification condition,
we know that the directions of the parameters that are identified at the first order are estimated
at the standard

√
N -rate whereas the directions that are identified only at the second order are

estimated at a slower N1/4-rate. In particular, considering R as defined by Equation (25), we know
that the first r components of R−1θ are estimated at

√
N -rate whereas the remaining components

are estimated at the N1/4-rate. In the light of this, we define θN such that:

θN − θ∗ = ReN , (33)

where the first r and the last (p − r) components of eN ∈ R
p, denoted respectively eN,1 and eN,2

are such that:
eN,1 =

e1√
N

and eN,2 =
e2
4
√
N
,

with e1 and e2 are nonzero vectors of size r and p− r, respectively.
Before presenting the limiting distributions of our test statistics, it is instructive to use our

panel data example to motivate the behaviour of the Jacobian specified in Assumption 7. Recall
from Section 2.1 that θ is a scalar and is only locally identified at second order. Therefore, in view
of the remarks in the preceding paragraph, we set θN = 1 − c

2
4
√
N

. In this case, it can be shown

that13

GN(θN ) = − c2

4
√
N
σ2

(
1
0

)
, H1(θ0) = 2σ2, H2(θ0) = 0, (34)

This setting is covered by Assumption 7 with ξ = 1/2 and A = −(σ2c2/4)[1, 0]′.

Theorem 5. If Assumptions 1, 2, 6-8 (with µN = 0 and ξ > 1/4) hold, Assumption 5 holds under
PN , θ0 = θ∗ and r = p − 1 then: any subsequence of WaldN (θ∗) has a further subsequence with
index say, s(N), that converges in distribution under PN to Ws, defined by:

Ws = W0(S, S1) + W1(S, S1, s) + λ1 + λ2(S, s),

13See mathematical appendix.
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for

W1(S, S1, s) = −2 (S1 − αSI(S ≤ 0))′ P
(
D̃e1 + ae2αX(s)

)

+2e′1D̃
′α (−2SI(S ≤ 0) + ae2X(s)) ,

λ2(S, s) = −2ae2α
′α (2X(s) + e2)SI(S ≤ 0)

λ1 = e′1D̃
′D̃e1.

where S1 ∼ N(0, Ik), S ∼ N(0, 1) and S is independent of S1. X(s) is a random variable depending
on the subsequence s(N) and satisfies for any subsequence s: X(s)2 = −(2/a)SI(S ≤ 0). a =√
G̃′MdG̃ and W0(S, S1), α, Md, G̃ and D̃ are given in Theorem 1.

For the case in which r = 0 and p = 1, this results specializes as follows.

Corollary 2. If r = 0 and p = 1, then

Ws = W0(S) − 2ae2 (2X(s) + e2)SI(S ≤ 0),

where S ∼ N(0, 1), X(s)2 = −(2/a)SI(S ≤ 0), a =
√
G̃′G̃, and W0(S) is given in Corollary

1

Notice that in this case the power against local alternatives is capped at 0.5 asymptotically; we
return to this issue in Section 5.1.

To present the limiting behaviour of the LM, KLM and GAR tests, we define C(θ) to be the
k × p2 matrix:

C(θ) =
(
vec
(
∂2m1(θ)
∂θ∂θ′

)
vec
(
∂2m2(θ)
∂θ∂θ′

)
. . . vec

(
∂2mk(θ)
∂θ∂θ′

) )′
.

Theorem 6. If Assumptions 1(b), 2, 6-8 (with µN = 0 and ξ > 1/4) hold, and θ0 = θ∗ then:

(a) If the k × p matrix Q(e2) defined by:

Q(e2) =
(
D

... −C(θ∗) [Ip ⊗ (R2e2)]R2

)

is full column rank, then:

LM(θ∗), KLM(θ∗)
d−→ χ2

p(λθ)

under PN , with λθ = µ′
θVff (θ∗)

−1µθ > 0 iff (e1, e2) 6= 0; µθ = −De1+1
2 [(R2e2)

′ ⊗ Ik]H(θ∗)(R2e2).

(b)

GAR(θ∗)
d−→ χ2

k(λθ)

under PN with λθ as given above.

This theorem shows that the LM and KLM statistics have the same limiting distribution under
this sequence of local alternatives. Since λθ > 0, it follows automatically from Theorems 3 and
6 and the properties of the chi-squared distribution that both the KLM and GAR statistics have

15



non-trivial power against this alternative and also that the KLM statistic is the more powerful.
The relative performance of the LM statistic is less clear. Theorem 2 indicates that in general the
LM statistic has a non-standard limiting distribution under the null, but does have the (standard)
limiting χ2

p distribution in the special case where
√
Nq̄N(θ0)R2 and

√
Nf̄N (θ0) are asymptotically

independent. In the former case, it is not possible to make a power comparison with the KLM and
GAR statistics analytically. It is worth noting that the differences in the distributions of the LM
statistic under null and local alternative can be rationalized as follows. Under the null, the large
sample behaviour of LM(θ∗) depends on

√
Nq̄N(θ0)R2 which is random in the limit, and may or

(most likely) may not be asymptotically independent of
√
Nf̄N (θ0). Under the local alternative,

the large sample behaviour of LM(θ∗) depends on N1/4q̄N(θ0)R2 which converges in probability to
a constant, and so is trivially independent of

√
Nf̄N (θ0).

4.2 Local power of tests of H0 : m(θ0) = 0

For this null hypothesis, the natural sequence of local is given by (31) with θN = θ0 and µN = c/
√
N

for all N so that
mN (θ0) =

c√
N
. (35)

However, as noted above, the appropriate choice of ξ in (35) depends on the model in question. To
illustrate, we consider the CHF model in Section 2.2 with two assets.

Under the alternative of no-common conditionally heteroskedastic factors structure, each asset
brings a specific dimension for conditional heteroskedasticity so that two factors are present. The
volatility factor model in (13) can then be written as:

E
[
Yt+1Y

′
t+1|Ft

]
= λ1λ

′
1σ

2
1,t + λ2,Nλ

′
2,Nσ

2
2,t + Ω.

A natural way to create a local alternative to a single common factor is to assume that the return
process is generated for a given sample size N from a probability distribution PN such that, as
N → ∞, λ2,N → 0. Therefore, the common conditionally heteroskedastic factor structure holds in
the limit but not in finite samples. Let θ0 be the co-feature vector associated to the limit model.
Then θ′0λ1 = 0 and under PN , we have:14

mN(θ0) = (θ′0λ2,N )2Cov[σ2
2,t, zt], (36)

where Cov[ ·, · ] here denotes the covariance operator relative to PN . Suppose now that λ2N = λ/N δ,
with λ ∈ R

2. The right hand side of (36) may be of order O
(
N−2δ

)
so long as θ′0λ2,N 6= 0 and

Cov[σ2
2,t, zt] 6= 0. However, the order of magnitude of this latter term depends on that of λ2,N

through the choice of the vector of instruments zt. The most common choice of instruments is
zt =

(
vech(Yt−τY

′
t−τ) : τ = 0, . . . , h

)′
, for some h ∈ N. To simplify, let us consider zt = (Y 2

1t, Y
2
2t)

′.
Under certain commonly invoked assumptions about the asset return process, it is shown in the
mathematical appendix that:15

mN (θ0) =

(
λ2

2,N,1

λ2
2,N,2

)
(θ′0λ2,N)2Cov

[
F 2

2,t+1, F
2
2,t

]
, (37)

14See mathematical appendix
15Note that due to the necessary normalization only one element of θ has to be estimated; see discussion in Section

2.2.
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where λ2,N = (λ2,N,1, λ2,N,1)
′, and

GN(θ0) = 2Cov[F 2
2,t+1, F

2
2,t](θ

′
0λ2,N)

(
λ2

2,N,1

λ2
2,N,2

)
λ′2,N . (38)

Assuming Cov
[
F 2

2,t+1, F
2
2,t

]
6= 0 - a reasonable assumption as the factors are assumed condi-

tionally heteroskedastic - it follows that:

mN (θ0) =
c

N4δ
, and GN (θ0) =

A

N4δ

where c is a 2× 1 non-zero vector of constants, and A is a non-null 2× 2 matrix of constants. Thus
setting δ = 1/8 to ensure µN = c/N4δ = c/

√
N , we also obtain ξ = 1/2.

While the
√
N -rate for the drifting sequence in (35) is convenient to obtain a non-trivial be-

haviour of the test statistics of interest under local alternatives as we shall see, the following result
allows for the Jacobian of the moment function at θ0 under PN to converge to 0 in some directions
at any rate N ξ, ξ > 0. To derive the asymptotic distribution of the specification test statistics
J(θ0) and GAR(θ0) under local alternatives, we introduce some notation.

Let ψ̂aq be the k × p matrix with its (l, m)-entry given by

ψ̂aq,lm = Cov[qi,lm(θ0), fi(θ0)]{Vff(θ0)}−1(ψf + c),

l = 1, . . . , k and m = 1, . . . , p. Let

εaq =





ψq +A − ψ̂aqR2 if ξ = 1
2

A if 0 < ξ < 1
2

ψq − ψ̂aqR2 if ξ > 1
2

, ψ̄aq =

{
εaq if r = 0

(D
... εaq ) if r > 0

and λm = c′Vff (θ0)
−1/2MVff (θ0)−1/2ψ̄a

q
Vff (θ0)

−1/2c. Letting 〈M〉 denote the column span of M ,

We have:

Theorem 7. (i) Assume that GN(θ0) → G(θ0) as N → ∞ and rank(G(θ0)) = r < p. If As-
sumptions 7 and 8 (with θN = θ0, µN = c/N1/2, c ∈ R

k) hold, V̂2f (θ0), V̂ff (θ0) and q̄N(θ0)R1

converge in probability (under PN) to V2f(θ0), Vff (θ0) and D, respectively, ψ̄aq is full column rank

with probability one and P (c ∈ 〈ψ̄aq 〉) = 0, then: J(θ0)
d→ χ2

k−p(λm) under PN , with λm > 0 al-

most surely; (ii) If
√
N
(
f̄N (θ0) − c/

√
N
)

d→ N(0, Vff(θ0)), under PN , and V̂ff (θ0) converges in

probability (under PN) to Vff (θ0) then GAR(θ0)
d→ χ2

k(ν) under PN , with ν = c′Vff (θ0)
−1c.

The first part of this theorem shows that the K-J statistic is asymptotically distributed as
a noncentral chi-squared with k − p degrees of freedom and non-centrality λm which is random
if ξ ≥ 0.5. The randomness of λm stems from the fact that the estimated Jacobian matrix of
the estimating function in the parameter directions that are not (locally) identified at first order
is asymptotically random. This non-centrality parameter is almost surely positive and therefore
warrants non trivial power for the test under local alternatives if the drift parameter c does not
fall into the column-span of the limiting distribution of the Jacobian with positive probability. The
second part of the theorem establishes that the GAR test also has non trivial power against local
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alternatives since ν > 0 so long as c 6= 0. A power ranking of the two tests is possible if Vff (θ0)
−1/2c

is an element of the orthogonal complement of Vff (θ0)
−1/2ψ̄aq almost surely then λm = ν and so the

K-J statistic is unambiguously more powerful than the GAR statistic against the local alternative
considered here.

5 Simulation evidence

In this section we explore the finite sample power properties of the tests analyzed in Section 3 and
4. Section 5.1 explores the power properties of the Wald, LM, KLM and GAR statistics for testing
H0 : θ0 = 1 in the panel data example in Section 2.1. Section 5.2 explores the power properties
of the K-J and GAR statistics for testing H0 : m(θ0) in the CHF model in Section 2.2, and also
compares their properties to those of Hansen’s (1982) overidentifying restrictions statistic.

5.1 Testing for a unit root in the panel data model

We study inference on the autoregressive parameter of a panel autoregressive model of order one
identified by the moment conditions from Section 2.1 under local alternatives to θ0 = 1, the point
of second order identification. We specify the local alternative as

θN = 1 − c

2 4
√
N
, (39)

with c > 0.
Recall from the discussion following Corollary 1 that under the null hypothesis that θ0 = 1, the

first order conditions imply a solution N1/4(θ̂N − 1) if S ≥ 0 and a solution for N1/2(θ̂N − 1)2 if
S < 0. Under PN , the situation becomes more complicated. In this case, if S ≥ 0 then the first order
conditions imply a solution for N1/4(θ̂N − 1), but if S < 0 then N1/4(θ̂N − 1) satisfies a quadratic

equation the roots of which do not imply a unique value of N1/2(θ̂N − 1)2. Here we consider the
local power curve implied by choosing the smallest root of the aforementioned quadratic equation
as this maximizes N1/2(θ̂N − 1)2 and hence the limiting value of the Wald statistic, making it
the root with the largest asymptotic power. Let Wald∗

N(1) denote the Wald statistic evaluated at
the solution for θ just described. It is shown in the mathematical appendix that under the local
alternative in (39) the distribution of Wald∗N(1) is given by:

Wald∗
N(1)

d−→ |S|(c2s,λ + 2
√
|S|)2I(S < 0)

= |S|(4|S| + c22s,λ + 4c2s,λ|S|
1

2 )I(S < 0)
(40)

with S a standard normal random variable and

c2s,λ =
cσ

4
√
V11.2

where V = Vff (1), V11.2 = V11 − V12V
−1
22 V12, and Vij the i− jth element of V . As noted in Section

4.1, the maximal local asymptotic power is 50%. We therefore compute the rejection frequency of
H0 under local alternatives for different sample sizes to determine if they are also at most 50%.
Figure 1 shows the distribution of the Wald statistic for different sample sizes as a function of the
localizing parameter c. It uses 104 simulations and a value of σ2 equal to one with normal errors.
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The local power curves of the Wald statistic in Figure 1 show that the finite sample discrimi-
natory power can be much larger than 50% and even equal to one. Figure 1 also shows that the
power curves slowly move to the right when the sample size increases so they might eventually
coincide with the asymptotic local power curve from Corollary 2. This moderate convergence of
the finite sample distributions of the Wald statistic results from the quartic root convergence rate.
Interestingly, the convergence towards the limiting distribution when the null hypothesis holds is
much faster since we do not observe any size distortions. The power curves are all very similar
and show that the Wald statistic has adequate power at small sample sizes. This can be further
inferred from the values of θ when the drifting parameter c equals two. The power then exceeds
50%. A value of c equal to two corresponds with a value of θ of 0.6239 (N = 50), 0.6838 (100),
0.7885 (500), 0.8222 (1000), 0.8811 (5000), 0.9000 (10000) and 0.9159 (20000). This suggests that
- as emphasized by the name - the local power results are only a guide to behaviour in a small
neighbourhood around the null hypothesis value.

Specializing Theorem 6 to the model here, it follows that the KLM and LM statistics both
converge to the χ2

1(λθ) distribution, and the GAR statistic converges χ2
2(λθ) distribution. In the

mathematical appendix, it is shown that the non-centrality parameter is given by:

λθ =
1

16
σ4c4

(
1

0

)′

Vff (θ0)
−1

(
1

0

)
(41)

Figures 2, 3 and 4 show the local power curves of the GAR, KLM and LM tests for increas-
ing number of observations. Figure 5 shows local power curves of the GAR and Wald tests. The
power curves of the GAR, KLM and LM tests all move to the left when the number of observations
increases. It shows again the slow convergence rates of the statistics towards their limiting distri-
butions under the local alternative. All statistics are size correct under the null hypothesis where
their limiting distributions are standard χ2

1 or χ2
2, in case of the GAR statistic, distributions.

The power curve of the GAR statistic shows that it has decent power while the power of the
KLM and LM statistics only becomes reasonable when there are many observations. This is unlike
the power of the Wald statistic which already has adequate power for small numbers of observations.
It is interesting to relate the behaviour of the KLM and GAR statistics to previous analyses of the
these tests in other identification scenarios. If identification is weak then it has been found that
the KLM statistic is size correct but has low power, and the GAR statistic is both size correct and
also has good power compared to other weak identification robust procedures, see e.g. Andrews,
Moreira, and Stock (2006) and Kleibergen (2005). However, if identification is strong then the KLM
test dominates. Therefore, the relative performance of the KLM and GAR tests under second-order
identification is more in line with what has been observed under weak identification.

To our reading, the most striking feature of these results is the superior performance of the Wald
test as further reflected by Figure 5. It not only dominates the others but exhibits reasonable power
as a test for a unit root in this model. These results also show an advantage to basing inference
about a unit root value of the AR parameter on the moment conditions in Bun and Kleibergen
(2016) as opposed to more popular choices of moments such as those proposed by Arellano and
Bond (1991) or Blundell and Bond (1998) with which identification either fails or is problematic at
θ0 = 1.
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5.2 Testing for common conditionally heteroskedastic factors

In this section, we explore the finite sample performance of the K-J statistic under the null of correct
model specification and under local alternatives. We also consider the Hansen-Sargan’s overidenti-
fication test (HS-J test, hereafter) and the GAR test. Example 2 on conditionally heteroskedastic
factor models offers a suitable framework for this investigation. We consider a bi-variate vector Yt
of two asset return processes with the representation

Yt+1 = ΛNFt+1 + Ut+1,

where ΛN is the 2 × 2 matrix of factor loadings, Ft+1 is the bivariate vector of conditionally
heteroskedastic and mutually independent factors and Ut+1, the bivariate vector of idiosyncratic
shocks. We let Ut+1 ∼ i.i.d.N(0, 0.5I2), where I2 denotes the identity matrix of size 2. The generic
component ft+1 of Ft+1 follows a Gaussian-GARCH model,

ft+1 = σtεt+1, σ2
t = ω + αf2

t + βσ2
t−1; ω, α, β > 0 and εt ∼ i.i.d. N(0, 1).

The processes εt and Ut are mutually independent and independent of {Fτ , Yτ : τ ≤ t}. We set
(ω, α, β) = (0.2, 0.2, 0.6) and (0.2, 0.4, 0.4), respectively for the first and second component of Ft+1.
With N being the sample size, we set

ΛN =

(
1 0

0.5 c
N1/8

)
; c = 0, 0.2, 0.4, . . . , 10.

c = 0 corresponds to the null hypothesis of the existence of a common conditionally heteroskedastic
factor structure for the components of Yt that can be tested by either of the three tests under
consideration when applied to the moment restriction (14). We use zt = (Y 2

1,t, Y
2
2,t)

′ as vector of

instruments in the simulations. The local approximation to the null value is given by λN = c/N1/8;
c 6= 0. The rate N1/8 is chosen such that the resulting moment function under local alternatives
is proportional to N−1/2, the local approximation of the moment function under which the local
alternative distribution of K-J test statistic is derived in Theorem 7.

For global identification of the moment condition model, we follow Dovonon and Renault (2013)
and re-parameterize the co-feature vector as (θ0, 1 − θ0), θ0 ∈ R. Under H0 in our simulations,
θ0 = −1 . The test statistics considered are specifically: J(θ0) for the K-J test, the two-step GMM
overidentification test statistic for HS-J test and minθ GAR(θ) for the GAR test that we denote min-
GAR. From Dovonon and Renault (2013), the last two test statistics are asymptotically distributed
as a 50-50 mixture of χ2

1 and χ2
2 under the null whereas Theorem 4 states that the first one is

asymptotically distributed as a χ2
1.

Figure 6 shows the simulated rejection rates for the three tests under the null while Figure 7
plots the power curves of these tests for sample sizes N = 100; 200; 500; 1000; 5000; 10000; 20000
and 50000. Rejection rates are obtained for 10000 Monte Carlo replications.

It appears from the display in Figure 6 that if the null hypothesis is true then all the three
tests have rejection rates closer to nominal (α = 0.05) as the sample size increases. The HS-J and
min-GAR tests are significantly below the nominal rejection level for small sample sizes but the
HS-J test seems to converge to nominal rejection rate faster than the min-GAR. For instance, for
N = 1, 000 and 5, 000, the rejection rate of the HS-J test is 3.9% and 4.88%, respectively whereas
that of the min-GAR test is 0.064% and 1.79%, respectively. ForN as large as 100, 000, the rejection
rate of the min-GAR is about 4.0%. The reality is different for the K-J test which has rejection
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rates closer to 5% across the sample sizes considered. For N = 50 and 100, this rate is at 6.31 and
6.22%, respectively and falls below 6% from N = 500 onwards.

The power curves of these tests displayed by Figure 7 show contrasting performance of the three
tests depending on sample sizes. For sample sizes equal or below 200, the power curves of the
HS-J and min-GAR tests are flat and even below nominal level (recall that these two tests barely
reject the null under H0 for such sample sizes) whereas the K-J test shows some moderate power.
For N = 500 and 1000, the K-J test seems to outperform the other tests which now show some
power for large values of c even though the rejection rates do not exceed 50%. From N = 5000
the performance ranking is reversed with the HS-test performing slightly better than the min-GAR
test, and both having higher rejection rates than the K-J test. For c = 10, with N = 5000 and
50000, this latter test has 84.0% and 90.84% rejection rates, respectively while the HS-J test has
98.93% and 99.95%, respectively and the min-GAR 93.6% and 97.43%, respectively.

These results suggest that in small samples, these tests are not reliable and even more so for
the HS-J and min-GAR tests compared to the K-J test evaluated at the true value. This may
be connected to the local identification pattern of the model under the null. As the sample size
increases, all the three tests show evidence of power against local alternatives as expected from our
asymptotic theory in Section 4.2 for the K-J test. It is worth mentioning that the powers of the
HS-J and min-GAR tests seem to converge to one faster than that of the K-J test.

6 Concluding remarks

In this paper, we explore how to perform inference in moment condition models that only identify
the parameters locally to second order. For hypotheses about the parameters, we consider inference
based on conventional Wald and LM statistics, and also the identification robust GAR and KLM
statistics. For inference about the model specification, we consider the identification-robust K-J
statistic and the GAR statistic. In each case, we derive the limiting distribution of statistics under
both null and local alternative hypotheses. The Wald statistic is shown to have a non-standard
distribution under both null and local alternatives, but the distribution under the null is easily
simulated making inference practicable. The LM statistic also has a non-standard distribution
under the null in the general case, but has a non-central chi squared distribution under local
alternatives. Unlike in the case of strong (first-order) local identification, the Wald and LM statsitics
have different distributions in the limit. The GAR, KLM and K-J statistics have a chi-squared
distribution and non-central chi squared distribution under the null and alternatives respectively.
These distributions are exactly the same as those obtained under weak or strong identification, and
thus the identification robustness of these tests extends to second-order identified models.

We also explore the finite sample behaviour of the tests in detail in two empirically relevant
models with second-order identification: the panel autoregressive (AR) model of order one estimated
from a set of non-linear moment conditions, and the conditionally heteroskedastic factor model. In
the panel AR model with a unit root, the AR parameter is only identified at second order, and
we consider the use of Wald, LM, KLM and GAR statistics to test whether the AR coefficient is
one. Our results indicate that the Wald test has the best power properties, being matched by the
GAR statistic only in large samples and with both these tests exhibiting greater power than the
KLM and LM. In the conditionally heteroskedastic factor model, the moment condition in question
only identifies the parameters at second order over the entire parameter space. In this context,
the key issue is testing whether the moment condition is valid. In this context, we examine the
power properties of the K-J and GAR statistics, and compare them to those of Hansen’s (1982)
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overidentifying restrictions test (previously analyzed in this setting by Dovonon and Renault, 2013).
Here the ranking of the tests is sensitive to the sample size: the K-J test dominates in moderate
sized samples, but the overidentifying restrictions test dominates in large samples.

Comparing our theoretical results with the simulations, we find that the analytical local power
curves are not always very indicative of the power in finite sample settings. For example, we find
that, in our panel data model, the Wald statistic has much better finite sample power than is
suggested by its limiting distributions under the local alternative. Similarly, we find that under
the local alternative the finite sample distributions of the GAR, KLM and LM statistics only
converge very slowly to their limiting distributions. We conjecture this results from the quartic
root convergence rate that occurs in second-order locally identified models. Nevertheless, our results
show that it is possible to conduct tests with meaningful power in second-order locally identified
models.
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A Mathematical appendix

Proof of Theorem 1. Consider model (1) with the re-parameterization θ = Rη, with parameter
η:

E[f(X,Rη)] = 0. (42)

The true parameter value is clearly η0 = R−1θ0. Also, so long as the same weighting matrix is used
at the first step, the two-step GMM estimators satisfy the relation : η̂ = R−1θ̂, where for notational
brevity we have set θ̂ = θ̂N . Note that

rank

(
E

(
∂

∂η′
f(xi, Rη)

∣∣∣∣
η=η0

))
= rank{G(θ0)R} = rank{G(θ0)}) = r.

Partitioning η into η1 and η2, its first r and last p− r components, we have:

Rank

(
E

(
∂

∂η′1
f(xi, Rη)

∣∣∣∣
η=η0

))
= rank{G(θ0)R1} = r

and

E

(
∂

∂η′2
f(xi, Rη)

∣∣∣∣
η=η0

)
= G(θ0)R2 = 0.

Using Assumption 1(b), it is not hard to verify that (42) identifies η0 at the second order. If
r = p− 1, we can apply Theorem 1(b) of Dovonon and Hall (2016) and claim that:

√
N

(
η̂1 − η0,1

(η̂2 − η0,2)
2

)
d−→
(

HZ0 + HBV/2
V

)
, (43)

with H = −(D′Vff (θ0)
−1D)−1D′Vff (θ0)

−1, V = −2ZI(Z<0)

B̃′MdB̃
, Z = B̃′MdVff (θ0)

−1/2
Z0, and

Z0 ∼ N(0, Vff (θ0)).

We can write:

WaldN(θ0) = N(η̂ − η0)
′R′q̄N(θ̂)′V̂ff (θ̂)

−1q̄N(θ̂)R(η̂ − η0)

= N
(
(η̂1 − η0,1)

′R′
1q̄N(θ̂) + (η̂2 − η0,2)

′R′
2q̄N(θ̂)

)
V̂ff (θ̂)

−1×
(
q̄N(θ̂)R1(η̂1 − η0,1) + q̄N(θ̂)R2(η̂2 − η0,2)

)
. (44)

By first-order mean-value expansions, we have:

q̄N(θ̂) = q̄N(θ0) + C̄N(θ̇) (Ip ⊗ [R(η̂ − η0)]) , (45)

where θ̇ ∈ (θ̂, θ0) and may differ from row to row and C̄N(θ) is the k × p2 matrix defined by:

C̄N(θ) =
(
vec
(
∂2f̄N,1(θ)
∂θ∂θ′

)
vec
(
∂2f̄N,2(θ)
∂θ∂θ′

)
. . . vec

(
∂2f̄N,k(θ)
∂θ∂θ′

) )′
.
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Under Assumption 3, C̄N(θ̇) converges in probability to C(θ0) where C(θ) is defined like C̄N(θ) but

with sample means replaced by population means. Using (43), the expression of q̄N(θ̂) in (45) can
be written as:

q̄N(θ̂) = q̄N(θ0) + C(θ0) (Ip ⊗ R2) (η̂ − η0) + oP (N−1/4).

By the law of large number and also noting that [C(θ0) (Ip ⊗ R2)]R2 = B, we have:

q̄N(θ̂)R1 = D+ oP (1), and q̄N(θ̂)R2 = B(η̂2 − η0,2) + oP (N−1/4).

Substituting the latter results into (44) and after some simple calculations, we obtain:

WaldN(θ0) =
√
N(η̂1 − η0,1)

′D′V −1
ff D

√
N(η̂1 − η0,1) + B′V −1

ff D
√
N(η̂1 − η0,1)

√
N(η̂2 − η0,2)

2

+B′V −1
ff D

√
N(η̂1 − η0,1)

√
N(η̂2 − η0,2)

2 +B′V −1
ff BN(η̂2 − η0,2)

4 + oP (1),

where Vff ≡ Vff (θ0). From (43), this converges in distribution to

W = (Z0 +BV/2)
′ H′D′V −1

ff DH (Z0 +BV/2) + 2B′V −1
ff DH (Z0 +BV/2) V +B′V −1

ff BV
2.

After some simple algebra, we have
W = W1 + W2,

with

W1 =
(
V

−1/2
ff Z0 − B̃V/2

)′
P
(
V

−1/2
ff Z0 − B̃V/2

)
and W2 = B̃′MdB̃V

2. (46)

It is easily verified that

W2 = 4S2
I(S ≤ 0), with S =

B̃′MdV
−1/2
ff Z0√

B̃′MdB̃
∼ N(0, 1),

and
V

−1/2
ff Z0 − B̃V/2 = V

−1/2
ff Z0 + αSI(S ≤ 0).

Thus, we have

W1 =
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)′
P
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)
.

Since PV
−1/2
ff Z0 is independent of MdV

−1/2
ff Z0, it is also independent of S and we can claim that:

W1 = (S1 + αSI(S ≤ 0))
′
P (S1 + αSI(S ≤ 0)) ,

with S1 ∼ N(0, Ik) independent of S. �

Proof of Theorem 2. Notice that the value of LMN (θ∗) is unchanged by replacing q̄N(θ∗) by
q̄N(θ∗)A with A any nonsingular matrix. In particular, this statistic stays the same when this

quantity is replaced by q̄N(θ∗)

(
R1

...
√
NR2

)
. Note also that, by Assumption 4, we have:

q̄N(θ∗)

(
R1

...
√
NR2

)
=

(
q̄N(θ∗)R1

...
√
Nq̄N(θ∗)R2

)
d−→ ψ̃q ≡

(
D

... ψq

)
,
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where D is constant and ψq is a Gaussian matrix defined in Assumption 4. The result then follows
directly. �

Proof of Theorem 3. (i) Similarly to the LM test statistic, KLM(θ∗) in (21) stays unchanged if
D̂N(θ0) is replaced by

D̂N (θ∗)

(
R1

...
√
NR2

)
=

(
D̂N (θ∗)R1

...
√
ND̂N (θ∗)R2

)
.

From Assumption 4, we have:

D̂N(θ∗)R1
P−→ D, and

√
ND̂N (θ∗)R2

d−→ εq .

Since (ψq , ψf) is Gaussian, εq is independent of ψf . Under the non-singularity assumption for ψ̄′
qψ̄q,

V̂ff (θ∗)
−1/2D̂N (θ∗)

(
D̂N (θ∗)

′V̂ff (θ∗)
−1D̂N (θ∗)

)−1

D̂N (θ∗)
′V̂ff (θ∗)

−1/2 is well-defined in large sam-

ples and the continuous mapping theorem ensures that KLM(θ∗) converges in distribution to

ψ′
fVff (θ∗)

−1/2
(
Ik −MVff (θ∗)−1/2ψ̄q

)
Vff (θ∗)

−1/2ψf .

Conditionally on ψ̄q, this limit follows χ2
p distribution and the independence of ψ̄q and ψf implies

that this limit is unconditionally distributed as χ2
p. (ii) The result for the GAR statistic is imme-

diate under the stated conditions. �

Proof of Theorem 4. (i) Similarly to the proof of Theorem 3, we can claim that J(θ0) converges
in distribution to

ψ′
fVff (θ0)

−1/2MVff (θ0)−1/2ψ̄q
Vff (θ0)

−1/2ψf .

Conditionally on ψ̄q, this limit follows χ2
k−p distribution and the independence of ψ̄q and ψf implies

that this limit is unconditionally distributed as χ2
k−p. (ii) See the proof of Theorem 3(ii). �

Derivation of equation (34). If θN = 1 − c
2

4
√
N

then it can be shown that

E[a] = σ2
(
1
0

)
E[b] = −σ2

(2− c
4√N

+ c2

4
√

N

0

)
E[d] = σ2

(1− c
4√N

+ c2

2
√

N
− c3

8N3/4

0

)
, (47)

where a, b and d are defined in Section 2.1, and so

mN (θN ) =
(
0
0

)
, GN(θN ) = − c2

4
√
N
σ2
(
1
0

)
, HN(θN ) = 2σ2

(
1
0

)
(48)

It is also instructive to explore the population moment, Jacobian and Hessian evaluated at θ0 under
PN . Using similar arguments, it can be shown that

mN (θ0) =
(

c2

4
√
N

− c3

8N3/4

)
σ2
(
1
0

)
, GN(θ0) =

(
c

4
√
N

− c2

4
√
N

)
σ2
(
1
0

)
, HN(θ0) = 2σ2

(
1
0

)
.

(49)
Therefore, under under this sequence of local alternatives, the rate of decrease of EN [f(θ0)] is
proportional to the random component in the sample moment. If we set the rate differently say at
θN = 1 − c

2
√
N
, the expected values of a, b and d equal

E[a] = σ2
(
1
0

)
E[b] = −σ2

(2− c√
N

+ c2

4N

0

)
E[d] = σ2

(1− c√
N

+ c2

2N − c3

8N3/2

0

)
, (50)
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so
EN [f(θ0)] =

(
c2

4N
− c3

8N3/2

)
σ2
(
1
0

)
, (51)

which shows that the rate is too fast as it sits below the rate of the random component of the
sample moment.

Proof of Theorem 5. Similarly to the proof of Theorem 1, we consider the re-parameterization
Rη = θ. Let η0 = R−1θ0 and ηN = R−1θN . We have: EN [f(XN , RηN)] = 0 and, from
Assumption 7, and assuming that we can interchange EN and derivatives freely, we have

∂

∂η′1
EN [f(XN , RηN)] = GN(θN )R1 = D+o(1) and

∂

∂η2
EN [f(XN , RηN)] = GN(θN )R2 = O(N−ξ).

The fact that the Jacobian in the direction of η2 is O(N−ξ) and not exactly 0 make the current
configuration slightly different than the assumptions of Theorem 1 of Dovonon and Hall (2016).
However, the fact that ξ > 1/4 allows the conclusions of the parts (a) and (b) of that theorem to
stand with φ0 replaced by ηN as we now show. Let η̂ be the GMM estimator of ηN . First, we
observe using Assumption 8 (with µN = 0) that, under PN , f̄N (RηN) = OP (N−1/2) and

∂f̄N (Rη)

∂η2

∣∣∣∣
η=ηN

= q̄N(θN )R2 =
(
q̄N(θN ) −N−ξA

)
R2 +N−ξAR2 = OP (N−1/2) +O(N−ξ).

Via similar expansions as those in the proof of Theorem 1(a) of Dovonon and Hall (2016) and
leading to their equations (34) and (35), we have:

f̄N (η̂) = f̄N (ηN) +D(D′V −1
ff D)−1V −1

ff (f̄N (η̂) − f̄N (ηN)) + 1
2
V

1/2
ff MdB̃(η2 − ηN,2)

2

+(η2 − ηN,2)
2oP (1) + |η2 − ηN,2|OP (N−ξ) + OP (N−1/2),

where by an abuse of notation, we set f̄N (η)
.
= f̄N (Rη) and Vff

.
= Vff (θ0) and use the fact that

f̄N(η̂) = OP (N−1/2) under PN . This latter follows from the fact that the GMM norm of f̄N (η̂) is
smaller or equal to that of f̄N (ηN) by definition. Hence,

f̄N (η̂)′V̂ff (θ̂1,s)
−1f̄N (η̂)

= f̄N (ηN)′V̂ff (θ̂1,s)
−1f̄N (ηN) + 1

4B̃
′MdB̃(η̂2 − ηN,2)

4 + (η̂2 − ηN,2)
4oP (1) +OP (N−1)

+(η̂2 − ηN,2)
2
(
OP (N− 1

2 ) +OP (N−2ξ)
)

+ |η̂2 − ηN,2|OP (N− 1

2
−ξ) + |η̂2 − ηN,2|3OP (N−ξ).

By the definition of the GMM estimator, this quantity is less or equal to f̄N (ηN)′V̂ff (θ̂1,s)
−1f̄N (ηN).

Let zN = N1/4|η̂2 − ηN,2| and γ = 1
4
B̃′MdB̃. After multiplying each side of the previous equation

by N and since ξ > 1/4, we can claim that:

γz4
N + z4

NoP (1) ≤ OP (1) + z2
NOP (1) + zNoP (1) + z3

NoP (1).

Since γ > 0, this shows that N1/4(η̂2 − ηN,2) = OP (1) under PN and using the analogue of

Equation (35) of Dovonon and Hall (2016), we obtain
√
N(η̂1 − ηN,1) = OP (1). Using these rates
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of convergence, the steps of the proof of Theorem 1(b) of Dovonon and Hall (2016) follow readily
(only taking Taylor expansions around ηN) and we obtain:

√
N

(
η̂1 − ηN,1

(η̂2 − ηN,2)
2

)
d−→
(

X1

V

)
≡
(

HZ0 + HBV/2
V

)
, (52)

under PN with asymptotic distribution as given by (43).

Note that, since
(√

N(η̂1 − ηN,1), N
1/4(η̂2 − ηN,2)

)
= OP (1) under PN , by the Prokhorov the-

orem, any of its subsequence has a further subsequence, indexed say by s(N), that converges in
distribution under PN to say, (X1(s),X(s)) which, by (52), are such that X1(s) = X1 and X(s)2 = V

for any converging subsequence s(N).
Similar derivations as those in Theorem 1 yield:

WaldN(θ0) = N(η̂ − η0)
′R′q̄N(θ̂)′V̂ff (θ̂)

−1q̄N(θ̂)R(η̂ − η0)

and
q̄N(θ̂)R1 = D + oP (1), and q̄N(θ̂)R2 = B(η̂2 − ηN,2) + oP (N−1/4).

It follows that
WaldN(θ0) = WN,a +WN,b +WN,c + oP (1),

with
WN,a =

√
N(η̂1 − η0,1)

′D′V −1
ff D

√
N(η̂1 − η0,1)

WN,b = 2
√
N(η̂1 − η0,1)

′D′V −1
ff BN

1/4(η̂2 − η0,2)N
1/4(η̂2 − ηN,2)

and
WN,c = B′V −1

ff B
√
N(η̂2 − η0,2)

2
√
N(η̂2 − ηN,1)

2.

We have:

WN,a = N
(
(η̂1 − ηN,1)

′D̃′D̃(η̂1 − ηN,1) + 2(η̂1 − ηN,1)
′D̃′D̃(ηN,1 − η0,1)

+(ηN,1 − η0,1)
′D̃′D̃(ηN,1 − η0,1)

)

d−→ (a) ≡ X
′
1D̃

′D̃X1 + 2X
′
1D̃

′D̃e1 + e′1D̃
′D̃e1.

Similar calculation show that:

WN,b
d−→ (b) ≡ 2X

′
1D̃

′B̃X(s)2 + 2X
′
1D̃

′B̃X(s)e2 + 2e′1D̃
′G̃X(s)2 + 2e′1D̃

′B̃X(s)e2

and
WN,c

d−→ (c) ≡ B̃′B̃X(s)2
(
X(s)2 + 2e2X(s) + e22

)
.

The convergence of WN,a, WN,b and WN,c holds jointly and as a result, WN (θ0) converges in
distribution to (a) + (b) + (c) under PN . Note that simple expansions yield:

(a) =
(
V

−1/2
ff Z0 + B̃V/2

)′
P
(
V

−1/2
ff Z0 + B̃V/2

)
− 2

(
V

−1/2
ff Z0 + B̃V/2

)′
PD̃e1 + e′1D̃

′D̃e1

(b) = −2
(
V

−1/2
ff Z0 + B̃V/2

)′
PB̃X(s)2 − 2

(
V

−1/2
ff Z0 + B̃V/2

)
PB̃X(s)e2

+2e′1D̃
′B̃X(s)2 + 2e′1D̃

′B̃X(s)e2
(c) = B̃′B̃X(s)2

(
X(s)2 + 2e2X(s) + e22

)
.
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To obtain the form of the asymptotic distribution given in the theorem, write this limit as πA +
πB + πC + πF with:

πA =
(
V

−1/2
ff Z0 + B̃V/2

)′
P
(
V

−1/2
ff Z0 + B̃V/2

)
− 2

(
V

−1/2
ff Z0 + B̃V/2

)′
PB̃X(s)2 + B̃′B̃X(s)4

πB = −2
(
V

−1/2
ff Z0 + B̃V/2

)′
P
(
D̃e1 + B̃X(s)e2

)
+ 2e′1D̃

′B̃
(
X(s)2 + X(s)e2

)

πC = B̃′B̃X(s)2
(
2e2X(s) + e22

)

πF = e′1D̃
′D̃e1.

Note that V = − 2
a (SI(S ≤ 0)), with S = G̃′MdV

−1/2
ff Z0/a, with a =

√
B̃′MdB̃ and Z0 ∼

N(0, Vff).
Some simple calculations yields:

πA =
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)′
P
(
V

−1/2
ff Z0 + αSI(S ≤ 0)

)
+ 4S2

I(S ≤ 0).

πB = −2
(
V

−1/2
ff Z0 − αSI(S ≤ 0)

)′
P
(
D̃e1 + αaX(s)e2

)

+2e′1D̃
′α (−2SI(S ≤ 0) + aX(s)e2)

πC = −2ae2α
′α(2X(s) + e2)SI(S ≤ 0).

Since PV
−1/2
ff Z0 is independent of S, we can replace V

−1/2
ff Z0 in πA and πB by S1 ∼ N(0, Ik)

independent of S which gives the stated result. �

Proof of Theorem 6. As noted in the proof of Theorem 2, the value of LM(θ∗) is unchanged
by replacing q̄N(θ∗) by q̄N(θ∗)A with A any nonsingular matrix. Here, we replace q̄N(θ∗) by
q̄N(θ∗)

(
R1 N1/4R2

)
.

A first-order mean value expansion of q̄N(θ∗) around θN similar to (45) gives:

q̄N(θ∗) = q̄N(θN ) + C̄N(θ̇) [Ip ⊗ (θ∗ − θN )] = q̄N(θN ) − C̄N(θ̇) [Ip ⊗ (R1eN,1 + R2eN,2)] ,

where θ̇ ∈ (θ∗, θN ) and may differ by entry of q̄N(θ∗) and with C̄N (θ) defined as in (45). Under
Assumption 6, C̄N(θ̇) converges in probability PN to C(θ∗) and thanks to Assumptions 6 and 7,
we have:

q̄N(θ∗)R1 = D + oP (1).

Also,

q̄N(θN )R2 =
(
q̄N(θN )R2 −N−ξA

)
+N−ξA = OP (N−1/2) + O(N−ξ) = oP (N−1/4),

where the stochastic orders are with respect to PN . As a result, we also have, with respect to PN ,

N1/4q̄N(θ∗)R2 = −C(θ∗)[Ip ⊗ (R2e2)]R2 + oP (1).

Thus

q̄N(θ∗)

(
R1

...N1/4R2

)
=

(
D

... −C(θ∗)[Ip ⊗ (R2e2)]R2

)
+ oP (1) = Q(e2) + oP (1).
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By a second-order mean-value expansion of f̄N (θ∗) around θN , we have:

f̄N (θ∗) = f̄N (θN ) − q̄N(θN )(θN − θ∗) + 1
2 [(θN − θ∗)

′ ⊗ Ik] h̄N(θ̄)(θN − θ∗),

= f̄N (θN ) − q̄N(θN )R1eN,1 − q̄N(θN )R2eN,2

+1
2

[(R1eN,1 + R2eN,2)
′ ⊗ Ik] h̄N (θ̄)(R1eN,1 + R2eN,2)

= f̄N (θN ) −N−1/2De1 + 1
2N

−1/2 ((R2e2)
′ ⊗ Ik)H(θ∗)(R2e2) + oP (N−1/2),

where θ̄ ∈ (θ∗, θN) and may differ by equation. We use in this expansion the fact that H̄N(θ̄)
converges in probability PN to H(θ∗) and the fact that q̄N(θN )R2 = oP (N−1/4) under PN . Thus√
Nf̄N (θ∗) converges in distribution under PN to N(µθ, Vff(θ∗)) with

µθ = −De1 +
1

2
((R2e2)

′ ⊗ Ik)H(θ∗)(R2e2).

Thanks to the identity: (e′ ⊗ Ik)H(θ∗)e = C(θ∗)(Ip ⊗ e)e, for all e ∈ R
p, we have µθ = −Q(e2) ×(

e1
1
2
e2

)
which then belongs to the range of Q(e2). Note also that thanks to the second-order

identification condition in Assumption 1(b), (e1, e2) 6= 0 implies that µθ 6= 0.

To prove (a), letting Vff = Vff (θ∗), note that

LM(θ∗) =
√
N(V

−1/2
ff f̄N (θ∗))

′V
−1/2
ff Q(e2)

(
Q(e2)

′V −1
ff Q(e2)

)−1

Q(e2)
′V

−1/2
ff

√
N(V

−1/2
ff f̄N (θ∗))+oP (1)

converges in distribution under PN to χ2
p(λθ), with λθ = µ′

θV
−1
ff µθ. Since Q(e2) is nonsingular,

e2 6= 0 and as a result, λθ > 0.
Regarding KLM(θ∗), since f̄N (θ∗) = OP (N−1/2) under PN , q̄N(θ∗) is the leading term of

D̂N(θ∗). Thus, KLM(θ∗) = LM(θ∗) + oP (1) under PN and this concludes (a).

(b) From the asymptotic distribution of
√
Nf̄N(θ∗) derived above, it is obvious that GAR(θ0)

converges in distribution under PN to χ2
k(λθ). As mentioned above, λθ > 0 if (e1, e2) 6= 0. �

Derivation of equation (38). We first derive equation (36). Using θ′0λ1 = 0, we have under PN
that:

EN
[
θ′0Yt+1Y

′
t+1θ0|Ft

]
= (θ′0λ2N)

2
σ2

2,t + θ′0Ωθ0. (53)

As in Section 2.2, let zt be a relevant vector of instruments, then it follows from (53) that

EN
[
zt(θ

′
0Yt+1)

2
]

= (θ′0λ2N )
2
EN

[
ztσ

2
2,t

]
+θ′0Ωθ0EN [zt]; θ′0Ωθ0 = EN

[
(θ′0Yt+1)

2
]
−(θ′0λ2N)

2
EN

[
σ2

2,t

]

which, together, imply
Cov

(
zt, (θ

′
0Yt+1)

2
)

= (θ′0λ2N )2Cov(zt, σ
2
2,t), (54)

where Cov[ ·, · ] is relative to PN . Using (15) and (54), we obtain (36). To evaluate Cov(zt, σ
2
2,t), it

is useful to consider a factor representation of the returns that is in line with (12)-(13):

Yt+1 = ΛNFt+1 + Ut+1,
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where V ar(Ft+1|Ft) = Dt, Cov(Ft+1, Ut+1|Ft) = 0, E(Ft+1|Ft) = 0, E(Ut+1|Ft) = 0. We set ΛN =
(λ1, λ2,N). FollowingDoz and Renault (2006), we further assume that (F 2

1,t, U
2
1,t, U

2
2,t, F1,tU1,t, F1,tU2,t)

is uncorrelated with σ2
2,t and (U ′

t , F1,t) is uncorrelated with σ2
2,tF2,t. After some simple expansions,

we have:
Cov

[
σ2

2,t, Y
2
j,t

]
= λ2

2,N,jCov
[
σ2

2,t, F
2
2,t

]
= λ2

2N,jCov
[
F 2

2,t+1, F
2
2,t

]
,

and so, using zt = (Y 2
1t, Y

2
2t)

′, obtain (37). Combining these results with (16), we obtain (38). �

Proof of Theorem 7. (i) Note that

D̂N (θ0) = q̄N(θ0) −
[
Ĉov (qi,lm(θ0), fi(θ0)) V̂ff (θ0)

−1f̄N (θ0)
]
1≤l≤k,1≤m≤p

,

with Ĉov (qi,lm(θ0), fi(θ0)) = 1
N

N∑
i=1

qi,lm(θ0)fi(θ0)
′ − q̄N,lmf̄N (θ0)

′.

But, f̄N (θ0) =
(
f̄N (θ0) − c√

N

)
+ c√

N
= OP (N−1/2) under PN . In fact,

√
Nf̄N (θ0)

d→ ψf + c ∼ N(c, Vff(θ0)) (55)

under PN . Thus, D̂N (θ0)R1 = q̄N(θ0)R1 + oP (1) = D + oP (1), under PN . Also,

D̂N(θ0)R2 =

(
q̄N(θ0)R2 −

A

N ξ

)
+

A

N ξ
−
[
Ĉov (qi,lm(θ0), fi(θ0)) V̂ff (θ0)

−1f̄N (θ0)
]
1≤l≤k,1≤m≤p

R2.

Letting δ = 1
2I(ξ ≥ 1

2) + ξI(0 < ξ < 1
2 ), it is not hard to see that

N δD̂N (θ0)R2
d→ εaq

under PN . The statistic J(θ0) is unchanged if D̂N (θ0) is replaced by D̂N (θ0)

(
R1

...N δR2

)
which

converges in distribution to ψ̄aq under PN . Under the full column rank assumption, MVff (θ0)−1/2ψ̄a
q

is well-defined and the continuous mapping theorem ensures that

J(θ0)
d→ (ψf + c)′Vff (θ0)

−1/2MVff (θ0)−1/2ψ̄a
q
Vff (θ0)

−1/2(ψf + c)

under PN . From the independence of ψf and ψ̄aq , we can claim that

J(θ0)
d→ χ2

k−p(λm)

under PN with random non-centrality parameter λm = c′Vff (θ0)
−1/2MVff (θ0)−1/2ψ̄a

q
Vff (θ0)

−1/2c.

Clearly, if c /∈ 〈ψ̄aq 〉 almost surely, then λm > 0 almost surely. (ii) Follows readily from (55). �

Derivation of equations (30), (40) and (41) We consider the behaviour of the Wald test under

PN with θN = 1 − c

2
4
√
N

. Assume that N1/2 ( a− EN [a], b− EN [b], c− EN [c] )
′ d→ (ψa, ψb, ψd)

′

under PN where (ψa, ψb, ψd)
′ have a normal distribution with mean zero. Define ψ = ψa +ψb +ψd

and let ψi denote the ith element of ψ. For brevity but with an abuse of notation, let Vff (θ0) = V .
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For ease of notation, let V̂ = V̂ff (θ̂1,s) and V = Vff (θ0). The two-step GMM estimator is
defined as:

θ̂ = arg min
θ∈Θ

N × f̄N (θ)′V̂ −1f̄N (θ),

and the associated first order conditions are

Nq̄N(θ̂)′V̂ −1f̄N(θ̂) = 0,

where

f̄N (θ) = aθ2 + bθ + d = a+ b+ d+ a(θ − 1)2 + (b+ 2a)(θ− 1),

q̄N(θ) = 2aθ+ b = 2a(θ − 1) + b+ 2a.

Note that under PN , we have:

√
N

(
(b+ 2a) − 1

4
√
N
σ2

(
c− c2

4 4
√
N

0

))
d−→ 2ψa + ψb (56)

√
Nf̄N (1) =

√
N(a + b+ d)

d−→ σ2

( c2

4

0

)
+ ψa + ψb + ψd. (57)

Taking a a mean value expansion of q̄N(θ̂) around q̄N(1) (and recalling that θ0 = 1)

q̄N(θ̂) = q̄N(1) +HN(θ̄)(θ̂ − 1),

with θ̄ an intermediate value between 1 and θ̂. From (49), it follows that under PN , we have:

HN(θ̄)
p−→ 2σ2

(
1
0

)
,

and so
4
√
Nq̄N(1)

p−→ σ2

(
c
0

)
.

Therefore, since θ̂ = Op(N
−1/4), we have

q̄N(θ̂) =

(
Op(N

−1/4)

Op(N
−1/2)

)
,

and so16

4
√
Nq̄N(θ̂)

a
= σ2

(
c
0

)
+ 2σ2

(
1
0

)
ζ, (58)

where, as in the text, 4
√
N(θ̂1,s − 1) = ζ + op(1). Similarly, using (57), we have

√
Nf̄N(θ̂)

a
= ψ +

c2

4
σ2

(
1
0

)
+ σ2

(
1
0

)
ζ2 + σ2

(
c
0

)
ζ. (59)

16Using
a
= to denote equality up to op(1).
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Combining (58)-(59) with the first order conditions and V̂
p→ V , it can be seen that ζ is implicitly

characterized by:

[
σ2

(
c
0

)
+ 2σ2

(
1
0

)
ζ

]′
V −1

[
ψ +

(
σ2c2/4

0

)
+

(
σ2

0

)
ζ2 + σ2

(
c
0

)
ζ

]
= 0,

which can be re-written as

2σ4eζ3 + 3σ4ceζ2 + σ2

[
2V −1

1 ψ + c2eσ2 3

2

]
ζ + cσ2[V −1

1 ψ +
1

4
eσ2c2] = 0, (60)

where e is the (1, 1) element of V −1 and V −1
1 is the first row of V −1. Equation (60) implies:

2σ4e(ζ +
c

2
)

({
ζ +

c

2

}2

+
1

eσ2
V −1

1 ψ

)
= 0, (61)

Using (61) and noticing that ζ is a real-valued root of the above third-order polynomial, we obtain
a twofold solution for ζ + c/2. The first solution occurs when the quadratic polynomial contained
in the second set of parentheses in (61) only has complex roots: in this case the solution is obtained
from the term in the first set of parentheses in (61). The second solution occurs when the quadratic
polynomial in the second set of parentheses in (61) has real roots. In the latter case, the two roots
imply different values for ζ2 - unless c = 0 - and so for c 6= 0 we choose the root that maximizes ζ2

and therefore leads to the largest asymptotic power. The solution to (61) just described is:

ζ∗ = − c
2

− I(V −1
1 ψ < 0)

1

σ

√
1

e
|V −1

1 ψ|.

Define h∗ via ζ∗ = N1/4(h∗ − 1), and consider

Wald∗
N(1) = = N(h∗ − 1)q̄N(h∗)

′V̂ff (h∗)
−1q̄N(h∗)(h∗ − 1).

Using V̂
p→ V (as h∗

p→ 1), we obtain from (58) that

√
NqN(h∗)

′V (h∗)
−1qN(h∗)

d−→ 0 V −1
1 ψ ≥ 0

d−→ 4σ2|V −1
1 ψ| V −1

1 ψ < 0.

It therefore follows that

Wald∗
N(1)

d−→ 0 Vff (1)−1
1 ψ ≥ 0

d−→ 4σ2|Vff (1)−1
1 ψ|×

( c2 + 1
σ

√
1
e |V −1

1 ψ|)2 V −1
1 ψ < 0.

Since

4σ2|V −1
1 ψ|

(
c

2
+

1

σ

√
1

e
|V −1

1 ψ|
)2

= | 1√
e
V −1

1 ψ|
(

4
√
ecσ + 2 4

√
e

√
1√
e

1√
e
|V −1

1 ψ|
)2

,

and V −1
1 V V −1′

1 = e, it follows that e−1/2V −1
1 ψ ∼ N(0, 1), and so the limiting distribution of

Wald∗N (1) can be written as in (40). Equation (30) follows by setting c = 0 in the above analysis.
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To derive, λθ in (41), it suffices to consider the GAR statistic (as from Theorem 6 the non-
centrality parameter is the same for all three tests),

GAR(1) = Nf̄N(1)′V̂ff (1)−1f̄N(1)

Using (57), it follows that

GAR(1)
d−→ (ψ +

c2

4
σ2

(
1

0

)
)′Vff (1)−1(ψ +

c2

4
σ2

(
1

0

)
) = χ2

2(λθ)

with λθ given in (41).
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Figure 1: Local power curve of 95% tests of H0 : θ = 1 while the true value of θ = 1 − c
2 4
√
N

using

the Wald statistic: Dotted: N = 50, 5000; Dashed: 100, 10000; Dash-dot: 500, 20000; Solid (1000)
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Figure 2: Local power curve of 95% tests of H0 : θ = 1 while true value of θ = 1 − c
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GAR statistic: Dotted: N = 50, 5000; Dashed: 100, 10000; Dash-dot: 500, 20000; Solid 1000.
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Figure 3: Local power curve of 95% tests of H0 : θ = 1 while true value of θ = 1 − c
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KLM statistic: Dotted: N = 50, 5000; Dashed: 100, 10000; Dash-dot: 500, 20000; Solid 1000.
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Figure 4: Local power curve of 95% tests of H0 : θ = 1 while true value of θ = 1 − c
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using the

LM statistic: Dotted: N = 50, 5000; Dashed: 100, 10000; Dash-dot: 500, 20000; Solid 1000.
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Figure 5: Local power curve of 95% tests of H0 : θ = 1 while true value of θ = 1 − c
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using the

Wald (dash-dot) and GAR statistics (solid) for N = 50, 1000, 20000.
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Figure 6: Rejection rates of the HS-J, K-J and min-GAR tests under the null; 10, 000 replications; c = 0.

(α = 0.05)
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Figure 7: 10,000 replications; c = 0 : 0.2 : 10 (α = 0.05)
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