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1 Introduction

Although written in the form of a book review, Bertrand’s (1883) critique of Cournot’s

(1838) oligopoly turned out to form the most widely used model of price competition. In-

deed, nowadays, the Bertrand duopoly model is one of the cornerstones of microeconomics

and game theory. The "Bertrand paradox" usually refers to the paradoxical equilibrium

outcome of perfect competition in a market with only two firms. The strategies whose

implementation leads to this outcome prescribe to set the minimal prices (equal to the

marginal costs), resulting in zero profits. The fact that such strategies form a Nash

equilibrium is a simple observation, and actually does not require any assumptions on

the model. However, uniqueness holds only under additional assumptions, and its proof

requires some (of course quite elementary) arguments.1

To the best of our knowledge the literature provides no necessary and suffi cient con-

ditions for the uniqueness of a pure-strategy Bertrand-Nash equilibrium. In the present

note, we formulate such conditions and derive from them some common suffi cient ones.

This finding (unexpected for us) seems to be the first result of this kind after more than

a century of studies on the Bertrand duopoly model and its versions.

Due to a number of special game-theoretic features, the classical Bertrand duopoly

has generated broad interest extending far beyond oligopoly theory and modern indus-

trial organization. The first feature of interest is that the Nash equilibrium is in weakly

dominated strategies: Pricing at marginal cost yields zero profit to the two firms. In

addition, the Nash equilibrium payoffs correspond to the individually rational payoffs of

the players. Another unusual feature is that the Bertrand game is the oldest represen-

tative of the class of classical games with discontinuous payoff functions.2 Finally, the

Bertrand game belongs to a small family of classical games, for which a tie breaking rule

1For the more complex Bertrand-Edgeworth version of this model with unequal unit costs, see De-

neckere and Kovenock (1996).
2The payoff functions are not even upper semi-continuous in the prices, so the firms’reaction curves

are not even well defined. This makes the Bertrand duopoly lie outside of the commonly studied classes of

games with discontinuous payoffs. In addition, the payoffs are not quasi-concave in own action. Therefore,

the results from this literature (see e.g., Reny, 2016) cannot be applied. Nonetheless, an exception is

Prokopovych and Yannelis (2017), who derive a general existence result that includes existence in the

Bertrand model as a special case.
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is a necessary part of the definition of the game, and its specification is often a critical

part for the solution of the game.

Other well-known games in microeconomics and game theory share these properties in

one form or other. These games include the Guess-the-average game (Moulin, 1986) and

the Traveler’s Dilemma (Basu, 1994). Both of these games, along with various extensions,

have spurned an extensive literature in experimental economics, see e.g. Nagel, Bühren,

and Björn (2017). One possible application of the present study of Bertrand duopoly is

that it may pave the way for a systematic study of the afore-mentioned general class of

games.

2 The main result

We consider a version of the Bertrand duopoly model with a homogeneous product.

There are two profit-maximizing firms 1 and 2 producing a homogeneous good in a market

whose demand function is given by D(p) ≥ 0 (p ≥ 0). The cost, c ≥ 0, per unit produced

is the same for both firms. The firms simultaneously set their prices p1 and p2. Sales for

firm 1 are then given by

D1(p1, p2) =


D(p1), if p1 < p2;

1
2
D(p1), if p1 = p2;

0, if p1 > p2.

Analogously, for firm 2, we have

D2(p1, p2) =


D(p2), if p2 < p1;

1
2
D(p2), if p2 = p1;

0, if p2 > p1.

The firms’profits are

πi(p1, p2) = (pi − c)Di(p1, p2), i = 1, 2.

We will assume that the firms never set prices that are less than c: if pi < c, then firm

i cannot have a strictly positive profit πi > 0. Thus we have a game with the payoffs

π1(p1, p2), π2(p1, p2) and the strategy set Pc = [c,∞) for both players. The game is

symmetric: π2(p1, p2) = π1(p2, p1).
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Since we consider only those prices pi that satisfy pi ≥ c, it is suffi cient to assume that

D(p) is defined only for p ≥ c.

We are interested in Nash equilibria of the above game (Bertrand-Nash equilibria),

i.e., pairs of prices (p∗1, p
∗
2), p

∗
i ≥ c, such that

π1(p
∗
1, p

∗
2) ≥ π1(p1, p

∗
2), π2(p

∗
1, p

∗
2) ≥ π2(p

∗
1, p2)

for all pi ≥ c. The following result is well-known.

Theorem 1. The prices

p∗1 = p∗2 = c

form a symmetric Nash equilibrium in the Bertrand game.

Proof. Since the game is symmetric, it is suffi cient to prove that π1(p, c) ≤ π1(c, c) for

each p ≥ c. We have π1(c, c) = 0. If p > c, then π1(p, c) = (p− c)D1(p, c) = (p− c) · 0 =

π1(c, c), which completes the proof.

We provide a criterion for the uniqueness of equilibrium in the Bertrand duopoly

model. Denote by π(p) the monopoly profit

π(p) = (p− c)D(p)

that the firm gets by setting the price p and serving the entire demand D(p) alone.

For the uniqueness result, we shall need the following simple and intuitive condition:

(D) For each p > c, there exists q = q(p) such that c < q < p and

π(q) > π(p)/2.

This condition means that by setting some price q smaller than p the firm can get a profit

π(q) higher than half of π(p). An interesting interpretation of this condition is that it

ensures that static collusion between the two firms in the form of equal market sharing

at any price p is not sustainable, in that each firm has a profitable deviation q.3 This is a

very mild assumption, as will be seen through two suffi cient easy-to-check conditions we

provide for it below.

3In other words, this assumption is minimally needed to pave the way for the now-standard repeated

games approach to the study of collusion (see e.g., Tirole, 1988, Chap. 6).
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Theorem 2. Condition (D) is necessary and suffi cient for (c, c) to be the only Nash

equilibrium in the Bertrand duopoly.

Proof. Let (D) hold. Suppose there is another Nash equilibrium, (p1, p2), pi ≥ c,

distinct from (c, c). We may assume without loss of generality that p1 ≤ p2 (one can

always swap p1 and p2).

We consider three cases, in all of which we arrive at a contradiction with the assump-

tion that (p1, p2) is a Nash equilibrium.

1st case: c < p1 < p2. Observe that D(p1) > 0. Indeed, if D(p1) = 0, then firm 1

can replace the price p1 by the price q = q(p1) < p1 described in (D), which will lead to

a strict increase in its profit

(q − c)D(q) > (p1 − c)D(p1)/2 = 0.

But this is impossible as long as (p1, p2) is a Nash equilibrium.

Note that the profit of firm 2 is zero (since p1 < p2). Therefore by setting the price p1

instead of p2, it can get a strictly positive profit

π2(p1, p1) = (p1 − c)D(p1)/2 > 0.

Consequently, (p1, p2) is not a Nash equilibrium.

2nd case: c = p1 < p2. Then firm 1’s profit is zero, and it can obtain, by setting

instead of the price p1 = c the price q = q(p2) < p2 (see condition (D)), a strictly positive

profit:

π1(q, p2) = (q − c)D(q) > (p2 − c)D(p2)/2 ≥ 0.

Therefore (p1, p2) is not a Nash equilibrium.

3rd case: c < p1 = p2. By virtue of (D), there exists a price q = q(p1) < p1 such that

(q − c)D(q) > (p1 − c)D(p1)/2 = π1(p1, p2).

This means that firm 1 can increase its profit by charging the price q instead of p1, which

contradicts the assumption that (p1, p2) is Nash equilibrium.

Thus we have proved that condition (D) is suffi cient for the uniqueness of Nash equi-

librium in Bertrand duopoly. Let us prove that this condition is also necessary. Suppose

(D) does not hold. This means that for some p̄ > c, the inequality

(q − c)D(q) ≤ (p̄− c)D(p̄)/2 (1)
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is satisfied for all c < q < p̄. We claim that (p̄, p̄) is a Nash equilibrium, i.e., each firm,

deviating unilaterally from p̄ cannot strictly increase its profit. Indeed, if it sets a price

q > p̄, then its profit is zero. If it sets a price c < q < p̄, its profit cannot be greater than

(p̄− c)D(p̄)/2 by virtue of (1), and the same is true of course if q = c.

The proof is complete.

3 Suffi cient conditions

We now provide familiar suffi cient conditions for the uniqueness of a Bertrand-Nash

equilibrium. Consider the following alternative assumptions:

(D1) The function D(p) is continuous on [c,∞), and D(c) > 0.

(D2) The function D(p) is non-increasing on [c,∞), and there exists p∗ > c such that

D(p∗) > 0.

In most textbook treatments of Bertrand duopoly, (D1) and (D2) are assumed to-

gether, along with the existence of a choke-off price p0 such that D(p0) = 0 (see e.g.,

Mas-Colell, Whinston and Green, 1995, p. 388). In textbooks on industrial organization,

these assumptions are often not explicitly listed, but one infers from the context that the

tacit assumptions on demand are the same: continuity and downward-monotonicity (see

e.g., Tirole, 1988).

It is worth recalling that, to ensure that a demand function derived from the maxi-

mization of a utility (subject to a budget constraint) is decreasing (as in (D2) here), one

needs the somewhat restrictive assumption of a quasi-linear utility in a numeraire good

(e.g., Vives, 2000). There is thus some theoretical motivation for developing results in

oligopoly theory that do not rely on a downward-sloping demand as a primitive (Vives,

1987).

We now show that either of (D1) and (D2) is suffi cient for our assumption (D) to hold.

Theorem 3. Each of the assumptions (D1) and (D2) implies (D).

Proof. Let (D1) hold. Consider any p > c. We have either D(p) = 0 or D(p) > 0. If

D(p) = 0, take any q > c suffi ciently close to c for which D(q) > 0 (q exists by virtue of
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the continuity of D(p)). Then

π(q) = (q − c)D(q) > 0 = (p− c)D(p)/2 = π(p)/2.

If D(p) > 0, then (p− c)D(p) > 0, and since D(p) is continuous, we have

(q − c)D(q) > (p− c)D(p)/2

for all q < p close enough to p. Thus we have proved that (D1) implies (D).

Suppose (D2) holds. Let p > c. If D(p) = 0, then p > p∗ because D(·) is a non-
increasing function and D(p∗) > 0. We can define q = q(p) as p∗. Indeed,

π(q) = (p∗ − c)D(p∗) > 0 = (p− c)D(p)/2 = π(p)/2.

Let D(p) > 0. Define q = q(p) as any number satisfying (p+ c)/2 < q < p. Then we have

π(q) = (q − c)D(q) >
p− c

2
D(p) = π(p)/2

because q − c > (p+ c)/2− c = (p− c)/2 and D(q) ≥ D(p) > 0.

The proof is complete.
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