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Abstract

This paper makes two contributions. First, we provide a review of the sim-
ilarities and difference between Generalized Method of Moments and Indirect
Inference, focusing particularly on issues of moment selection, identification fail-
ure and model misspecification. Secondly, we provide new results on the limiting
behaviour of GMM and II estimators when first order identification fails but the
parameters are second order identified.



1 Introduction

Lars Hansen was awarded the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel for 2013 jointly with Eugene Fama and Robert Shiller
for their “empirical analyses of asset prices”.1 While recognizing Hansen’s many
contributions to this field, the award is primarily in recognition of his introduc-
tion of the Generalized Method of Moments (GMM) framework for inference.
As noted in the “Scientific Background” to the announcement of the award,
Hansen’s 1982 article in Econometrica that introduced the method as “one of
the most influential papers in econometrics”.2 One aspect of this influence is
that applications of GMM have demonstrated the power of thinking in terms of
moment conditions in econometric estimation. This, in turn, can be said to have
inspired the development of other moment-based approaches in econometrics, a
leading example of which is Indirect Inference (II).

GMM can be applied in wide variety of situations including those where the
distribution of the data is unknown and those where it is known but the likeli-
hood is intractable. In the latter scenario, it was realized in the late 1980’s and
early 1990’s that simulation-based methods provide an alternative - and often
more efficient way - to estimate the model parameters than GMM. A number
of methods were proposed: Method of Simulated Moments (McFadden, 1989),
Simulated Method of Moments (SMM, Duffie and Singleton, 1993), Indirect In-
ference (II, Gourieroux, Monfort, and Renault, 1993, Smith, 1990, 1993)3 and
Efficient Method of Moments (EMM, Gallant and Tauchen, 1996). While SMM
and EMM have their distinctive elements, both can be viewed as examples of
II as they have the “indirect” feature of estimating parameters of the model of
interest by matching moments from a different - and often misspecified - model.

Given the recent award of the Nobel prize to Hansen, it seems timely to ex-
plore the connections between GMM and II, highlighting both similarities and
some key differences. As will be discussed, both methods can be viewed as “min-
imum chi-squared” methods and hence share the same linear algebraic structure
of their first order analyses, although the regularity conditions underlying each
are different in important ways. Since both methods involve moment-based es-
timation, it is natural to expect that issues relevant to GMM estimation are
also relevant to II. In this paper, we investigate the extent to which is the case
focusing on three particular topics that have received attention within the GMM
framework: moment selection, identification failure and inference in misspecified
models.

From this discussion, it emerges that concerns have been raised about the
consequences of identification failure in certain applications of both GMM and
II. However, while this topic has received considerable attention in the context
of GMM, there is very little guidance available for models estimated via II. In

1See http://www.nobelprize.org/nobel prizes/economic-sciences/laureates/2013/press.html.
2See The Royal Swedish Academy of Sciences (2013b), p.24.
3Smith (1993) refers to the method as “simulated quasi-maximum likelihood” and his

analysis covers a more restrictive setting than that of Gourieroux, Monfort, and Renault
(1993).
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this paper, we consider the case where first order local identification fails but
the second order local identification holds. Sargan (1983) demonstrates how this
situation can arise in models that are nonlinear in parameters. More recently,
Madsen (2009) and Dovonon and Renault (2009, 2013) show this scenario can
arise in panel data models and factor models respectively. Although this sit-
uation has been recognized to arise in models of interest, there are no general
results available on the limiting distribution of either GMM or II estimators in
this case. In this paper, we fill this gap in the literature. We present the limiting
distribution of both the GMM estimator under second order identification and
also the II estimator in cases where the auxiliary model is second order identi-
fied. These limit distributions are shown to be non-standard, but we show that
they can be easily simulated, making it possible to perform inference about the
parameters in this setting.

An outline of the paper is as follows. Section 2 compares and contrasts the
GMM and II methods. Section 3 reviews the similarities and differences in the
way the issues of moment selection, identification failure and inference in mis-
specified models have been approached in the GMM and II frameworks. Section
4 considers the behaviour of GMM and II under second order identification, and
Section 5 concludes.

2 First order asymptotics of GMM and II: sim-

ilarities and differences

In this section, we explore the similarities and the differences of the basic GMM
and II inference frameworks based on first order asymptotics. As will be seen,
the similarities stem from both being essentially “minimum chi-squared” meth-
ods. Therefore, we begin by defining the GMM and II estimators, and then
present the minimum chi-squared framework. To this end, we introduce the
following notation. In each case the model involves random vector X which
is assumed strictly stationary with distribution P (θ0) that is indexed by a pa-
rameter vector θ0 ∈ Θ ⊂ Rp. For some of the discussion only a subset of the
parameters may be of primary interest, and so we write θ = (φ′, ψ′)′ where
φ ∈ Φ ⊂ Rpφ and ψ ∈ Ψ ⊂ Rpψ . Throughout, WT denotes a positive semi-
definite matrix with the dimension defined implicitly by the context.

GMM:
GMM is a partial information method in the sense that its implementation does
not require knowledge of P ( · ) but only a population moment condition implied
by this underlying distribution. In view of this, we suppose that φ0 is of primary
interest and the model implies:4

E[g(X, φ0)] = 0, (1)

4If pψ = 0 then φ = θ and our presentation covers the case when the entire parameter
vector is being estimated.
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where g( · ) is a q× 1 vector of continuous functions. The GMM estimator of φ0

based on (1) is defined as:

φ̂GMM = argminφ∈Φ Q
GMM
T (φ) (2)

where

QGMM
T (φ) = T−1

T
∑

t=1

g(xt, φ)′WT T
−1

T
∑

t=1

g(xt, φ) (3)

{xt}Tt=1 represents the sample observations on X.
As evident from the above, GMM estimation is based on the information

that the population moment E[g(X, φ)] is zero when evaluated at φ = φ0. The
form of this moment condition depends on the application: in economic models
that fit within the framework of discrete dynamic programming models then
the moment condition often takes the form of Euler equation times a vector of
instruments;5 in model estimated via quasi-maximum likelihood then the mo-
ment condition is the quasi-score.6

II:
II is essentially a full information method in the sense it provides a method
of estimation of θ0 given knowledge of P ( · ). Within II, there are two mod-
els: the “simulator” which represents the model of interest - X ∼ P (θ) in our
notation - and an “auxiliary model” that is introduced solely as the basis for
estimation of the parameters of the simulator. Although θ0 is unknown, data
can be simulated from the simulator for any given θ. To implement II, this
simulation needs to be performed a number of times, s say, and we denote these

simulated series by {x(i)
t (θ)}Tt=1 for i = 1, 2, . . .s. The auxiliary model is esti-

mated from the data; let hT = h
(

{xt}Tt=1

)

be some feature of this model, and

h
(i)
T (θ) = h

(

{v(i)
t (θ)}Tt=1

)

. Assume dim(hT ) = ` > p. The II estimator of θ0

is:7

θ̂II = argminQIIT (θ) (4)

where

QIIT (θ) =

[

hT − 1

s

s
∑

i=1

h
(i)
T (θ)

]′

WT

[

hT − 1

s

s
∑

i=1

h
(i)
T (θ)

]

. (5)

To characterize the population analog of the information being exploited

here, we assume that hT
P→ h∗, for some constant h∗. Noting that there exists a

5For example, the consumption based asset pricing model in the seminal article by Hansen
and Singleton (1982).

6For example, see Hamilton (1994)[p.428-9].
7We note that II as defined in (4)-(5) is one version of the estimator. An alternative ver-

sion involves simulating a single series of length ST . For scenarios involving optimization in
the auxiliary model, this second approach has the advantage of requiring only one optimiza-
tion. The first order asymptotic properties of the II estimator are the same either way; see
Gourieroux, Monfort, and Renault (1993).
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mapping from θ0 to h( · ) through xt(θ0), we can write h∗ = b(θ0) for some b( · ),
known as the binding function. Then, as Gourieroux, Monfort, and Renault
(1993) observe, II exploits the information that k(h∗, θ0) = h∗ − b(θ0) = 0 -
in essence that, at the true parameter value, the simulator encompasses the
auxiliary model.

The choice of h( · ) varies, in practice, and depends on the setting. Examples
include: raw data moments, such as the first two moments of macroeconomic or
asset series, e.g. see Heaton (1995); the estimator or score vector from an aux-
iliary model that is in some way closely related to the simulator,8 e.g. Gallant
and Tauchen (1996), Garcia, Renault, and Veredas (2011); estimated moments
from the auxiliary model, such as impulse response functions in DSGE models,
e.g. see Christiano, Eichenbaum, and Evans (2005).

Minimum chi-squared:
As is apparent from the above definitions, both GMM and II estimation involve
minimizing a quadratic form in the sample analogs to the population informa-
tion about θ0 on which they are based namely, E[g(X, φ0)] = 0 for GMM and
k(h∗, θ0) = 0 for II. As such they can both be viewed as fitting within the class
of minimum chi-squared. This common structure explains many of the parallels
in their first order asymptotic structure as we now demonstrate.

Minimum chi-squared estimation is first introduced by Neyman and Pearson
(1928) in the context of a specific model, but their insight is applied in more
general models by Neyman (1949), Barankin and Gurland (1951) and Ferguson
(1958). Suppose again that φ0 is of primary interest, recalling that pψ = 0
implies φ = θ, and let m̃T (φ) be a n× 1 vector, where n ≥ pφ, satisfying

Assumption 1. m̃T (φ0)
d→ N( 0, Vm), where Vm, a positive definite matrix of

finite constants.

As a result, m̃T (φ0)
′V −1
m m̃T (φ0)

d→ χ2
` , and this structure explains the des-

ignation of the following estimator as a minimum chi-squared:

argminφ∈Φ m̃T (φ)′V̂ −1
m m̃T (φ) (6)

where V̂m
p→ Vm.

However, for our purposes here, it is convenient to begin with the more
general definition of minimum chi-squared estimator:9

φ̂MC = argminφ∈Φ QT (φ) (7)

where
QT (φ) = mT (φ)′WTmT (φ) (8)

where mT (φ) = T−1/2m̃T (φ).

8For the first order asymptotic equivalence of these two approaches, see Gourieroux, Mon-
fort, and Renault (1993).

9See Ferguson (1958).
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To consider the first order asymptotic properties of minimum chi-squared
estimators, we introduce a number of high level assumptions.

Assumption 2. (i) WT
p→ W , a positive definite matrix of constants; (ii)

QT (φ)
p→ Q(φ) = m(φ)′Wm(φ) uniformly in φ; (iii) Q(φ0) < Q(φ) ∀φ 6= φ0,

φ ∈ Φ.

Assumption 2(iii) serves as an identification condition. These conditions are
sufficient to establish consistency; for example see Newey and McFadden (1994).

Proposition 1. If Assumption 2 holds then φ̂MC
p→ φ0.

The first order conditions of the minimization in (8) are:

MT (φ̂MC)′WTmT (φ̂MC) = 0 (9)

where MT (φ) = ∂mT (φ)/∂φ′, a matrix commonly referred to as the Jaco-
bian in this context. These conditions are the source for the standard first
order asymptotic distribution theory of the estimator, but the latter requires
the Jacobian to satisfy certain restrictions. To present these conditions, define
Nε = {φ; ‖φ− φ0‖ < ε}.

Assumption 3. (i) MT (φ)
p→M(φ) uniformly in Nε; (ii) M(φ) is continuous

on Nε; (iii) M(φ0) is rank pφ.

Assumption 3(iii) is the condition for first order local identification. It is
sufficient but not necessary for local identification of θ0 on Nε, but it is neces-
sary for the development of the standard first order asymptotic theory. Under
Assumptions 1-3, the Mean Value Theorem applied to (9) yields:

T 1/2(φ̂MC − φ0) ' {M(φ0)
′WM(φ0)}−1

M(φ0)
′Wm̃T (φ0)

where ' denotes equality up to terms of op(1), from which the first order asymp-
totic distribution follows.

Proposition 2. If Assumptions 2-3 hold then:

T 1/2(φ̂MC − φ0)
d→ N(0, Vφ)

where

Vφ = [M(φ0)
′WM(φ0)]

−1M(φ0)
′WVmWM(φ0)[M(φ0)

′WM(φ0)]
−1.

As apparent, Vφ depends on W . The choice of W that minimizes Vφ is
W = V −1

m which yields: Vφ = {M(φ0)
′V −1
m M(φ0)}−1.10 This efficiency bound

can be achieved in practice by setting WT = V̂ −1
m where V̂m

P→ Vm to produce
the version of the estimator in (6).

10This result can be established via linear algebraic arguments in Hansen (1982)[Theorem
3.2].
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Other useful properties of the estimator also stem from the first order con-
ditions. Since MT (φ) is n× pφ, it follows that (9) involves calculating φ̂MC as
the value of φ that sets the p linear combinations of mT (.) to zero. Thus the
estimator is, in effect, based on the information that

M(φ0)
′Wm(φ) = 0. (10)

Our starting point, Assumption 1, implies that m(φ0) = 0. However, m(φ0) = 0
and (10) are only equivalent if n = pφ (and Assumptions 2(i) and 3(iii) hold);
if n > pφ then m(φ0) = 0 implies (10) but the reverse is not true. Therefore,
if n > pφ then the estimation affects a decomposition of the original informa-
tion, m(φ0) = 0 into two parts: the part used in estimation, which can be
characterized as11

PV −1/2
m m(φ0) = 0, (11)

where P = N(N ′N)−1N ′ and N = W 1/2M(φ0); and the part unused in esti-
mation,

(I − P )V −1/2
m m(φ0) = 0. (12)

While unused in estimation, the restrictions in (12) form a basis for a model
diagnostic test for if m(φ0) = 0 then so too must (12). Such a test can be
conveniently constructed by noting that

T 1/2V −1/2
m mT (φ̂MC) ' (In − P )V −1/2

m m̃T (φ0), (13)

which leads to test statistic

ξT = m̃T (φ̂MC)′V̂ −1
m m̃T (φ̂MC). (14)

Under H0 : m(φ0) = 0, ξT
d→ χ2

n−pφ
, where V̂m

p→ Vm.

Discussion:
Hansen (1982) provides general conditions under which the first order asymp-
totic framework above goes through for GMM with

mT (φ) = T−1
T
∑

t=1

g(xt, φ).

Gourieroux, Monfort, and Renault (1993) prove the same results for II with

mT (θ) = hT − 1

s

s
∑

i=1

h
(i)
T (θ),

and also propose certain other model specifications tests. Following Sowell
(1996),12 the decomposition in (11)-(12) is referred to as being in terms of

11This decomposition applies the results due to Sowell (1996) for GMM to minimum chi-
squared; see below for further discussion.

12Hansen (1982) characterized the overidentifying restrictions in nonlinear models, gener-
alizing Sargan’s (1958) linear model analysis and adopting his terminology; Sowell (1996)
characterizes the decomposition in the form presented here.
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identifying and overidentifying restrictions respectively. In GMM, this decom-
position is of the population moment condition: E[g(X, φ0)] = 0. Ghysels and
Guay (2004) extend Sowell’s (1996) analysis to II where the decomposition in-
volves k(h∗, θ0) = 0. As a result, the statistic in (14) is commonly referred to
as the overidentifying restrictions test in both GMM and II.

In spite of the similarities of the two methods, the asymptotic properties of
II cannot be deduced directly from the corresponding GMM analysis because
the simulation-based implementation takes II outside the GMM framework in
two important ways. First, Hansen’s (1982) framework includes the restriction

that X is strictly stationary and ergodic but the simulated series in II, {x(i)
t (θ)},

do not satisfy these conditions because the initial conditions are typically not
drawn from the stationary distribution rendering the simulated series locally
nonstationary. Second, Hansen (1982) establishes the uniform convergence of
the sample GMM minimand to its population analog (Assumption 2(ii) above)
using certain first moment continuity assumptions that are not satisfied in II
because the simulated process depends on the unknown parameters. This has
led to the development of alternative analyses for II estimators using geometric
ergodicity or near-epoch dependence on mixing processes, and Lipschitz condi-
tions, see Duffie and Singleton (1993) or Ghysels and Guay (2003, 2004).

3 GMM and II Inference

GMM has been widely applied in empirical econometric analysis and the di-
versity of these applications has helped to inspire the development of a broad
array of inference techniques based on GMM estimators. Since, by its nature,
II can only be applied in a more restrictive set of circumstances, the inference
framework for II has been less well developed. However, since both methods
are moment-based and have a common underlying structure, it is natural to
expect that issues relevant to GMM estimation to be relevant to II as well. In
this section, we investigate the extent to which this is the case focusing on three
topics that have received particular attention within the GMM framework: mo-
ment selection, identification failure and inference in misspecified models. We
note that on each of these topics the literature on GMM is far larger than the
corresponding treatment for II. As a result, we concentrate on the parts of the
GMM literature that are most relevant to II. In view of this, each sub-section
below begins with a brief summary of the relevant GMM literature on each topic
followed by a discussion of the extent to which these methods are relevant to
and have been explored for II. A more complete review of the GMM literature
on these topics can be found in Hall (2015).

3.1 Moment selection

GMM:
GMM works for any choice of g( · ) that satisfies the assumptions mentioned
above. While this flexibility can be seen as strength of the method, it leaves
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open the question of which moments to employ for any given application. For
in most cases, there is a potentially infinite candidate set of moment conditions
upon which to base the estimation. In seeking answers, this question has been
split in two parts: What is the optimal choice out of a candidate set consisting
of only valid moment conditions? - Which moments are valid in a candidate
set consisting of potentially valid and invalid moment conditions? We consider
each in turn.

Consider first the case where the candidate set consists entirely of valid
moment conditions. In terms of first order asymptotic properties, the only
difference between estimators based on different moment conditions is in the
variance of the limiting distribution. Therefore, from this perspective, the op-
timal choice is the score function associated with the true distribution of the
data. However, Maximum Likelihood (ML) is infeasible in many economic mod-
els. As noted in the Introduction, this is most often because the distribution
of the data is unknown but sometimes this is because the distribution is known
but the likelihood function is intractable. In the latter cases, it can still be
possible to achieve the efficiency of ML via GMM. This will happen if the true
score function lies in the space spanned by the moment conditions; for example
see Singleton (2001).13

However, more often than not, the distribution is not part of the specifica-
tion. In many such situations, GMM is based on a moment condition derived
from the orthogonality of a function of the data and φ0, ut(φ0), and a vector of
instruments zt, and so the only difference in possible moments is in the choice
of possible instruments. This scenario - often referred to as “generalized instru-
mental variables” (GIV)14 - has received a lot of attention within the GMM
literature but is less relevant to II. We, therefore, only provide a brief summary
here designed to provide an indication of the approaches taken rather than spe-
cific details. Hansen (1985) characterizes the optimal choice of instruments and
the associated efficiency bound.15 However, recalling the partial information
nature of GMM, this characterization may involve assumptions about aspects
of the data generation process that are not specified as part of the underly-
ing economic model. While non-parametric methods of calculating the optimal
instrument are available for i.i.d. data,16 their extension to time series is com-
plicated by the dependence of the optimal instrument on aspects of the dynamic
structure of the data that are often not part of the economic model. For this
reason and others, attention has focussed on instrument selection based on some
data-based criterion. Examples of such criterion include: the estimated second
order mean squared error of the estimators;17 Lasso techniques.18

More relevant to exploring connections between GMM and II are methods

13Also see discussion in Carrasco and Florens (2000).
14See Hansen and Singleton (1982).
15Also see Hayashi and Sims (1983), Hansen, Heaton, and Ogaki (1988), Heaton and Ogaki

(1991), Anatolyev (2003) and West, Wong, and Anatolyev (2009).
16See Newey (1990).
17For example see Donald and Newey (2000) and Carrasco (2012).
18See Belloni, Chen, Chernozhukov, and Hansen (2012).
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that can handle more general functional forms of g( · ). Hall, Inoue, Jana, and
Shin (2007) propose a Relevant Moment Selection Criterion (RMSC) that is
designed to exclude any redundant moment conditions. As defined by Breusch,
Qian, Schmidt, and Wyhowski (1999), a sub-set of the moment conditions used
in the estimation are redundant if their inclusion/exclusion does not affect the
first order asymptotic properties of the GMM estimator. However, while there
may be no first order effects, the inclusion of redundant moment conditions can
lead to a deterioration of the accuracy of first order asymptotic to the finite
sample of GMM based inference techniques.19 Although RMSC is essentially
based on first order asymptotic arguments, Hall, Inoue, Jana, and Shin (2007)
report simulation evidence that its use to eliminate redundant moments from
the candidate set can yield an estimator with better finite sample properties
than the estimator based on all moment conditions in the entire candidate set.

We now consider methods for choosing which moments are valid. An-
drews (1999) considers both sequential testing and information criterion meth-
ods based on the overidentifying restrictions test. In this case, the objective is
to uncover the maximal number of valid moment conditions from the candidate
set, and Andrews (1999) delineates conditions under which this happens with
probability one.20 As pointed out by Hall and Peixe (2003), a weakness of this
criterion is that it leads to the inclusion of valid moments irrespective of whether
their inclusion is informative about θ0. Thus, the chosen moment condition set
may contain some moments that are redundant. Hall, Inoue, Jana, and Shin
(2007) show that the sequential use of Andrews’s (1999) Moment Selection Cri-
terion (MSC) and RMSC leads to the selected moments are both valid and
contain no redundancies with probability one. Liao (2013) proposes a Lasso
based method for selecting valid moment conditions. As with Andrews’s (1999)
MSC, this approach includes all valid moments irrespective of their information
content. Cheng and Liao (2013) propose a modification to the criterion to en-
sure the Lasso method does not include any redundant moments.

II:
Although comparatively unusual in the GMM context, II involves, by its very
nature, scenarios in which the distribution of the data is specified. Therefore, it
is possible to choose the moments to achieve asymptotic efficiency. As pointed
out by Gallant and Tauchen (1996), it is natural in this context to make the
auxiliary model a QML that is chosen to be as close as possible to the true (in-
tractable) likelihood. The ideal situation is if the simulator model is smoothly
embedded within the auxiliary model that is, when the joint probability density
functions of the simulator evaluated at θ0 equals that under the auxiliary model
evaluated at h0 = b(θ0), where we have replaced the ∗ subscript h by 0 to em-
phasize that it represents the true value of the parameters in the auxiliary model
as that model is now a valid alternative representation of the data generation
process. In this case, II is as efficient as MLE as s→ ∞. Even if this ideal is not

19See Hall and Peixe (2003) and Hall, Inoue, Jana, and Shin (2007).
20See Andrews and Lu (2001) extend Andrews’s (1999) method to select parameters as well.
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attainable, careful choice of the auxiliary model can yield II estimators that are
close to the asymptotic efficiency of MLE. For example, Garcia, Renault, and
Veredas (2011) consider II estimation of the parameters of stable distributions
using the skewed-t distribution as auxiliary model, and find II comes close to
achieving the Cramer-Rao lower bound for this model.

If a suitable choice of QML is not known a priori then Gallant and Tauchen
(1996) argue for using a flexible functional form that is known to be able to
approximate the true likelihood arbitrarily well as the sample size increases;
they refer to such a distribution as a “general purpose score generator”. In this
case, if h( · ) is allowed to expand so that it nests the score of the true distribu-
tion then the resulting II estimator is as efficient asymptotically as maximum
likelihood. To illustrate, suppose it is desired to estimate a stochastic volatility
model, the likelihood of which is intractable. Then Gallant and Tauchen (1996)
suggest setting h( · ) equal to the score from a semi-nonparametric (SNP) den-
sity function whose lead term is the probability density function of a Gaussian
ARCH model.21 If the order of expansion inherent in the SNP increases with
the sample size then the resulting II estimator will be (almost) efficient.22 For
obvious reasons, Gallant and Tauchen (1996) termed this version of II: Efficient
Method of Moments. Expressing this notion in terms of the quasi-scores instead
of QMLE - as Gallant and Tauchen (1996) do - then the argument is essentially
the same as noted in the GMM context that is, asymptotic efficiency is achieved
if the moments in the quasi score span the true score function.

The foregoing discussion deals with the case where the auxiliary model is
a quasi-likelihood. Moment selection may also be an issue in other settings
too, and has received some attention in the context of DSGE estimation based
impulse response matching. In this setting, it is customary to use a relatively
large number of impulse responses. Using the direct analogy to the impact
of redundant moments in GMM, Hall, Inoue, Nason, and Rossi (2012) observe
that the inclusion of (multiple) redundant impulse responses can lead to a severe
deterioration in the quality of the first order asymptotic distribution theory as an
approximation to the finite sample behaviour of the resulting estimator. They
propose the Relevant Impulse Response Selection Criterion (RIRSC), modeled
on RMSC in GMM, and that can be used to screen the candidate set of impulse
responses to exclude those that provide no information. Hall, Inoue, Nason, and
Rossi (2012) demonstrate that its use can improve the the quality of the first
order asymptotic theory to the post-selection estimator.

The issue of selecting which moments are valid has also received attention.
At first sight, this might seem strange as the maintained assumption so far is
that the simulator is correct data generation process. However, Dridi, Guay,
and Renault (2007) argue that DSGE models are inherently misspecified as a
general representation of the economy. However, while we may not believe all of
it, there may be parts of the model that permit consistent estimation of certain
parameters that are of primary interest. So in this setting, if we partition the

21SNP densities are introduced in Gallant and Nychka (1987).
22The use of simulation introduces a multiplication factor of (1 + 1/s) in the large sample

variance, but this can be made arbitrarily close to 1 by making s large.
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parameter vector again into θ′ = (φ′, ψ′), where φ represent the parameters of
interest, ψ are “nuisance parameters”,23 then this setting is described by the
existence of a binding function b1( · ) such that,

k1(h∗,1, φ0, ψ∗) = h∗,1 − b1(φ0, ψ∗) (15)

where h1,∗ is a subset of h∗(·), φ0 represents the true value of the parameters
of interest and ψ∗ is the pseudo-true value of the nuisance parameters. This
scenario is outside the original II framework, and so Dridi, Guay, and Renault
(2007) extend it by both defining partial II (PII) estimators to cover this sit-
uation and presenting their first order asymptotic theory. To implement PII
to obtain consistent estimators of the parameters of interest, it is necessary to
identify the valid relations. Dridi, Guay, and Renault (2007) propose a sequen-
tial testing strategy based on a variant of the overidentifying restrictions test.
Hall, Inoue, Nason, and Rossi (2012) propose a Valid Impulse Response Selec-
tion Criterion (VIRSC) that is an adaptation of Andrews’s (1999) MSC to this
setting.

As the above discussion suggests, the treatment of moment selection in II
depends on the setting. If the auxiliary model is a quasi-score then moment se-
lection is handled through using knowledge of the simulator to make a judicious
choice of QML or through the use of a SNP-based QML. In these cases, there
seems little scope for using the kind of methods developed within the GMM
literature. However, in settings such as estimation of DSGE based on impulse
response functions, the parallels between GMM and II moment selection seem
far stronger. To date, moment selection strategies based on the overidentifying
restrictions test and RMSC have been applied in this setting. In principle, there
seems no reason why other approaches developed for special cases of GMM -
such as selection based on minimizing second order mean square error - could
not be applied in this context as well.

We conclude this section by considering the wider question of whether to
use GMM or II in models where both are feasible, which is, in a sense, an issue
of moment selection. In terms of first order asymptotics, the choice is one of
efficiency. As noted above, II has the potential for (near) asymptotic efficiency
with appropriate choice of auxiliary model. In contrast, GMM estimation can
be based on moment conditions implied by the distribution such as, either the
polynomial moments (mean, variance, skewness etc.) or the characteristic func-
tion (if feasible). Extant evidence suggests II dominates: for example see Garcia,
Renault, and Veredas (2011) in the context of estimation of parameters of the
stable distribution, or compare the results of simulation studies of GMM and
EMM estimation of the stochastic volatility model in, respectively, Andersen
and Sørensen (1996) and Andersen, Chung, and Sørensen (1999).

3.2 Identification failure

GMM:

23Some of which are estimated along with φ and others calibrated.
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Asymptotic normality of the GMM estimator (Proposition 2 above) is predicated
on first order local identification (Assumption 3(iii) above). It has been realized
that in certain circumstances of interest this assumption fails or is close to doing
so with the result that Proposition 2 either does not hold or provides a poor
guide to behaviour in the sample sizes relevant to certain types of applications.
The literature on this topic is voluminous and so here we confine our attention
to describing the main ways in which violations of Assumption 3(iii) have been
modeled and the consequences for asymptotic behaviour of GMM estimators.24

As with moment selection, a large part of the GMM literature has focussed on
the GIV case, and we note that in the case where this is applied to a linear
model then identification (Assumption 2(iii)) and first order local identification
are the same. In nonlinear models, they differ and this is something we return
to below. Below, we use GIV-L to denote GIV applied to linear models.

Identification failure can either be complete or partial: if complete then φ0

is unidentified; if partial then φ0 is unidentified but certain linear combinations
of φ0 are identified. For GIV-L, Phillips (1989) shows φ̂GMM converges to a
random limit and so consistency is lost, but if identification is partial then Choi
and Phillips (1992) show that the identified linear combinations of φ0 can be
consistently estimated but have a non-standard asymptotic distribution.

In nonlinear models, φ0 can be identified even if first order identification
fails. Dovonon and Renault (2013) demonstrate that first order identification
fails but second order, and hence global, identification holds in certain mod-
els of interest in asset pricing. In this case, the Jacobian is null and so the
usual analysis behind the the first order asymptotic distribution does not ap-
ply. Dovonon and Renault (2013) show that in this case, the overidentifying
restrictions test converges to a random variable whose distribution is bounded
from below by χ2

q−pφ and from above by χ2
q , meaning the use of the standard

first order asymptotic distribution leads to over-sized tests. We return to the
implications of second order identification for the GMM estimator in Section 4.

The first order identification also does not hold if φ0 is on the boundary of
Φ. In this case, φ̂T cannot be characterized via the standard the first order
conditions in (10) asymptotically and so the conventional first order analysis
cannot be applied to deduce the limiting distribution in Proposition 2. Andrews
(2002) demonstrates that the limiting distribution of T 1/2(φ̂T − φ0) is non-
standard but can be simulated. Further, he shows that even if only a sub-
vector of φ0 is on the boundary, the limiting distributions of all elements of
T 1/2(φ̂T − φ0) are non-standard unless a certain block-diagonality condition
holds.

In the cases described above first order identification failure is exact. This
case has received relatively little attention in the GMM literature to date.25

Instead, driven by some high profile empirical examples, attention has focused
on the case where first order identification is technically satisfied but in some

24A more comprehensive review is contained in Hall (2015).
25Arellano, Hansen, and Sentana (2012) propose methods for both testing for exact identi-

fication failure and also learning about the dimensions in which identification fails based on
the overidentifying restrictions test statistic.

12



sense close to being violated. It is this scenario that is covered by the concepts
of “weak” and “nearly-weak” identification.

Staiger and Stock (1997) introduced the concept of weak identification in
GIV-L, Stock and Wright (2000) refined the concept and extended the analysis
to nonlinear models. The key technical restriction behind weak identification is
that the Jacobian is full rank - and so first order locally identified - for finite
T but is converging to a rank deficient matrix at rate T−1/2 so that first or-
der local identification fails in the limit. Under weak identification, Stock and
Wright (2000) demonstrate the standard first order asymptotic framework for
GIV does not go through, with the limiting behaviour qualitatively the same as
derived by Phillips (1989) and Choi and Phillips (1992) for GIV-L with exact
identification failure. These analyses therefore indicate that even if identifica-
tion holds but is close to failure then the standard first order asymptotic theory
may provide a poor approximation to finite sample behaviour. This clearly
raises a problem for a practitioner who is concerned the parameters of his/her
model may be weakly identified. Two solutions suggest themselves: first, to
pre-test the quality of the identification of candidate moments; second, to base
inference on procedures that are robust to the quality of the identification. The
first approach has been explored in the context of the linear model estimated
by IV - for which the Jacobian only depends on the relationship between the
endogenous regressors and instruments - with a number of different statistics
being proposed.26 The second approach is based on finding statistics that can
be inverted to construct confidence sets for ψ0 irrespective of the quality of the
identification. Well known statistics of this type include the Anderson-Rubin
(AR) statistic27, the K- statistic (Kleibergen, 2002, 2006) and the conditional
likelihood ratio (CLR) statistic (Moreira, 2003; Kleibergen, 2005). While such
confidence sets have the attractive feature of being robust to failures of iden-
tification, the computational burden associated with their calculation increases
with pφ and makes this approach infeasible for large pφ. This burden can be
reduced if only a subset of the parameters are of primary interest; see inter alia
Dufour and Taamouti (2005), Kleibergen and Mavroeidis (2009) and Chaudhuri
and Zivot (2011). The key difference between these approaches and the stan-
dard Wald-type confidence intervals - “estimator” ± 2 × “standard error” - is
that the confidence sets based on these identification-robust statistics can be
infinite and non-contiguous whereas the Wald intervals are of finite length and
contiguous by construction. Thus if φ0 is unidentified, the identification-robust
confidence set can be infinite demonstrating nothing has been learned about φ0

from the model, whereas the Wald interval implies spuriously that something
has been learnt.28

The weak identification framework is designed to approximate situations in
which the information content of moments, while non-zero, is sufficiently low to

26For example see Cragg and Donald (1993), Hall, Rudebusch, and Wilcox (1996), Shea
(1997) and Stock, Wright, and Yogo (2002).

27See Anderson and Rubin (1949), Dufour (1997) and Staiger and Stock (1997).
28If φ0 is not first order identified then the Wald intervals are invalid; see Dufour (1997) for

further discussion.
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undermine standard first order asymptotic inferences. For this end, the choice of
T−1/2 as the rate of decay of Jacobian is critical. Hahn and Kuersteiner (2002)
considered the the limiting behaviour of the Two Stage Least Squares (2SLS)
estimator when the rate of decay is slower, a scenario they refer to as nearly-
weak identification. They show that in this case consistency is restored and
many conventional GMM statistics have the same properties as under standard
first order asymptotics. The difference is that compared to the standard case,
convergence to the limiting properties is slower.29

Both weak and nearly-weak identification are technical devices designed to
understand how the estimator behaves in the case where first order identification
is technically satisfied but in some sense close to being violated. Taken together,
the derived results indicate the “proximity” to first order identification failure
is key. Weak and nearly-weak identification yield different large sample theories
that provide approximations that are appropriate in different circumstances. To
our knowledge, it remains an open question as to how to decide which is more
appropriate in nonlinear models in any given circumstance.

If the moments are less informative, one solution is to increase their number
as the sample size increases. In linear models, Chao and Swanson (2005) estab-
lish conditions under which various estimators, including 2SLS, are consistent
as the number of instruments increases with T . Han and Phillips (2006) con-
sider the extension of this framework to nonlinear models estimated via GMM
with a constant weighting matrix (WT = W ). They demonstrate that many
different types of asymptotic behaviour of such estimators - including consis-
tency and asymptotic normality - are possible depending on the rate of growth
of information about θ0 as the number of moments (qT ) increases. Collectively
these results indicate the key feature here is the rate at which the informa-
tion in the moment conditions increases as the set of moments is expanded.
However, extant evidence suggests that GMM is dominated in such scenarios
by other moment-based estimators, such as Generalized Empirical Likelihood;
see Bekker (1994), Chao and Swanson (2005), Hansen, Hausman, and Newey
(2008), and Newey and Windmeijer (2009).

II:
While all the original presentations of SMM-II-EMM note the need for first
order local identification in order to justify the first order asymptotic framework
discussed above, the consequences of its violation has received far less attention
in this context than in GMM. This can be explained in the II-EMM case by the
focus on QMLE of the auxiliary model, and the freedom of the researcher to
choose an auxiliary model that is convenient for the situation in hand. However,
in other settings, the assumption of first order local identification may be more
tenuous.

Canova and Sala (2009) have raised concerns about the nature of the identi-
fication in the context of DSGE models estimated by matching impulse response
functions. Here h( · ) is a composite mapping, h( · ) = r (α(θ)) where

29Antoine and Renault (2009) and Caner (2010) extended these results to nonlinear models.
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• r( · ) is the mapping from the impulse responses to the parameters of the
auxiliary model (the VAR), termed the “moment mapping” by Canova
and Sala (2009);

• α( · ) is the mapping from the auxiliary model parameters to the parame-
ters of the DSGE, termed the “solution mapping”.

Canova and Sala (2009) observe that solution mapping is typically highly
nonlinear, and so it can be that θ0 is only partially identified. Furthermore,
weak identification can also be present. Within this setting, the Jacobian of
h( · ), H say, equals RA where R is the Jacobian of the moment mapping and
A, the Jacobian of the solution mapping. By analogy to GMM, the problems
associated with weak identification will be present if H is rank deficient or close
to being so. Clearly, as pointed out by Canova and Sala (2009), this can happen
here due to rank deficiency in either R or A. As in GMM this can be difficult
to assess a priori, especially as these derivatives may have to be obtained via
simulation. Canova and Sala (2009) recommend examining the eigenvalues (or
some function thereof) of R′R and A′A to investigate whether either (or both)
of these two mappings may be a source of identification problems.

If the identification problems stem from the auxiliary model then one so-
lution is the use of Constrained Indirect estimation (Calzolari, Fiorentini, and
Sentana, 2004). This method extends the original Indirect Estimation frame-
work (described in Section 2) by allowing restrictions on the parameter space of
the auxiliary model. If these problem areas of the parameter space in the aux-
iliary model can be deduced a priori then it makes sense to avoid them as the
auxiliary model is just a target for the simulator. In such settings, the poten-
tial problems caused by identification are simply side-stepped by appropriately
restricting the parameter space over which the auxiliary model is estimated.

However, in more general settings, this solution may not be available because
the identification problems either apply to the whole parameter space of the
auxiliary or to the simulator. For these cases, it is, in principle, possible to
follow the approaches taken in the GMM literature to develop a companion
theory of II. However, to our knowledge, there are no formal treatments of II
when first order local identification fails or is close to failing. We return to this
topic in Section 4.

3.3 Misspecified models

GMM:
The first order asymptotic theory in Section 2 is predicated on the assumption
that the population moment condition is correct. While this is typically the
assumption under which inference is performed, there are circumstances when
the underlying model is acknowledged to be misspecified and that as a result the
population moment condition is invalid. A leading example is in asset pricing.
Hansen and Jaganathan (1991) demonstrate the mean and standard deviation
of the stochastic discount factor (SDF) that prices a set of assets must fall in
admissible region that can be estimated nonparameterically. It has been found
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that in many cases parametric forms of the SDF do not attain this admissible
region, and thus are misspecified. Hansen and Jaganathan (1997) propose a
measure of the size of the pricing error (made with a misspecifed SDF), known
thereafter as the “Hansen-Jaganathan (HJ) distance”. Hansen, Heaton, and
Luttmer (1995) present methods for testing hypotheses about the HJ distance;
Kan and Robotti (2009) present methods for testing which of two models has a
smaller HJ distance.30 Within this context, it may also be of interest to perform
inference about the parameters of the proxy SDF. Hall and Inoue (2003) develop
an asymptotic distribution theory for GMM estimators in overidentified mod-
els.31 They show the GMM estimator converges to the “pseudo-true value”, θ∗,
but that the rate of convergence and θ∗ itself depends on the weighting matrix.
They further show that, in certain leading cases, T 1/2(θ̂T − θ∗) converges to
a mean zero normal distribution with a variance that is different from Vφ in
Proposition 2 but can be consistently estimated.

II:
As mentioned in Section 3.1, the idea of inference within misspecified models
has arisen in discussion of the interpretation of DSGE models. Dridi, Guay,
and Renault (2007) have argued in this context that the simulator cannot be
considered the true data generation process. However, there might be parts of
the model that can be used to consistently estimate the parameters of interest,
as described in (15). They propose the PII for estimation in this case. Here the
parameters of interest are consistently estimated, and the misspecified nature
of the model manifests itself through the interpretation of ψ∗ as a pseudo-
true value, and in the variance of the first order asymptotic distribution of PII
estimator of φ0 as a distinction now needs to be made in the limits of certain
matrices evaluated at the actual and simulated data.

The above scenario is possible in DSGE models given the underlying models
cover different aspects of the economy. In simpler settings, misspecification may
be anticipated to impact on all the parameters of interest. This gives rise to
the question of how the parameters should be interpreted in this setting. Given
the similarities between II and GMM, it is not surprising that the qualitative
features of GMM analysis in misspecified models carries over to II. Specifically,
the II estimator converges in probability to a pseudo-true value defined as the
argmin of the population analog to the minimand in (5)- a value that depends
then on the weighting matrix; see Aguirre-Torres and Toribio (2004) for EMM,
and Oh and Patton (2013) for SMM estimation of copula-based multivariate
models.32 Aguirre-Torres and Toribio (2004) also present a limiting distribu-

30See also inter alia Gospodinov, Kan, and Robotti (2013).
31Maasoumi and Phillips (1982) present the large sample behaviour of IV in misspecified

linear models.
32Oh and Patton (2013) explore the use of SMM to estimate copula-based multivariate

models in which the parameters are estimated by matching certain “pure” dependence mea-
sures, such as Spearmans’s rank correlation, that are unaffected by the marginal distributions
of the data. They establish conditions for the consistency and asymptotic normality of the
estimators of the parameters indexing the copula.
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tion for EMM under misspecification. Their analysis highlights an important
difference between GMM and EMM: in GMM, misspecification inevitably im-
plies the moment on which estimation is based cannot be set to zero; in EMM,
misspecification of the simulator is compatible with both k(h∗, θ0) = 0 and
k(h∗, θ0) 6= 0. The intuition is best understood by thinking in terms of match-
ing the score of the auxiliary model. For a finite order SNP, the score involves a
finite set of moments and there is always the potential that these can be matched
by the misspecified simulator. This is important because it is the non-zero mean
of the moment evaluated at the pseudo-true value that complicates the asymp-
totic behavior of the GMM estimator. Thus, Aguirre-Torres and Toribio (2004)
show that the limiting distribution of EMM is asymptotically normal but its
variance depends critically on whether or not k(h∗, θ0) equals zero. They note,
however, that as the order of the SNP increases, it is the case with k(h∗, θ0) 6= 0
that must ultimately apply because as the order of the SNP increases then so
do the number of moments involved in the score of the auxiliary model, and a
misspecified distribution can not match all the moments of the data.

Therefore, the parallels between the treatments of misspecification in GMM
and II depend on the context of the II estimation.

4 GMM and II asymptotic behaviour under first

order local identification failure

In this section, we consider the moment condition model (1) and study the
asymptotic behaviour of the GMM estimator when the standard local iden-
tification condition (Assumption 3(iii)) fails. We also derive the asymptotic
distribution of the II estimator when the auxiliary model is a moment condition
model that has such a local identification issue.

4.1 Asymptotic distribution of the GMM estimator

While the global identification condition ensures consistency of the GMM es-
timator, its the asymptotic distribution depends on how sharply the moment
function m(φ) ≡ Eg(X, φ) moves away from 0 in the neighborhood of φ0. Stan-
dard results are derived under the so-called first order local identification con-
dition, i.e. M(φ0) has rank pφ. But in nonlinear models, global identification
is possible without first order local identification as highlighted by the exam-
ple in Section A of Appendix. Sargan (1983) has studied the IV estimator in
this context whereas Dovonon and Renault (2009, 2013) have recently studied
the GMM overidentification test when the moment condition moment is rank
deficient at the true parameter value. In globally identified models, local iden-
tification can be ensured by higher order derivatives of the moment function
m(φ). The second order local identification condition is introduced by Dovonon
and Renault (2009) as follows:
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Definition 1. The moment condition m(φ) = 0 locally identifies φ0 ∈ Φ up to
the second order if:

(a) m(φ0) = 0.

(b) For all u in the range of ∂m′

∂φ (φ0) and all v in the null space of ∂m
∂φ′

(φ0),
we have:

(

∂m

∂φ′
(φ0)u+

(

v′
∂2mk

∂φ∂φ′
(φ0)v

)

1≤k≤q

= 0

)

⇒ (u = v = 0).

Without requiring that the Jacobian matrix M(φ0) has full rank, conditions
(a) and (b) in Definition 1 guarantee local identification in the sense that there
is no sequence of points {φn} different from φ0 but converging to φ0 such that
m(φn) = 0 for all n.

We will study the asymptotic behaviour of the GMM estimator by restricting
ourselves to the case of one-dimension rank deficiency, i.e. rank ofM(φ0) is equal
to pφ − 1, since this seems to be the only case that is analytically tractable.
If M(φ0) has rank pφ − 1 with ∂m

∂φpφ
(φ0) = 0, second order identification is

equivalent to:

Rank

(

∂m

∂φ1′
(φ0)

∂2m

∂φ2
pφ

(φ0)

)

= pφ,

where φ is partitioned into (φ1′

, φpφ)
′. This is the setting studied by Sar-

gan (1983) for the instrumental variables estimator in nonlinear in parameters
model.

Letting D = ∂m
∂φ1′

(φ0) and G = ∂2m
∂φ2

pφ

(φ0), we next derive the asymptotic

distribution of the GMM estimator under the following condition.

Assumption 4. (i) ∂m
∂φpφ

(φ0) = 0.

(ii) Rank (D G) = pφ.

We also require the following stronger assumption than Assumptions 1 and
3 in Section 2:

Assumption 5. (i) mT (φ) has partial derivatives up to order 3 in a neigh-
borhood Nε of φ0 and the derivatives of mT (φ) converge in probability
uniformly over Nε to those of m(φ).

(ii)
√
T

(

mT (φ0)
∂mT
∂φpφ

(φ0)

)

d→
(

Z0

Z1

)

.

(iii) WT −W = oP (T−1/4), ∂mT
∂φ1′

(φ0) −D = OP (T−1/2),

∂2mT
∂φ2

pφ

(φ0) − G = OP (T−1/2) and ∂2mT
∂φ1′∂φpφ

(λ0) − G1pφ = oP (1), with

G1pφ = ∂2m
∂φ1′∂φpφ

(φ0).
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Assumption 5 is useful to derive the asymptotic distribution of the GMM
estimator under the second order local identification setting of Assumption 4.
These conditions are slightly stronger than the standard ones. The derivation
of the asymptotic distribution of the GMM estimator requires a mean-value
expansion of mT (φ) up to the third order and the uniform convergence guaran-
teed by Assumption 5(i) are in particular useful to control the remainder of our
expansions. Assumption 5(ii) gives the joint asymptotic distribution of mT (φ0)
and ∂mT

∂φpφ
(φ0). Under mild assumptions on g(x, φ0) and ∂g

∂φpφ
(x, φ0), both hav-

ing zero mean, the central limit theorem guarantees that

(

Z0

Z1

)

∼ N(0, v),

with v = limT→∞ V ar
√
T

(

mT (φ0)
∂mT
∂φpφ

(φ0)

)

.

Assumption 5(iii) imposes the asymptotic order of magnitude of the differ-
ence between some sample dependent quantities and their probability limits.
These orders of magnitude are enough to make these differences negligible in
the expansions. It is worth mentioning that Assumption 5(iii) is not particularly
restrictive since most of the orders of magnitude imposed are guaranteed by the
central limit theorem.

In preparation for our asymptotic theory result, we define the following quan-
tities. Let Md be the matrix of the orthogonal projection on the orthogonal of
W 1/2D:

Md = Iq −W 1/2D(D′WD)−1D′W 1/2,

where Iq is the identity matrix of size q, let Pg be the matrix of the orthogonal
projection on MdW

1/2G:

Pg = MdW
1/2G

(

G′W 1/2MdW
1/2G

)−1

G′W 1/2Md,

and let Mdg be the matrix of the orthogonal projection on the orthogonal of
(

W 1/2D W 1/2G
)

:

Mdg = Md − Pg.

Let

R1 =
(

Z
′
0W

1/2PgW
1/2

Z0G
′ −G′W 1/2MdW

1/2
Z0Z

′
0

)

× W 1/2MdW
1/2
(

1
3
L +G1pφHG

)

/σG

+ Z
′
0W

1/2MdgW
1/2(Z1 +G1pφHZ0),

(16)

with σG = G′W 1/2MdW
1/2G, and H = −(D′WD)−1D′W .

The following result gives the asymptotic distribution of the GMM estimator
φ̂ as defined by (3):

Theorem 1. Under Assumptions 2, 4, and 5, we have:
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(a) φ̂1 − φ1
0 = OP (T−1/2) and φ̂pφ − φ0,pφ = OP (T−1/4).

(b) If in addition, φ0 is interior to Φ,

√
T

(

φ̂1 − φ1
0

(φ̂pφ − φ0,pφ)
2

)

d→
(

HZ0 +HGV/2
V

)

,

with V = −2
ZI(Z<0)

G′W1/2MdW1/2G
and Z = G′W 1/2MdW

1/2
Z0. I(·) is the

usual indicator function.

(c) If in addition, R1 does not have an atom of probability at 0, then:

( √
T (φ̂1 − φ1

0)

T 1/4(φ̂pφ − φ0,pφ)

)

d→ X ≡
(

HZ0 +HGV/2

(−1)B
√

V

)

,

with B = I(R1 ≥ 0).

The proof of this theorem is provided in Appendix. Part (a) is due to
Dovonon and Renault (2009). We however provide a proof since our conditions
are slightly different from theirs. Part (b) gives the asymptotic distribution

of (φ̂1 − φ1
0, (φ̂pφ − φ0,pφ)

2). This result is obtained by eliciting the OP (T−1)

terms of m′
T (φ̂)WTmT (φ̂) which are collected into KT (φ) as given by (39) in

Appendix. The fact that KT (φpφ) is a quadratic function of (φpφ−φ0,pφ)
2 gives

an intuition of the fact that only the asymptotic distribution of (φ̂pφ − φ0,pφ)
2

can be obtained from this leading term of the expansion of the GMM objective
function. The distribution of (φ̂pφ −φ0,pφ) can be obtained from Part (b) up to
the sign which cannot be deduced from this leading term but rather is obtainable
from the higher order, OP (T−5/4), term of the objective function’s expansion.
We actually obtain:

m′
T (φ̂)WTmT (φ̂) = KT (φ̂pφ) + (φ̂pφ − φ0,pφ)R1T + oP (T−5/4)

showing that the minimum is reached at (φ̂pφ − φ0,pφ) having opposite sign to
R1T . See (40) in Appendix for the expression of R1T . So long as TR1T , with

limit distribution R1 does not vanish asymptotically, the sign of (φ̂pφ − φ0,pφ)
can be identified by this higher order term in the expression leading to Part (c)
of the theorem.

Remark 1. The continuity condition for R1 at 0 is not expected to be restric-
tive in general since R1 is a quadratic function of the Gaussian vector (Z′

0,Z
′
1)

′.
However, when H = q = 1 (one moment restriction with one non first-order
locally identified parameter), we can see that R1 = 0. In this case, the charac-

terization of the asymptotic distribution of T 1/4(φ̂ − φ0) may be problematic if

the estimating function is quadratic in φ. Actually, T 1/4(φ̂− φ0) may not have

a proper asymptotic distribution in this case whereas
√
T (φ̂−φ0)

2 does have one
as given by Theorem 1(b).
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Remark 2. The asymptotic distributions in Parts (b) and (c) of Theorem 1 are
both non standard but easy to simulate. The source of randomness is (Z′

0,Z
′
1)

′

which is typically a Gaussian vector with zero mean and asymptotic variance

v = limT→∞ TV ar

(

mT (φ0)
∂mT
∂φpφ

(φ0)

)

which can be consistently estimated by sam-

ple variance if there are no serial correlation or by heteroskedasticity and au-
tocorrelation consistent procedures if there are serial correlations (see Andrews
(1991)). Letting v̂ be a consistent estimate of v, drawing randomly copies of
(Z′

0,Z
′
1)

′ from N(0, v̂) and using consistent estimators of D, W , G, L and G1pφ

shall give reasonable approximation of copies from these limiting distributions.

Assumption 4 requires that the rank deficiency occurs in a particular way
as one column of the Jacobian matrix of the moment function vanishes whereas
the other columns are linearly independent. This is only a particular form of
lack of first order identification that does not fit exactly our example in Section
A of Appendix. However, as mentioned by Sargan (1983), up to a rotation
of the parameter space, all rank deficient problems can be brought into this
configuration as we can see below.

Let M0 = ∂m
∂φ′

(φ0) and assume that the moment condition model (1) is such

that Rank (M0) = pφ − 1 without having a column that is equal to 0.
Let R be any nonsingular (pφ, pφ)-matrix such that M0R•pφ = 0, where R•pφ

represents the last column of R. We can write (1) in terms of the parameter
vector η: λ = Rη and consider the model:

E (g(X,Rη)) = 0. (17)

By the chain rule, it is not hard to see that Model (17) identifies η0 = R−1φ0

with local identification properties matching Assumption 4. More precisely, we
have:

∂m(Rη)

∂ηpφ

∣

∣

∣

∣

η0

= M0R•pφ = 0 and Rank

(

∂m(Rη)

∂η1′

∣

∣

∣

∣

η0

)

= Rank(M0R
1) = pφ−1,

where R1 is the sub-matrix of the first pφ − 1 columns of R. We can therefore

claim that the asymptotic distribution, X̃, of

( √
T (η̂1 − η1

0)

T 1/4(η̂pφ − η0,pφ)

)

is obtained

by Theorem 1 with D, G, L, and G1pφ replaced respectively by:

D̃ = M0R
1; G̃ =

(

R′
•q

∂2mk

∂φ∂φ′
R•pφ

)

1≤k≤q

; L̃ =
(

R′
•pφAkR•pφ

)

1≤k≤q
,

Ak =

(

∂3mk

∂φi∂φj∂φ′
(φ0)R•pφ

)

1≤i,j≤pφ

;

and G̃1pφ , the (q, pφ − 1)-matrix with its k-th row equal to R′
•pφ

∂2mk
∂φ∂φ′

R1.
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We use the fact that φ̂− φ0 = R(η̂ − η0) to obtain the asymptotic distribu-

tion of φ̂ − φ0. Specifically, letting BT =

( √
TIpφ−1 0

0 T 1/4

)

, we obtain the

asymptotic distribution of BTR
−1(φ̂− φ0) as that of BT (η̂ − η0).

Feasible inference is possible by replacing R by a consistent estimate R̂.
However, because all the components of R−1(φ̂ − φ0) are not converging at
the same rate, one needs to exercise some caution in claiming the asymptotic
equivalence between BT R̂

−1(φ̂− φ0) and BTR
−1(φ̂ − φ0). Clearly,

BT R̂
−1(φ̂− φ0) = BTR

−1(φ̂− φ0) + εT (18)

εT = −BT R̂−1(R̂− R)R−1(φ̂− φ0). But εT does not always vanish asymptoti-
cally. We distinguish two cases:

Case 1: R̂−R = oP (T−1/4). This is the case, for example, if R does not depend
on φ0 and R̂ is a smooth function of sample means of the data (and does not
depend on φ0). In such a case we typically have R̂ − R = OP (T−1/2). By the
Cauchy-Schwarz inequality, we have:

‖εT ‖ ≤ ‖R̂−1‖‖T 1/4(R̂− R)‖‖T 1/4R−1(φ̂− φ0)‖ = OP (1)oP (1)OP (1)

and this remainder is negligible so that BT R̂
−1(φ̂ − φ0) is asymptotically dis-

tributed as X̃

Case 2: R̂−R = OP (T−1/4). This is expected for example if R is a function of
φ0, i.-e. R ≡ R(φ0). If R(·) is continuously differentiable in a neighborhood of
φ0, we can show (see Appendix) that:

εT = −A
√
T (η̂pφ − η0,pφ)

2 + oP (1), (19)

with

A =

(

Ipφ−1 0
0 0

)

R−1∂R•pφ

∂φ′
(φ0)R•pφ .

Hence, BT R̂
−1(φ̂−φ0) is asymptotically distributed as X̃−A(X̃pφ )2. It is worth

mentioning that this change of joint asymptotic distribution of φ̂− φ0 does not
affect the marginal distribution of its slowest converging linear combinations.

Our example in Section A of Appendix falls in Case 2 since possible choices
of R depend on the true value of the parameter of interest. We can actually
choose:

R =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 2δΩ2













, R̂ =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

0 0 0 0 2δ̂Ω̂2













,

with Ω̂2 = ĥ2 − ĥ3/δ̂.

22



4.2 Asymptotic distribution of II with under-identified

auxiliary

In this section, we derive the asymptotic distribution of the indirect inference
estimator as defined by (4) and (5) when the auxiliary model is given by moment
conditions that are first order locally under-identified.

Let us consider the auxiliary model to be the following moment condition:

E[g(x, h)] = 0, (20)

where g(·) a q × 1 vector of continuous functions and h is the ` × 1 vector of
parameters. As described in Section 2, h is estimated based on ( 20) using the

data and simulated series providing the sequences hT and h
(i)
T (θ), i = 1, . . . , s

that are the auxiliary features used to estimate the parameter of interest θ by
the quadratic optimization (5).

We assume that (20) satisfies the local identification property in Assumption
5 in terms of the parameter h and derive the asymptotic distribution of the
indirect estimator θ̂II in this framework. We use ΩT to denote the sequence
of weighting matrices that determine the indirect estimator in (5) and keep

WT as sequence of weighting matrices that determine ĥT . We assume that ΩT
converges in probability to Ω that is symmetric positive definite.

Proposition 2 ensures that the indirect estimator is consistent under As-
sumption 2 which continue to hold even when the auxiliary model is not first
order locally identified. If θ0 is interior to θ, the indirect estimator solves with
probability approaching 1 the first order condition (9):

MIT (θ̂II)
′ΩTmIT (θ̂II ) = 0,

with mIT (θ) = hT − 1
s

∑s
i=1 h

(i)
T (θ) and MIT (θ) = ∂mIT

∂θ′ (θ). By a first order
mean-value expansion of mIT around θ0, we have:

MIT (θ̂II)ΩT

(

mIT (θ0) +MIT (θ̇T )(θ̂II − θ0)
)

= 0,

with θ̇T ∈ (θ̂II , θ0) and may differ from row to row. We deduce that:

θ̂II − θ0 = −
(

MIT (θ̂II )
′ΩTMIT (θ̇T )

)−1

MIT (θ̂II)
′ΩTmIT (θ0).

That is:

θ̂II − θ0 = ḞT

(

hT − 1

s

s
∑

i=1

h
(i)
T (θ0)

)

, (21)

with

ḞT = −
(

MIT (θ̂II )
′ΩTMIT (θ̇T )

)−1

MIT (θ̂II )
′ΩT .

The asymptotic distribution of θ̂II−θ0 depends on that of hT − 1
s

∑s
i=1 h

(i)
T (θ0).

Under the conditions of Theorem 1 for the auxiliary moment condition model,

BT (hT − h0)
d→ X, and BT (h

(i)
T − h0)

d→ X,
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for all i = 1, . . . , s with BT the diagonal ` × ` matrix of rates of convergence
with all its diagonal elements equal

√
T except for the last one which is T 1/4.

Hence, assuming that h
(i)
T (θ0) are independent across i and independent of

hT
33, we have:

BT

(

hT − 1

s

s
∑

i=1

h
(i)
T (θ0)

)

d→ Y ≡ X0 −
1

s

s
∑

i=1

Xi,

where X0,X1, . . .Xs are independent with the same distribution as X.
The fact that the rates of convergence in the diagonal of BT are not all

equal make the determination of the rate of convergence of θ̂II − θ0 from that
of mIT (θ0) more complicate than in the standard case. Pre-multiplying (21) by
T 1/4, we have:

T 1/4(θ̂II −θ0) = ḞT,•`T
1/4mIT,`(θ0)+oP (1) = F•`T

1/4mIT,`(θ0)+oP (1), (22)

where F is the probability limit of ḞT and ḞT,•` and F•` are the `-th column of

ḞT and F , respectively. Hence:

T 1/4(θ̂II − θ0)
d→ F•`Y`,

where F•` is defined similarly to ḞT,•` and Y` is the `-th component of X.
This asymptotic distribution represents a p-dimensional sample dependent

random vector that converges in distribution to a random vector that has only
one dimension of randomness. In fact, T 1/4 appears to be the slowest rate of
convergence of (θ̂II − θ0) in any direction in the space asymptotic inference on
θ0 would benefit from a further characterization of the asymptotic distribution.
We expect that some linear combinations of θ̂II − θ0 converge faster than other
others that converge at the rate T 1/4.

To derive this asymptotic distribution, we will rely on a second order ex-
pansion of mIT (θ̂II) around θ0. Such higher order expansion is imposed by the

fact that (θ̂II − θ0) has the rate of convergence T 1/4 in some directions and

therefore, its quadratic function is not negligible component of mIT (θ̂II). We
make the following assumption:

Assumption 6. ∆IT,k(θ) ≡ ∂2mIT,k(θ)
∂θ∂θ′ converges in probability uniformly over

Nε to ∆I,k(θ) ≡ ∂2mI,k(θ)
∂θ∂θ′ for k = 1, . . . , `.

By a second order mean-value expansion of mIT (θ0) around θ̂II , and after
re-arranging, we have:

mIT (θ̂II )

= mIT (θ0) +MIT (θ̂II )(θ̂II − θ0) − 1
2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`
,

33This is the case when there are no state variables so that the simulated samples are
independent across i = 1, . . . , s. (See Gourieroux, Monfort and Renault (1993).)
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where θ̇T ∈ (θ0, θ̂II) may differ from row to row. Solving this in (θ̂II−θ0) yields:

θ̂II − θ0 = F̂T

(

mIT (θ0) −
1

2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

, (23)

with

F̂T = −
(

MIT (θ̂II )
′ΩTMIT (θ̂II )

)−1

MIT (θ̂II )
′ΩT .

To characterize the directions of fast convergence of θ̂II −θ0 , let ŜT be the p×p
matrix with unit and pairwise orthogonal p-vectors as rows with the last row
equal to the last column of F̂T normalized and Ŝ1

T be the (p−1)×p submatrix of

the first (p−1) rows of ŜT . The last remark in this section gives how the matrix
ŜT can be determined as a continuous function of the last column of F̂T . By
definition, Ŝ1

T F̂TmIT (θ0) does not depend on the slow converging component,
mIT,`(θ0), of mIT (θ0). We therefore have:

√
T Ŝ1

T

(

θ̂II − θ0

)

= Ŝ1
T F̂TBT

(

mIT (θ0) − 1
2

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

.

(24)

By combining (22) and (24) and letting S be the probability limit of ŜT and

BIT =

( √
TIp−1 0

0 T 1/4

)

, we have the following result:

Theorem 2. Assume that the indirect estimator’s program satisfies Assump-
tions 2, 3 and 6 with θ0 interior to Θ. Assume that the auxiliary model satisfies
Assumptions 2, 4 and 5, and that h0 is interior to the auxiliary parameter set
and that the related random variable R1 as defined by (16) has no atom of prob-
ability at 0. If the s indirect inference samples are generated independently and
the last column of F is different from 0, then:

BIT ŜT

(

θ̂II − θ0

)

d→







S1F
(

Y − (Y`)
2

2 (F ′
•`∆I,k(θ0)F•`)1≤k≤`

)

Sp•F•`Y`






,

where S1 is the submatrix of the first (p − 1) rows of S, Sp• is the last row of
S, F•` is the last column of F , Y = X0 − 1

s

∑s
i=1 Xi, with Xj ’s independently

and identically distributed as X, and Y` is the `-th component of Y.

The proof is relegated to the Appendix. The asymptotic distribution of
BIT ŜT (θ̂II − θ0) can be simulated by replacing S, F and ∆I,k(θ0), k = 1, . . . , `

by their estimates, Ŝ, F̂ and ∆IT,k(θ̂II ), k = 1, . . . , `. The simulation of Y

which is based on that of X which is described in the previous section.
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Remark 3. In the case where the rank deficiency in the auxiliary model appears
in a way that no column of the Jacobian matrix is nil, we can get the asymptotic
distribution of the indirect estimator as follows. The asymptotic distribution of
BT R̂

−1(hT −h0) is derived in the previous section. Let X̃ denote this asymptotic
distribution in either Case 1 or Case 2. From (21), we can show that:

T 1/4(θ̂II − θ0) = FR•`T
1/4(R̂−1mIT (θ0))` + oP (1),

where R•` is the last column of R and (R̂−1mIT (θ0))` is the last component of
R̂−1mIT (θ0). Also, from (23), we have

θ̂II−θ0 = F̂T R̂

(

R̂−1mIT (θ0) −
1

2
R̂−1

(

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

)

1≤k≤`

)

.

Letting SRT be row-wise, the orthonormal basis obtained by completing the
last column of F̂T R̂ according to Remark 4 below,and SR its probability limit,
we have that:

BIT ŜRT

(

θ̂II − θ0

)

d→







S1
RFR

(

Ỹ − (Ỹ`)
2

2
R−1 (R′

•`F
′∆I,k(θ0)FR•`)1≤k≤`

)

SR,p•FR•`Ỹ`






,

where Ỹ = X̃0− 1
s

∑s
i=1 X̃i, with X̃j’s are independent and identically distributed

as X̃ and S1
R, SR,p• are defined similarly to S1 and Sp• in Theorem 2.

Remark 4. Let us now describe a procedure that can be used to determine the
matrix of orthogonal directions ST from F̂T .

Let u be a p-vector different from 0. Take the first p − 1 vectors from the
canonical basis (e1, e2, . . . , ep) of <p, the span of which does not contain u.
Assume without loss of generality that these elements are e1, e2, . . . , ep−1 in this
order (the order of elements in the bases are important to guarantee uniqueness
of the outcome).

Consider the basis (u, e1, e2, . . . , ep−1) and determine an orthonormal ba-
sis from this basis using the Gram-Schmidt orthonormalization process. Let
(ũ, ẽ1, ẽ2, . . . , ẽp−1)be the resulting orthonormal basis. Take

S(u) = (ẽ1 ẽ2 . . . ẽp−1 ũ)
′
.

We can verify that this procedure gives a unique S and is a continuous func-
tion of u. The continuity of this procedure allows the application of the contin-
uous mapping theorem as we do in the proof of Theorem 2.

In this subsection we have studied the asymptotic behaviour of the indirect
estimator when the auxiliary moment condition model is only second order
locally identified, but the indirect inference estimation program (5) is standard
in the sense that it satisfies Assumptions 1, 2 and 3. It is worth mentioning
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the possibility of the indirect inference program suffering local identification
issues in its own right. This would be the case if MI (θ0) has rank r < p. Second
order identification would be warranted ifmI (θ) satisfies Definition 1 at θ0. If, in
particular, the rank of MI(θ0) is p−1 and the conditions of Assumption 5 apply
to mI (·) and ΩT , then the asymptotic distribution of the indirect estimator is
readily available by applying Theorem 1. Note however that the investigation of
local identification properties of the indirect inference program may be difficult
particularly as mI (·) and MI (·) are often obtained by simulation.

5 Concluding remarks

In this paper, we make two contributions. Firstly, we explore the connections
between Generalized Method of Moments and Indirect Inference, and secondly,
we provide new results on the limiting behaviour of GMM and II estimators
when first order identification fails but the parameters are second order identi-
fied.

Our examination of the connections between GMM and II reveal some in-
teresting similarities and differences between the methods. Although GMM
and II are implemented in different ways, both can be viewed as “minimum
chi-squared” methods and hence share the same linear algebraic structure of
their first order analyses, although the regularity conditions underlying each
are different in important ways. Since both methods involve moment-based es-
timation, it is natural to expect that issues relevant to GMM estimation are also
relevant to II. In this paper, we investigate the extent to which this is the case,
focusing on three particular topics: moment selection, identification failure and
inference in misspecified models. We find that extent of the influence of GMM
analyses of these topics for II depends on the context of the II estimation.

In applications such as estimation of stochastic volatility models, it is natural
to choose the auxiliary model to be a quasi-likelihood based on a distribution
with similar properties to the simulator. In such cases, there seems little need for
GMM-type moment selection methods or GMM-type weak identification robust
inference procedures. However, in applications such as estimation of DSGE
models, the auxiliary model consists of impulse response functions and GMM-
type methods of moment selection seem more relevant. Furthermore, DSGE
models are often highly nonlinear and so it is quite possible that parameters may
be only partially or weakly or second-order identified. All these scenarios for
identification failures, near or exact, have been explored in the GMM literature
to some degree but, to our knowledge, these approaches have previously not
been extended to II.

Within the GMM framework, misspecification implies the population mo-
ment condition is invalid, and as a result the estimator is inconsistent and
standard first order asymptotic theory does not apply. Within II, misspecifica-
tion implies the simulator is not the true model and, again, the consequences
of this depend on the context. In applications such as the stochastic volatility
model, the consequences for II are similar to those for GMM. In applications to
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DSGE, the focus has been on finding parts of the model that permit consistent
estimation of certain parameters of interest. This approach is termed Partial II
(PII), and the first order asymptotic distribution is similar to that of II once
allowance is made for the fact that other aspects of the model are wrong.

Our second contribution is to present the limiting distribution of both the
GMM estimator under second order identification and also the II estimator in
cases where the auxiliary model is second order identified. These limit distri-
butions are shown to be non-standard, but we show that they can be easily
simulated, making it possible to perform inference about the parameters in this
setting. An implication of our results is that the limiting distributions of GMM
and II are different under first order and second order identification. The choice
of limit theory then requires knowledge of the quality of the identification but
this may be difficult to assess a priori. It would therefore be interesting to ex-
plore ways to generate confidence sets based on these estimators that are robust
to the rank deficiency issue. One possible approach may be the use of bootstrap
methods, building from recent work on bootstrapping the GMM overidentifica-
tion test by Dovonon and Gonçalves (2014).
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A Example: Indirect estimation of the condi-

tionally heteroskedastic factor model

In this example, we consider the conditionally heteroskedastic factor CHF) model that
is specified in terms of parameter θ to be estimated. We derive a natural auxiliary
model implied by this CHF model. The auxiliary model is a moment condition model
with parameter vector h that can be expressed in terms of θ (h ≡ h(θ)) allowing
for indirect inference on θ. We show that the auxiliary model is first order locally
underidentified and indirect inference on θ can be performed via our asymptotic theory
in Section 4.

Consider the conditionally heteroskedastic factor model of two asset returns:
„

y1t

y2t

«

=

„

γ1

γ2

«

ft +

„

u1t

u2t

«

, (25)

with
E ((ft, ut)|Ft−1) = 0, V ar (ft|Ft−1) = σ2

t−1,

V ar((u1t, u2t)
′|Ft−1) = Diag(Ω1, Ω2), Cov(ft, ut|Ft−1) = 0.

(26)

In this model, ft is the latent common GARCH factor, ut is the vector of idiosyncratic
shocks and σ2

t−1 is the time varying conditional variance of ft where the conditioning
set Ft is an increasing filtration containing current and past values of ft and yt. In
addition to this specification, it is assumed that γ1 6= 0 and γ2 6= 0, meaning that the
two asset return processes are conditionally heteroskedastic. The conditions γ1 > 0
and V ar(ft) = 1 are added for identification purpose.

This model has been introduced by Diebold and Nerlove (1989) and further stud-
ied by Fiorentini, Sentana, and Shephard (2004) and Doz and Renault (2006). It is
sometimes assumed that (ft, ut)

′ is conditionally normally distributed.
We are interested in estimating the parameter vector θ ≡ (γ1, γ2, Ω1, Ω2)

′.

Estimation: In the literature, this model has been estimated by:

• Kalman filter and other simulation methods (Fiorentini, Sentana, and Shephard,
2004)): They specify an AR(1) dynamics for σ2

t along with some distributional
assumption for ft and ut. They are then able to write some state-space rep-
resentation for the model that can be optimally estimated when the assumed
distribution is correct.

• GMM : Moment conditions are derived that identify all parameters up to one
(say, γ1) that is given a ‘reasonable’ value. (See Doz and Renault, 2006;
Dovonon, 2013). An extra benefit from doing this sort of calibration is that
V ar(ut|Ft−1) can be identified even if it is nondiagonal.)

Auxiliary Model: There exists δ such that
`

1 −δ
´

„

γ1

γ2

«

= 0. Hence, y1t−δy2t =

u1t − δu2t. We therefore have:

E
`

(y1t − δy2t)
2|Ft−1

´

= c(= Ω1 + δ2Ω2).

Taking an appropriate instrument zt−1 from Ft−1, (e.g lagged square returns), we
have:

E

„

1
zt−1

«

ˆ

(y1t − δy2t)
2 − c

˜

ff

= 0.
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We can show that this model identifies globally both δ and c. We also have:

Ey2
1t = γ2

1 + Ω1 ≡ b1, Ey2
1t = γ2

1 + Ω2 ≡ b2, and Ey1ty1,t−1 = γ1γ2 ≡ b3.

The auxiliary model is defined as:

E

„

1
zt−1

«

ˆ

(y1t − δy2t)
2 − c

˜

ff

= 0

Ey2
1t = b1

Ey2
2t = b2

Ey1ty2t = b3.

(27)

The parameter vector h = (b1, b2, b3, δ, c)
′ of this model is globally identified. In

addition, the parameter θ of the structural model can be determined from h. In fact,
we can use the relations:

b1 = γ2
1 +Ω1, b2 = γ2

2 +Ω2, b3 = γ1γ2, c = Ω1+δ2Ω2, and c = b1+δ2b2−2δb3

to obtain:

θ1 ≡ γ1 =
√

δb3 , θ2 ≡ γ2 =

r

b3
δ

, θ3 ≡ Ω1 = b1 − δb3, θ4 ≡ Ω2 = b2 − b3
δ

.

The auxiliary model is first order locally underidentified: The Jacobian matrix of

E

„

1
zt−1

«

ˆ

(y1t − δy2t)
2 − c

˜

ff

at the true parameter value is:

»

−2E

„

1
zt−1

«

y2t (y1t − δy2t)

ff

−
„

1
E(zt)

«–

.

At the true parameter value, y1t−δy2t = u1t−δu2t. Therefore, E (y2t(y1t − δy2t)|Ft−1) =
−δΩ2. (Since y2t(y1t − δy2t) = γ2ft(u1t − δu2t) + u2t(u1t − δu2t).) Thus, By the law
of iterated expectations, this Jacobian matrix is:

„

2δΩ2

„

1
Ezt−1

«

−
„

1
Ezt−1

««

which is of rank 1. In total, the Jacobian matrix of the auxiliary model is

0

B

B

B

B

@

0 0 0 2δΩ2 −1
0 0 0 2δΩ2Ezt−1 −Ezt−1

−1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0

1

C

C

C

C

A

which is of rank 4 instead of 5.
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B Proofs

Proof of Theorem 1 (a) We write mT (φ̂) = mT (φ̂1, φ̂pφ ). A first order mean-value

expansion of φ1 7→ mT (φ1, φ̂pφ) around φ1
0 yields:

mT (φ̂1, φ̂pφ) = mT (φ1
0, φ̂pφ) +

∂mT

∂φ1′
(φ̄1, φ̂pφ)(φ̂1 − φ1

0),

where φ̄1 ∈ (φ1
0, φ̂

1) and may differ from row to row. Next, a second-order mean-value
expansion of φpφ 7→ mT (φ1

0, φpφ) around φ0,pφ that we plug back in the expression of

mT (φ̂) yields:

mT (φ̂) = mT (φ0) + ∂mT
∂φ1′

(φ̄1, φ̂pφ )(φ̂1 − φ1
0) + ∂mT

∂φpφ
(φ0)(φ̂pφ − φ0,pφ )

+ 1
2
∂2mT
∂φ2
pφ

(φ1
0, φ̄pφ)(φ̂pφ − φ0,pφ )2,

where φ̄pφ ∈ (φ0,pφ , φ̂pφ) and may differ from row to row.

Since ∂mT
∂φ′pφ

(φ0) = OP (T−1/2) and φ̂pφ − φ0,pφ = oP (1), we have:

mT (φ̂) = mT (φ0) + ∂mT
∂φ1′

(φ̄1, φ̂pφ)(φ̂1 − φ1
0)

+ 1
2
∂2mT
∂φ2
pφ

(φ1
0, φ̄pφ)(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

(28)

Let us define D̄ = ∂mT
∂φ1′

(φ̄1, φ̂pφ ) and Ḡ = ∂2mT
∂φ2
pφ

(φ1
0, φ̄pφ ). Pre-multiplying (28) by

D̄′WT , we get

φ̂1 − φ1
0 =

`

D̄′WT D̄
´−1

D̄′WT

“

mT (φ̂) − mT (φ0)
”

− 1
2

`

D̄′WT D̄
´−1

D̄′WT Ḡ(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

(29)

The oP (T−1/2) term stays with the same order because D̄ and WT are both OP (1).
Plugging this back into (28), we get:

mT (φ̂) = mT (φ0) + D̄
`

D̄′WT D̄
´−1

D̄′WT

“

mT (φ̂) − mT (φ0)
”

+ 1
2
W

−1/2
T M̄dW

1/2
T Ḡ(φ̂pφ − φ0,pφ )2 + oP (T−1/2),

with M̄d = Iq − W
1/2
T D̄

`

D̄′WT D̄
´−1

D̄′W
1/2
T .

Hence,

m′
T (φ̂)WTmT (φ̂)

= m′
T (φ0)WTmT (φ0) + 1

4
Ḡ′W

1/2
T M̄dW

1/2
T Ḡ(φ̂pφ − φ0,pφ )4

+(φ̂pφ − φ0,1)
2OP (T−1/2) + OP (T−1)

(30)

The orders of magnitude in (30) follow from the fact that M̄d converges in probability
to Md and therefore is OP (1) and the fact that both mT (φ0) and mT (φ̂) are OP (T−1/2).
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The latter comes from the fact that m′
T (φ̂)WTmT (φ̂) ≤ m′

T (φ0)WTmT (φ0) (by defini-
tion of GMM estimator). Since WT converges in probability to W symmetric positive
definite, we can claim that mT (φ̂) is OP (T−1/2) as is mT (φ0). Again, by the definition
of the GMM estimator, the right hand side of (30) is less or equal to m′

T (φ0)WTmT (φ0)
and this gives:

1
4
G′W 1/2MdW

1/2GT (φ̂pφ − φ0,pφ )4 + oP (1)T (φ̂pφ − φ0,pφ )4

≤ OP (1) +
√

T (φ̂pφ − φ0,pφ )2OP (1)

(31)

Thanks to Assumption 4(ii) and the fact that W is nonsingular, MdW
1/2G 6= 0. As

a consequence, G′W 1/2MdW
1/2G 6= 0 which is sufficient to deduce from (31) that

T (φ̂pφ − φ0,pφ )4 = OP (1); or equivalently that T 1/4(φ̂pφ − φ0,pφ ) = OP (1). We obtain

φ̂1 − φ1
0 = OP (T−1/2) from (29).

(b) From (a) and (28), we have

mT (φ̂) = mT (φ0) + D(φ̂1 − φ1
0) +

1

2
G(φ̂pφ − φ0,pφ )2 + oP (T−1/2).

The first order condition for interior solution is given by:

∂mT

∂φ′
(φ̂)WTmT (φ̂) = 0.

In the direction of φ1, this amounts to

(D′ + oP (1))W

„√
TmT (φ0) + D

√
T (φ̂1 − φ1

0) +
1

2
G
√

T (φ̂pφ − φ0,pφ )2 + oP (1)

«

= 0.

This gives:

√
T (φ̂1 − φ1

0) = −(D′WD)−1D′W

„√
TmT (φ0) +

1

2
G
√

T (φ̂pφ − φ0,pφ )2
«

+ oP (1).

(32)
In the direction of φpφ , the first order condition amounts to

“

G′T 1/4(φ̂pφ − φ0,pφ ) + oP (1)
”

× W
“√

TmT (φ0) + D
√

T (φ̂1 − φ1
0) + 1

2
G
√

T (φ̂pφ − φ0,pφ )2 + oP (1)
”

= 0.
(33)

The terms in the first parentheses are obtained by a first order mean-value expansion
of ∂mT

∂φpφ
(φ̂) around φ0 and taking the limit. Plugging (32) into (33), we get:

T 1/4(φ̂pφ − φ0,pφ )

×
“

G′W 1/2MdW
1/2

√
TmT (φ0) + 1

2
G′W 1/2MdW

1/2G
√

T (φ̂pφ − φ0,pφ )2
”

= oP (1).

(34)
Since

√
TmT (φ0) and T 1/4(φ̂pφ−φ0,pφ) are OP (1), the pair is jointly OP (1) and by the

Prohorov’s theorem, any subsequence of them has a further subsequence that jointly
converges in distribution towards, say, (Z0, V0). From (34), (Z0, V0) satisfies:

V0

„

Z +
1

2
G′W 1/2MdW

1/2GV
2
0

«

= 0,
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almost surely with Z = G′W 1/2MdW
1/2

Z0. Clearly, if Z ≥ 0, then, V0 = 0, al-
most surely. Conversely, following the proof of Dovonon and Renault (2013, Propo-
sition 3.2), we can show that if Z < 0, then V0 6= 0, almost surely, and hence
V

2
0 = −2Z/G′W 1/2MdW

1/2G.

In either case, V
2
0 = −2 ZI(Z<0)

G′W 1/2MdW
1/2G

(≡ V) and is the limit distribution of the

relevant subsequence of
√

T (φ̂pφ − φ0,pφ )2. Hence, that subsequence of

(
√

TmT (φ0),
√

T (φ̂pφ − φ0,pφ )2) converges in distribution towards (Z0, V). The fact
that this limit does not depend on a specific subsequence means that the whole se-
quence converges in distribution to that limit. We use (32) to conclude.

Next, we establish (c). We recall that the result in (b) gives the asymptotic
distribution of

√
T (φ̂pφ − φ0,pφ )2. To get the asymptotic distribution of T 1/4(φ̂pφ −

φ0,pφ ), it suffices to characterize its sign. Following the approach of Rotnitzky, Cox,

Bottai, and Robins (2000) for MLE, we can do this by expanding m′
T (φ̂)WTmT (φ̂) up

to oP (T−5/4). Being of order OP (T−1), its OP (T−5/4) terms actually provide the sign
of (φ̂pφ − φ0,pφ ); leading to the asymptotic distribution of (

√
T (φ̂1 − φ1

0), T 1/4(φ̂pφ −
φ0,pφ )). By a mean-value expansion of mT (φ̂) up to the third order, we have:

mT (φ̂)

= mT (φ0) + ∂mT
∂φ1′

(φ0)(φ̂
1 − φ1

0) + ∂mT
∂φp

(φ0)(φ̂pφ − φ0,pφ ) + 1
2
∂2mT
∂φ2
pφ

(φ0)(φ̂pφ − φ0,pφ )2

+ ∂2mT
∂φpφ ∂φ

1′
(φ0)(φ̂

1 − φ1
0)(φ̂pφ − φ0,pφ ) + 1

6
∂3mT
∂φ3
pφ

(φ̇)(φ̂pφ − φ0,pφ )3 + OP (T−1),

where φ̇ ∈ (φ0, φ̂) and may differ from row to row. From Assumption 5(i), we get:

mT (φ̂) = mT (φ0) + D(φ̂1 − φ1
0) + ∂mT

∂φp
(φ0)(φ̂pφ − φ0,pφ ) + 1

2
G(φ̂pφ − φ0,pφ )2

+G1pφ (φ̂1 − φ1
0)(φ̂pφ − φ0,pφ ) + 1

6 L(φ̂pφ − φ0,pφ )3 + oP (T−3/4).

Hence,

mT (φ̂) ≡ Z0T + D(φ̂1 − φ1
0) + Z1T (φ̂pφ − φ0,pφ ) + 1

2
G(φ̂pφ − φ0,pφ )2

+G1pφ (φ̂1 − φ1
0)(φ̂pφ − φ0,pφ ) + 1

6L(φ̂pφ − φ0,pφ )3 + oP (T−3/4).
(35)

The first order condition for the φ̂ in the direction of φ1 is:

0 =
∂m′

T
∂φ1 (φ̂)WTmT (φ̂) =

“

D + G1pφ (φ̂pφ − φ0,pφ )
”′

WmT (φ̂) + oP (T−3/4) (36)

Plugging (35) into (36) and solving this in (φ̂1 − φ1
0) from the linear term and
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plugging back the outcome into the quadratic terms, we obtain:

φ̂1 − φ1
0 = H

“

Z0T + (Z1T + G1pφHZ0T )(φ̂pφ − φ0,pφ ) + 1
2
G(φ̂pφ − φ0,pφ )2

+
`

1
2
G1pφHG + 1

6
L

´

(φ̂pφ − φ0,pφ )3
”

+H1

“

(Z0T + DHZ0T )(φ̂pφ − φ0,pφ ) + 1
2
(DHG + G)(φ̂pφ − φ0,pφ )3

”

+oP (T−3/4)

= H
“

Z0T + 1
2
G(φ̂pφ − φ0,pφ )2

”

+
`

HZ1T + HG1pφHZ0T + H1Z0T + H1DHZ0T

´

(φ̂pφ − φ0,pφ )

+ 1
2

`

H(G1pφHG + L
3
) + H1(DHG + G)

´

(φ̂pφ − φ0,pφ )3 + oP (T−3/4).

with H = −(D′WD)−1D′W and H1 = −(D′WD)−1G′
1pφW . Hence, for a natural

choice of A1, B1 and C1, (φ̂1 − φ1
0) has the form:

(φ̂1 − φ1
0) = A1 + B1(φ̂pφ − φ0,pφ ) + C1(φ̂pφ − φ0,pφ )3 + oP (T−3/4) (37)

Using (35), we have:

m′
T (φ̂)WTmT (φ̂) = m′

T (φ̂)WmT (φ̂) + oP (T−5/4)

= Z ′
0TWZ0T + (φ̂1 − φ1

0)
′D′WD(φ̂1 − φ1

0) + 1
4
G′WG(φ̂pφ − φ0,pφ )4

+2Z ′
0TWD(φ̂1 − φ1

0) + 2Z ′
0TWZ1T (φ̂pφ − φ0,pφ ) + Z ′

0TWG(φ̂pφ − φ0,pφ )2

+2Z ′
0TWG1pφ (φ̂1 − φ1

0)(φ̂pφ − φ0,pφ ) + 1
3
Z ′

0TWL(φ̂pφ − φ0,pφ )3

+2(φ̂1 − φ1
0)

′D′WZ1T (φ̂pφ − φ0,pφ ) + (φ̂1 − φ1
0)

′D′WG(φ̂pφ − φ0,pφ )2

+2(φ̂1 − φ1
0)

′D′WG1pφ (φ̂1 − φ1
0)(φ̂pφ − φ0,pφ ) + 1

3
(φ̂1 − φ1

0)
′D′WL(φ̂pφ − φ0,pφ )3

+Z ′
1TWG(φ̂pφ − φ0,pφ )3 + G′WG1pφ (φ̂1 − φ1

0)(φ̂pφ − φ0,pφ )3

+ 1
6
G′WL(φ̂pφ − φ0,pφ )5 + oP (T−5/4).

(38)
Replacing φ̂1−φ1

0 by its expression from (37) into (38), the leading OP (T−1) term
of m′

T (φ̂)WTmT (φ̂) is obtained as KT (φ̂pφ) with

KT (φpφ )

= Z ′
0TWZ0T +

`

Z0T + 1
2
G(φpφ − φ0p)

2
´′

H ′D′WDH
`

Z0T + 1
2
G(φpφ − φ0,pφ )2

´

+ 1
4
G′WG(φpφ − φ0,pφ )4 + 2Z ′

0TWDH(Z0T + 1
2
G(φpφ − φ0,pφ )2)

+Z ′
0TWG(φpφ − φ0,pφ )2 +

`

Z0T + 1
2
G(φpφ − φ0,pφ )2

´′
H ′D′WG(φpφ − φ0,pφ )2.
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Hence,

KT (φpφ) = Z ′
0TW 1/2MdW

1/2Z0T + Z ′
0TW 1/2MdW

1/2G(φpφ − φ0,pφ )2

+ 1
4
G′W 1/2MdW

1/2G(φpφ − φ0,pφ )4.

(39)

The next leading term in the expansion of m′
T (φ̂)WTmT (φ̂) is of order OP (T−5/4) and

given by:

RT = (φ̂pφ − φ0,pφ )×
n

2A′
1D

′WDB1 + 2Z ′
0TWDB1 + 2Z ′

0TWZ1T

+2Z ′
0TWG1pφA1 + 2A′

1D
′WZ1T + 2A′

1D
′WG1pφA1

+(φ̂pφ − φ0,pφ )2
“

2A′
1D

′WDC1 + 2Z ′
0TWDC1 + 1

3Z ′
0TWL + B′

1D
′WG

+ 1
3 A′

1D
′WL + Z ′

1TWG + G′WG1pφA1

”

+(φ̂pφ − φ0,pφ )4
`

C′
1D

′WG + 1
6
G′WL

´

o

RT = (φ̂pφ − φ0,pφ )×
n

2Z ′
0TH ′D′WDB1 + 2Z ′

0TWDB1 + 2Z ′
0TWZ1T + 2Z ′

0TWG1pφHZ0T

+2Z ′
0TH ′D′WZ1T + 2Z ′

0TH ′D′WG1pφHZ0T

+(φ̂pφ − φ0,pφ )2
“

2Z ′
0TH ′D′WDC1 + 2Z ′

0TWDC1 + 1
3Z ′

0TWL + B′
1D

′WG

+ 1
3 Z ′

0TH ′D′WL + Z ′
1TWG + G′WG1pφHZ0T + G′H ′D′WDB1

+G′H ′D′WZ1T + Z ′
0TWG1pφHG + Z ′

0TH ′D′WG1pφHG + G′H ′D′WG1pφHZ0T

”

+(φ̂pφ − φ0,pφ )4
“

C′
1D

′WG + 1
6
G′WL + 1

2
G′H ′D′WG1pφHG + G′H ′D′WDC1

+ 1
6
G′H ′D′WL + 1

2
G′WG1pφHG

”o

≡ (φ̂pφ − φ0,pφ ) × 2R1T .
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Re-arranging the terms and using the fact that MdW
1/2D = 0, we have:

2R1T = 2Z ′
0TW 1/2MdW

1/2Z1T + 2Z ′
0TW 1/2MdW

1/2G1pφHZ0T

+(φ̂pφ − φ0,pφ )2
“

1
3
Z ′

0TW 1/2MdW
1/2L + Z ′

1TW 1/2MdW
1/2G

+G′W 1/2MdW
1/2G1pφHZ0T + Z ′

0TW 1/2MdW
1/2G1pφHG

”

+(φ̂pφ − φ0,pφ )4
“

1
6
G′W 1/2MdW

1/2L + 1
2
G′W 1/2MdW

1/2G1pφHG
”

.

(40)
We can check that the GMM estimator φ̂pφ as given by the first order condition

(34) is minimizer of KT (φpφ). When T 1/4(φ̂pφ − φ0,pφ ) is not oP (1), this first order
condition determines

(φ̂pφ − φ0,pφ )2 = −2
G′W 1/2MdW

1/2Z0T

G′W 1/2MdW 1/2G
+ oP (T−1/2)

but not the sign of (φ̂pφ − φ0,pφ ). Following the analysis of Rotnitzky, Cox, Bottai,

and Robins (2000) for the maximum likelihood estimator, the sign of φ̂pφ − φ0,pφ can

be determined by the remainder RT of the expansion of m′
T (φ̂)WTmT (φ̂). At the

minimum, we expect RT to be negative; i.e. (φ̂pφ−φ0,pφ) and R1T have opposite sign.
Hence,

T 1/4(φ̂pφ − φ0,pφ ) = (−1)BT T 1/4 |φ̂pφ − φ0,pφ |,
with BT = I(TR1T ≥ 0).

Plugging the expression of (φ̂pφ − φ0,pφ )2 into (40) and scaling by T , we can see,
using the continuous mapping theorem, that TR1T converges in distribution towards
R1:

R1 = Z
′
0W

1/2MdgW
1/2(Z1 + G1pφHZ0)

+
“

Z
′
0W

1/2(Md − Mdg)W
1/2

Z0G
′ − G′W 1/2MdW

1/2
Z0Z

′
0

”

×W 1/2MdW
1/2

“

1
3
L + G1pφHG

”

/σG,

(41)

with σG = G′W 1/2MdW
1/2G and

Mdg = Md − MdW
1/2G(G′W 1/2MdW

1/2G)−1G′W 1/2Md, the matrix of the orthogo-

nal projection on the orthogonal of
“

W 1/2D W 1/2G
”

.

We actually have that: (
√

TZ0T ,
√

TZ1T , TR1T ) converges in distribution towards

(Z0, Z1, R1). Applying Lemma 1, we have (
√

TZ0T ,
√

TZ1T , (−1)BT )
d→ (Z0, Z1, (−1)B),

where B = I(R1 ≥ 0).

Since
“√

T (φ̂1 − φ1
0), T 1/4|φ̂pφ − φ0,pφ |, (−1)BT

”

= OP (1), any subsequence of

the left hand side has a further subsequence that converges in distribution. Using (b),
such subsequence satisfies:

“√
T (φ̂1 − φ1

0), T 1/4|φ̂pφ − φ0,pφ |, (−1)BT
”

d→
“

HZ0 + HGV/2,
√

V, (−1)B

”

.

(We keep T to index the subsequence for simplicity.)
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Since the limit distribution does not depend on the subsequence, the whole se-
quence converges towards that limit. By the continuous mapping theorem, we deduce
that:

“√
T (φ̂1 − φ1

0), T 1/4(φ̂pφ − φ0,pφ )
”

d→
“

HZ0 + HGV/2, (−1)B
√

V

”

.

�

Lemma 1. Let (XT )T and (YT )T be two sequences of random variables and BT =

I(XT ≥ 0). If (XT , YT )
d→ (X, Y ) and P (X = 0) = 0, then

“

(−1)BT , YT
”

d→
“

(−1)B, Y
”

,

with B = I(X ≥ 0).

Proof of Lemma 1: Using the Cramer-Wold device, it suffices to show that: for all
(λ1, λ2) ∈ <×<,

λ1(−1)BT + λ2YT
d→ λ1(−1)B + λ2Y.

Let x ∈ < be a continuity point of F (x) = P (λ1(−1)B + λ2Y ≤ x). We show that:

P
“

λ1(−1)BT + λ2YT ≤ x
”

→ F (x), as T → ∞.

We have:

P
“

λ1(−1)BT + λ2YT ≤ x
”

= P (λ2YT ≤ x−λ1, XT < 0)+P (λ2YT ≤ x+λ1, XT ≥ 0).

To complete the proof, it suffices to show that, as T → ∞,

P (λ2YT ≤ x − λ1, XT < 0) → P (λ2Y ≤ x − λ1, X < 0) and

P (λ2YT ≤ x + λ1, XT ≥ 0) → P (λ2Y ≤ x + λ1, X ≥ 0)
(42)

since F (x) = P (λ2Y ≤ x − λ1, X < 0) + P (λ2Y ≤ x + λ1, X ≥ 0).
We now establish the first condition in (42). The second one is obtained along

the same lines. Note that P (λ2YT ≤ x − λ1, XT < 0) = P ((λ2YT , XT ) ∈ A) with
boundary of A given by: ∂A = ((−∞, x − λ1] × {0}) S

({x − λ1} × (−∞, 0]). Since
(XT , YT ) converge jointly in distribution towards (X,Y ), it suffices to show that

P ((λ2Y, X) ∈ ∂A) = 0.

We have:
P ((λ2Y, X) ∈ (−∞, x − λ1] × {0}) ≤ P (X = 0) = 0.

Besides,

P ((λ2Y, X) ∈ {x − λ1} × (−∞, 0]) = P (λ2Y = x − λ1, X ≤ 0).

By continuity of F at x, P
`

λ1(−1)B + λ2Y = x
´

= 0, i.-e.

P (λ2Y = x + λ1, X ≥ 0) + P (λ2Y = x − λ1, X < 0) = 0.

Thus, P (λ2Y = x − λ1, X < 0) = 0. Since P (X = 0) = 0, we can claim that

P (λ2Y = x + λ1, X ≤ 0) = 0.
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This completes the proof. �

Proof of Theorem 2: We have:

BIT ŜT
“

θ̂II − θ0

”

=

„ √
T Ŝ1

T (θ̂II − θ0)

T 1/4ŜT,p(θ̂11 − θ0)

«

.

From (24), we have

√
TŜ1

T

“

θ̂II − θ0

”

= Ŝ1
T F̂T

„

BTmIT (θ0) − 1

2
zT

«

,

with zT = BT

“

(θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0)

”

1≤k≤`
. For k = 1, . . . , ` − 1,

zT,k =
√

T (θ̂II − θ0)
′∆IT,k(θ̇T )(θ̂II − θ0) = T 1/4(θ̂II − θ0)

′∆IT,k(θ̇T )T 1/4(θ̂II − θ0)

and
zT,` = T 1/4(θ̂II − θ0)

′∆IT,`(θ̇T )(θ̂II − θ0).

From (22), we have T 1/4(θ̂II − θ0) = F•`T
1/4mIT,`(θ0) + oP (1). In addition, the fact

that ∆IT,k(θ̇T ) converges in probability towards ∆I,k(θ0) for all k = 1, . . . , `, allows
us to claim that: for 1 ≤ k ≤ ` − 1,

zT,k = F ′
•`∆I,k(θ0)F•`

“

T 1/4mIT,`(θ0)
”2

+ oP (1)

and
zT,` = OP (1)OP (1)oP (1) = oP (1).

Thus,

√
T Ŝ1

T

“

θ̂II − θ0

”

= Ŝ1
T F̂T

„

BTmIT (θ0) − 1
2

„

(F ′
•`∆I,k(θ0)F•`)1≤k≤`−1

0

«

“

T 1/4mIT,`(θ0)
”2

«

+ oP (1).

Since the last column of Ŝ1
T F̂T is nil, we can write:

√
T Ŝ1

T

“

θ̂II − θ0

”

= Ŝ1
T F̂T

„

BTmIT (θ0) − 1
2

(F ′
•`∆I,k(θ0)F•`)1≤k≤`

“

T 1/4mIT,`(θ0)
”2

«

+ oP (1).

(43)
Using again (22), we have

T 1/4ŜT,p(θ̂II − θ0) = ŜT,pF•`T
1/4mIT,`(θ0) + oP (1). (44)

By the continuous mapping theorem, Ŝ1
T F̂T converges in probability towards S1F

with nil last column and ŜT,p converges in probability towards Sp•. Since BTmIT (θ0)
converges in distribution towards Y, we can deduce from (43) and (44) that:

0

@

√
T Ŝ1

T (θ̂II − θ0)

T 1/4ŜT,p(θ̂11 − θ0)

1

A

d→

0

B

@

S1F
“

Y − (Y`)
2

2
(F ′

•`∆I,k(θ0)F•`)1≤k≤`

”

Sp•F•`Y`

1

C

A
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Proof of Equation (19): Since φ̂ − φ0 = R(η̂ − η0), we have

T 1/4(φ̂ − φ0) = R•pφT 1/4(η̂pφ − η0,pφ ). (45)

We also have

εT = −BT R̂−1(R̂ − R)R−1(φ̂ − φ0) = −BT R̂−1(R̂ − R)(η̂pφ − η0,pφ ).

But R̂ ≡ R(φ̂) and R ≡ R(φ0). By mean-value expansions, for j = 1, . . . , pφ,

R̂•j − R•j =
∂R•j

∂φ′
(φ̇j)(φ̂ − φ0),

where φ̇j ∈ (φ0, φ̂) and may differ from row to row and R•j denotes the column vector
corresponding to the jth column of the matrix R. We also use Rh• to denote the row
vector corresponding to the hth row of R.

For h = 1, . . . , pφ − 1,

εT,h = −
√

T
“

R̂−1
”

h•

pφ
P

j=1

“

∂R•j

∂φ′
(φ̇j)(φ̂ − φ0)

”

(η̂j − η0,j)

= −
“

R̂−1
”

h•

pφ
P

j=1

“

∂R•j

∂φ′ (φ̇j)T
1/4(φ̂ − φ0)

”

T 1/4(η̂j − η0,j)

= −
`

R−1
´

h•

∂R•pφ

∂φ′
(φ0)R•pφ

“

T 1/4(η̂pφ − η0,pφ )
”2

+ oP (1),

where the last equality uses (45) and the fact that R̂ and
∂R•j

∂φ′
(φ̇j) converge in proba-

bility towards R and
∂R•j

∂φ′
(φ0), respectively and the fact that T 1/4(η̂j − η0,j) = oP (1)

for j = 1, . . . , pφ − 1.
Besides, we have

εT,pφ = −
“

R̂−1
”

pφ•

pφ
X

j=1

„

∂R•j

∂φ′
(φ̇j)T

1/4(φ̂ − φ0)

«

(η̂j − η0,j) = oP (1).

Putting together these last two equalities, we get:

εT = −A
“

T 1/4(η̂pφ − η0,pφ )
”2

+ oP (1)

as expected. �
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