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Abstract

Models with multiple discrete breaks in parameters are usually estimated via least squares. This

paper, firstly, derives the asymptotic expectation of the residual sum of squares, the form of which

indicates that the number of estimated break points and the number of regression parameters

affect the expectation in different ways. Secondly, we propose a statistic for testing the joint

hypothesis that the breaks occur at specified points in the sample and show that the statistic has

a limiting null distribution that is non-standard but simulatable. In an important special case,

the statistic can be normalized to make it pivotal and we provide percentiles for the associated

limiting distribution. Our analytical results cover linear and nonlinear regression models with

exogenous regressors estimated via Ordinary (or Nonlinear) Least Squares and a linear model in

which some regressors are endogenous and the model is estimated via Two Stage Least Squares.

An application to US monetary policy rejects the common assumption that identified breaks are

associated with changes in the chair of the Fed.

JEL classification: C12, C13, C26, E52

Keywords: Linear models, Nonlinear models, Ordinary Least Squares, Two-Stage Least Squares,

Parameter change, US monetary policy



1 Introduction

There has been a considerable literature in econometrics on least squares-based estimation and

testing in models with discrete breaks in the parameters. The seminal paper by Bai and Perron

(1998) developed a framework for estimation and inference in linear regression models estimated

via Ordinary Least Squares (OLS) that has served as the template for similar frameworks in

more general models, including systems of linear regression models (Perron and Qu, 2006),

linear models with endogenous regressors estimated via Two Stage Least Squares (2SLS, Hall,

Han, and Boldea, 2012), and nonlinear regression models estimated by Nonlinear Least Squares

(NLS, Boldea and Hall, 2013).

Within these models, the key parameters of interest are those indexing the breaks - the break

fractions - and the regime specific coefficients. If the model in question is assumed to have

m breaks, then these key parameters are estimated by minimizing the residual sum of squares

over all possible data partitions involving m breaks. The asymptotic analysis then focuses on

establishing the consistency of and a limiting distribution theory for these parameters, and also

on the development of a limiting distribution theory for statistics relating to the number of

breaks. However, relatively little attention has been paid to the minimized residual sum of

squares per se, despite its key role in inference for these models.

The first study to examine analytically the consequences of coefficient break point estimation

on the residual sum of squares appears to be Ninomiya (2005), who considers breaks in the

mean of a Gaussian process with inference on the number of breaks conducted through AIC (the

Akaike Information Criterion) viewed as the bias-corrected maximum log-likelihood estimator.

Ninomiya (2005) finds the required bias implies that estimation of each break fraction parameter

has an impact on the the maximized log likelihood equivalent to estimation of three mean

parameters. This result, namely weighting estimation of each break point as three times that

of an individual regression coefficient, is used by Hall, Osborn, and Sakkas (2013) to propose

a modified penalty term for an information criterion employed when the number and dates of

breaks are estimated (along with the regression coefficients) in the OLS context, with Hall,

Osborn, and Sakkas (2015) providing an extension to the 2SLS case. Although these papers

include Monte Carlo studies that show the modified criteria to perform well, no formal analytical

results are provided to justify the relative weighting of break date versus coefficient estimation.



The present paper fills this gap, by studying the asymptotic behaviour of the residual sum of

squares in structural break models estimated by least squares (specifically, OLS, NLS and 2SLS).

To capture the realistic situation where the precise dates of change are unclear, the breaks are

assumed to be of magnitude that “shrinks” with the sample size; see Bai (1997).

More specifically, the paper makes three contributions. Firstly, we derive the asymptotic

expectation of the residual sum of squares in models with breaks in the coefficients at unknown

dates. For linear or nonlinear regression models with exogenous regressors, this expectation

depends on the numbers of estimated break points and estimated mean parameters, with the

former having a weight of three relative to each mean parameter. Although the expression is

more complicated in linear models estimated via 2SLS, nevertheless the principal result, namely

that each estimated break date has the same impact on the expectation as three estimated

mean parameters, carries over to this context. Secondly, we propose a statistic for testing

the joint hypothesis that the breaks occur at specified points in the sample. Under its null

hypothesis, this statistic is shown to have a limiting distribution that is non-standard but, under

certain assumptions, asymptotically pivotal after normalization; percentiles are provided for this

limiting distribution. Although the same distribution is obtained by Hansen (2000) (see also

Hansen, 1997) in the context of testing the location of the single threshold in a TAR (threshold

autoregressive) model, no joint test appears to have been proposed previously in the literature.

Our third contribution is to examine breaks in US monetary policy, for which we shed new light

on the common assumption that Paul Volcker taking over as Fed chair marked an immediate

policy change (see, for example, Clarida, Gali, and Gertler, 2000).

An outline of the remainder of the paper is as follows. Section 2 obtains the asymptotic

expectation of the minimized residual sum of squares for linear and nonlinear regression models

with exogenous regressors. Section 3 then examines the case of a model with endogenous re-

gressors estimated via 2SLS, where the reduced form may be either stable (with no breaks) or

unstable and subject to breaks that need not coincide with those of the structural form. Section

4 proposes our joint test for the hypothesis that breaks occur at certain pre-specified points

in the sample. A Monte Carlo analysis in Section 5 illustrates finite sample implications of the

preceding analyses. Section 6 examines breaks in US monetary policy, while Section 7 concludes.

All proofs are relegated to a mathematical appendix.
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2 RSS with Exogenous Regressors

Our analysis of the asymptotic expectation of the residual sum of squares covers both linear and

nonlinear regression models estimated by least squares. However, since the assumptions differ

in some important ways, it is convenient to treat the two cases separately.

2.1 Linear models

Consider the case in which the equation of interest is a linear regression model exhibiting m

breaks, such that

yt = x′tβ
0
i + ut, i = 1, ...,m+ 1, t = T 0

i−1 + 1, ..., T 0
i , (1)

with T 0
0 = 0 and T 0

m+1 = T , where T is the total sample size. Thus, yt is the dependent variable,

while xt is a p× 1 vector of exogenous explanatory variables that typically includes the constant

term, and ut is a mean zero error. As usual in the literature, we require the true break points

to be asymptotically distinct.

Assumption 1 T 0
i = [Tλ0i ], where 0 < λ01 < ... < λ0m < 1.1

Suppose now that a researcher knows the number of breaks but not their location(s). We use

λ to denote an arbitrary set of m break fractions, with λ = [λ1, . . . , λm]
′

and 0 < λ1 < . . . <

λm < 1, λ0 = 0 and λm+1 = 1. In order to minimize the overall residual sum of squares, the

researcher estimates the regression model

yt = x′tβ
∗
i + e∗t , i = 1, ...,m+ 1, t = Ti−1 + 1, ..., Ti, (2)

for each possible unique m-partition of the sample, where Ti = [λiT ], and e∗t is an error term.

This is embodied in the following assumption:

Assumption 2 Equation (2) is estimated over all partitions (T1, ..., Tm) such that Ti − Ti−1 >

max{p− 1, εT} for some ε > 0 and ε < infi(λ
0
i+1 − λ0i ).

Assumption 2 requires that each segment considered contains sufficient observations for es-

timation with finite T , while containing a positive fraction of the sample asymptotically; in

1[ · ] denotes the integer part of the quantity in brackets.
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practice ε is chosen to be small in the hope that the last part of the assumption is valid. The

estimates of β∗ = (β∗1
′, ..., β∗m+1

′)
′

are obtained by minimizing the sum of squared residuals

ST (T1, ..., Tm; β) =

m+1∑
i=1

Ti∑
t=Ti−1+1

{yt − x′tβi}
2

(3)

with respect to β = (β1
′, ..., βm+1

′)
′
. We denote these estimators by β̂({Ti}mi=1) with β̂j({Ti}mi=1)

being the associated estimator of β∗j relating to segment j. The estimators of the break points,

(T̂1, ..., T̂m), are then defined as

(T̂1, ..., T̂m) = argmin
T1,...,Tm

ST

(
T1, ..., Tm; β̂({Ti}mi=1)

)
(4)

where the minimization is taken over all possible partitions, (T1, ..., Tm), and the associated

minimized residual sum of squares is denoted RSS(T̂1, ..., T̂m) = ST

(
T̂1, ..., T̂m; β̂({T̂i}mi=1)

)
.

The OLS estimates, β̂({T̂i}mi=1), are then the regression parameter estimates associated with the

estimated partitions. The estimated break fractions are collected in λ̂, the m× 1 vector with jth

element T̂j/T . Bai (1997) and Bai and Perron (1998) derive the large sample behaviours of λ̂

and β̂({T̂i}mi=1), together with various tests for parameter variation that arise naturally in this

context.

Our focus is the large sample behaviour of the minimized residual sum of squares. To this

end, consider the asymptotic expectation of the bias term

ξT = RSS(T̂1, ..., T̂m) − Tσ2, (5)

where

RSS(T1, . . . , Tm) =

m+1∑
j=1

RSSj(T1, . . . Tm), (6)

RSSj(T1, . . . , Tm) =

Tj∑
t=Tj−1+1

{
yt − x′t β̂j({Ti}mi=1})

}2

. (7)

Hence ξT defined by (5) is the difference between the (minimized) residual sum of squares in

(3) and the expected error sum of squares, Tσ2 = E[
∑T
t=1 u

2
t ], in the data generating process

(DGP) of (1).

We decompose ξT into three components,

ξT =

3∑
j=1

ξj,T . (8)
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The first component,

ξ1,T = RSS(T̂1, ..., T̂m)−RSS(T 0
1 , ..., T

0
m), (9)

represents the effect on the residual sums of squares from using the estimated rather than the

true break dates. The second component is defined as

ξ2,T = RSS(T 0
1 , ..., T

0
m)− ESS(T 0

1 , ..., T
0
m), (10)

where ESS(T 0
1 , ..., T

0
m) is the error sum of squares for (1) evaluated using the true {β0

i }
m+1
i=1 .

Hence ξ2,T is the impact on the residual sum of squares from estimating the coefficients of (1)

with known (true) break dates. The final component is

ξ3,T = ESS(T 0
1 , ..., T

0
m) − Tσ2, (11)

and therefore captures the effects of the specific random disturbance sequence {ut}.

Let AE[·] denote the asymptotic expectation operator. To derive the AE[ξT ], we make the

following assumption about the magnitudes of the breaks:

Assumption 3 β0
i+1−β0

i = θ0T,i = θ0i sT where sT = T−α for some α ∈ (0, 0.5) and i = 1, ...,m.

Assumption 3 is the so-called “shrinking breaks” case, which is designed to capture the

situation in which there is uncertainty about the location of the breaks in moderate sized samples.

This assumption, with breaks restricted to shrink at a slower rate than T−1/2, is commonly

employed in the literature to deduce a limiting distribution for break-point estimators; see Bai

(1997) and Bai and Perron (1998).

Assumptions are also imposed about the regressors and errors, as follows.

Assumption 4 T−1
∑T 0

i−1+[rT ]

t=T 0
i−1+1

xtx
′
t

p→ rQi uniformly in r ∈ (0, λ0i − λ0i−1), where Qi is a

positive definite matrix for i = 1, . . .m+ 1.

Assumption 5 (i) E[ut | Ft] = 0 where Ft is the σ-algebra generated by {xt, ut−1, xt−1, ut−2,

. . .}; (ii) E[‖ht,i‖d] < Hd < ∞ for t = 1, 2, . . . and some d > 2, where ht,i is the ith element

of ht = utxt; (iii) VT,i(r) = V ar[T−1/2
∑T 0

i−1+[rT ]

t=T 0
i−1+1

ht] is uniformly positive definite for all T

sufficiently large2, and limT→∞ VT,i(r) = rVi, uniformly in r ∈ (0, λ0i − λ0i−1) where Vi is a

positive definite matrix of constants; (iv) σ2
i = E[u2t | Ft, t/T ∈ [λ0i−1, λ

0
i )] is a positive finite

constant for all i; (v) σ2
i = σ2, i = 1, . . . ,m+ 1.

2That is, there exists γ such that c′VT (1)c > γ > 0 for all vectors of constants c such that ‖c‖ = 1.
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Assumption 6 There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

Ail = (1/l)
∑T 0

i +l

t=T 0
i +1

xtx
′
t and of Āil = (1/l)

∑T 0
i

t=T 0
i −l

xtx
′
t are bounded away from zero for all

i = 1, ...,m.

Assumption 4 limits the behaviour of the regressor cross product matrix and rules out trend-

ing regressors but allows regime specific behaviour. Assumption 5(i)-(iii) ensures {xtut} satisfies

the Functional Central Limit Theorem within each regime (e.g. see White (2001)[Theorem 7.19]).

Parts (iv)-(v) place restrictions on Vi; they are stated separately since these are relaxed in some

parts of our analysis. Finally, Assumption 6 requires there be enough observations near the true

break points so that they can be identified and is analogous to the extension proposed in Bai

and Perron (1998) to their Assumption A2.

The component ξ1,T is the focus of much of our analysis. This is closely related to the

asymptotic distribution of the estimator for the location of a single break point obtained, under

an assumption of a “shrinking” or “small” break, by Yao (1987) for the mean of an i.i.d. process

and very recently extended to more general linear and nonlinear univariate time series models by

Ling (2015). Bai (1997) examines the break point estimator in a regression model, with Hansen

(1997, 2000) considering the analogous case of threshold estimation in a single threshold TAR

model, while multiple breaks are studied in Bai and Perron (1998). Lemmata 1 to 3, stated

below, readily follow from results available in this literature.

Lemma 1 Under Assumptions 1, 2, 3, 4, 5(i)-(iii) and 6, there exist positive constants Ki,

i = 1, ...,m, such that for large T, Pr
(∣∣Ti − T 0

i

∣∣ > Kis
−2
T

)
< Ci for any positive Ci <∞. Then

for ki ∈ [−Ki,Ki], i = 1, ...,m,

ξ1,T
d→

m∑
i=1

min
ki

Gi(ki) (12)

where

Gi(ki) =

 |ki| ai,1 − 2 c
1/2
i,1 Wi,1(−ki), if ki ≤ 0

|ki| ai,2 − 2 c
1/2
i,2 Wi,2(ki), if ki > 0

(13)

in which Wi,j(.) (i = 1, ...,m, j = 1, 2) are independent Brownian motions on [0, ∞) and

ai,j = θ0 ′i Q(i−1)+j θ
0
i (14)

ci,j = θ0 ′i V(i−1)+j θ
0
i . (15)
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Lemma 1 follows from arguments in Bai and Perron (1998) and Bai (1997); see the Appendix

below. Clearly, minimization of Gi(ki) is equivalent to maximization of G̃i(ki) = −Gi(ki),

namely the maximum of two independent Brownian motion processes with negative drifts. The

following Lemmata and Definition provide distributional results relating to this maximum.

Lemma 2 Let W (.) be a standard Brownian motion on [0, ∞). Then, for α > 0, γ > 0 and

k ∈ [0, ∞)

Pr

{
max
k

[γW (k)− αk] > m

}
= exp(−µm)

which is the cumulative distribution function (cdf) of the exponential distribution with parameter

µ = 2α/γ2.

Definition 1 Let B(µ1, µ2) denote the distribution with cdf

F (w;µ1, µ2) = (1− e−µ1w)(1− e−µ2w)

=

∫ w

0

f (b; µ1, µ2) db

where

f (b;µ1, µ2) =

2∑
i=1

µie
−bµi − µe−bµ (16)

for µ =
∑2
i=1 µi.

Lemma 3 Let vi ∼ exponential(µi) for i = 1, 2 and v1 ⊥ v2. Then b = max{v1, v2} ∼ B(µ1, µ2)

and

E[b] = µ−11 + µ−12 − (µ1 + µ2)−1. (17)

Lemma 2, which is stated in Bai (1997)[p.563] and, for γ = 1, in Stryhn (1996)[Proposition

1], makes clear that the maximum value taken by an individual Brownian motion process with

negative drift follows an exponential distribution. Our notation for the distribution of the max-

imum of two independent processes is given by (16). The result in (17), which is key to our

analysis, follows from the mean of an exponential distribution. Although not stated in this form,

Ninomiya (2005) uses the result in Lemma 3 in his analysis of the mean shift model.

Having established this background, the following theorem gives the form of AE[ξT ] for the

linear model with exogenous regressors.
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Theorem 1 Let yt be generated by (1), and Assumptions 1-6 hold. Then we have: (i) AE[ξ1,T ] =

−3mσ2; (ii) AE[ξ2,T ] = −p(m+ 1)σ2; (iii) AE[ξ3,T ] = 0; and so

AE[ξT ] = −[(p+ 3)m+ p]σ2.

Remark 1: A comparison of AE[ξ1,T ] and AE[ξ2,T ] indicates that the break parameters and

the regression parameters affect AE[ξT ] differently. Theorem 1(i) shows that the bias due to

estimation of an additional break date increases in absolute value by 3σ2. From Theorem 1(ii),

estimation of the regression parameters in the additional regime increases the asymptotic bias

in absolute value by pσ2 (with p the number of regression coefficients in the additional regime).

As noted by Ninomiya (2005), this can be interpreted as implying estimation of the break frac-

tion has three time the impact of estimation of a regression parameter on the bias, providing a

theoretical motivation for the modified information criteria penalty function proposed by Hall,

Osborn, and Sakkas (2013) in the context of structural break estimation.

2.2 Nonlinear models

Analogously to (1), consider a univariate nonlinear model with m unknown breaks:

yt = f(xt, β
0
i ) + ut, i = 1, ...,m+ 1, t = T 0

i−1 + 1, ..., T 0
i , (18)

where f : Rp × B → R is a known measurable function on R for each β ∈ B. For simplicity,

let ft(β) = f(xt, β). To avoid excessive notation, redefine the estimators and residual sum of

squares analogously to Section 2.1, replacing x′tβi by ft(βi) in (3).

Compared with the OLS case, the consistency and large sample distribution of λ̂ and β̂({T̂i}mi=1)

have been established to date in the NLS setting only under more restrictive conditions on the

dynamic structure of the data and also the rate of shrinkage between regimes; see Boldea and Hall

(2013)[Assumptions 2-8]. These additional restrictions arise because of the inherent nonlinearity

of the model; see Boldea and Hall (2013) for further discussion. We impose these conditions,

but for brevity relegate some to the Appendix. In addition to (18) replacing (2), Assumption

3 is modified so that α ∈ [0.25, 0.5), and analogues are required for Assumptions 4 (with xt
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replaced by Ft(β0) = ∂ft(β)/∂β)|β=β0
) and 5 (with ht replaced by utFt(β0)). We note that

these assumptions cover a range of models such as smooth transition autoregressive (STAR) and

nonlinear ARCH.

Then, defining ξT and ξi,T , i = 1, 2, 3, as in (8)-(11) with the nonlinear regression function

f( ·, · ) replacing its linear counterpart, we have the following theorem.

Theorem 2 Let yt be generated by (18) and the following Assumptions hold: 1, 2 with (18)

replacing (2), 3 for α ∈ [0.25, 0.5), 5(i),(iv)-(v) and A.1-A.4 (in the Appendix). Then AE[ξT ]

and AE[ξi,T ] (i = 1, 2, 3) are given by the respective expressions in Theorem 1.

Remark 2: Theorem 2 reveals that AE[ξT ] does not depend on the form of f( · ), beyond that

embodied in the assumptions. Consequently, Remark 1 continues to apply in the nonlinear

context.

3 Two Stage Least Squares RSS

Now we consider the case in which the equation of interest is a structural relationship from a

simultaneous system, with this equation exhibiting m breaks such that

yt = x′tβ
0
x,i + z′1,tβ

0
z1,i + ut, i = 1, ...,m+ 1, t = T 0

i−1 + 1, ..., T 0
i , (19)

where T 0
0 = 0, T 0

m+1 = T and T is the total sample size. Here xt is a p1×1 vector of endogenous

explanatory variables, z1,t is a p2 × 1 vector of exogenous variables including the intercept, and

ut is a mean zero error. We define p = p1 + p2. As in the previous section, we assume the

location and magnitude of the breaks are governed by Assumptions 1 and 3 respectively.

As (19) is a structural equation, the endogenous explanatory variables, xt, are (in general)

correlated with the errors, ut, and so 2SLS requires a reduced form representation to be estimated

using appropriate instruments. The reduced form is discussed in the first subsection below, before

attention is focussed on (19).

3.1 Reduced form model

The reduced form model is

x
′

t = z
′

t∆
0
k + v

′

t, k = 1, 2, . . . , h+ 1, t = T †k−1 + 1, . . . , T †k , (20)
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where T †0 = 0 and T †h+1 = T . The vector zt = (z′1,t, z
′
2,t)
′ is q × 1 and contains variables that

are uncorrelated with both ut and vt and are appropriate instruments for xt in the first stage of

the 2SLS estimation. The parameter matrices ∆0
k are each q × p1. In line with Section 2, the

number of reduced form breaks, h, is assumed known, but with the break points {T †i } unknown.

Assumption 7 T †k = [Tπ0
k], where 0 < π0

1 < . . . < π0
h < 1.

Note that the reduced form break fractions, π0 = [π0
1 , . . . , π

0
h]′, may or may not coincide with

the breaks in the structural equation, λ0 = [λ01, . . . , λ
0
m]′. Analogously to the structural form

Assumption 3, we assume the breaks in the reduced form are shrinking.

Assumption 8 ∆0
k+1 −∆0

k = A0
T,k = A0

krT where rT = T−αr , for αr ε (0, 0.5) and k = 1, ..., h.

The reduced form of (20) can be re-written as

xt(π
0)
′

= z̃t(π
0)
′
Θ0 + v

′

t, t = 1, 2, . . . , T (21)

where Θ0 = [∆0′

1 , . . .∆
0′

h+1]
′
, z̃t(π

0) = ι(t, T ) ⊗ zt, ι(t, T ) is a (h + 1) × 1 vector with first

element I{t/T ∈ (0, π0
1 ]}, h+ 1th element I{t/T ∈ (π0

h, 1]}, kth element I{t/T ∈ (π0
k−1, π

0
k]} for

k = 2, . . . , h and I{·} is an indicator variable that takes the value one if the event in the curly

brackets occurs.

Let π̂ = [π̂1, . . . , π̂h]′ denote estimators of π0. These estimators are not our prime concern

and it is assumed they satisfy the following condition.

Assumption 9 π̂ = π0 + Op(T
−(1−2αr)) for some αr ∈ (0, 0.5).

This condition would be satisfied if, for example, the break dates in the reduced form are esti-

mated by OLS equation by equation and the estimates of the break fractions are then pooled;

see Bai and Perron (1998)[Proposition 5] and Bai (1997)[Proposition 1]. Notice that under our

assumption3 1 − 2αr > 0 and π̂ is consistent for π0. Let x̂t denote the resulting fitted values,

that is,

x̂′t = z̃t(π̂)′Θ̂T (π̂) = z̃t(π̂)′

(
T∑
t=1

z̃t(π̂)z̃t(π̂)′

)−1 T∑
t=1

z̃t(π̂)x′t (22)

where z̃t(π̂) is defined analogously to z̃t(π
0).

3We note that this assumption may impose further restrictions upon the data than those assumed below. See

Bai and Perron (1998) and Bai (1997) for further details.
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In the special case when the reduced form is stable, (20) is replaced by a model with a single

regime (h = 0), while Assumptions 7 and 8 are redundant. Obviously, (22) then becomes the

corresponding OLS expression for x̂′t.

3.2 Structural form RSS

For estimation of (19), the statistic of interest is the minimized residual sum of squares from the

second stage estimation. Now suppose that a researcher knows the number of the breaks in (19)

but not their locations. As in the previous section, we use λ to denote an arbitrary set of m

break fractions in the model of interest. The second stage of 2SLS can begin with the estimation

via OLS of

yt = x̂′tβ
∗
x,i + z′1,tβ

∗
z1,i + u∗t , i = 1, ...,m+ 1, t = Ti−1 + 1, ..., Ti, (23)

for each possible unique m-partition of the sample, where Ti = [λiT ] and u∗t is an error term.

Defining β∗i for a given partition as β∗i
′ = (β∗x,i

′, β∗z1,i
′)′ and replacing xt by ŵt = (x̂′t, z

′
1,t)
′,

estimation proceeds by minimizing the residual sum of squares as discussed in Section 2, leading

to the 2SLS estimates β̂({T̂i}mi=1) = (β̂′1, ..., β̂
′
m+1)′ and associated estimated break fractions

given by λ̂, the m× 1 vector with ith element T̂i/T .

Given the existence of breaks in both structural and reduced form equations, we modify the

definition of admissible partitions over which the minimization is achieved.

Assumption 10 Equation (23) is estimated over all partitions (T1, ..., Tm) such that Ti−Ti−1 >

max{q − 1, εT} for some ε > 0 and ε < infi(λ
0
i+1 − λ0i ), and ε < infk(π0

k+1 − π0
k), k = 1, ..., h.

The generalization in Assumption 10 implies that the search for structural form breaks not

only covers the relevant structural form intervals, but is also conducted in all intervals between

(true) reduced form breaks. However, when the reduced form is stable, this latter requirement

is redundant. For ease of presentation, the following assumptions also redefine some notation

used in Section 2.

Assumption 11 For h1,t = (ut, v
′
t)
′ and ht,i the ith element of ht = h1,t⊗zt: (i) E[h1,t | Ft] = 0

where Ft is the σ-algebra generated by {zt, h1,t−1, zt−1, h1,t−2, . . .}; (ii) E[‖ht,i‖d] < Hd < ∞

for t = 1, 2, . . . and some d > 2; (iii) VT,i(r) = V ar[T−1/2
∑T 0

i−1+[rT ]

t=T 0
i−1+1

ht] is uniformly positive
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definite for all T sufficiently large and limT→∞ VT,i(r) = rVi, uniformly in r ∈ (0, λ0i − λ0i−1)

where Vi is a positive definite matrix of constants; (iv) V ar[h1,t | Ft , t/T ∈ [λ0i−1, λ
0
i )] = Ωi,

where Ωi is the (p1 + 1)× (p1 + 1) positive definite matrix of constants given by

Ωi =

 σ2
i γ′i

γi Σi

 ,
with σ2

i a scalar; (v) Ωi = Ω, i = 1, . . . ,m+ 1.

Assumption 12 rank{Υ0
i } = p where Υ0

i =
[
∆0
i , Π

]
, for i = 1, 2, · · · , h + 1 where Π′ =

[Ip2 , 0p2×(q−p2)], Ia denotes the a× a identity matrix and 0a×b is the a× b null matrix.

Assumption 13 There exists an l0 > 0 such that for all l > l0, the minimum eigenvalues of

Ail = (1/l)
∑T 0

i +l

t=T 0
i +1

ztz
′
t and of Āil = (1/l)

∑T 0
i

t=T 0
i −l

ztz
′
t are bounded away from zero for all

i = 1, ...,m.

Assumption 14 (i) T−1
∑T 0

i−1+[rT ]

t=T 0
i−1+1

ztz
′
t

p→ rQZZ(i) uniformly in r ∈ (0, λ0i − λ0i−1), where

QZZ(i) is a positive definite matrix for i = 1, . . . ,m+ 1, (ii) QZZ(i) = QZZ , i = 1, . . . ,m+ 1.

Assumption 11 requires h1,t to be a conditionally homoscedastic martingale difference se-

quence, and imposes sufficient conditions to ensure the analogue of T−1/2
∑[Tr]
t=1 ht satisfies a

Functional Central Limit Theorem within each regime (see White (2001)[Theorem 7.19]). It also

contains the restrictions that the implicit population moment condition for 2SLS is valid - that is,

E[ztut] = 0 - and the conditional mean of the reduced form is correctly specified. Assumptions

11 and 14 combined imply that Vi = V = Ω ⊗ QZZ . Assumptions 12 and 14, in conjunction

with Assumption 11, imply the standard rank condition for identification in IV estimation of the

linear regression model.4 Note Assumption 12 implies q ≥ p. Assumption 13 requires there be

enough observations near the true break points of the structural equation so that they can be

identified.

To facilitate the analysis below, we introduce an alternative version of structural equation,

yt = x′tβ
0
x,i + z′1,tβ

0
z,i + ut,i, (24)

where xt = E[xt |zt ] and hence

ut,i = ut + v
′

tβ
0
x,i, (25)

4See e.g. Hall (2005)[p.35].
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which is the composite disturbance that applies in (19) for regime i when the endogenous xt are

substituted by E[xt |zt ] from the reduced form. Therefore, (24) applies when the reduced form

coefficients are known, with xt = E[xt |zt ] embodying the true reduced form regimes when those

coefficients are subject to breaks. Also define

vt,i = (xt − xt)′β0
x,i = v

′

tβ
0
x,i. (26)

Applying Assumption 3 to the coefficient vector β0
i = (β0′

x,i, β
0′
z,i)
′, breaks in the structural

form coefficients are of asymptotically negligible magnitude, with β0
x,i → β0

x, say, for all i =

1, ...,m+ 1. Under this assumption, then we have for all i = 1, ...,m+ 1

ρ2i = V ar[ut,i] → ρ2 = σ2 + 2γ′β0
x + β0′

x Σβ0
x, (27)

ρi = Cov[vt,i, ut,i] → ρ = γ′β0
x + β0′

x Σβ0
x, (28)

ω2
i = V ar[vt,i] → ω2 = β0′

x Σβ0
x. (29)

With known reduced form coefficients, the quantity ρ2 provides the asymptotic variance of the

composite structural form disturbance ut,i of (25) with shrinking coefficients. Therefore, Tρ2

plays an analogous role in our analysis of the residual sum of squares for 2SLS as does Tσ2 for

the OLS case.

Denoting the 2SLS minimized ST

(
T̂1, ..., T̂m; β̂({T̂i}mi=1)

)
as RSS(T̂1, ..., T̂m), we consider

AE[ξT ] where, analogous to (5),

ξT = RSS(T̂1, ..., T̂m)− Tρ2 (30)

in which AE[·] again denotes the asymptotic expectation operator. Hence ξT is the difference

between the residual sum of squares in the second-step of 2SLS and the expected error sum of

squares in (24).

Generalizing the approach of Section 2 to the 2SLS case requires the role of the reduced form

to be recognized and we now decompose ξT into four components,

ξT =

4∑
j=1

ξj,T .

The first component

ξ1,T = RSS(T̂1, ..., T̂m; π̂)−RSS(T 0
1 , ..., T

0
m;π0) (31)

13



represents the effect on the second stage residual sums of squares from estimating the coefficients

of (19) within each structural form partition based on the estimated rather than the true break

dates in both the structural equation and (if relevant) the reduced form. Both elements of (31)

are obtained using x̂t from (22). The second component is defined as

ξ2,T = RSS(T 0
1 , ..., T

0
m;π0)− ESS(T 0

1 , ..., T
0
m), (32)

where ESS(T 0
1 , ..., T

0
m) is the error sum of squares for (19) evaluated using the true {β0

i }
m+1
i=1 in

conjunction with x̂t. Hence ξ2,T is the impact on the residual sum of squares from estimating

the coefficients of (23) with known (true) break dates and evaluated using the first stage x̂t with

true break dates. The third component is given by

ξ3,T = ESS(T 0
1 , ..., T

0
m)− ESSe(T 0

1 , ..., T
0
m), (33)

where ESSe(T 0
1 , ..., T

0
m) is the error sum of squares evaluated using the true {β0

i }
m+1
i=1 in conjunc-

tion with the reduced form xt = E[xt |zt ]. Consequently ξ3,T is the effect from using x̂t rather

than xt for computation of the structural equation error sums of squares. The final component

is

ξ4,T = ESSe(T 0
1 , ..., T

0
m)− Tρ2, (34)

and hence captures the effects of the composite ut,i in the structural equation of (24).

Theorem 3 then generalizes the result of Theorem 1 to the 2SLS case, employing the notation

δλ0i = λ0i − λ0i−1 for i = 1, ...,m+ 1, (35)

with λ00 = 0 and λ0m+1 = 1; δπ0
i (i = 1, ..., h+ 1) is defined analogously for the true reduced form

regime fractions.

Theorem 3 Let yt be generated by (19), xt be generated by (20), and x̂t be given by (22).

Let Assumptions 1, 3, 7 - 14 hold. Then we have: (i) AE[ξ1,T ] = −3mρ2; (ii) AE[ξ2,T ] =

−p(m+1)ρ2 +p(ρ2−σ2)
∑m+1
i=1 di/(δλ

0
i ); (iii) AE[ξ3,T ] = −q(h+1)(ρ2−σ2); (iv) AE[ξ4,T ] = 0;

and so

AE[ξT ] = −[(p+ 3)m + p]ρ2 − (ρ2 − σ2)

[
q(h+ 1)− p

m+1∑
i=1

di /(δλ
0
i )

]
,

where

0 <

m+1∑
i=1

di /(δλ
0
i ) ≤ min[(h+ 1), (m+ 1)]

14



in which di is defined as follows: if there are no reduced form breaks between λ0i−1 and λ0i and

so π0
k ≤ λ0i−1 < λ0i ≤ π0

k+1, say, then di = (δλ0i )
2/(δπ0

k+1); if there are reduced form breaks

between λ0i−1 and λ0i and so π0
k ≤ λ0i−1 < π0

k+1 < ... < π0
k+`i

< λ0i ≤ π0
k+`i+1 say, then

di =
(π0
k+1 − λ0i−1)2

δπ0
k+1

+
(λ0i − π0

k+`i
)2

δπ0
k+`i+1

+ π0
k+`i − π

0
k+1.

Remark 3: Theorem 3 indicates that AE[ξT ] depends on: the number of structural form breaks,

m, the number of mean parameters in each regime, p, the number of instruments, q, the covari-

ance structure of the composite error ut,i through (ρ2 − σ2) = 2γ′β0
x + β0′

x Σβ0
x, and also on the

relative locations of the structural and reduced form breaks.

Remark 4: The expression for AE[ξ1,T ] carries over from Theorems 1 and 2, and so the effect

of estimating the residual sum of squares of interest is asymptotically the same irrespective of

whether the model is a linear or nonlinear equation with exogenous regressors or a linear equation

with endogenous regressors and consistently estimated reduced form break dates. We also note

that Lemma 3 underlies this result in all cases.

Remark 5: Theorem 3(i) does not require Assumption 14(ii), and so AE[ξ1,T ] has the stated form

even if the instrument cross product matrix exhibits the regime specific behaviour delineated in

part (i) of that assumption.

The special case of a stable reduced form is of particular interest. Using the definition of di

for the case of no reduced form breaks in the structural form regime i, it immediately follows

that a stable reduced form implies
∑m+1
i=1 di /(δλ

0
i ) =

∑m+1
i=1 (δλ0i ) = 1. The resulting asymptotic

expectation of the residual sum of squares in the second stage regression is stated as a Corollary

to Theorem 3:

Corollary 1 Let yt be generated by (19), with xt generated by (20) and x̂t be given by (22), both

with h = 0. Let Assumptions 1-3, 9, 11 and 12-14 hold. Then we have: (i) AE[ξ1,T ] = −3mρ2;

(ii) AE[ξ2,T ] = −p(mρ2 + σ2); (iii) AE[ξ3,T ] = −q(ρ2 − σ2); (iv) AE[ξ4,T ] = 0; and so

AE[ξT ] = −[(p + 3)m+ p]ρ2 − (q − p)(ρ2 − σ2).
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Remark 6: With a stable reduced form, the expression for AE[ξ2,T ] in Corollary 1 can be written

as −p
{

(m+ 1)ρ2 − (ρ2 − σ2)
}

. Ignoring the second term, which is independent of m, the term

−(m + 1)pρ2 can be associated with estimation of the (m + 1)p structural form coefficients.

Combined with AE[ξ1,T ] = −3mρ2, the comment in Remark 1 about the relative impacts of

break-fraction and regression parameter estimation in models with exogenous regressors applies

equally in models with endogenous regressors estimated via 2SLS with stable reduced forms.

When the reduced form is unstable, however, this result is modified in that p enters the second

term of AE[ξ2,T ] in Theorem 3(ii).

Remark 7: Corollary 1 also clarifies the role of the reduced form in minimization of the 2SLS

residual sum of squares in models with no breaks. When conventional 2SLS is applied to a stable

structural form (m = 0, h = 0), (30) becomes ξT = RSS − Tρ2 and

AE[ξT ] = −p ρ2 − (q − p)(ρ2 − σ2). (36)

The result shows that the downward bias in the minimized 2SLS residual sum of squares com-

pared with E[u2t ] depends not only on the number of structural form coefficients estimated, p,

but also on the extent of overidentification (q − p) and the additional asymptotic variation in-

duced in the structural form by the use of IV estimation, namely E[u2t −u2t ] = (ρ2−σ2). In this

context where both the reduced forms and structural forms are stable, Pesaran and Smith (1994)

propose a generalized R2 criterion computed from the second stage regression, and (36) makes

clear that the value of this criterion will asymptotically depend on characteristics of the reduced

form (including the number of instruments) as well as the goodness-of-fit of the structural form

equation itself.

Remark 8: Two further special cases of Theorem 3 are of interest; in both only the numbers of

breaks matter, not their locations per se. Firstly, when all reduced form breaks coincide with

structural form breaks, with possible additional structural form breaks, then
∑m+1
i=1 di/(δλ

0
i ) =

h+ 1 (see the proof of Theorem 3 in the Appendix). In this case,

AE[ξT ] = −[(p+ 3)m + p]ρ2 − (h+ 1)(ρ2 − σ2)(q − p). (37)

This expression has a similar interpretation to that drawn out in Remark 6, with the first term

of (37) giving the bias due to estimation of the structural form coefficients and break dates, while

the second shows the roles of the additional asymptotic variation from using IV, (ρ2 − σ2), and
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the extent of overidentification (q − p), with the number of reduced form regimes (h + 1) now

magnifying the latter effects. Secondly, when all structural form breaks coincide with the dates of

reduced form breaks, with possible additional reduced form breaks, then
∑m
i=1 di/(δλ

0
i ) = m+ 1

(as again seen from the Appendix) and

AE[ξT ] = −[(p+ 3)m + p]ρ2 − (ρ2 − σ2) [q(h+ 1)− p(m+ 1)] . (38)

This has a similar interpretation to (37), although overidentification in the second term of (38)

appears in the form of a comparison of the total numbers of reduced and structural form coeffi-

cients estimated.

Remark 9: For the general case where reduced and structural form break dates do not necessarily

coincide, the theorem shows that although AE[ξT ] depends on the relative locations of structural

and reduced form break points, the extent of this dependence is bounded. Consequently, based

on the interpretation of (37) and (38) in Remark 7, the quantity q(h+1)−p
∑m+1
i=1 di /(δλ

0
i ) might

be interpreted more generally as a measure of the extent of overidentification of the structural

form parameters in the presence of structural and/or reduced form breaks.

4 Testing Break Dates

The discussion of Sections 2 and 3 notes that AE[ξ1,T ] exhibits similar behaviour in all the

models considered, and this is due to the large sample behaviour of ξ1,T being governed by a

version of Lemma 1, and more specifically (12)-(13), in each case. The current section exploits

this structure to propose a statistic for testing

H0 : λ0i = λi for i = 1, ...,m, (39)

with 0 < λ1 < ... < λm < 1, against the alternative hypothesis that at least one λ0i 6= λi

(i = 1, ...,m). In other words, we consider the situation where the researcher knows the number

of breaks, and wishes to test a joint hypothesis regarding their locations. Given the common

structure underlying AE[ξ1,T ], we consider the OLS case in some detail in the first subsection

and then note (in subsection 4.2) how the result extends to other models considered above.
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4.1 OLS-based tests

In the OLS framework (Section 2.1), consider the statistic

Nλ(λ) = RSS(T 1, ..., Tm)− min
T1,...,Tm

RSS (T1, ..., Tm) (40)

where T i = [λiT ] and λ = (λ1, λ2, ..., λm). The following theorem gives the limiting distribution

of Nλ(λ).

Theorem 4 Let yt be generated by (1) with H0 of (39) true and Assumptions 1-5(i)-(iii) and 6

hold. Then, for the statistic (40),

Nλ(λ)
d→

m∑
i=1

bi

where {bi}mi=1 are mutually independent and bi ∼ B(µi,1, µi,2) with µi,j = 0.5ai,j/ci,j for j = 1, 2,

ai,j and ci,j defined in (14) and (15) respectively, and B(µ1, µ2) as in Definition 1. In addition,

if Assumption 5(iv) holds then µi,j = 0.5σ2
i+j−1; and if Assumption 5(v) also holds then µi,j =

0.5σ2.

Remark 10: The limiting distributions in Theorem 4 depend on model parameters. However,

asymptotically valid inference can be performed by simulating the null distribution using con-

sistent estimators of µi,j under H0 and then comparing Nλ(λ) to the appropriate percentile of

this simulated distribution. A consistent estimator for µi,j is given by

µ̂i,j =
θ̂′iQ̂i+j−1θ̂i

2θ̂′iV̂i+j−1θ̂i
(41)

where θ̂i = β̂i+1−β̂i, β̂i = β̂i({T̂`}m`=1) (defined in Section 2.1), Q̂` = (T̂`−T̂`−1)−1
∑T̂`

t=T̂`−1+1
xtx
′
t,

V̂` = (T̂` − T̂`−1)−1
∑T̂`

t=T̂`−1+1
û2`,txtx

′
t, û`,t = yt − x′tβ̂`. This provides a heteroscedasticity-

consistent estimator. If Assumption 5(iv) holds and homoscedasticity applies within each regime,

then an alternative consistent estimator is

µ̂i,j = 0.5σ̂2
i+j−1 (42)

where σ̂2
` = (T̂`−T̂`−1)−1

∑T̂`

t=T̂`−1+1
û2`,t. Finally, if Assumption 5(v) holds and the error variance

is constant over all regimes, an additional consistent estimator is5

µ̂i,j = 0.5σ̂2 (43)

5A degrees of freedom correction can be applied in the denominator of σ̂2, to allow for estimation of coefficients

and also break dates, as suggested by Theorem 1.
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where σ̂2 = T−1
∑m+1
`=1

∑T̂`

t=T̂`−1+1
û2`,t.

Remark 11: If Assumption 5(iv)-(v) holds, then it is possible to normalize the statistic to remove

nuisance parameters from the limiting distribution. To this end consider the F -type test statistic

Fλ(λ) =

RSS(T 1, ..., Tm)− min
T1,...,Tm

RSS (T1, ..., Tm)

σ̂2
. (44)

This leads to the following corollary to Theorem 4:

Corollary 2 Under the conditions of Theorem 4, including Assumption 5(iv)-(v), we have

Fλ(λ)
d→
∑m
i=1 bi where {bi}mi=1 are mutually independent and bi ∼ B(0.5, 0.5).

Percentiles of this limiting distribution, simulated in MATLAB using 10 million replications, are

presented in Table 1. Hansen (1997, 2000) develops a test for the null hypothesis of a known

threshold value in a single threshold TAR model, with his statistic being a special case of Fλ(λ)

with m = 1. The critical values presented by Hansen (1997, 2000) are effectively identical to

those of Table 1 for m = 1.

The statistics above can be used to generate confidence sets for the break fractions. For the

linear model with exogenous regressors, an approximate 100(1−α)% confidence set for the break

fractions is given by: {
λ s.t Nλ(λ) < qm,1−α

}
(45)

where Nλ(λ) is defined in (40) and qm,1−α is the 100(1 − α)th quantile of
∑m
i=1 bi defined in

Theorem 4. Clearly, with Assumptions 5(iv)-(v) imposed, the asymptotic critical values of Table

1 can be employed for qm,1−α.

Under similar assumptions to ours, Yao (1987) and Bai (1997) obtain the marginal distribu-

tion of a single break fraction estimator, which is used by Bai (1997) and also Bai and Perron

(1998) to construct a confidence interval for the date of each break. Since the m break date

distributions are asymptotically independent, a joint test of the null hypothesis (39) could be

deduced from these. In contrast, (44) compares RSS at the hypothesized break dates with the

overall minimized RSS, providing a natural test statistic in the least squares context considered

here. In common with the confidence interval approach of Elliott and Muller (2007), but not

that of Yao (1987), the confidence sets in (45) do not imply the dates included corresponding to

a specific λi are necessarily contiguous.
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4.2 Other models

As shown in the Appendix, Lemma 1 continues to apply for nonlinear regression models that

satisfy Assumptions 1, 2 with (18) replacing (2), 3 for α ∈ [0.25, 0.5), 5(i), and A.1-A.4 (in

the Appendix). In the NLS case, however, ai,j , ci,j given in (14) and (15) are replaced by the

Appendix expressions (58) and (59), respectively. It therefore follows from Lemmata 2 and 3,

together with Definition 1, that the statistic Nλ(λ) given by (40) has the limiting distribution for

a nonlinear model as given in the first part of Theorem 4. Further, the imposition of Assumption

5 parts (iv) or (iv)-(v) yields the same specializations of µi,j as described in Theorem 4.

A consistent estimator of µi,j for use in simulation of the limiting distribution is given by

(41), except that the following changes are required: β̂i now denotes the NLS estimator of the

parameter vector in (estimated) regime i; xt is replaced by Ft(β̂`) = ∂ft(β)/∂β)|β=β̂`
in Q̂`

and V̂`. If Assumption 5(iv) holds then an alternative consistent estimator is given by (42) but

with û`,t being the NLS residual; if Assumption 5(v) holds then a further consistent estimator

is given by (43) with the same redefinition of the residual. Similarly, we can define an analogous

version of Fλ(λ) for this model which has the limiting distribution given in Corollary 2 under all

the assumptions made for this model, including Assumption 5(iv)-(v). Therefore, under these

assumptions, the critical values of Table 1 can be applied for testing the joint break fractions

hypothesis of (39) in a nonlinear regression model.

In an analogous way, Theorem 4 extends to 2SLS models that satisfy Assumptions 1, 3,

7 - 11(i)-(iii), 12-14 with the forms of ai,j , ci,j implied, as appropriate, by either (60)-(61) or

(65)-(66) of the Appendix.

In the 2SLS case, however, the construction of a consistent estimator of µi,j for use in

simulation of the limiting distribution depends on the location of the ith break in the structural

equation relative to the reduced form breaks. If π̂k−1 < λ̂i < π̂k for some k, then a consistent

estimator of µi,j is given by:

µ̂i,j =
θ̂′iΥ̂
′
kQ̂ZZ(i+ j − 1) Υ̂k θ̂i

2θ̂′iΥ̂
′
kΦ̂(i+ j − 1) Υ̂k θ̂i

(46)

for j = 1, 2, where θ̂i = β̂i+1 − β̂i, β̂i = (β̂′x,i, β̂
′
z1,i

)′ are the 2SLS estimators of the structural

equation coefficients in the estimated ith regime (as defined in Section 3.2), Υ̂k = [∆̂k,Π] where

∆̂k are the OLS estimators of the reduced form parameters in the kth estimated reduced form

regime, Q̂ZZ(`) = (T̂`− T̂`−1)−1
∑T̂`

t=T̂`−1+1
ztz
′
t, Φ̂(`) = Ĉ`V̂`Ĉ

′
`, Ĉ` = ν̂′`⊗Iq, ν̂` = [1, β̂′x,`], V̂` =
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(T̂`− T̂`−1)−1
∑T̂`

t=T̂`−1+1
ĥtĥ
′
t, ĥt = ĥ1,t⊗ zt, ĥ1,t = [ût, v̂

′
t]
′, ût = yt− (x′t, z1,t)

∑m+1
i=1 β̂iI{t/T ∈

(λ̂i−1, λ̂i]}, v̂′t = x′t − z′t
∑h+1
k=1 ∆̂kI{t ∈ (π̂k−1, π̂k]}. If π̂k−1 = λ̂i for some k then a consistent

estimator of µi,j is given by

µ̂i,j =
θ̂′iΥ̂
′
k+j−1Q̂ZZ(i+ j − 1) Υ̂k+j−1 θ̂i

2θ̂′iΥ̂
′
k+j−1Φ̂(i+ j − 1) Υ̂k+j−1 θ̂i

(47)

and all other definitions remain the same.

Regardless of the relative positions of the structural and reduced form breaks, if in addition

Assumption 11(iv) holds then a consistent estimator for µi,j is provided by

µ̂i,j = 0.5ρ̂2i+j−1 (48)

where ρ̂2` = (T̂` − T̂`−1)−1ν̂` {
∑T̂`

t=T̂`−1+1
ĥ1,tĥ

′
1,t }ν̂′`. Further, if Assumptions 11(iv)-(v) hold

then an alternative consistent estimator for µi,j is:

µ̂i,j = 0.5ρ̂2 (49)

where ρ̂2 = T−1
∑m+1
`=1 ν̂` {

∑T̂`

t=T̂`−1+1
ĥ1,tĥ

′
1,t }ν̂′`. In this last case, the dependence of the limit-

ing distribution on model parameters can be removed by using

F 2SLS
λ (λ) =

RSS(T 1, ..., Tm)− min
T1,...,Tm

RSS (T1, ..., Tm)

ρ̂2
. (50)

Under the assumptions listed above for the 2SLS case, including Assumption 11(iv)-(v), and

the H0 of (39), F 2SLS
λ (λ) converges to the limiting distribution in Corollary 2. This enables

the critical values of Table 1 to be employed also for testing break dates in a structural model

estimated by 2SLS.

As discussed for the linear model with exogenous regressors in the previous subsection, the

hypothesis tests for break dates can be inverted to obtain joint confidence intervals for the dates

of the m breaks in the models of this subsection.

5 Simulation Results

A Monte Carlo analysis is undertaken in this section in order to illustrate two implications of

our results, namely: (i) estimation of the error variance; (ii) hypothesis testing about the break

fraction.
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5.1 Error variance estimation

We examine the behaviour of three estimators of the error variance in the linear model with

exogenous regressors of Section 2.1. The model with m breaks is given by (1) and the three

variance estimators take the generic form:

σ̂2
k = RSS(T̂1, ..., T̂m)/(T −m(p+ 1)− km), k = 0, 1, 3 (51)

where RSS( · ) is defined in (6)-(7), but the estimators differ in the degrees of freedom correction

made for break fraction estimation, namely km. Clearly, k = 0 makes no such degrees of freedom

correction and is employed in Bai and Perron (1998); k = 1 effectively treats break point and

mean parameter estimation symmetrically in the degrees of freedom correction and is used by

Yao (1988); k = 3 is suggested by Theorem 1. The finite sample performance of these three

estimators is investigated in two ways: bias and the coverage probabilities of confidence intervals

for the mean parameters based on the three versions of (51). These confidence intervals take the

generic form:

β̂i,j ± zα/2σ̂k
√
Di,j,T , (52)

where β̂i,j is the jth element of the OLS estimator of the mean parameters in estimated regime

i, Di,j,T is the jth main diagonal element of Di,T = [X ′iXi/(T̂i − T̂i−1)]−1, Xi is (T̂i − T̂i−1)× p

regressor data matrix for the estimated ith regime, with typical row x′t, and za/2 is the 100(1−

a/2)th percentile of the standard normal distribution.

We consider a linear model with exogenous regressors with m = 1 and p = 2, with the data

generating process (DGP) taking the form:

yt =

 µ1 + γ1wt + ut if t ≤ [0.5T ]

µ2 + γ2wt + ut if t > [0.5T ]

where ut is a sequence of i.i.d. N(0, 1) random variables and wt is a scalar i.i.d. N(1, 1) random

variable that is uncorrelated with ut. Thus, in terms of the notation in Section 2.1, xt = [1, wt]
′

and β0
i = [µi, γi]

′. Since Theorem 1 assumes shrinking breaks (Assumption 3), we fix µ2 = γ2 = 1

and report results for µ1 = γ1 = 1 − (0.3 × 50α/Tα), for α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.49 (α = 0

being the fixed breaks case) and sample sizes T = 120, 240, 360, 480.

As in the analysis of Section 2, estimation is performed imposing the true number of breaks.

The break dates are estimated as defined in (4) except that in practice regimes are restricted to
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contain at least [εT ] observations. The parameter ε, often referred to as the trimming parameter,

is set at ε = 0.1 throughout our Monte Carlo simulations. The efficient search algorithm of Bai

and Perron (2003) is employed in our analysis. Each DGP is replicated 5000 times and within

each replication the same random observations are employed across all methods. All simulations

are performed in MATLAB.

The results are reported in Table 2. For each parameter configuration, we report the per-

centage bias of the error variance estimator, together with the coverage probabilities (expressed

as percentages) of the coefficient confidence intervals that are closest to (C90) and furthest away

(F90) from the nominal level of 90% where the comparison is over all parameters in all regimes.

Thus, for a given k, the coverage probability of the confidence intervals in (52) for any i, j, covpi,j

say, satisfies

|C90 − .9| ≤ |covpi,j − .9| ≤ |F90 − .9|.

Perhaps not surprisingly, no adjustment in (51) for break date estimation leads to underes-

timation of the true variance, with our simulations showing a downward bias of more than 2%

with T = 120, reducing to around 0.50% to 0.75% with T = 480. Effectively counting the break

estimation as equivalent to a coefficient by using k = 1 reduces the extent of the bias in all cases

examined, but the variance continues to be underestimated. On the other hand, k = 3 leads

to modest overestimation except when T is relatively large. However, except for T = 120 and

α = 0, the absolute bias is always less that 0.5% when this higher break weight is used. Indeed,

the magnitude of the bias shows a clear ranking of the error variance estimators with k = 3

dominating k = 1 dominating k = 0.

The coverage probabilities indicate that the confidence intervals for individual coefficients

are always conservative, covering the true coefficients with empirical probability less than the

nominal 90%. Although the simulated coverage probabilty improves with T , it deteriorates as

α increases, namely as the magnitude of the break declines, leading to the empirical coverage

being around 10 percentage points below the nominal level when α = 0.49. Although α ∈ (0,

0.5) in Assumption 3 ensures that break fraction estimation asymptotically converges at a faster

rate than regression coefficient estimation, our results suggest that imprecision in break date

estimation may contaminate the distribution of coefficient estimates in finite samples when breaks

are relatively small in magnitude.6 Nevertheless, for all cases examined in Table 2, taking

6Hansen (1997) finds a corresponding result in the analogous context of a TAR model, leading him to suggest
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account of break date estimation through the use of k = 3 when estimating the error variance

unambiguously improves the coverage of confidence intervals for the coefficients, compared with

the alternative options of k = 0 or k = 1.

5.2 Break fraction hypothesis tests

Again taking the case of the linear model with exogenous regressors for illustrative purposes, we

now examine the performance of the normalized statistic Fλ(λ̄) of (44). Based on the results of

the previous subsection, and as suggested by Theorem 1, σ̂2 is computed as in (51) with k = 3.

Using the same design as in subsection 5.1, with m = 1 and p = 2, we consider tests of

H0 : λ1 = 0.5 +κ for κ = 0, 0.02, 0.04, . . . , 0.2. Since λ01 = 0.5 in our DGP, κ = 0 corresponds to

the case in which the null is true, and as κ increases the distance between the hypothesized value

and the truth increases. The calculated test statistic is compared to the critical value in Table 1

for a 5% significance level. Power curves are plotted in Figure 1 for α = 0.0, 0.1, 0.2, 0.3, 0.4, 0.49

and κ from 0 to 0.2, representing values of λ1 between 0.5 and 0.7. The results are again based

on 5,000 replications for each case.

As expected, power increases with κ for each T and α, with power inversely related to α for

given T and κ. For example, with α = 0.1, power is more than 0.95 when T = 480 and κ = 20

(λ1 = 0.7), but reaches little more than 0.5 for these T and κ values when α = 0.4.7 Clearly, it

is difficult to detect deviations from the hypothesized location when the break is small. On the

other hand, although developed under the shrinking breaks assumption, the test performs well

when the break magnitude is fixed (α = 0).

The test also exhibits good size performance overall. It is generally a little under-sized for

small values of α, is well-sized (with empirical sizes between 0.041 and 0.057) when α = 0.2

and is typically modestly oversized for larger α, although it remains marginally under-sized for

T = 120 even with α = 0.4. Perhaps not surprisingly, the greatest size distortion across the

cases considered occurs for the small breaks that apply with α = 0.49 and T = 480, where the

empirical size is 0.085.

that empirical confidence intervals for the slope coefficients can be improved by taking account of the imprecision

of threshold estimation. Pursuing this line of research is, however, beyond the scope of the present study.
7The former case represents a change in each of the two coefficients of magnitude 0.24 compared to 0.1 for the

latter, both to be considered in relation to σ2 = 1.
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6 US Monetary Policy

US monetary policy is widely acknowledged to have undergone change since the 1970s, with

many arguing that this provides a key explanation for changes in the properties of inflation and

(sometimes) real activity. Studies that explore these issues typically either treat the date(s) of

change as known, or employ essentially ad hoc approaches to deal with the issue. For exam-

ple, Boivan and Giannone (2006) split their sample in 1979, reflecting the date at which Paul

Volcker became chairman of the US Federal Reserve, while Ahmed, Levin, and Wilson (2004)

use sub-samples covering 1960 to 1979 and 1984 to 2002, with 1980 to 1983 omitted due to

uncertainty about potential dates of change. In a similar vein, the seminal study of Clarida,

Gali, and Gertler (2000) adopts the 1979 change date, but also acknowledges uncertainty about

breaks and examines interest rate reaction functions estimated over the individual subsamples

implied by the periods of office of the four Fed chairmen within their overall sample period,

and also consider a possible post-1982 sample. Although the literature largely accepts that a

new monetary policy regime commenced immediately on Volcker becoming chairman in 1979Q3,

Duffy and Engle-Warnick (2006) throw some doubt on this finding, since their application of the

sequential test procedure of Bai and Perron (1998) in a dynamic monetary policy model finds a

1980Q3 break rather than one a year or more earlier. Nevertheless, the tests available to Duffy

and Engle-Warnick (2006) do not allow for endogeneity and they employ only backward-looking

specifications.

We examine hypotheses about breaks in US monetary policy using the forward-looking dy-

namic model

rt = βππt+1|t + βx x̃t+1|t + β1rt−1 + β2rt−2 + c+ ut (53)

where rt is the actual Federal Funds rate, while πt+1|t and x̃t+1|t are forecasts of inflation and

a proxy for the output gap, respectively, and c is a constant. We follow Orphanides (2004), who

revisits the analysis of Clarida, Gali, and Gertler (2000), by employing real-time data and, more

specifically, Greenbook forecasts prepared by Fed staff for meetings of the Federal Open Market

Operations Committee (FOMC).8 The Greenbook provides forecasts of key variables, including

inflation, output and unemployment, which informs FOMC interest rate decisions. Although,

8All real-time data we use, including the Greenbook forecasts, were downloaded from the website of the Federal

Reserve Bank of Philadelphia.
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for simplicity, our specification in (53) assumes that policymakers focus on forecasts for the

following quarter, Orphanides (2004) finds results to be largely unaffected for horizons between

1 and 4 quarters. Our sample period is 1968Q4 to 2005Q4, which is appropriate for our purpose

of examining implicit hypotheses made in the literature about changes in US monetary policy

responses.

Although FOMC meetings are held more frequently (and sometimes irregularly), we follow

the usual convention of treating them as quarterly by employing forecasts made for the meeting

closest to the middle of the quarter. As Greenbook output gap forecasts are available only from

late 1987, we follow Boivan (2006) and employ a real-time unemployment gap measure as a

proxy in (53). More explicitly, as in Boivan (2006), x̃t+1|t is measured as the natural rate of

unemployment minus the Fed’s forecast, where the natural rate is computed as an average of the

historical unemployment rate over data as available at t. The inflation forecasts πt+1|t relate to

the GNP or GDP price deflator (as appropriate), and are given in the Greenbook as quarter on

quarter growth rates, expressed as annualized percentage points. The interest rate series is the

average actual Federal Funds rate for the third month of the quarter, with the third month used

to ensure that rt reflects any monetary policy change effected during that quarter.

As already noted, Greenbook forecasts are prepared by Fed staff in advance of FOMC meet-

ings and they are, in principle, conditional on interest rate policy remaining unchanged over

the forecast horizon. However, it may not be appropriate to treat these as exogenous in (53),

since Ellison and Sargent (2012) argue that the FOMC may doubt the accuracy of these staff

forecasts and instead favour a “worst case” scenario. Consequently the Greenbook forecasts may

be measured with error in relation to the forecasts of the FOMC itself, with the measurement

errors correlated with interest rate decisions. To guard against this possibility, our analysis of

breaks in (53) employs a 2SLS approach. The instruments used are πt−i, x̃t−i, rt−i, for lags

i = 1, 2, GNP/GDP growth (as appropriate at t) and the interest rate spread between long-term

(ten year) bonds and the short-term Federal Funds rate, also for the two quarters prior to t,

with all variables real-time as at t.

Based on the analyses of Hall, Osborn, and Sakkas (2013, 2015), we use an information

criteria approach to inference in both the reduced form equations for πt+1|t and x̃t+1|t and in

the structural form (53). Specifically, we employ BIC and HQIC, with the penalty function in

each case taking account of coefficient and break estimation by counting the number of effective
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parameters estimated as (p + 3)m, as suggested by Theorem 1. 9 The maximum number of

breaks is set to 5 in each case, with (in view of the numbers of coefficients estimated) trimming

parameters set to ε = 0.15 (15% of the total sample) for each reduced form equation and ε = 0.10

for the structural form.

Both criteria find the reduced form equation for x̃t+1|t to be stable over the sample period,

but three breaks are indicated in the πt+1|t equation, dated at 1974Q4, 1980Q4 and 1986Q3.

Using the reduced form predictions (with breaks taken into account) rather than observations

for πt+1|t and x̃t+1|t in (53), both criteria then indicate that two breaks occur in US monetary

policy. The search algorithm estimates the break dates as 1980Q3 and 1985Q3.10

The estimated monetary policy reaction functions are presented in Table 3, the first column

of which shows the 2SLS estimated coefficients under the assumption that the reduced and

structural forms are stable, with the remaining three columns taking account of reduced form and

structural form breaks. Under the assumption of stability, the equation is poorly determined,

with no individual coefficient significant. On the other hand, allowing for breaks shows US

monetary policy to react significantly to forecasts for both the unemployment gap and inflation

until 1980Q3, followed by a period to 1985Q3 where the response appears to be targeted strongly

to inflation. The final regime, from 1985Q4 to 2005Q4 is one of low inflation and relative stability

(the so-called Great Moderation), during which responses appear to be dominated by interest rate

dynamics. It is notable that, nevertheless, the implied steady-state monetary policy responses

to inflation are effectively constant over the whole sample period. This finding contrasts with

Clarida, Gali, and Gertler (2000), who argue that the monetary policy response to inflation

was stronger after Volcker became Fed chairman than previously, but agrees with the real-time

analysis of Orphanides (2004).

As discussed above, many studies of US monetary policy, including Clarida, Gali, and Gertler

(2000) and Orphanides (2004), assume that a break occurs in 1979Q2, with a new regime applying

when Paul Volcker took up appointment as the Fed chairman in the following quarter. Indeed,

Clarida, Gali, and Gertler (2000) take this further and informally investigate whether monetary

9Theorem 1 suggests (m + 1)p + 3m parameters but in the context of model comparison using information

criteria we omit the p parameters that are common across all m break models.
10It might be noted that, with 149 observations available for estimation, the estimated break dates do not lie

at the margin of the search interval given by ε > 0.10.
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policy changes with each Fed chairman. In terms of our analysis, this would imply that the true

date of the second break we detect is 1987Q2, with Alan Greenspan taking up office in August

that year.11 Applying the tools of Section 4, we therefore test the joint null hypothesis

H0 : T 0
1 = 1979Q2, T 0

2 = 1987Q2.

Under the assumption of homoscedasticity, the test statistic of (50) is F 2SLS
λ (λ) = 37.29, which

strongly rejects the null hypothesis at the 1% level in relation to the critical values of Table 1.12

Relaxing the homoscedasticity assumption by using the 2SLS analogue of (40) leads to a statistic

of N2SLS
λ (λ) = 49.73, which also leads to rejection at the 1% level whether the null distribution

of bi ∼ B(µi,1, µi,2) is simulated under the assumption of regime-dependent variances as in (48)

or allowing more general heteroscedasticity as in (46). Indeed, N2SLS
λ (λ) always rejects the joint

null hypothesis at this level for any hypothesized T 0
1 6= 1980Q3. On the other hand, there is

substantial uncertainty about the second break date, with a 99% joint confidence set including

all dates from 1984Q2 (the lower bound of the search interval in combination with 1980Q3)

to 1991Q4, inclusive, while reducing the confidence level to 90% brings forward the latter date

by only two quarters. Figure 2 illustrates the 99% joint confidence set graphically in terms of

the break fractions, with the horizontal line emphasizing the relative uncertainty about λ2 in

contrast to λ1.

These results shed new light on the timing of changes in US monetary policy. In particular,

the widely accepted break date of 1979Q2 is not supported, with our results strongly pointing to

the break occurring 1980Q3. Interestingly, Duffy and Engle-Warnick (2006) also find evidence

of a break at this later date in a dynamic monetary policy model. While the literature generally

associates a monetary policy change with Volcker alone, the intriguing suggestion from our

findings is that the election of Ronald Reagan as US President on 4 November 1980 may have

heralded the beginning of a new regime. Although detailed analysis of the evidence is beyond

the scope of this paper, it is notable that the policies now referred to as ‘Reaganomics’ included

11Our sample also covers the chairmanship of Arthur Burns (1970-1978) and William Miller (1978-1979), but

our results do not indicate any change over the first sub-period and the second is too short to be analyzed as a

separate regime with these techniques.
12Here ρ̂2 is calculated using a scaling of T−1, as in the expression immediately under (49). Applying a degrees

of freedom correction for coefficient and break estimation through a scaling of (T −7)−1 yields a statistic of 35.54,

which does not affect the substantive conclusions.
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a focus on the control of inflation. As to the second break, our results support other studies,

including Clarida, Gali, and Gertler (2000), who suggest that the date of change is unclear.

However, we go further than previous authors in the sense that our 90% confidence set includes

dates into the early 1990s.

7 Concluding Remarks

A considerable literature now exists concerned with least squares-based estimation and testing in

models with multiple discrete breaks in the parameters, see inter alia Bai and Perron (1998), Hall,

Han, and Boldea (2012) and Boldea and Hall (2013). In these contexts, if the model is assumed to

have m breaks, then the break points (the points at which the parameters change) are estimated

by minimizing the residual sum of squares over all possible data partitions involving m breaks.

A natural side-product of this estimation is the minimized residual sum of squares and this

quantity plays an important role in subsequent inferences about the model. This paper, firstly,

derives the asymptotic expectation of the residual sum of squares, the form of which indicates

that the number of estimated break points and the number of regression parameters affect this

expectation in different ways. Secondly, we propose a statistic for testing the joint hypothesis

that the breaks occur at specified fixed break points in the sample. Under its null hypothesis, this

statistic is shown to have a limiting distribution that is non-standard but simulatable, being a

functional of independent random variables with exponential distributions whose parameters can

be consistently estimated. In a special case, the statistic can be normalized to make it pivotal and

we provide percentiles for the associated limiting distribution. These results cover the cases of

either the linear or nonlinear regression model with exogenous regressors estimated via Ordinary

(or Nonlinear) Least Squares or a linear model in which some regressors are endogenous and the

model is estimated via Two Stage Least Squares.

The paper also illustrates the usefulness of the results through an application to breaks in

US monetary policy. Such breaks are widely acknowledged in the literature, but are usually

assumed to coincide with changes in the chair of the Federal Reserve; see, for example, Clarida,

Gali, and Gertler (2000). When subjected to test, we reject this hypothesis on the coincidence of

change. In particular, the widely assumed break date of 1979Q2 associated with the end of the

pre-Volcker era is strongly rejected in favour of a break in late 1980. An important side-product
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of our analysis is the joint confidence set we obtain for two dates of change detected in monetary

policy over the period 1969 to 2005.

Appendix

Mathematical Appendix

Proof of Lemma 1

From the principle of least squares, (9) is given by

ξ1,T = min
(T1,...,Tm)

RSS(T1, ..., Tm)−RSS(T 0
1 , ..., T

0
m). (54)

From Bai and Perron (1998)[Proposition 4], for the limiting behaviour of {T̂i}mi=1 we need to

consider possible break dates Ti only within intervals close to each of the true breaks, given by

B =
⋃m
i=1Bi where Bi =

{∣∣Ti − T 0
i

∣∣ ≤ Kis
−2
T

}
for positive constants Ki, i = 1, ...,m. That is,

for an individual break i we need to consider Ti = T 0
i + [ki s

−2
T ] for ki ∈ [−Ki,Ki]. Using the

same arguments as Bai (1997)[equations (8)-(9)], extended to the multi-break case as in Bai and

Perron (1998)[Section 3.3], it follows that

ξ1,T =

m∑
i=1

min
Ti

{Ai(Ti) + 2Ci(Ti)}+ op(1), uniformly in B (55)

where

Ai(Ti) = θ0
′

T,i

Ti∨T 0
i∑

t=(Ti∧T 0
i )+1

xtx
′
t θ

0
T,i

Ci(Ti) = (−1)I{Ti<T
0
i } θ0

′

T,i

Ti∨T 0
i∑

t=(Ti∧T 0
i )+1

xtut

for θ0T,i defined in Assumption 3, and a ∨ b = max{a, b}, a ∧ b = min{a, b} and I{.} is an

indicator function which takes the value unity when the condition in curly brackets is satisfied.

By construction, the summations used in defining Ai(Ti) and Ci(Ti) include the true break date

T 0
i . Under Assumptions 4 and 5(i)-(iii), and using the arguments of Bai (1997), equations (12)

to (15) of the text then follow. �

Proof of Theorem 1

Part (i): The limiting distribution of ξ1,T is given by Lemma 1. Now consider the maximization
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of G̃i(ki) = −Gi(ki) for a single break i. From (13) and Lemma 2, each max
|ki|

{
2 c

1/2
i,j Wi,j(−ki)− |ki| ai,j

}
for j = 1, 2 is exponential with parameter µj = −0.5ai,j/ci,j . Using Assumptions 4 and 5 in (14)-

(15) implies that ai,j/ci,j = 0.5σ−2 and application of Lemma 3 then yields

E

[
max
ki
G̃i(ki)

]
= −E

[
min
ki
Gi(ki)

]
= 3σ2

for each of the m breaks. Since these breaks can be considered separately, we have

AE[ξ1,T ] = −3mσ2. (56)

Part (ii): Using standard least squares algebra,

ξ2,T = RSS(T 0
1 , ..., T

0
m)− ESS(T 0

1 , ..., T
0
m)

=

m+1∑
i=1

T 0
i∑

t=T 0
i−1+1

(yt − x′tβ̂i)
2 −

m+1∑
i=1

T 0
i∑

t=T 0
i−1+1

(yt − x′tβ
0
i )2

= −
m+1∑
i=1

(β̂i − β0
i )′(X ′iXi)(β̂i − β0

i ) (57)

in which Xi is the (T 0
i − T 0

i−1)× p data matrix for the ith regime, with typical row x′t, and the

OLS estimates β̂ = [β̂′1, β̂
′
2, . . . β̂

′
m+1]′ are obtained imposing the correct break-points.

Under Assumption 4,

T−1X ′iXi
p→ (δλ0i )Qi = Mi, say

where δλ0i = λ0i −λ0i−1. From Bai and Perron (1998)[Proposition 3], we have under our assump-

tions that

T 1/2
(
β̂ − β0

)
⇒ N(0, Vβ)

where Vβ = σ2 diag[M−11 ,M−12 , . . . ,M−1m+1]. Therefore, it follows that

−ξ2,T
d→

m+1∑
i=1

κi

where κi ∼ σ2χ2
p and κi, κj are independent for i 6= j. Consequently, AE[ξ2,T ] = −p(m+ 1)σ2.

Part (iii): This follows directly from E[u2t ] = σ2. �

Proof of Theorem 2

We first state the assumptions employed in the Theorem but not stated in the main text.
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Assumption A.1 Define vt as follows: if xt contains no lagged values of yt then vt = (x′t, ut, yt)
′;

if xt contains lagged values of yt then vt = (x∗′t , yt)
′ where x∗t contains all elements of xt besides

the lagged values of yt. Then:

(i) {vt} is a piece-wise geometrically ergodic process, i.e. for each sub-sample [T 0
j−1 + 1, T 0

j ],

there exists a unique stationary distribution Pj such that:

sup
A
|P (A|B)− Pj(A)| ≤ gj(B)ρt

with 0 < ρ < 1, A ∈ FT
0
j

T 0
j−1+t

, B ∈ FT
0
j−1

−∞ , F lk is the σ-algebra generated by (vk, . . . , vl), and gj(·)

is a positive uniformly integrable function.

(ii) {vt} is a β-mixing process with exponential decay, i.e. there exists N > 0 such that for

B ∈ Fa−∞,

βt = sup
a
β(Fa−∞,F∞a+t) ≤ Nρt, with β(Fa−∞,F∞a+t) = sup

A∈F∞a+t

E|P (A|B)− P (A)|

Assumption A.2 The function ft(·) is a known measurable function, twice continuously differ-

entiable in β for each t.

Assumption A.3 Let Ft(β) = ∂ft(β)/∂β, a p× 1 vector, and f
(2)
t (β), a p× p matrix of second

derivatives, i.e. f
(2)
t (β) = ∂2ft(β)/(∂β∂β′), with (i, j)th element f

(2)
t,i,j . Also denote by ‖ · ‖ the

Euclidean norm. Then (i) the common parameter space B is a compact subset of Rp; for some

s > 2, we have: (ii) supt,β E|utft(β)|2s <∞; (iii) supt,β E‖utFt(β)‖2s <∞; (iv) for i, j = 1, . . . p,

supt,β E|utf
(2)
t,i,j(β)|s <∞.

Assumption A.4 (i) ST (T1, . . . , Tm;β) has a unique global minimum at β0 and (T 0
1 , . . . , T

0
m);

(ii) Let V ∗T,i(β, r) = Var T−1/2
∑T 0

i−1+[Tr]

t=T 0
i−1+1

ut(β)Ft(β). Then V ∗T,i(β, r)
p→ rV ∗i (β), uniformly in

β × r ∈ B× [0, λ0i − λ0i−1], where V ∗i (β) is a positive definite (p.d.) matrix not depending on T ,

with V ∗i (β) not necessarily the same for all i; (iii) Let Q∗T,i(β, r) = T−1
∑T 0

i−1+[Tr]

t=T 0
i−1+1

Ft(β)Ft(β)′.

Then Q∗T,i(β, r)
p→ rQ∗i (β), uniformly in β×r ∈ B× [0, λ0i −λ0i−1], where Q∗i (β) is a p.d. matrix;

(iv) E[ft(β
0
i )] 6= E[ft(β

0
i+1)], for each i = 1, . . . ,m.

The proof follows similar lines to that of Theorem 1. From the arguments of Boldea and Hall

(2013), it follows that (12) and (13) continue to apply, but now with

ai,j = θ0 ′i Q
∗
i+j−1(β0

i+j−1) θ0i (58)

ci,j = θ0 ′i V
∗
i+j−1(β0

i+j−1) θ0i (59)
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for j = 1, 2. The result for ξ1,T then follows using arguments as for the proofs of Lemma

1 and Theorem 1. For ξ2,T , the proof again follows the same argument as Theorem 1 using

T 1/2(β̂i − β0
i )

d→ N
(
0, σ2[Q∗i (β

0
i )]−1

)
(under our conditions) from analogous arguments to

Boldea and Hall (2013)[Theorem 2], while (iii) follows from E[u2t ] = σ2. �

Proof of Theorem 3

Part (i): From the principle of least squares, ξ1,T as defined for 2SLS by (31) has an analogous

interpretation to (54). There are then two scenarios of interest for the general case of an unstable

reduced form with h > 0 in (20), namely whether the (true) reduced form and structural breaks

are common or not. To be more precise, and following Boldea, Hall, and Han (2012), we consider

scenarios where some breaks occur in the structural form but not the reduced form and where at

least some breaks are common to both; the former includes the special case of a stable reduced

form. These scenarios can be represented as follows.

Scenario 1: π0
j < λ0k+1 < ... < λ0k+` < π0

j+1

Scenario 2: π0
j−1 ≤ λ0k < π0

j = λ0k+1 < ... < λ0k+` ≤ π0
j+1

Scenario 1

Consider, firstly, a single reduced form break and m structural form breaks, with 0 ≤ π0
1 <

λ01 < ... < λ0m < T , so that

yt = (x′t, z
′
1,t)β

0
i + ut, i = 1, ...,m, t = T 0

i−1 + 1, ..., T 0
i

x′t =

 z′t∆
0
1 + vt t ≤ T †1

z′t∆
0
2 + vt t > T †1

As in Boldea, Hall, and Han (2012), proof of Theorem 3, the relevant intervals for the limiting

behaviour of {T̂i}mi=1 in (31) for 2SLS are again B =
⋃m
i=1Bi where Bi =

{∣∣Ti − T 0
i

∣∣ ≤ Kis
−2
T

}
for positive constants Ki, i = 1, ...,m. Then, from Boldea, Hall, and Han (2012)[Proposition 2],

the minimization implies that ξ1,T can be written as in (55), now with

Ai(Ti) = θ0
′

T,iΥ
0′
2

Ti∨T 0
i∑

t=(Ti∧T 0
i )+1

ztz
′
t Υ0

2 θ
0
T,i

Ci(Ti) = (−1)I{Ti<T
0
i } θ0

′

T,i Υ0′
2

Ti∨T 0
i∑

t=(Ti∧T 0
i )+1

ztut,i

for θ0T,i and Υ0
k (k = 1, 2) defined in Assumptions 3 and 12, respectively and ut,i defined in (25).
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For break i consider Ti = T 0
i + [ki s

−2
T ] for ki ∈ [−Ki,Ki]. Using the same arguments

as Boldea, Hall, and Han (2012) in the proof of their Theorem 2, it follows that the limiting

distribution of ξ1,T is given by (12) and (13) as in Lemma 1, but with (from Assumption 14 and

Assumption 11(iii)), (14)-(15) replaced by

ai,j = θ0 ′i Υ0′
2 QZZ(i+ j − 1) Υ0

2 θ
0
i (60)

ci,j = θ0 ′i Υ0′
2 Φ(i+ j − 1)Υ0

2 θ
0
i (61)

where Φ(`) = C`V`C
′
`, C` = ν′` ⊗ Iq, ν` = [1, β0′

x,`]. Under Assumption 11(iv) Φ(`) = ν`Ω`ν
′
` ⊗

QZZ(`), and with the addition of Assumption 11(v), we have Φ(`) = ν`Ων
′
` ⊗ QZZ(`). Thus,

under our assumptions

ci,j = ρ2i ai,j → ρ2ai,j (62)

where ρ2 is defined in (27) and Assumption 3 is imposed.

Therefore, applying Lemmata 1 and 2, we have

min
|ki|

G(|ki|) ∼ B(ai,j/2ci,j , ai,j/2ci,j) = B(0.5ρ−2, 0.5ρ−2), (63)

and so, as we can consider the breaks separately, it follows from Lemma 3 that

AE[ξ1,T ] = −3mρ2. (64)

Under the shrinking breaks Assumption 8, and with distinct reduced and structural form

breaks such that π0
j < λ0k+1 < ... < λ0k+` < π0

j+1, the result immediately extends to the case

where the number of reduced form breaks is h > 1. It also immediately specializes to the case

of a stable reduced form.

Scenario 2

Under this scenario, consider h = 1 in the case where the first of the m structural breaks

coincides with the single reduced form break. Hence the data generation process is identical to

Scenario 1, except that T †1 = T 0
1 and, consequently, π0

1 = λ01 .

From Boldea, Hall, and Han (2012), and since the m breaks at T 0
1 , ..., T

0
m can be considered

separately, the limiting distribution of ξ1,T applies as for scenario 1, with ai,j and ci,j as given

by (60) and (61), respectively, for i = 2, ...,m, but a1,j and c1,j are as follows:

a1,j = θ0 ′1 Υ0′
j QZZ(j) Υ0

j θ
0
1, j = 1, 2 (65)

c1,j = θ0 ′1 Υ0′
j Φ(j) Υ0

j θ
0
1, j = 1, 2. (66)
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Under our assumptions, therefore, (62) applies and consequently (63) holds for a break that is

common to the reduced and structural forms. Therefore (64) holds under Scenario 2.

Part (ii): From standard least squares algebra,

ξ2,T = RSS(T 0
1 , T

0
2 , ..., T

0
m;π0)− ESS(T 0

1 , T
0
2 , ..., T

0
m)

=

m∑
i=1

T 0
i∑

t=T 0
i−1+1

(yt − x̂t(π0)′β̂x,i − z′1,tβ̂z,i)2 −
m∑
i=1

T 0
i∑

t=T 0
i−1+1

(yt − x̂t(π0)′β0
x,i − z′1,tβ0

z,i)
2

= −
m∑
i=1

(β̂i − β0
i )′(Ŵ ′

i Ŵi)(β̂i − β0
i ) (67)

in which Ŵi is the (T 0
i − T 0

i−1)× p data matrix for the ith structural form regime, with typical

row (x̂t(π
0)′, z′1t), and β̂i = (β̂′x,i, β̂

′
z,i)
′ are obtained using the true reduced form break fractions

of π0.

It is useful to first consider Q̃i = Q̃ZZ(λ0i ) − Q̃ZZ(λ0i−1) where Q̃ZZ(r) is the uniform in

r ∈ (0, 1] limit of T−1
∑[Tr]
t=1 z̃t(π

0)z̃t(π
0)′. Without loss of generality, assume π0

` < λ ≤ π0
`+1,

then it follows from Assumption 14 that

Q̃ZZ(λ) = φ(λ)⊗QZZ (68)

where

φ(λ) = diag[δπ0
1 , ..., δπ

0
` , λ− π0

` , 0, ..., 0]

and δπ0
j = π0

j − π0
j−1 (π0

0 = 0, π0
h+1 = 1). Therefore, we have

Q̃i = φ
(1)
i ⊗QZZ (69)

where φ
(1)
i = φ(λ0i ) − φ(λ0i−1). We note there are two scenarios for φ

(1)
i : if there is no reduced

form break between λ0i−1 and λ0i then

φ
(1)
i = diag[0, . . . , 0, δλ0i , 0, . . . , 0]; (70)

if there are reduced form breaks between λ0i−1 and λ0i , say π0
k < λ0i−1 < π0

k+1 < ... < π0
k+`i

< λ0i ,

then

φ
(1)
i = diag

[
0, ..., 0, (π0

k+1 − λ0i−1), δπ0
k+2, ..., δπ

0
k+`i , (λ

0
i − π0

k+`i), 0, ..., 0
]
. (71)

For later reference it is also useful to note that

Q̃ZZ(1) = φ0 ⊗QZZ (72)
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where

φ0 = φ(1) = diag[δπ0
1 , δπ

0
2 ..., δπ

0
h+1]. (73)

We now return to the proof. From the proof of Hall, Han, and Boldea (2012)[Theorem 8],

we have that

T−1Ŵ ′i Ŵi = M̂ (i)
ww

p→M (i)
ww = Υ̃′Q̃i Υ̃

where Υ̃′ = [Υ0′
1 ,Υ

0′
2 , ...,Υ

0′
h+1]. From Hall, Han, and Boldea (2012)[Theorem 3], we have that

T 1/2
(
β̂i − β0

i

)
⇒ N(0, V βi,i)

where V βi,i, as in Hall, Han, and Boldea (2012)[Theorem 8], is

V βi,i = Ãi

{
C̃iṼiC̃

′
i − ẼiD̃iṼiC̃

′
i − C̃iṼiD̃′iẼ′i + ẼiD̃iṼiD̃

′
iẼ
′
i

}
Ã′i (74)

and

Ãi = [Υ̃′Q̃i Υ̃]−1Υ̃′

C̃i = (1, β0′
x,i)⊗ Iq̃, D̃i = (0, β0′

x,i)⊗ Iq̃, q̃ = q(h+ 1)

Ẽi = Q̃iQ̃ZZ(1)−1

Ṽi = V ar

T−1/2 [λ0
iT ]∑

t=[λ0
i−1T ]+1

h̃t

 , h̃t =

 ut

vt

⊗ z̃t(π0).

Under Assumption 11, we have

Ṽi = φ
(1)
i ⊗ V = φ

(1)
i ⊗ (Ω⊗QZZ)

where φ
(1)
i is defined by (70) or (71), as appropriate. Also using (68),

Ẽi = φ
(2)
i ⊗ Iq,

where φ
(2)
i = φ

(1)
i {φ(1)}−1.

Now consider each of the terms of (74) in turn. Firstly, since (1, β0′
x,i)Ω(1, β0′

x,i)
′ = ρ2i in (27),

then

C̃iṼiC̃
′
i = ρ2i (φ

(1)
i ⊗QZZ).

If φ
(i)
1 is given by (70) and π0

k ≤ λ0i−1 < λ0i ≤ π0
k+1 then

Υ̃′C̃iṼiC̃
′
iΥ̃ = ρ2i (δλ

0
i )Υ

0′
k+1QZZΥ0

k+1 → (δλ0i )ρ
2 Υ0′QZZ Υ0 (75)
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under Assumption 8. If φ
(i)
1 is given by (71) then we have

Υ̃′C̃iṼiC̃
′
iΥ̃ = ρ2i

{
(π0
k+1 − λ0i−1)Υ0′

k+1QZZΥ0
k+1 + δπ0

k+2Υ0′
k+2QZZΥ0

k+2 + ...

+ (λi − π0
k+`i)Υ

0′
k+`i+1QZZΥ0

k+`i+1

}
→ (δλ0i )ρ

2 Υ0′QZZ Υ0 (76)

under Assumption 8. By similar arguments, D̃iṼiC̃
′
i = (φ

(1)
i ⊗QZZ)ρi and hence

ẼiD̃iṼiC̃
′
i = (φ

(2)
i ⊗ Iq)(φ

(1)
i ⊗Q)ρi

= ρi(φ
(3)
i ⊗QZZ)

where φ
(3)
i = φ

(1)
i φ

(2)
i . Using Assumption 8, it follows that

Υ̃′ẼiD̃iṼiC̃
′
iΥ̃ → ρ diΥ

0′QZZ Υ0 (77)

where di =
∑h+1
j=1{φ

(3)
i }j,j and {φ(3)i }j,j is the (j, j)th element of {φ(3)i }. Note that if φ

(1)
i is given

by (70) then

di =
(δλ0i )

2

δπ0
k+1

, (78)

and if φ
(1)
i is given by (71) then

di =
(π0
k+1 − λ0i−1)2

δπ0
k+1

+
(λ0i − π0

k+`i
)2

δπ0
k+`i+1

− π0
k+1 + π0

k+`i . (79)

Finally, since D̃iṼiD̃
′
i = ω2

i (φ0 ⊗QZZ) where φ0 is defined in (73), then

ẼiD̃iṼiD̃
′
iẼ
′
i = ω2

i (φ
(2)
i ⊗ Iq)(φ(1)⊗QZZ)(φ

(2)
i ⊗ Iq)

= ω2
i (φ

(3)
i ⊗QZZ)

since φ
(2)
i φ(1) = φ

(1)
i and φ

(1)
i φ

(2)
i = φ

(3)
i . Consequently, under Assumption 8, we have

Υ̃′ẼiD̃iṼiD̃
′
iẼ
′
iΥ̃ → ω2diΥ

0′QZZ Υ0. (80)

Substituting from (76), (77) and (80) into (74) yields

V βi,i → {M
(i)
ww}−1{(δλ0i )ρ2 − 2ρ di + ω2di}Υ0′QZZ Υ0{M (i)

ww}−1.

Since Υ0′QZZ Υ0{M (i)
ww}−1 = (δλ0i )

−1Ip, and further using (28) and (29),

M (i)
wwV

β
i,i →

{
ρ2 − 2β0′

x γ
di
δλ0i
− β0′

x Σβ0
x

di
δλ0i

}
Ip
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and hence

AE[ξ2,T ] = −
m+1∑
i=1

tr
[
(V βi,i)

1/2M (i)
ww(V βi,i)

1/2
]

= −
m+1∑
i=1

tr[M (i)
wwV

β
i,i]

= −p(m+ 1)ρ2 + p

m+1∑
i=1

di
δλ0i

(2β0′
x γ + β0′

x Σβ0
x)

= −p(m+ 1)ρ2 + p(ρ2 − σ2)

m+1∑
i=1

di
δλ0i

(81)

where the last expression is obtained using (27).

Part (iii): For ξ3,T defined by (33), consider the regime-specific errors

yt − x̂′tβ0
x,i − z′1,tβ0

z,i = (yt − x′tβ0
x,i − z′1,tβ0

z,i) + (xt − x̂t)′β0
x,i

= ut,i + (xt − x̂t)′β0
x,i

where x̂t is obtained using the true reduced form break dates. Since

ESS(T 0
1 , ..., T

0
m) =

m+1∑
i=1

T 0
i∑

t=T 0
i−1+1

[ut,i + (x′t − x̂′t)β0
x,i]

2

and

ESSe(T 0
1 , ..., T

0
m) =

m+1∑
i=1

T 0
i∑

t=T 0
i−1+1

u2t,i, (82)

it immediately follows that

ξ3,T =

m+1∑
i=1


T 0
i∑

t=T 0
i−1+1

β0′
x,i(xt − x̂t)(xt − x̂t)′β0

x,i + 2

T 0
i∑

t=T 0
i−1+1

ut,i(xt − x̂t)′β0
x,i


=

m+1∑
i=1

(E2i + 2E3i) (83)

where (obviously)

E2i =

T 0
i∑

t=T 0
i−1+1

β0′
x,i(xt − x̂t)(xt − x̂t)′β0

x,i (84)

E3i =

T 0
i∑

t=T 0
i−1+1

ut,i(xt − x̂t)′β0
x,i. (85)
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From (21) and (22),

x′t − x̂′t = z̃′t(Θ
0 − Θ̂T )

= −z̃′t

{
T∑
t=1

z̃t z̃
′
t

}−1 T∑
t=1

z̃t v
′
t (86)

where it is understood that z̃t = z̃t(π
0). Substituting (86) into (84) and using (26), we can write

E2i = T−1/2
T∑
t=1

vt,i z̃
′
t

{
T−1

T∑
t=1

z̃t z̃
′
t

}−1
T−1

T 0
i∑

t=T 0
i−1+1

z̃t z̃
′
t

×

{
T−1

T∑
t=1

z̃t z̃
′
t

}−1
T−1/2

T∑
t=1

z̃tvt,i.

From (69) and (72), it follows that

AE[E2i] = tr
{

(φ
(4)
i ⊗Q

−1
ZZ

}
limT→∞E

(T−1/2 T∑
t=1

z̃tvt,i

)(
T−1/2

T∑
t=1

z̃tvt,i

)′
where φ

(4)
i = φ

(2)
i φ−10 and, using ω2

i = V ar[vt,i] from (29),

limT→∞E

(T−1/2 T∑
t=1

z̃tvt,i

)(
T−1/2

T∑
t=1

z̃tvt,i

)′ = ω2
i (φ0 ⊗QZZ).

Therefore

AE[E2i] = tr
{
φ0φ

(4)
i ⊗ Iq

}
ω2
i

= tr
{
φ
(2)
i ⊗ Iq

}
ω2
i

= qω2
i bi

where bi =
∑h+1

1 {φ(2)i }j,j and {φ(2)i }j,j is the (j, j)th element of φ
(2)
i .

Also substituting (86) in the definition of (85) yields

E3i = −
T 0
i∑

t=T 0
i−1+1

ut,iz̃
′
t

{
T∑
t=1

z̃t z̃
′
t

}−1 T∑
t=1

z̃t v
′
tβ

0
x,i

= −T−1/2
T 0
i∑

t=T 0
i−1+1

ut,iz̃
′
t

{
Q̃zz(1)

}−1
T−1/2

T∑
t=1

ztvt,i + op(1).

Applying similar arguments to those for E2i, we obtain

AE[E3i] = −qρibi
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where ρi = Cov[vt,i, ut,i]. Therefore, under Assumption 3, we have

AE[ξ3,T ]→ q[ω2 − 2ρ]

m+1∑
i=1

bi. (87)

To complete the proof note that
∑m+1
i=1 bi = h+ 1 and ω2 − 2ρ = −(ρ2 − σ2) from (28) to (29).

Part (iv): Using the definition of ξ4,T in (34) and also (82), it immediately follows from (27)

that E[ξ4,T ] = 0. Simple algebra then yields the result given for AE[ξT ] in Theorem 3.

To establish 0 <
∑m+1
i=1 di /(δλ

0
i ) ≤ min[(h + 1), (m + 1)], note first that di and δλ0i (i =

1, ...,m+1) are strictly positive, by definition. For a structural form regime with no intermediate

reduced form breaks, π0
k ≤ λ0i−1 < λ0i ≤ π0

k+1, say, it immediately follows that di/(δλ
0
i ) =

{δλ0i }2/{δπ0
k+1 × δλ0i } = (δλ0i )/(δπ

0
k+1) ≤ 1, with equality holding if and only if π0

k = λ0i−1 and

λ0i = π0
k+1. With intermediate reduced form breaks, π0

k ≤ λ0i−1 < π0
k+1 < ... < π0

k+`i
< λ0i ≤

π0
k+`i+1, say, with `i ≥ 1, then

di =
(π0
k+1 − λ0i−1)2

δπ0
k+1

+
(λ0i − π0

k+`i
)2

δπ0
k+`i+1

+ π0
k+`i − π

0
k+1

< π0
k+1 − λ0i−1 + λ0i − π0

k+`i + π0
k+`i − π

0
k+1 = δλ0i

since π0
k+1 − λ0i−1 ≤ δπ0

k+1 and λ0i − π0
k+`i

≤ δπ0
k+`i+1, with equality if both λ0i−1 = π0

k and

π0
k+`i+1 = λ0i . Therefore, di/δλ

0
i ≤ 1 also in this case. Summed over all m + 1 structural form

regimes, it immediately follows that

0 <

m+1∑
i=1

di /(δλ
0
i ) ≤ m+ 1.

From the perspective of the reduced form regimes, define d∗j as follows: If reduced form regime

j contains no structural form breaks, so that λ0i ≤ π0
j−1 < π0

j ≤ λ0i+1, d∗j = δπ0
j /δλi; if reduced

form regime j includes `j structural form breaks, λ0i ≤ π0
j−1 < λ0i+1 < ... < λ0i+`j < π0

j ≤ λ0i+`j+1,

then

d∗j =
(λ0i+1 − π0

j−1)2

δλ0i+1 × δπ0
j

+

`j∑
s=2

δλ0i+s
δπ0
j

+
(π0
j − λ0i+`j )2

δλ0i+`j+1 × δπ0
j

. (88)

From these definitions, it follows that each d∗j ≤ 1; this is obvious for the case of no intermediate

structural form breaks, while (88) implies that

d∗j ≤
λ0i+1 − π0

j−1

δπ0
j

+

`j∑
s=2

δλ0i+s
δπ0
j

+
π0
j − λ0i+`j
δπ0
j

=
δπ0
j

δπ0
j

= 1
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since (λ0i+1 − π0
j−1) ≤ δλ0i+1 and (π0

j − λ0i+`j ) ≤ δλ0i+`j+1. Also note that d∗j = 1 in (88) when

π0
j−1 = λ0i and π0

j = λ0i+`j+1. Further, since λ00 = π0
0 = 0 and λ0m+1 = π0

h+1 = 1, it also follows

that
∑m+1
i=1 di /(δλ

0
i ) =

∑h+1
j=1 d

∗
j ≤ (h+ 1), thereby establishing the required result. �

Proof of Theorem 4

Under H0,

Nλ(λ) = −ξ1,T .

From (12) and (13),

−ξ1,T
d→

m∑
i=1

max
|ki|

Hi(|ki|)

where

Hi(|ki|) =

 − |ki| ai,1 + 2 c
1/2
i,1 Wi,1(|ki|), ki ≤ 0

− |k| ai,2 + 2 c
1/2
i,2 Wi,2(|ki|), ki > 0

with ai,j , ci,j defined in (14), (15). From Lemmata 1 and 2,

max
|ki|

Hi(|ki|) = bi ∼ B(µi,1, µi,2).

The desired result follows because Assumptions 1 and 3 imply independence of bi and bj for

i 6= j. �
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Table 1: Critical values for test based on Fλ(λ̄)

m 10% 5% 1% m 10% 5% 1%

1 5.9415 7.3581 10.5845 6 25.2819 27.9196 33.3415

2 10.2164 11.9835 15.8540 7 28.8528 31.6485 37.3694

3 14.1666 16.2043 20.5591 8 32.3859 35.3227 41.3215

4 17.9626 20.2202 24.9877 9 35.8842 38.9584 45.2137

5 21.6575 24.1175 29.2265 10 39.3541 42.5614 49.0649

Notes: Critical values at the 10%, 5%, and 1% significance level of the limiting distribution of Fλ(λ̄) in Corollary

2, for models with m number of breaks.
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Table 2: Performance of OLS variance estimators

k=0 k=1 k=3

T α bias C90 F90 bias C90 F90 bias C90 F90

120 0.0 -2.02 85.10 83.94 -1.17 85.38 84.10 0.58 85.76 84.42

0.1 -2.14 83.90 83.00 -1.28 84.24 83.18 0.46 84.64 83.66

0.2 -2.25 83.00 81.86 -1.40 83.22 82.06 0.35 83.66 82.58

0.3 -2.35 82.12 80.84 -1.50 82.38 81.00 0.24 82.80 81.52

0.4 -2.45 81.38 79.84 -1.60 81.66 80.02 0.14 82.00 80.50

0.49 -2.54 80.06 79.10 -1.69 80.28 79.22 0.05 80.74 79.62

T α bias C90 F90 bias C90 F90 bias C90 F90

240 0.0 -0.89 87.78 87.02 -0.47 87.88 87.14 0.39 87.96 87.34

0.1 -0.98 86.94 85.74 -0.56 87.00 85.86 0.30 87.18 86.06

0.2 -1.07 85.54 84.70 -0.65 85.60 84.80 0.20 85.78 85.02

0.3 -1.17 83.72 82.98 -0.75 83.78 83.04 0.10 84.00 83.34

0.4 -1.25 82.10 81.38 -0.83 82.22 81.40 0.02 82.36 81.62

0.49 -1.32 80.52 79.88 -0.90 80.62 79.98 -0.05 80.76 80.22

T α bias C90 F90 bias C90 F90 bias C90 F90

360 0.0 -0.62 88.62 88.20 -0.34 88.62 88.32 0.23 88.66 88.40

0.1 -0.68 87.46 87.28 -0.40 87.50 87.32 0.17 87.58 87.48

0.2 -0.74 85.96 85.78 -0.46 86.04 85.82 0.10 86.16 85.96

0.3 -0.82 84.14 83.72 -0.54 84.14 83.76 0.03 84.34 83.90

0.4 -0.89 82.02 81.22 -0.61 82.06 81.34 -0.05 82.16 81.46

0.49 -0.95 79.88 79.38 -0.67 79.92 79.40 -0.11 80.06 79.50

T α bias C90 F90 bias C90 F90 bias C90 F90

480 0.0 -0.50 89.24 88.26 -0.29 89.32 88.26 0.13 89.50 88.36

0.1 -0.55 88.40 87.54 -0.34 88.52 87.60 0.08 88.62 87.70

0.2 -0.60 87.24 86.48 -0.39 87.30 86.58 0.03 87.42 86.66

0.3 -0.66 85.44 84.02 -0.45 85.48 84.04 -0.03 85.54 84.20

0.4 -0.72 83.10 81.36 -0.51 83.14 81.46 -0.09 83.16 81.58

0.49 -0.77 80.80 78.88 -0.56 80.80 78.92 -0.14 80.80 79.02

Notes: k indexes the degrees of freedom correction in the error variance estimator as described in Section 5;

bias = σ̂2
k − 1 where the true error variance is 1; C90 (F90) denotes the empirical coverage probability closest to

(furthest from) the nominal value of .90 over the intervals in (52) for µ1, γ1, µ2, and γ2.The biases and coverage

probabilities are given in percentage terms.
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Table 3: Estimated Monetary Policy Rules

1968Q4- 1968Q4- 1980Q4- 1985Q4-

2005Q4 1980Q3 1985Q3 2005Q4

A. Estimated coefficients

πt+1|t 0.41 (1.10) 0.80 (3.63) 1.68 (10.53) 0.16 (1.13)

x̃t+1|t 0.23 (0.77) 0.94 (2.77) 0.01 (0.04) 0.09 (0.96)

rt−1 0.65 (1.64) 0.37 (1.08) -0.20 (1.27) 1.33 (8.54)

rt−2 0.11 (0.31) 0.03 (0.17) 0.09 (0.53) -0.43 (3.17)

c 0.12 (0.21) 1.03 (1.04) 3.75 (2.91) 0.09 (0.59)

B. Implied steady-state monetary policy responses

πt+1|t 1.74 (1.01) 1.33 (1.53) 1.51 (5.73) 1.59 (0.74)

x̃t+1|t 1.00 (0.93) 1.56 (1.12) 0.01 (0.04) 0.91 (0.43)

Notes: Breaks in the monetary policy rule (53) are detected using the BIC and HQIC information criteria

with (p + 3)m effective parameters, a maximum of five breaks and a minimum of 10% of sample observations

required to be in each estimated monetary policy regime. Inflation and unemployment gap forecasts are treated

as endogenous in the monetary policy rule, with breaks detected separately for each reduced form equation.

Figures in parentheses are t-ratios. The implied steady-state responses of monetary policy to inflation and the

unemployment gap shown in Panel B are obtained from the estimated coefficients assuming constant short-term

interest rates (rt = rt−1 = rt−2).
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Figure 1: Power of Fλ(λ̄) statistics for H0 : λ̄1 = 0.5 + κ

Notes: The true break is at λ01 = 0.5. Power is shown for κ = 0, 0.02, ..., 0.2 where κ = 0 corresponds to the true

break and higher values to null hypotheses that are further away from the true break. The tests are conducted

at the 5% significance level. Higher α values correspond to smaller magnitudes of the break determined by

β0
2 − β0

1 = [1, 1]′ × 0.3× 50α/Tα.
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Figure 2: 99% break fraction confidence set for monetary policy application

Notes: The confidence set shows the break fraction pairs (λ1, λ2) for which the statistic Fλ(λ̄) does not reject

the corresponding joint null hypothesis at the 1% level, when applied to each permissible null hypothesis subject

to a 15 observation minimum segment (ε = 0.10). The λ1 = 0.32 break fraction corresponds to 1980Q3 and is the

only date of a first break that does not reject the null while λ2 can take any value from 0.42 to 0.62, or 1984Q2

to 1991Q4.
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