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Abstract

We study the problem of identifying members of a group based on individual

opinions. Since agents do not have preferences in the model, properties of rules that

concern preferences (e.g., strategy-proofness and efficiency) have not been studied.

We fill this gap by working with partial preferences derived directly from opin-

ions. We characterize three families of rules that are nested. The most general is

the family of voting-by-committees rules, characterized by strategy-proofness alone.

By additionally imposing equal treatment of equals, we identify a condition that

committees should satisfy and we call the resulting family the voting-by-equitable-

committees rules. The consent rules are a special case within this family and we

characterize them by strategy-proofness and symmetry. We also show that under

strategy-proofness, non-degeneracy is necessary and sufficient for efficiency. This

implies that a rule satisfies strategy-proofness, efficiency, and equal treatment of

equals if and only if it is a non-degenerate voting-by-equitable-committees rule.

This family is new in the literature and contains, in addition to the consent rules,

dictatorial and oligarchic rules that may be particularly relevant when agents’ opin-

ions need to be weighted differently.
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1 Introduction

The axiomatic theory of group identification begins with Kasher and Rubinstein (1997),

who focus on the problem of identifying members of a given ethnic-religious community.

The building blocks of this theory are (i) a group of agents, who seek to identify those with,

or without, a certain qualification; (ii) the agents’ opinions about each other, including

themselves, which are the main input for qualifying or disqualifying an individual as a

group member; and (iii) a rule that aggregates those opinions into a (social) decision.1

From the standpoint of economics, an important disadvantage of this framework is that

the lack of information about individual preferences prevents us from analyzing incentive

compatibility and efficiency of rules.

One way of circumventing this problem is to ask agents to submit their preferences,

define a problem as a profile of such preferences and a rule as a mapping associating with

each preference profile a decision. The model so obtained is a non-trivial application of

Barberà et al. (1991), who study selecting subsets from an abstract set of alternatives.

A drawback of this approach is that the information requirement is very demanding.

Preferences are defined over 2n alternatives (where n is the number of agents); so just

with n = 10, each agent should evaluate more than 3.6 million alternatives and report his

preferences over them. Thus, the approach may not be feasible in real-life applications.

Motivated by this limitation, we derive from each agent’s opinion a partial ordering

that represents his preferences over decisions. Our preference specification ranks the

agent’s opinion as his most preferred decision; and it partially orders other decisions by

looking at each agent’s membership separately from the others’ and by comparing it to

the opinion. For instance, suppose that agent i views agent j as a member. Consider

any pair of decisions that differ only in agent j’s membership. Then agent i prefers the

decision that qualifies agent j as a member to the decision that disqualifies him. Any

complete preferences satisfying “separability” should be consistent with such a partial

ordering. This way of extending opinions to preferences resembles the way in which

preferences over sure outcomes are extended to preferences over lotteries by first-order

stochastic dominance.

With preferences defined, we can now study properties of rules that involve prefer-

ences. The first one is an incentive property known as strategy-proofness. This property

ensures that no agent ever benefit from misrepresenting his opinions. We find that on a

“rich” opinion domain (e.g., the universal domain), strategy-proofness characterizes the

family of voting-by-committees rules (Theorem 1).2 The latter rules are first introduced

1Opinions and decisions are represented by profiles of 0’s and 1’s, with 0 meaning “out” and 1 “in”.
2Domain richness is given by two properties: connectedness and non-restoration. Both are formally

defined in Section 3. Also, Fig. 1 illustrates these concepts.
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by Barberà et al. (1991) in their abstract social choice model. A voting-by-committees

rule determines each agent’s membership using a committee for the agent that consists

of winning coalitions (subsets of agents). An agent is qualified as a member if he obtains

the approval of a winning coalition in his committee.

Our proof for the characterization of the voting-by-committees rules hinges on two

results that are interesting in their own right. First, strategy-proofness is equivalent

to a local notion of incentive compatibility, called adjacent strategy-proofness (Proposi-

tion 1). Two opinions are adjacent if they differ in only one agent’s membership. Adjacent

strategy-proofness requires that no agent gain by reporting an opinion that is adjacent

to the truth. In general, adjacent strategy-proofness is weaker than strategy-proofness.

Yet on rich domains, the two are equivalent. Moreover, this equivalence implies that

a strategy-proof rule responds to changes in opinions in an intuitive way: when agent

i changes his opinion about agent j while keeping his opinions about all other agents

the same, agent j’s membership, if it is affected, should change in the same direction

while the membership for all other agents should remain unaffected. Conversely, any rule

satisfying this property is strategy-proof (Corollary 1).

The second result upon which our characterization relies concern two properties pro-

posed by Samet and Schmeidler (2003): monotonicity and independence. Monotonicity

requires that a rule should adopt decisions that change (weakly) in the same direction

as opinions do. Independence, on the other hand, requires that each agent’s membership

should be decided based solely on opinions about him. We show that strategy-proofness

is equivalent to these two properties together (Proposition 2). This result provides a pref-

erence foundation for monotonicity and independence by Samet and Schmeidler (2003).

In addition to seeking to elicit individual opinions sincerely, we are also interested in

rules that treat agents fairly. We consider two properties of fairness. The first property

is equal treatment of equals (Kasher and Rubinstein, 1997).3 Two agents are equals if

they are not distinguishable in any way (i.e., they have the same opinion about all agents

and all agents have the same opinion about them). Equal treatment of equals says that

the membership decisions for two equal agents should be the same. This property is

the most basic fairness requirement in our model. This axiom is not well-defined in the

abstract model of Barberà et al. (1991), but it is meaningful in our model because of the

additional structure that alternatives have in group identification.

We show that a rule satisfies strategy-proofness and equal treatment of equals if and

only if it is a voting-by-committees rule whose associated committees satisfy the following

3Kasher and Rubinstein (1997) call this property “symmetry”. We use a different terminology to
distinguish it from the concept of symmetry defined by Samet and Schmeidler (2003), which is stronger
than equal treatment of equals and is equivalent to the conjunction of essential anonymity and essential
neutrality (Çengelci and Sanver, 2010).
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equitable condition: for each pair of agents i and j and for each winning coalition M that

is in agent i’s committee but not in agent j’s, exactly one of the two agents belongs to

M , so that whenever the two agents are equals, M plays no role in determining their

qualification (Theorem 2). These rules are new in the literature and we call them the

voting-by-equitable-committees rules.

The family of consent rules proposed by Samet and Schmeidler (2003) is a special case

within the class of voting-by-equitable-committees rules. Depending on the choice of the

parameters, the consent rules can embody different degrees of democracy and liberal-

ism. We characterize these rules by strategy-proofness and symmetry, a fairness notion

stronger than equal treatment of equals (Theorem 3). Symmetry (Samet and Schmeidler,

2003) essentially requires that the names of the agents should not matter (“essentially”

because an agent’s opinion about himself plays a special role in the committee that deals

with his own qualification). Our characterization of the consent rules relies on a char-

acterization by Samet and Schmeidler (2003) and our result that strategy-proofness is

equivalent to monotonicity and independence combined.

Finally, we also investigate implications of efficiency. Because the preferences derived

from opinions are incomplete, efficiency turns out to be a weak property. In fact, we

show that in the presence of strategy-proofness, efficiency is equivalent to non-degeneracy

(Proposition 4). Non-degeneracy requires that for no agent, should the membership de-

cision be fixed throughout the opinion domain. Therefore, using our previous results, we

conclude that a rule satisfies strategy-proofness, efficiency, and equal treatment of equals

if and only if it is a non-degenerate voting-by-equitable-committees rule (Corollary 2).

To summarize, our analysis in this work unveils a class of desirable rules that, para-

phrasing Samet and Schmeidler (2003), goes “beyond liberalism and democracy”. The

family of voting-by-equitable-committees rules includes rules that are non-anonymous,

but all of them satisfy strategy-proofness, efficiency, and equal treatment of equals. The

subfamily of consent rules are made of essentially anonymous committees, for which only

the size of winning coalitions (i.e., quotas) matters, but not the names of their mem-

bers, except for the agent whose membership a committee deals with. By contrast, the

voting-by-equitable-committees rules allow committees to be oligarchic (e.g., UN Security

Council) or even dictatorial. We believe that these rules are particularly relevant when

agents are heterogenous not only in their opinions but also in other dimensions (e.g.,

power and expertise), which may justify assigning different weights to their opinions.

The rest of the paper proceeds as follows. We briefly review the related literature in

Section 2 and set up the model and notation in Section 3. The results about strategy-

proofness are in Section 4. In Sections 5 and 6, we additionally impose fairness and

efficiency, respectively. We discuss other incentive properties in Section 7. For exposi-
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tional convenience, all proofs are in Appendix A.

2 Related Literature

The first model of group identification is due to Kasher and Rubinstein (1997), who relate

the problem of collective identity to social choice theory. The paper shows that when

the range of a rule is restricted to be a proper subset of the set of agents, it satisfies

independence and consensus (efficiency in our model) if and only if it is dictatorial. This

result is known in the literature as the “who is a J” impossibility theorem. Saporiti

(2012) enhances this result by weakening consensus and provides a proof that exploits

the structure of decisive coalitions. Kasher and Rubinstein (1997) also propose equal

treatment of equals (they call this property symmetry), a fairness requirement that a rule

should not discriminate between two agents on any basis other than that represented by

opinions. Finally, they introduce and characterize the liberal rule, according to which an

agent is a member if and only if he believes himself to be.

Samet and Schmeidler (2003) propose and characterize the family of consent rules,

which contains the liberal rule as a special case. The consent rules are parameterized by

the weights given to the individuals viz-a-viz the group for determining their member-

ship, accommodating different levels of social intervention in an agent’s status. Samet

and Schmeidler (2003) point out the connection between the group identification model

and Barberà et al. (1991). In particular, they discuss the possibility of misrepresenting

opinions, but they do not characterize strategy-proof rules. In that sense, our work is

an extension of their study. Also, Theorem 3 provides an alternative justification for the

consent rules by showing that they are the only strategy-proof and symmetric rules.

In the papers cited above, there is a single group whose membership is to be decided.

By contrast, Miller (2008) considers the setup where the group under question can vary.

He imposes axioms that require decisions to be consistent with respect to conjunction and

disjunction of groups. Cho and Ju (2014) study a model where multiple groups are iden-

tified simultaneously. They investigate consequences of an independence axiom, similar

to Arrow’s (1951) independence of irrelevant alternatives, requiring that identification of

each group should depend only on opinions about that group. Sung and Dimitrov (2005),

Houy (2007), Çengelci and Sanver (2010), and Ju (2013) provide further characterizations

of group identification rules.4

In a model where agents vote on subsets of abstract alternatives, Barberà et al. (1991)

characterize the voting-by-committees rules on the domain of separable preferences by

an incentive property and a full range condition (voter sovereignty). Since agents submit

4See also Dimitrov (2011) for a recent and comprehensive review of the literature.
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their preferences over all alternatives, their incentive property is weaker than our notion

of strategy-proofness. Theorem 1 in our paper shows that the same family of rules is

characterized by strategy-proofness alone when individual preferences are separable but

represented by partial orders. Our result holds on rich domains where some decisions may

not be feasible. In this regard, our work is also related to Barberà et al. (2005) who study

choosing abstract sets of objects with constraints. A major distinction between these two

papers and ours, apart from the incomplete nature of our preference specification, is that

we consider fairness properties—namely, equal treatment of equals and symmetry—and

characterize the structures of committees emerging from them.

Sato (2013), Carroll (2012), and Cho (2014) pursue the question of when a local

incentive property is sufficient for the global incentive property. In particular, Sato

(2013) identifies a condition on the preference domain that ensures the sufficiency for

deterministic social choice rules and Cho (2014) extends it to probabilistic rules. Our

result that on rich opinion domains, strategy-proofness and adjacent strategy-proofness

are equivalent is related to these papers. Moreover, in the spirit of Cho (2014), we

also show that strategy-proofness is equivalent to a stronger incentive property, called

lie monotonicity, which says that each agent’s welfare weakly decreases as he submits

increasingly bigger lies.

3 The Model

We study the problem of determining members of a certain group based on individual

opinions. Let N ≡ {1, . . . , n} (n ≥ 2) be a finite set of agents. There is a group that

these agents seek to identify among themselves. Each agent i ∈ N has an opinion

pi ≡ (pij)j∈N ∈ {0, 1}N , where for each j ∈ N , pij = 1 (and pij = 0) if agent i approves

(and disapproves, respectively) agent j’s membership for the group. It may be that some

opinions are not permitted; e.g., we may want to identify a group whose maximum size is
n
2
. Let D ⊆ {0, 1}N be the domain of admissible opinions. We call {0, 1}N the universal

domain and denote it by U .

A (identification) problem is a profile p ≡ (pi)i∈N of opinions. We treat individual

opinions as 1 × n row vectors and problems as n × n matrices. For each i ∈ N , let pi

be the i-th column of p (the opinions about agent i). Let DN be the set of problems.

A (social) decision is a profile x ≡ (xi)i∈N ∈ {0, 1}N , where for each i ∈ N , xi = 1

(and xi = 0) if agent i is approved as a member (and a non-member, respectively) of

the group. Let X ≡ {0, 1}N be the set of all social decisions. A (identification) rule

ϕ : DN → X associates with each problem a decision.

What we have described so far is the standard model of group identification (Kasher
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and Rubinstein, 1997). However, since the model lacks the information about agents’

preferences, we cannot define properties of rules, such as strategy-proofness and efficiency,

that pertain to these preferences. Yet there is a way to interpret opinions as preferences.

Consider agent i’s opinion pi. It is natural to interpret pi as agent i’s most preferred

alternative in {0, 1}N . We do not know how he ranks the other alternatives in {0, 1}N .

But if we place a restriction on admissible preferences, a “partial” preference relation

can be recovered from pi. We assume that preferences are separable in the sense that

each agent’s membership decision is valued independently of other agents’ membership

decision.

Formally, given pi ∈ D, for each j ∈ N and each pair x, y ∈ X such that for each

k ∈ N\{j}, xk = yk and xj 6= yj, agent i with opinion pi prefers x to y if and only if

xj = pij 6= yj. Then each separable preference relation that top-ranks pi is consistent

with the strict preference relation Pi defined as follows: for each pair x, y ∈ X ,

xPi y ⇐⇒ for each j ∈ N, pij 6= xj implies pij 6= yj.

Thus, under the separability assumption, for each pair x, y ∈ X , if xPi y, then agent i who

most prefers pi in {0, 1}N prefers x to y. Also, if x and y are not comparable according

to Pi, then agent i who most prefers pi may or may not prefer x to y. We treat Pi as

the preferences of agent i with opinion pi and call it the preference extension of pi.

Denote the preference extension of p′i and p̂i by P ′
i and P̂i, and so on.

Note that Pi is irreflexive, transitive, and incomplete. For example, suppose that N =

{1, 2}. Then the universal domain U contains four opinions. According to the preference

extension Pi of opinion pi = (0, 1), decision (0, 1) is most preferred, (1, 0) is least preferred,

and (0, 0) and (1, 1) are not comparable. In that regard, our preference extension is similar

to extending preferences over sure outcomes to preferences over lotteries defined on those

outcomes using first-order stochastic dominance. The latter method has been widely

used to design ordinal mechanisms in the context of voting (Gibbard, 1977) and object

assignment (Bogomolnaia and Moulin, 2001).

Finally, it is worth mentioning that Barberà et al. (1991) also assume separable pref-

erences in their abstract social choice framework. However, a major distinction between

our approach and theirs, apart from the additional structure of group identification, is

that in our model each agent only submits his opinion (most preferred alternative) in

{0, 1}N ; in Barberà et al. (1991), each agent submits his entire preferences, which is a

linear ordering over the subsets of a finite set of alternatives.

Below we use the following notation. For each p ∈ DN and each i ∈ N , let N0(p, i) ≡

{j ∈ N : pji = 0} be the set of agents who believe that agent i is not a member. Similarly,
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letN1(p, i) ≡ {j ∈ N : pji = 1} be the set of agents who believe that agent i is a member.

For each p ∈ DN and each i ∈ N , let ϕi(p) be the i-th entry of the decision ϕ(p). For

each p ∈ DN , each i ∈ N , and each p′i ∈ D, let (p′

i
, p−i) be the problem where agent i

has opinion p′i and for each j ∈ N\{i}, agent j has opinion pj . Let 1n×n ∈ UN be the

problem where all of its entries are 1 and 11×n ∈ X the decision where all of its entries

are 1. The problem 0n×n and the decision 01×n are similarly defined.

4 Incentives

With individual preferences defined, we can now consider properties of rules that refer

to these preferences. The first of these properties deals with incentive compatibility: the

decision an agent gets by truthfully reporting his opinion should be weakly preferred to

all other decisions he gets by lying.

Strategy-proofness: For each p ∈ DN , each i ∈ N , and each p′i ∈ D, either ϕ(p) =

ϕ(p′i, p−i) or ϕ(p)Pi ϕ(p
′
i, p−i).

5

According to the definition of strategy-proofness, agents are free to report any opinion

in the domain. We can formulate a similar but weaker property by restricting lies to be

“close” to the truth. To define such property, we first make precise the meaning of

closeness in D. For each pair pi, p
′
i ∈ D, pi and p′i are adjacent if there is exactly one

j ∈ N such that pij 6= p′ij. Opinions that are adjacent to the truth are the smallest lies,

and we require that agents should not benefit from reporting those lies.

Adjacent strategy-proofness: For each p ∈ DN , each i ∈ N , and each p′i ∈ D such

that pi and p′i are adjacent, either ϕ(p) = ϕ(p′i, p−i) or ϕ(p)Pi ϕ(p
′
i, p−i).

While strategy-proofness has long been studied in the mechanism design literature,

adjacent strategy-proofness is a relatively new concept (Carroll, 2012; Sato, 2013). In

general, adjacent strategy-proofness is weaker than strategy-proofness. However, the two

properties are equivalent on some domains. This equivalence is particularly useful for

characterizing the behavior of strategy-proof rules (see Corollary 1 below).

Next, to define domain properties, we adapt Sato’s (2013) concepts to our setup. Let

pi, p
′
i ∈ D be opinions. First, a path from pi to p′

i
in D is a sequence of opinions

{p0i , p
1
i , . . . , p

k
i } in D such that (i) p0i = pi and pki = p′i; and (ii) for each h ∈ {0, 1, . . . , k−

5One can formulate an alternative incentive property as follows: for each p ∈ DN and each i ∈ N , there
is no p′i ∈ D such that ϕ(p′i, p−i)Pi ϕ(p). Since the preference extension only gives an incomplete prefer-
ence relation, this property is weaker than strategy-proofness. More importantly, strategy-proofness is
a more appropriate notion than the above alternative property because we require a rule to be immune
to manipulation by agents with any separable preferences. A similar issue arises in the context of object
assignment where agents compare lotteries based on incomplete preference relations that are obtained
by first-order stochastic dominance (Bogomolnaia and Moulin, 2001).
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1}, phi and ph+1
i are adjacent. For the path {p0i , p

1
i , . . . , p

k
i } from pi to p′i in D, we call

k the length of the path. The domain D is connected if for each pair pi, p
′
i ∈ D,

there is a path from pi to p′i in D. Second, the path {p0i , p
1
i , . . . , p

k
i } from pi to p′i in D

is without restoration if for each h ∈ {0, 1, · · · , k − 1} and each j ∈ N , if phij 6= ph+1
ij ,

then ph+1
ij = ph+2

ij = . . . = pkij . The domain D satisfies non-restoration if for each pair

of connected opinions pi, p
′
i ∈ D, there is a path from pi to p′i in D without restoration.

Finally, the domain D is rich if it satisfies connectedness and non-restoration.

To illustrate the concepts defined above, Fig. 1 exhibits two opinion domains (in

red) that are not rich. The domain in Fig. 1a is not connected but trivially satisfies

non-restoration. On the contrary, the domain in Fig. 1b is connected but violates non-

restoration. Note that the universal domain is rich.

(0, 1)

(1, 0)

(a) Violation of connectedness

(0, 0, 0)

(1, 0, 1)

(0, 0, 1)

(1, 1, 1)

(1, 1, 0)

(b) Violation of non-restoration

Figure 1: Opinion domains

As a first step toward understanding strategy-proofness, we explore the logical relation

between strategy-proofness and adjacent strategy-proofness on a rich opinion domain. In

the standard social choice model where agents report strict preferences over alternatives,

these properties are equivalent, regardless of whether the social choice rule is deterministic

(Sato, 2013) or probabilistic (Carroll, 2012; Cho, 2014). Our first result shows that a

similar equivalence extends to the group identification model.

Proposition 1 Let D be a rich opinion domain. A rule is strategy-proof if and only if

it is adjacent strategy-proof.

Proposition 1 plays a key role in unveiling the structure of strategy-proof rules. Indeed,

consider a rule ϕ. Let p ∈ DN and i ∈ N . Suppose that agent i changes his opinion

from pi to an adjacent opinion p′i ∈ D such that for some j ∈ N , pij 6= p′ij. Assume that

ϕ is adjacent strategy-proof. If ϕ returns different decisions for p and (p′i, p−i), then by

adjacent strategy-proofness, the two decisions should differ only in agent j’s membership.
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Moreover, the change in the two decisions should be the same as the change in opinions pi

and p′i. Thus, ϕj(p) = pij 6= p′ij = ϕj(p
′
i, p−i) and for each k ∈ N\{j}, ϕk(p) = ϕk(p

′
i, p−i).

It is simple to see that the latter behavior of ϕ is necessary and sufficient for adjacent

strategy-proofness. Now by Proposition 1, it is also necessary and sufficient for strategy-

proofness. Thus, we have the following characterization of strategy-proof rules.

Corollary 1 Let D be a rich opinion domain. A rule ϕ is strategy-proof if and only if for

each p ∈ DN , each i ∈ N , and each p′i ∈ D such that pi and p′i are adjacent, with pij 6= p′ij

for some j ∈ N , either (i) ϕ(p) = ϕ(p′i, p−i), or (ii) ϕj(p) = pij 6= p′ij = ϕj(p
′
i, p−i) and

for each k ∈ N\{j}, ϕk(p) = ϕk(p
′
i, p−i).

Corollary 1 relates strategy-proofness to two well-known properties in group identifi-

cation. The first property states that a rule should respond monotonically to changes in

problems (Samet and Schmeidler, 2003).

Monotonicity: For each pair p, p′ ∈ DN such that p ≥ p′, ϕ(p) ≥ ϕ(p′).

The second property requires independence of decisions across agents. That is, to

determine agent i’s membership for the group, a rule should only consider opinions about

him.

Independence: For each i ∈ N and each pair p, p′ ∈ DN such that pi = (p′)i, ϕi(p) =

ϕi(p
′).

By Corollary 1, it is simple to see that strategy-proofness implies monotonicity and

independence. Our next result shows that the converse is also true. To prove this, we

use the fact that adjacent strategy-proofness is equivalent to strategy-proofness.

Proposition 2 Let D be a rich opinion domain. A rule is strategy-proof if and only if

it is monotonic and independent.

The characterization in Proposition 2 is tight. That is, if either monotonicity or

independence is dropped, the equivalence no longer holds. First, it is clear that inde-

pendence does not imply strategy-proofness. Second, to show that monotonicity does

not imply strategy-proofness, define a rule ϕ on UN as follows: for each p ∈ UN , (i) if

p11 = p22 = . . . = pnn = 1, let ϕ(p) = 11×n; and (ii) otherwise, let ϕ(p) = 01×n. Clearly,

ϕ is monotonic. Take agent 1 ∈ N . Let p1 ≡ (0, 1, . . . , 1), p′1 ≡ 11×n ∈ U , and for each

i ∈ N\{1}, pi ≡ 11×n ∈ U . Then ϕ(p) = 01×n and ϕ(p′i, p−i) = 11×n. However, it is not

the case that ϕ(p) = ϕ(p′i, p−i) or ϕ(p)P1 ϕ(p
′
i, p−i). Thus, ϕ is not strategy-proof.

Except for the preference extension we defined, the group identification model can be

seen as an application of Le Breton and Sen (1999), which extends Barberà et al. (1991) by

considering an abstract social choice model where alternatives are drawn from a product
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set of issues and preferences are separable on that space. Le Breton and Sen (1999) show

that a social choice function is strategy-proof if and only if it can be decomposed into a

collection of “marginal” social choice functions. This decomposability requires that for

each issue, a rule focus only on the agents’ marginal preferences over that issue. The

axiom of independence (Samet and Schmeidler, 2003) has the same spirit in our model.

However, as shown by Proposition 2, independence is not sufficient for strategy-proofness.

This is due to the incompleteness of the preferences derived from the agents’ opinions,

which in turn implies that our notion of strategy-proofness is stronger than that of Le

Breton and Sen (1999) and Baberà et al. (1991).

Çengelci and Sanver (2010) characterize the family of rules satisfying monotonicity

and independence.6 By Proposition 2, this family is also the family of strategy-proof

rules. To describe these rules, we borrow the following concepts from Barberà et al.

(1991). A coalition is a subset of the set of agents N (a coalition is allowed to be empty

or N). A committee for agent i is a collection Wi of coalitions satisfying the following

condition: for each pair M,M ′ ⊆ N , if M ∈ Wi and M ⊆ M ′, then M ′ ∈ Wi. Elements

of Wi are winning coalitions with respect to Wi.

Let W ≡ (Wi)i∈N be a profile of committees. The voting-by-committees rule

with respect to W , denoted ϕW , is defined as follows: for each p ∈ DN and each

i ∈ N , ϕW
i (p) = 1 if and only if N1(p, i) ∈ Wi. In words, a voting-by-committees rule

is one that qualifies each agent i if and only if the agents who consider agent i to be a

member of the group form a winning coalition with respect to Wi.
7 Our next result shows

that the voting-by-committees rules are the only strategy-proof rules on a rich domain.

Theorem 1 Let D be a rich opinion domain. A rule is strategy-proof if and only if it is

a voting-by-committees rule.

As we said earlier, the group identification model is related to Barberà et al. (1991).

Let us rename the incentive property in Barberà et al. (1991) to BSZ-strategy-proofness.

Barberà et al. (1991) show that when agents have complete and separable preferences,

the voting-by-committees rules are characterized by BSZ-strategy-proofness and a full

range condition termed voter sovereignty.8 In contrast, Theorem 1 says that with our

preference extension, the same family of rules is characterized by a stronger notion of

6The notion of monotonicity in Çengelci and Sanver (2010) is slightly weaker than our notion of
monotonicity. However, in the presence of independence, the two are equivalent.

7Notice that a committee is not required to be proper (or strong, respectively). Hence, the case in
which each coalition is winning, i.e., Wi = 2N (or the case in which no coalition is winning, i.e., Wi = ∅,
respectively), is allowed. As a result, a voting-by-committees rule can be degenerate for an agent, in the
sense that for all problems, the rule returns the same decision for him.

8Voter sovereignty requires that for each alternative, there exists a preference profile for which the
rule chooses that alternative.
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strategy-proofness alone, without voter sovereignty. Clearly, Theorem 1 can also be

extended to the setup of Barberà et al. (1991), where alternatives are abstract objects.

5 Fairness

In this section, we define two fairness properties. The first property concerns how a rule

treats “equal” agents. Given a problem p ∈ DN , we say that agents i and j, say, are

equal if they have the same opinion (i.e., pi = pj) and all agents have the same opinion

about them (i.e., pi = pj). A reasonable request is that the membership decisions for two

equal agents should be the same (Kasher and Rubinstein, 1997).

Equal treatment of equals: For each pair i, j ∈ N and each p ∈ DN such that pi = pj

and pi = pj , ϕi(p) = ϕj(p).

We seek to identify the family of rules satisfying strategy-proofness and equal treat-

ment of equals. By Theorem 1, these rules are voting-by-committees rules. To see prop-

erties that the committees W = (Wi)i∈N should have in order for the rule ϕW to satisfy

equal treatment of equals, take any two agents i, j ∈ N . If Wi = Wj , then whenever

agents i and j are equal, their membership decisions are the same. Thus, any potential

violation of equal treatment of equals is due to the winning coalitions in Wi\Wj and

Wj\Wi.

Without loss of generality, let M ∈ Wi\Wj . If M ∩ {i, j} = ∅ or {i, j}, we can

construct a problem p ∈ DN such that agents i and j are equals in p and M is the

set of agents who view agent i (and j) as a member. Because M ∈ Wi\Wj , for such

p, ϕW decides that agent i is a member and agent j is not, violating equal treatment

of equals. Therefore, equal treatment of equals requires that for each M ∈ Wi\Wj ,

|M ∩ {i, j}| = 1. In fact, this condition is also sufficient for equal treatment of equals.

Now say that a profile of committees W ≡ (Wi)i∈N is equitable if for each pair i, j ∈ N

and each M ∈ Wi\Wj , |M ∩ {i, j}| = 1. A voting-by-equitable-committees rule is

a voting-by-committees rule whose associated committees are equitable.

Theorem 2 Let D be the universal domain. A rule satisfies strategy-proofness and equal

treatment of equals if and only if it is a voting-by-equitable-committees rule.

Unlike our other results, Theorem 2 is proved on the universal domain {0, 1}N , not an

arbitrary rich domain. Richness is not enough for Theorem 2 because the necessity part

of the proof involves constructing an opinion profile that may not be admissible unless

the domain is sufficiently diverse.9

9A case in point takes place when n = 3 and D = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 0, 0)}, for which the
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Next is a stronger fairness property. Following Samet and Schmeidler (2003), we may

require that the names of the agents should not matter for group identification. This

idea is expressed by permutations of the set of agents, which represent name changes. A

permutation is a one-to-one function π : N → N . For each i ∈ N , π(i) is agent i’s old

name. Given p ∈ DN , let pπ ≡ (pπ(i),π(j))i,j∈N be the problem in the new names, and

ϕπ(p) ≡
(

ϕπ(i)(p)
)

i∈N
the decision in the new names. Then for each permutation π, the

two decisions ϕπ(p) and ϕ(pπ) should be the same.

Symmetry: For each p ∈ DN and each permutation π : N → N , ϕπ(p) = ϕ(pπ).

By imposing symmetry, we obtain a further subfamily of rules, namely, the consent

rules (Samet and Schmeidler, 2003). Let s, t ∈ {1, . . . , n} be such that s + t ≤ n + 2.

The consent rule with (s, t), denoted ϕst, is defined as follows: for each p ∈ DN and

each i ∈ N , (i) if pii = 1, then [ϕst
i (p) = 1 if and only if N1(p, i) ≥ s]; and (ii) if pii = 0,

then [ϕst
i (p) = 0 if and only if N0(p, i) ≥ t]. The consent rules embody various degrees of

liberalism and democracy: with s = t = 1, we have the liberal rule; with s = t =
⌈

n+1
2

⌉

,

the simple majority rule; and with s = t = n, the unanimity rule.10 By Samet and

Schmeidler (2003), a rule is monotonic, independent, and symmetric if and only if it is

a consent rule. Since strategy-proofness is equivalent to monotonicity and independence

(Proposition 2), we obtain another characterization of the consent rules on rich domains.

Theorem 3 Let D be a rich opinion domain. A rule is strategy-proof and symmetric if

and only if it is a consent rule.

Figure 2 illustrates the three characterizations obtained so far. The voting-by-

equitable-committees rules are a superset of the consent rules and a subset of the voting-

by-committees rules. Both inclusion relations are strict. For the former inclusion, let

n = 3 and consider the committees W1 = W2 = {{1, 2}, N} and W3 = {N}. Then ϕW

satisfies equal treatment of equals but not symmetry. For the latter inclusion, redefine the

previous committees in such a way that W1 = W2 = {{1, 3}, N} and W3 = {N}. This

defines a voting-by-committees rule ϕW that satisfies strategy-proofness but not equal

treatment of equals.

6 Efficiency

Let us now define efficiency based on our preference extension and study its implications.

Let p ∈ DN . For each pair x, y ∈ X , x Pareto dominates y for p if for each i ∈ N ,

committees W1 = W3 = {{1, 2}, N} and W2 = {N} define a voting-by-committees rule that satisfies
strategy-proofness and equal treatment of equals, but the committees (W1,W2,W3) are not equitable.

10For each x ∈ R, ⌈x⌉ denotes the smallest integer no less than x.
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Consent rules
(Symmetry)

Voting-by-equitable-committees rules
(Equal treatment of equals)

Voting-by-committees rules
(Strategy-proofness)

Figure 2: Main characterizations

xPi y.
11 For each x ∈ X , x is efficient for p if there is no y ∈ X such that y Pareto

dominates x for p.

Efficiency: For each p ∈ DN , ϕ(p) is efficient for p.

Recall that the preference relation Pi recovered from the opinion pi is coarse. This

means that our notion of Pareto dominance is strong and consequently, our notion of

efficiency is weak.12 However, when all separable preferences over {0, 1}N are allowed,

this is the strongest notion of efficiency that can be considered.13 Our next result shows

that efficiency has an implication only for those agents about whom all agents have the

same opinion. That is, a decision is efficient if and only if each agent whom all agents

view as a member (and a non-member) is a member (and a non-member, respectively).

Proposition 3 Let p ∈ DN and x ∈ X. Then x is efficient for p if and only if for each

i ∈ N such that p1i = p2i = . . . = pni, xi = p1i.

Kasher and Rubinstein (1997) study implications of “consensus”. A rule ϕ satisfies

consensus if for each i ∈ N , (i) for each p ∈ DN with pi = 1n×1, ϕi(p) = 1; and (ii) for

each p ∈ DN with pi = 0n×1, ϕi(p) = 0. Proposition 3 shows that efficiency is equivalent

to consensus and provides a preference foundation for consensus. However, in the presence

of strategy-proofness, efficiency reduces to a property weaker than consensus, which is

now defined.

11The usual definition of Pareto dominance requires that (i) for each i ∈ N , either xPi y or x = y; and
(ii) for some j ∈ N , xPj y. Clearly, (i) and (ii) are equivalent to our definition of Pareto dominance.

12We can formulate another notion of efficiency for the setup where agents report preferences over
{0, 1}N . This alternative notion is stronger than our definition. To see this, let N = {1, 2} and p =
((1, 0), (0, 1)). Consider two decisions (0, 0) and (1, 1). According to our definition, (0, 0) is efficient.
However, if each agent prefers (1, 1) to (0, 0), (1, 1) Pareto dominates (0, 0).

13A similar comment applies to “ordinal efficiency” (Bogomolnaia and Moulin, 2001), a notion based
on (partial) preferences over lotteries that are obtained from preferences over sure outcomes by applying
first-order stochastic dominance.
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A rule is degenerate for an agent if it always returns the same decision for him,

regardless of the problems under consideration. The following property requires that for

no agent should the rule be degenerate.

Non-degeneracy: For each i ∈ N , there are p, p′ ∈ DN such that ϕi(p) 6= ϕi(p
′).

By Proposition 2, strategy-proofness implies monotonicity and independence, which

in turn ensure that non-degeneracy implies efficiency.

Proposition 4 Let ϕ be a strategy-proof rule on a rich opinion domain. Then ϕ is

efficient if and only if it is non-degenerate.

Combined with Theorem 1, this proposition allows us to characterize the family of

rules satisfying strategy-proofness and efficiency.

Theorem 4 Let D be a rich opinion domain. A rule is strategy-proof and efficient if

and only if it is a non-degenerate voting-by-committees rule.

It is simple to see that a voting-by-committees rule ϕW is non-degenerate if and only

if for each i ∈ N , Wi 6= ∅ and Wi 6= 2N

Combining Theorems 2 and 4, we can characterize the rules satisfying strategy-

proofness, equal treatment of equals, and efficiency.

Corollary 2 Let D be the universal domain. A rule satisfies strategy-proofness, equal

treatment of equals, and efficiency if and only if it is a non-degenerate voting-by-equitable-

committees rule.

7 Discussion

7.1 A weaker incentive property

In Section 4, we introduce an incentive property where decisions are compared according

to the preference extension of opinions. We use the preference extension there because we

require that a rule should not be manipulated by agents with any separable preferences.

With a smaller set of admissible preferences, one can formulate a weaker incentive prop-

erty. As a simple case, we may assume that when comparing decisions, each agent takes

a weighted sum of the differences between his opinion and decisions. We now explore the

logical relation between strategy-proofness and the incentive property associated with

this type of preferences.

Let i ∈ N . Let wi ≡ (wij)j∈N ∈ R
N
++. For each pair x, y ∈ {0, 1}N , let ||x − y||wi

≡
∑

j∈N wij · |xj − yj| be the weighted difference between x and y. We assume that for
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each i ∈ N , each pi ∈ {0, 1}N , and each pair x, y ∈ {0, 1}N , agent i with opinion pi

weakly prefers x to y if and only if ||pi − x||wi
≤ ||pi − y||wi

. In contrast with the

preference extension in Section 3, these preferences are complete (and separable). When

wi1 = · · · = win, agent i’s preferences simply minimize the number of different entries in

his opinion and a decision.

Let w ≡ (wi)i∈N . The following property requires that when each agent i has the

above preferences induced by wi, no agent gain by lying.

w-strategy-proofness: For each p ∈ DN , each i ∈ N , and each p′i ∈ D, ||pi−ϕ(p)||wi
≤

||pi − ϕ(p′i, p−i)||wi
.

It is clear that w-strategy-proofness is weaker than strategy-proofness. However, once

independence is imposed, the two properties are equivalent.

Proposition 5 Let D be a rich opinion domain and ϕ an independent rule. Then ϕ is

w-strategy-proof if and only if it is strategy-proof.

Several corollaries follow from this proposition. First, by Proposition 2, w-strategy-

proofness and independence together imply monotonicity. By Theorem 1, the family of

voting-by-committees rules is characterized by w-strategy-proofness and independence.

Finally, by Theorem 3, the consent rules are the only rules that satisfy w-strategy-

proofness, independence, and symmetry on a rich opinion domain.

7.2 A stronger incentive property

How is individual welfare affected when an agent submits a lie to a strategy-proof rule?

In spite the fact that the rule is strategy-proof, this question may be relevant for two

reasons. First, the true opinion of an agent may not be in the domain D and he has

no choice but to lie. In this case, he would seek to identify an (untruthful) opinion that

maximizes his welfare. Second, if strategy-proofness has an additional implication that

constrains the response of rules to lies, we can successfully design a strategy-proof rule

only if that implication is taken into account.

To deal with the question posed above, Cho (2014) considers an incentive property,

called “lie monotonicity,” that strengthens strategy-proofness as follows: as an agent

reports increasingly bigger lies, his welfare must weakly decrease. He finds that lie mono-

tonicity is equivalent to strategy-proofness. Below we show that the equivalence extends

to group identification problems.

Let pi ∈ D. Define an (asymmetric) order >pi
over D as follows: for all distinct

p′i, p
′′
i ∈ D, p′i >pi p′′i if there is a path from pi to p

′′
i in D without restoration containing p′i.

The order >pi is irreflexive, transitive, and incomplete. Also, it measures the degree of
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lying: for all distinct p′i, p
′′
i ∈ D such that p′i >pi p′′i , if we take pi as the true opinion,

p′i is a smaller lie than p′′i . Now let p ∈ DN and i ∈ N . Then ϕi(·, p−i) is a function of

agent i’s report, with the domain D ordered by >pi and the co-domain X ordered by Pi.

The next property requires that this function be monotonic, so that an agent is worse off

announcing a larger lie.

Lie monotonicity: For each p ∈ DN and each i ∈ N , the function ϕi(·, p−i) : (D, >pi) →

(X,Pi) is monotonic; i.e., for all distinct p′i, p
′′
i ∈ D such that p′i >pi p′′i , either ϕ(p

′
i, p−i) =

ϕ(p′′i , p−i) or ϕ(p
′
i, p−i)Pi ϕ(p

′′
i , p−i).

Clearly, lie monotonicity is sufficient for strategy-proofness. However, our next result

shows that it is also necessary.

Proposition 6 Let D be a rich opinion domain. A rule is strategy-proof if and only if

it is lie monotonic.

As in Cho (2014), the equivalence of strategy-proofness and lie monotonicity follows

as a corollary to the equivalence of strategy-proofness and adjacent strategy-proofness.

The proof of Proposition 6 rests on that result and the characterization of strategy-proof

rules in Corollary 1.

A Appendix: Proofs

A.1 Proof of Proposition 1

First, we define a metric d(·, ·) on D as follows: for each pair pi, p
′
i ∈ D, let d(pi, p

′
i) be

the length of the shortest path from pi to p′i in D.14 Next, we define a family of auxiliary

axioms, which is parametrized by m ∈ N. For each m ∈ N, we require that no agent

benefit from reporting an opinion whose distance from the truth according to d(·, ·) is at

most m.

Within-m strategy-proofness: For each p ∈ DN , each i ∈ N , and each p′i ∈ D such

that d(pi, p
′
i) ≤ m, either ϕ(p) = ϕ(p′i, p−i) or ϕ(p)Pi ϕ(p

′
i, p−i).

To prove Proposition 1, it suffices to show that if D is a rich domain, then for each

m ∈ N, within-m strategy-proofness implies within-(m + 1) strategy-proofness. Let ϕ

be a within-m strategy-proof rule. To show that ϕ is within-(m + 1) strategy-proof, let

p ∈ DN , i ∈ N , and p′i ∈ D be such that d(pi, p
′
i) = m + 1. By the richness condition

14If D = {0, 1}N , then d(·, ·) is a special case of the Hamming metric, but in general, the two are
different.
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on D, there is a path {p0i , p
1
i , · · · , p

m
i , p

m+1
i } from pi to p′i in D without restoration. Let

p̂i ≡ pmi . Let x ≡ ϕ(p), x̂ ≡ ϕ(p̂i, p−i), and x′ ≡ ϕ(p′i, p−i).

If x̂ = x′, then by within-m strategy-proofness, either x = x̂ = x′ or xPi x̂ = x′.

Thus, assume, henceforth, that x̂ 6= x′. Because p̂i and p′i are adjacent, there is exactly

one j ∈ N such that p̂ij 6= p′ij.

Now we show that for each k ∈ N\{j}, x̂k = x′

k. Suppose, by contradiction, that for

some k ∈ N\{j}, x̂k 6= x′
k. Note that p̂ik = p′ik. First, suppose that x̂k = p̂ik = p′ik 6= x′

k.

By within-m strategy-proofness, x′ P ′
i x̂. By the definition of the preference extension,

p′ik 6= x′
k implies p′ik 6= x̂k, a contradiction. Second, suppose that x̂k 6= p̂ik = p′ik = x′

k.

By within-m strategy-proofness, x̂ P̂i x
′. By the definition of the preference extension,

p̂ik 6= x̂k implies p̂ik 6= x′
k, a contradiction.

Next, we show that p̂ij = x̂j . Suppose not. By within-m strategy-proofness, x̂ P̂i x
′.

By the definition of the preference extension, p̂ij 6= x̂j implies p̂ij 6= x′
j . Thus, x̂j = x′

j .

However, since x̂ 6= x′, the argument in the previous paragraph shows that x̂j 6= x′
j, a

contradiction.

Finally, we show that x̂ Pi x
′. Recall that the path {p0i , p

1
i , . . . , p

m
i , p

m+1
i } from pi to p′i

in D is without restoration. Since p̂ij 6= p′ij, this implies that pij = p̂ij 6= p′ij. Combined

with the arguments in the previous two paragraphs, it follows that (i) pij = p̂ij = x̂j 6= x′
j ;

and (ii) for each k ∈ N\{j}, x̂k = x′
k. Thus, x̂ Pi x

′.

A.2 Proof of Proposition 2

(Sufficiency) Let ϕ be a monotonic and independent rule. By Proposition 1, it is enough

to show that ϕ is adjacent strategy-proof. Let p ∈ DN , i ∈ N , and p′i ∈ D such that

pi and p′i are adjacent. Let x ≡ ϕ(p) and x′ ≡ ϕ(p′i, p−i). We may assume that x 6= x′

(otherwise, the proof is completed). Since pi and p′i are adjacent, there is exactly one

j ∈ N such that pij 6= p′ij . By independence, for each k ∈ N\{j}, xk = x′
k. If pij < p′ij ,

then by monotonicity and x 6= x′, it follows that xj < x′
j . Thus, xPi x

′. A similar

argument applies to the case pij > p′ij .

(Necessity) Let ϕ be a strategy-proof rule. First, we show that ϕ is monotonic. Let

p, p′ ∈ DN be such that p ≤ p′. By appealing to an induction argument, we may assume

that there is exactly one (i, j) ∈ N×N such that pij 6= p′ij . Since p ≤ p′, pij = 0 6= 1 = p′ij .

Now by Corollary 1, either (i) ϕ(p) = ϕ(p′); or (ii) ϕj(p) = pij = 0 6= 1 = p′ij = ϕj(p
′)

and for each k ∈ N\{j}, ϕk(p) = ϕk(p
′). Thus, ϕ(p) ≤ ϕ(p′).

Second, we show that ϕ is independent. Let p, p′ ∈ DN and i ∈ N be such that

pi = (p′)i. By appealing to an induction argument, we may assume that there is exactly
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one (k, j) ∈ N × (N\{i}) such that pkj 6= p′kj. Then by Corollary 1, for each ℓ ∈ N\{j},

ϕℓ(p) = ϕℓ(p
′). In particular, ϕi(p) = ϕi(p

′).

A.3 Proof of Theorem 1

(Sufficiency) Each voting-by-committees rule is monotonic and independent. Thus, by

Proposition 2, the rule is strategy-proof.

(Necessity) Let ϕ be a strategy-proof rule. Recall that ϕ is a voting-by-committees rule

if there is a profile of committees (Wi)i∈N such that for each p ∈ DN and each i ∈ N ,

ϕi(p) = 1 ⇐⇒ {j ∈ N : pji = 1} ∈ Wi. (1)

Let i ∈ N . By Proposition 2, for each p ∈ DN , ϕi(p) depends only on pi. Thus, with

a slight abuse of notation, ϕi(·) can be seen as a function that maps the i-th columns of

all problems p ∈ DN into {0, 1}. Let Di ≡ {pji ∈ {0, 1} : pj ∈ D} denote the restriction

of D to the i-th coordinate of individual opinions. Below we construct a collection Wi of

subsets of N for agent i and show that Wi is a committee.

Case 1. Assume that Di = {0} (the case Di = {1} is similar). The domain of ϕi is a

singleton {0n×1}. If ϕi(0n×1) = 0, then set Wi = ∅. If ϕi(0n×1) = 1, then set Wi = 2N .

It is simple to verify that this specification of Wi satisfies (1).

Case 2. Assume that Di = {0, 1}. The domain of ϕi is {0, 1}N . If ϕi is constant on

{0, 1}N , then define Wi accordingly as in Case 1. Assume, henceforth, that ϕi is not

constant on {0, 1}N . Define Wi as follows: for each M ⊆ N , M ∈ Wi if and only if there

is pi ∈ {0, 1}N such that ϕi(p
i) = 1 and {j ∈ N : pji = 1} = M . Then monotonicity

implies: (i) ϕi(0n×1) = 015, so that ∅ /∈ Wi; (ii) ϕi(1n×1) = 1, so that N ∈ Wi and

Wi 6= ∅; and (iii) Wi is a committee (i.e., for each pair M,M ′ ⊆ N , if M ∈ Wi and

M ⊆ M ′, then M ′ ∈ Wi). Now it is clear that Wi satisfies (1).

Applying the above argument for all i ∈ N , we obtain the profile of committees

(Wi)i∈N satisfying (1). Therefore, ϕ is a voting-by-committees rule.

A.4 Proof of Theorem 2

(Sufficiency) Let W ≡ (Wi)i∈N be a profile of equitable committees. By Theorem 1, the

voting-by-committees rule ϕW is strategy-proof. Now we show that ϕW satisfies equal

treatment of equals. Let p ∈ DN and i, j ∈ N be such that pi = pj and pi = pj . Let

15If ϕi(0n×n) = 1, then by monotonicity, ϕi(·) is constant on {0, 1}N , a contradiction.
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M ≡ {k ∈ N : pki = 1} (= {k ∈ N : pkj = 1}). Because pi = pj and pi = pj ,

pii = pij = pjj = pji. First, if M ∈ Wi ∩ Wj , then ϕW
i (p) = ϕW

j (p) = 1. Second, if

M ∈ (Wi ∪Wj)
c, then ϕW

i (p) = ϕW
j (p) = 0. Third, suppose, without loss of generality,

that M ∈ Wi\Wj . Since pii = pij = pjj = pji, M ∩ {i, j} = {i, j} or ∅, a contradiction.

(Necessity) Let ϕ be a rule satisfying strategy-proofness and equal treatment of equals.

By Theorem 1, there is a profile of committees W ≡ (Wi)i∈N such that ϕ = ϕW . Now

we show that W is equitable. Suppose, by contradiction, that there are i, j ∈ N and

M ∈ Wi\Wj such that |M ∩ {i, j}| 6= 1. Then either M ⊇ {i, j} or M ∩ {i, j} = ∅.

Let p ∈ UN be such that pi = pj, pi = pj , and {k ∈ N : pki = 1} = M (such p

cannot be constructed if |M ∩ {i, j}| = 1). Since M ∈ Wi\Wj, ϕi(p) = ϕW
i (p) = 1 and

ϕj(p) = ϕW
j (p) = 0, a contradiction.

A.5 Proof of Proposition 3

(Sufficiency) Let p ∈ DN and x ∈ X . Assume that for each i ∈ N such that p1i = p2i =

. . . = pni, xi = p1i. Suppose, by contradiction, that there is y ∈ X such that y Pareto

dominate x for p. Let N∗ ≡ {i ∈ N : p1i = p2i = . . . = pni}. Clearly, N
∗ 6= N , and since

y 6= x, there is i ∈ N\N∗ such that yi 6= xi. Since i ∈ N\N∗, there is j ∈ N such that

pji = xi. Then this contradicts that y Pj x.

(Necessity) Let p ∈ DN and x ∈ X . Assume that x is efficient for p. Suppose, by

contradiction, that for some i ∈ N , p1i = p2i = . . . = pni and xi 6= p1i. Let y ∈ X be such

that yi = p1i and y−i = x−i. Then y Pareto dominates x for p, a contradiction.

A.6 Proof of Proposition 4

Let ϕ be a strategy-proof rule. We only show that if ϕ is non-degenerate, then it is efficient

(the other direction is clear). Suppose, by contradiction, that there are p ∈ DN and y ∈ X

such that y Pareto dominates ϕ(p) for p. Let x ≡ ϕ(p). There is j ∈ N such that xj 6= yj .

For each i ∈ N , since y Pi x, yj = pij 6= xj . That is, yj = p1j = . . . = pnj 6= xj .

By Proposition 2, ϕ is monotonic and independent. Monotonicity, together with non-

degeneracy, implies that ϕ(0n×n) = 01×n and ϕ(1n×n) = 11×n. If yj = 0, then pj = 0n×1.

By independence, xj = ϕj(p) = ϕj(0n×n) = 0, a contradiction. Similarly, if yj = 1, then

pj = 1n×1. Again, by independence, xj = ϕj(p) = ϕj(1n×n) = 1, a contradiction.

A.7 Proof of Proposition 5

Let ϕ be an independent rule. We only prove the necessity. Assume that ϕ is w-strategy-

proof. By Proposition 2, it suffices to show that ϕ is monotonic. Let p, p′ ∈ DN be
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such that p ≤ p′. By appealing to an induction argument, we may assume that there

is exactly one (i, j) ∈ N × N such that pij 6= p′ij. Let x ≡ ϕ(p) and x′ ≡ ϕ(p′). Since

p ≤ p′, pij = 0 and p′ij = 1. For each k ∈ N\{j}, pk = (p′)k, so that by independence,

xk = x′
k. We may assume that xj 6= x′

j (otherwise, the proof is complete). Now applying

w-strategy-proofness to agent i with true opinion pi, ||pi−x||wi
≤ ||pi−x′||wi

. It is simple

to check that if xj = 1 and x′
j = 0, the latter inequality is violated. Thus, xj = 0 and

x′
j = 1, so that x ≤ x′.

A.8 Proof of Proposition 6

We only prove the necessity. Let ϕ be a strategy-proof rule. Let p ∈ DN and i ∈ N .

Let p′i, p
′′
i ∈ D be two distinct opinions such that p′i >pi p′′i . Since D is rich, there is a

path {p0i , p
1
i , . . . , p

ℓ
i , . . . , p

k
i } from pi to p′′i in D without restoration such that pℓi = p′i. For

each ℓ̃ ∈ {0, . . . , k}, let xℓ̃ ≡ ϕ(pℓ̃i , p−i). Now we show that either xℓ = xℓ+1 or xℓ Pi x
ℓ+1.

Since pℓi and pℓ+1
i is adjacent, there is exactly one j ∈ N such that pℓij 6= pℓ+1

ij . Since the

path {p0i , p
1
i , . . . , p

ℓ
i , . . . , p

k
i } is without restoration, pij = pℓij 6= pℓ+1

ij = p′′ij. Since D is rich,

Corollary 1 applies. Thus, either (i) xℓ = xℓ+1; or (ii) xℓ
j = pℓij 6= pℓ+1

ij = xℓ+1
j and for each

h ∈ N\{j}, xℓ
h = xℓ+1

h . Combining this with pij = pℓij 6= pℓ+1
ij = p′′ij, we obtain that either

xℓ = xℓ+1 or xℓ Pi x
ℓ+1.

In fact, we can use the above argument to show that for each ℓ̃ ∈ {ℓ, ℓ+1, . . . , k− 1},

xℓ̃ = xℓ̃+1 or xℓ̃ Pi x
ℓ̃+1. Thus, xℓ = xk or xℓ Pi x

k.
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