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Abstract

In this paper, we develop an info-metric framework for testing hypotheses about structural
instability in nonlinear, dynamic models estimated from the information in population moment
conditions. Our methods are designed to distinguish between three states of the world: (i) the
model is structurally stable in the sense that the population moment condition holds at the same
parameter value throughout the sample; (ii) the model parameters change at some point in the
sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms
of instability than a single shift in the parameters. An advantage of the info-metric approach is
that the null hypotheses concerned are formulated in terms of distances between various choices
of probability measures constrained to satisfy (i) and (ii), and the empirical measure of the
sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural
instability at a single point in the sample, referred to as the break point; our analysis allows for
the break point to be either fixed a prior: or treated as occuring at some unknown point within
a certain fraction of the sample. We propose various test statistics that can be thought of as
sample analogs of the distances described above, and derive their limiting distributions under
the appropriate null hypothesis. The limiting distributions of our statistics are non-standard but
coincide with various distributions that arise in the literature on structural instability testing
within the Generalized Method of Moments framework. A small simulation study illustrates the

finite sample performance of our test statistics.

Keywords: Moment condition models, structural instability, parameter variation, Generalised

Empirical Likelihood.



1 Introduction

There has been considerable interest in the development of tests for structural instability in
moment condition models. In the majority of this literature, the null hypothesis is structural
stability in the sense that the population moment condition holds at the same parameter value
throughout the sample, and the alternative involves instability at single point in the sample,
known as the break point. Depending on the setting this break point can be treated as known,
in which case the potential point of instability is specified a priori, or unknown, in which case
the point of potential instability is left unspecified. The earliest contributions to this literature
considered inference procedures within the Generalized Method of Moments (GMM) framework
(Hansen, 1982). For the known break point case, Andrews and Fair (1988) introduced tests
for parameter variation, and Ghysels and Hall (1990) introduced so-called predictive tests that
Ghysels, Guay, and Hall (1997) show test jointly parameter constancy and the overidentifying
restrictions in one sub-sample. For the unknown break point case, Andrews (1993) proposes
so-called sup-tests for parameter variation, Sowell (1996) considers a general framework for
the construction of tests for parameter variation, and Ghysels, Guay, and Hall (1997) propose
extensions of the predictive test to this setting. Building from these earlier results, Hall and Sen
(1999) show that the hypothesis of structural stability can be decomposed into one of parameter
constancy and another concerning the validity of the overidentifying restrictions in each sub-
sample, and propose tests for each component. They further show that this approach has the
potential to discriminate between states of the world in which violation of the null is caused by
neglected parameter variation and those in which violation of the null is caused by more general
forms of misspecification of the moment condition.

While all these tests are valid in their own terms, they are developed within the GMM frame-
work and the latter has received some criticism in recent years because it can yield unreliable
inferences in certain settings of interest.! This criticism has led to the development of alternative
methods for estimation in moment condition models, leading examples of which are Empirical
Likelihood (EL) (Qin and Lawless, 1994) and Exponential Tilting (ET) (Kitamura and Stutzer,
1997). Both EL and ET have a common structure, and this insight has led to the development

of two generic frameworks for the estimation of moment condition models that include EL and

IFor a review of this literature see inter alia Hall (2005)[Ch. 6].



ET (and other estimators of interest) as special cases. The first such framework is the Gener-
alized Empirical Likelihood (GEL) introduced by Smith (1997). The second framework is the
information-theoretic framework of Kitamura and Stutzer (1997) and its extensions in Golan
(2002,2006). It is, therefore, of interest to develop tests for structural instability within these
more general frameworks.

In a recent paper, Guay and Lamarche (2010) propose analogous tests to those of Hall and
Sen (1999) for the GEL framework, and present a limiting distribution theory for these statistics
under both null and local alternatives. They observe that the GEL statistics have the same first
order asymptotic properties as their GMM counterparts under null and local alternatives. They
report, simulation evidence on their tests based on ET, and find the tests to perform comparably
to their GMM counterparts for the most part but one particular GEL test based on the LM
principle is superior.

In this paper, we consider the derivation of the same tests as Guay and Lamarche (2010)
but from an information-theoretic - or equivalently - info-metric perspective. While the same
tests result, we argue that the info-metric approach has considerable advantage in terms of
the specification of the hypotheses and thus interpretation of the outcome of the tests.? This
advantage stems from the info-metric approach being based on the concept of minimizing the
distance between the class of probability distributions restricted to satisfy the moment condition
and the true probability distribution. This allows us to relate the various hypotheses of interest
in structural instability testing to the distance between certain classes of probability distributions
and the true distribution. We believe this is a more fundamental - and also more instructive
- representation of these hypotheses than their expression in terms of identifying restrictions
(parameter variation) and overidentifying restrictions as is done in both the GMM and GEL
frameworks. In principle, there are a number of possible measures for the distance between
probability distributions that can be used in developing our info-metric tests for structural
instability. Here, we focus on the Cressie-Read (CR) distance measure (Cressie and Read, 1984).
Like Guay and Lamarche (2010), we assume the data to be weakly dependent and account for
this dependence in estimation using the kernel-smoothing methods advocated by Smith (2011).

An outline of the paper is as follows. Section 2 presents the info-metric approach to the

20ur results are based on Li’s (2011) PhD thesis, which considered only the EL framework. This work was
performed independently of and contemporaneously to Guay and Lamarche (2010).



specification of the null and alternative hypotheses of our structural instability. Section 3 derives
the required the first order asymptotic properties of the partial info-metric - estimators under
null of structural stability - and are employed in Section 4, which presents the test statistics
and discusses the connection between our info-metric methods and various structural instability
tests derived within the GMM framework. Section 5 summarises results from a small simulation
study that indicates the finite sample performance of our methods. Section 6 concludes. All

proofs are relegated to a mathematical appendix.

2 An info-metric approach to structural stability testing

In this section we propose an Information-Theoretic (IT) approach to testing for evidence of
structural instability in population moment condition models. However, to motivate our ap-
proach, it is useful to begin by briefly reviewing IT estimation of moment condition models
absent of any concerns regarding structural stability.

Suppose a researcher is interested in estimating the k x 1 vector of parameters 3y based on the
information in the ¢ x 1 moment condition E[g(Z, fy)] = 0 where Z is a d x 1 random vector. It is
assumed that ¢ > k. This model is said to be structurally stable because the moment condition
holds at the same parameter value throughout the sample. Following Kitamura (2006), we can
characterize IT estimation of this model at the population level using the following framework.

Let M denote the set of all probability measures on R?, with

and

P = UBEBP(ﬁ)a

where B is the parameter space. Note that P is the set of all probability measures that are
compatible with the moment condition, and is referred to as a statistical model in this context.
This model is correctly specified if and only if P contains the true measure pu; that is, the data

satisfies the population moment condition at 5 = . A class of IT estimators of 3 can be defined



as

arginfp(0, u), where p(/3, = inf D(P
g i (B, 1) pBp) = i D(P]lp)

in which D(-|-) is a distance, or divergence, measure between two probability measures® and
p(+) is referred to as the contrast function. Kitamura (2006) shows that if the model is correctly
specified then the minimum of the contrast function is attained at § = [y, the true parameter
value.

Now consider the problem of testing structural stability. Define Z(r) to be a stochastic
process on r € [0,1]. We focus exclusively on the case where the alternative hypothesis involves

instability at a single point and so we define

Z(r) = ZW forr <7

= Z® forr > 7

where 7 € (0,1) is referred to as the break-fraction. In structural stability testing, © may be
fixed a priori, the so-called “known break point case”, or it may be left unrestricted beyond
m €Il C (0,1), the so-called “unknown break point case”. Our methods can handle both cases,
but for purposes of exposition here, it is most convenient to first treat 7 as fixed and then to
discuss the extension to the unknown break point case at the end of the section.

To formalize the null and alternative hypotheses, we need to introduce two sets of probability

measures. First, we define

Py = UgesPo(0)

where

Po(ﬁ) = {(Pl,PQ)EMXMI /g(zz,ﬁ)sz = 0, fori:1,2},

so that Pg is the set of all pairings of probability measures that are compatible with moment
condition holding at the same parameter value in both sub-samples. Notice that this model
specification differs from P by allowing for the measures for Z(!) and Z() to be potentially

different. Second, we define the set

P1 = U, p)esxsP1(51, B2),

3This distance measure must be non-negative and satisfy D(P|| Q) = 0 if and only if P = Q.




where

Pl(ﬁlaﬁQ) = {(PI;PQ)EMXM: /g(zlaﬁl)dpl =0, fori:la2}a

so that P1(01, B2) is the set of all pairings of probability measures that are compatible with
moment condition holding in both sub-samples but at potentially different parameter values.
Using these definitions, the hypotheses of interest can be expressed in terms of (p1, o), the

true measures for (Z(1), Z(2)), with the null being:

Ho(m) : (p1, p2) € Po. (1)

Thus under Hy the model is structurally stable in the sense that the population moment condition

holds at the same value in both sub-samples. One potential alternative of interest is:

Ha(m) : (p1, p2) € PG, (2)

”

which equates to “not Hy(w)”. While this alternative is of interest in its own right, we show
below that the states of the world under this alternative can be split into two groups, and such a
decomposition can provide useful model building information. The first such group is captured

by the hypothesis:

Hpy(m) : (p1, p2) € P1\ Po. (3)

Under Hpy (), the moment condition is satisfied in both sub-samples but at different parameter
values. This situation is commonly referred to as “parameter variation” which is reflected in the

“PV” subscript. The second group is the hypothesis:
Hus(m) o (p, p2) € PY. (4)

Under Hjss(7), the population moment condition is not satisfied in one or both sub-samples -
even allowing for the possibility of a parameter shift - indicating the model is misspecified in
that the moment condition fails to hold over the entire sample, which is reflected in the “MS”
subscript.

While both Hpy (7) and H yys(7) imply Ho() is false, they have very different model building

implications. Hpy (7) implies that the model is correctly specified once allowance is made for



the change in parameters, whilst Hjss(m) implies the moment condition does not hold and hence
the model is more fundamentally misspecified. As argued by Hall and Sen (1999), it therefore
seems valuable to develop inference procedures that can distinguish these two cases. Hall and
Sen (1999) achieve this goal within a GMM framework by developing separate tests based on the
stability of the identifying restrictions and the stability of the overidentifying restrictions. Here
we develop IT methods that provide similar model-building information. We believe that the
IT approach is more attractive than the GMM framework of Hall and Sen (1999) and also the
GEL framework of Guay and Lamarche (2010) because it is fundamentally anchored in distances
between the underlying probability measures satisfying the various hypotheses considered.

To motivate the form of our inferential procedures, it is useful to consider population measures
for discriminating between Hy(w), Hpy (7), and Hps(m). To this end, let pr([51, Ba], [11, i2])
denote the contrast function for estimation that allows for a break at the point indexed by T,
and let D ([p1, p2] || [q1, g2]) denote the measure of divergence between two pairs of measures,
[p1, p2] and [q1, g2], with the first of each pair pertaining to Z(*) and the second to Z(?). It then

follows from the properties of the divergence measure that we have the following;:

= 0, if Ho(m) true
(i) pﬂ([ﬁ* (7‘(‘), B (ﬂ-)]a [Ml; MQ])
> 0, if Ho(m) false,

where

B (7T) = arginf pﬂ'([ﬁa ﬁ]a [Mla MQ])
peB

for

pﬂ'([ﬁaﬁ]a[ulaﬂﬂ]) = [P17P2]i££1(575) DT(([PLPQ]H [Mla/j/Q])7

= 0, if Hpy (m) true
(11) pﬂ'([ﬁl,*(ﬂ-)a ﬁQ,*(Tr)]’ [Mla MQ])
> 0, if Hpy () false,

where

[B1,4(7), Ba(m)] = arginf  pr([B1, Ba], [p1, p2]),

[B1,82]€eBxB

for

px([B1, B2], (11, pi2]) = nf D ([Pr, Pl || [, p2])-

i
[P1,P2]eP1(B1,32)



Given these properties, we can decompose D(7) = pr([8:(7), B ()], [11, p2]) into two parts:

D(m) = Di(r) + Da(m)

where

Di(m) P ([B:(7), Ba ()], (11, p2]) = P ([B1,4(7), Bau ()], (112, pi2]),

Da(m) = pr([Brx(7), B2, (m)], (121, p12])-

It can be recognized that: if Ho(w) is true then Dy (w) = Da(w) = 0; if Hpy () is true then
Di(m) # 0 but Do(m) = 0; if Hprs(n) is true then Dy(w) # 0 and Da(w) # 0. Therefore, an
examination of D(r) reveals whether the model is structurally stable, Hy(r), or not, Ha (7). On
the other hand, an examination of D;(m) and Dy(w) reveals whether the model is structurally
stable, Ho(), or exhibits parameter variation, Hpy (7), or is structurally unstable due to more
general forms of misspecification, Hpsg(m). Therefore, we propose performing inference using
sample analogs of D(r), D;(7) and Da(7).

To present these sample analogs, we need some additional notation. Replace Z(r) by the
time series {Z;; ¢ = 1,2,...,T}. It is assumed that the potential instability occurs at ¢t =
[Tr] = T1 say, where [] denotes the integer part in this context. We refer to T; as the break
point. We divide the sample into two sub-samples of T} and T5 observations, respectively, where
Ti(m) = {1,2,...,T1}, denotes the set of T} observations up to and including the break point
and To(m) = {Th + 1,71 +2,...T}, the set of Ty observations after the break with To =T — T.

It is well known that IT methods based on the assumption of independently and identi-
cally distributed data are asymptotically inefficient if the data are weakly dependent.* Various
approaches have been proposed for handling this dependence: we employ quite general kernel
smoothing methods as developed by Smith (2011)5. Within this approach, the original moment

function in period t, g(Z¢, 5) = g+(5) say, is replaced by the kernel smoothed version,

t—1

50 = 3 k() s, (5

j=t—T

~

4See Kitamura (1997) and Kitamura and Stutzer (1997).
5Kitamura and Stutzer (1997) handle dependency via smoothing using a rectangular kernel, as well as blocking
methods (see also Kitamura, 1997); Kitamura (2006) uses parametric models.



where the superscript s indicates the operation of kernel smoothing with hr and k(.) denoting
the bandwidth and a kernel function, respectively, details of which are given in Section 3. To
implement IT estimation using kernel smoothing, we replace the true measures, [p1, 2] by the
empirical measures [fi1, fiz]. Notice that these measures relate to the stationary distributions
of ZW and Z@) 6 Since we allow for the measures to be different, 11+ = Tl_1 for t € Tq(m)
and figs = T2_1 for o, = T — Ty and s € Ta(w). Following Kitamura and Stutzer (1997),
we also replace the measures P; by the probability mass functions P = P11:012- -, P11,
152 = [p2,1,p2,2 e ,pQ,TQ]-

In our inference procedures, §; .(7) and 3, () are replaced, respectively, by the partial-sample
IT estimators, Bz- (7), and the restricted partial-sample IT estimator, BR(TF), defined as follows.

The (unrestricted) partial-sample IT estimators are,

[B1(m), Bo(m)] = arginf  pr 1 ([B1, B2], [fi1, fi2]) (6)
[B1,82]1€BxB
where
prr (B, B, [fin, fio]) = inf Dx([Py, Po] | [fun; fi2)) (7)
[P1,P2]eP1(B1,82)
and

Pi(Br,82) = ¢ (P, Py): piy >0, Z pit =1, Z piagi(Bi), i=1,2 5. (8)

teT; () teTi(n)

On the other hand, the restricted partial-sample IT estimator is,

ﬁR(Tr) = arg [676ﬁ2£><6 pTr,T([ﬁa ﬁ]a [/Aj/la /7/2]) (9)

We propose performing inference based on scaled versions of the following analogs to D(r),

Di(m) and Do (7),

DT(T(') = 2517T(7T) + 25271"(7'(') (10)
Dir(r) = per(Br(n), Br(m)], [, ft2]) — prr([Bi(n), Ba(m)], [ji1, fi2]) (11)
Dor(r) = par((Bi(m), Ba(m)], [fu1, fi2]) (12)

6See Smith (2011)[p.1195].



To implement our procedures, it is necessary to choose a measure of divergence. Kitamura
and Stutzer (1997) use the Kullback-Leibler information criterion (KLIC) distance. Golan (2002,
2006) considers the extension of Kitamura and Stutzer’s (1997) methods to more general mea-
sures such as the generalized cross entropy and Cressie-Read (CR) divergence measure (Cressie
and Read, 1984). The framework above can be applied to any of these settings, but for con-

creteness we focus on the CR divergence measure which is given as follows in our context:

2 a
DA P i) = 7o 42 X e (22) -1} (13)
i=1 teT;(m) Hit
and which is defined for —oo < a < oco. Appropriate choices of « lead to certain familiar
estimation methods: for example, lima_,oDSTa)(-H -) yields the optimand for Exponential Tilting
(ET) estimator of Kitamura and Stutzer (1997) in each sub-sample, and lima_,_lDSTa)(-H -) yields
the Empirical Likelihood (EL) estimator of Owen (2001) in each sub-sample.

So far, we have focused on the fixed break point case. The extension to the unknown break
point case is as follows. The null hypothesis of structural stability becomes Ho(IT) : Ho(w) Vr €
IT C (0,1). The difference between Hy(mw) and Ho(IT) is that the former specifies precisely the
point at which the structural break is suspected. This difference is reflected in the associated
test statistics, with tests for Ho(m) being designed to have power against a break at 7 and the
tests for Ho(IT) being designed to maximize power against a weighted sequence of alternatives
that allows for breaks at all points in II. These test statistics, and their asymptotic properties
under the null hypothesis, are developed in Section 4.

In the following section, we first derive the first order asymptotic behaviour of the unrestricted

and restricted partial-sample I'T estimators under the null hypothesis..

3 Large sample behaviour of partial-sample IT estimators

For the purposes of developing the asymptotic theory underpinning the partial-sample IT es-
timators, it is convenient to exploit the equivalence between Generalised Empirical Likelihood
(GEL) estimation and that of an IT approach based on the CR divergence measure. That is,
any such IT estimator has a GEL equivalent; see Newey and Smith (2004). As discussed in

Newey and Smith (2004), and also Smith (2011), let p(v) be a continuous, twice differentiable



and concave function on its domain V, an open interval containing 0. Let p;(v) = 8/ p(v)/0v7,
p; = pj(0) for j =0,1,2,..., and impose the normalisation that p; = po = —1. Then, based on

the full sample, the GEL (IT) criterion function would be”
| I
Qr(8.3) = 7 > _lp(kN'g; (9)) — po]
t=1

where g; () is defined at (5) and k = k1 /ks with k; = [*_k(w)/dw, j = 1,2. Whilst 8 € B C RF,
the auxiliary GEL parameters A\ € A are restricted so that w.p.a.1 (with probability approaching
1) kNgi(B) € V, for all (B, N) € BxAr and t = 1,...,T. Specifically, Az imposes bounds
on A that “shrink” with T, but at a slower rate than hy/v/T (see Assumption 4) which is the
convergence rate of both the GEL and partial-sample GEL estimator for A.

The (full-sample) GEL estimator is then defined as

B =arg min sup Qr(8,\).
BGB )\EAT

Estimation proceeds in two steps:

1. Qr (B, ) is maximised over A, for given j3, yielding

A (B) = arg sup Qr (B, ).

NEAT
2. The GEL estimator, B, is the minimiser of the profile GEL objective function, Q1 (5, 5\(5)) :
3= argminQr (B.A(3).

and A = A(f).

Whilst still employing g;(3), consider, now, splitting the sample according to Z;(), i = 1, 2,

for all 7 € TII, to obtain the (unrestricted) partial-sample GEL (PSGEL) estimators Bi(ﬂ'),

"We adopt the notation Q7 (8, A) rather than P(8, ), employed by Smith (2011), to avoid confusion with P
as discussed in Section 2.

10



i = 1,2, based on the two sub-samples ¢ € 7;(r), i = 1,2, respectively.® Specifically,

1
Bi(m) = arg min sup — p(EN i (8)) — po], i=1,2,
i ( min sup te;(w)[( +(

and, correspondingly,

Ai(m) = arg sup % Z [p(kXN g8 (Bi())) — po], i=1,2.

AEAT L )

To analyse these estimators for all 7 € II C (0,1) define & = (8;,0) € ® = B x B,

v = (X, \y) € 't = Ap x Ar and the following (2¢ x 1) unsmoothed and smoothed moment

functions
t(O1 0
9:(0, ) =1y 1 () %:(51) + (1 =Tz (m))
0 9+(52)
¢ (B 0
9;(0,7) =Ly r () #) + (1 =T (7)) (14)
0 9; (B2)

where I, 7 (7) is an indicator variable that takes the value 1 if ¢ < [T'n] and the value 0 otherwise.

Let

Qr(0,71.m) = 7= S lo(kN g3 (0, 7)) — o]

then we have (7)) = (51 (), ﬁg(ﬂ)')l where

O(m) = arg min sup Qr(0,v,7) (15)
HcO ~elr
with
A(m) = arg sup Qr(0(m), v, ). (16)
yel'r

Throughout this paper, the asymptotic analysis addresses behaviour under the null hypoth-
esis, only, and requires certain assumptions that follow the spirit of Smith (2011). The data

satisfy the following condition:

8To present the main results, the moment functions are smoothed before splitting the sample according to 7.
Another possible avenue is to smooth the moment functions after splitting the sample. Indeed, the latter might
be viewed as more natural and this is pursued in the Monte Carlo study, Section 5. However, whilst there is no
difference asymptotically between the two approaches, the proofs are more straightforward in the former case.

11



Assumption 1 Data are generated by a sequence of strictly stationary and strong mizing Z-
valued random vectors {Z,}5°,, with mizing coefficients, a(j), satisfying Z;’;l F2a(j)—D/v <

00, for some v > 1, where Z is a Borel subset of R%.

Asnoted in the previous section, we handle the dependence in the data implied by Assumption
1 through kernel smoothing. The next assumption addresses the bandwidth, hr, and choice of

kernel, k(.), such that they obey conditions similar to those laid out in Theorem 1(a) of Andrews

(1991). Let
_ sup k)|, w=>0
o
sup,<, [k (b)|, w<0
and K () f k(x) exp(—taxX)dz, the spectral window generator of the kernel k(.), with

ki = [, k:(w)jdw L j=1,2.

Assumption 2 (i) hy = O(T'2) for some § > 1; (i) k(.) : R — [—kmaxs kmax)s Fmax < 00,
k(0) # 0, k1 # 0, and k(.) is continuous at 0 and almost everywhere; (iii) [~ k(w)dw < oo;

(iv) |[K(x)] >0 for all z € R.

Assumption 2(i) is a slight adaptation of Smith (2011), as used by Guay and Lamarche
(2010), which simplifies certain aspects of the proofs at no extra cost.

We must also place restrictions on the (unsmoothed) moment function ¢:(8) = ¢(Z:, 5),
and these are specified in the following assumptions. Define the following quantities: gr(5) =
L3 9(8), QB) = limgp o0 var (\/TQT(@), and gira(8) = 7 Zt "l g1(8). The smoothed
counterparts of gr(8) and gir.(3) are g3(3) = %ZtT:l g5 (8) and irn) B) = + 1[52;] g: (),

respectively.

Assumption 3 (i) Elsupges |g:(0)]"] < oo for some n > max [41}, = 1} (i1) Q(B) is finite
and p.d. for all B € B C R*, where B is a compact parameter set; (iii) The moment function

g(z,8) C R is continuous in z for all B € B, and is continuous at each 3 € B w.p.a.1; (iv)

9(Bo) =0 and infrerr||g (6, 7)] > 0 for all 6 # 0y = (56,56)'.

The existence of g(8) = E [9:(3)] and g(8,7) = (7g(61)’, (1 —7) g(B2)")’ is guaranteed by
Assumption 3(i), whilst Assumption 3(iv) ensures the population moment condition is satis-

fied at [y and also provides a global identification condition. Assumptions 1-3 ensure that an

12



appropriate FCLT applies to both /T girx) (Bo), with limp_ o var (\/T 977 (ﬁo)) = m8)g, and
VTGir(Bo), with limr—oc var (\/Tgfpr] (50)) = k1mQo, for all w € [0,1], where Qo = Q(f0).
These assumptions also ensure that a (weak) ULLN not obly applies to gr (), but also to both
gr(0,m) = + ZtT=1 9:(0,7) and g5(0,7) = + ZtT=1 g5 (0, ), with the latter two being uniform
over 7 € [0,1].°

The following assumption formally imposes the restrictions on p(.) and also restricts the
bounds on A, ensuring that they shrink to zero more slowly than the stochastic rate of convergence

of both A and (7).

Assumption 4 (a) p(v) is a continuous, twice differentiable and concave function on its domain
V, an open interval containing 0, such that p1 = ps = —1; (b) X € Ap = {)\ AN < B (T/hQT)_E},

where ﬁ <e< %, for some finite B > 0.

Under the above assumptions, we can establish the consistency of the PSGEL estimator as

follows:

Theorem 1 Under Assumptions 1-4: (i) Sup cp Hé(ﬂ) - 90H = o0p(1), and (i) sup o [|[3(7)| =

op(1).

To establish asymptotic normality, the following assumptions are made regarding the (un-
smoothed) derivative of the moment function G¢(8) = 9g:(3)/9f’, and it will be useful to define

G(B) = E [G¢(f)], which exists by Assumption 5(i), below.

Assumption 5 (i) Esupgcs ||Gi(8)||"/("Y] < oo for some n > max[4v, 2%]; (ii) The moment
function g(z,3) C R is continuously partially differentiable in 3 in a neighbourhood By of

Bo € int(B), w.p.a.1; (iit) Go = G(Bo) has full rank k.

It will also be useful to define the following matrices

9Indeed, Andrews (1993, Proof of Theorem A1) shows that sup,. supy ||g7 (0, 7) — (0, 7)|| = op(1).
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7TQO 0

Qo(7) = lim var (\/TQT(GO, 7T)) = = A(m) ® Qo
T—o00
0 (1 - 7T) QQ
7TGO 0
Go(m) = = A(r) ® Gy
0 (1 — 7T) GO
and My = Qy "/?Go, Py = My (MMo)~" M}. Under Assumptions 1 and 3, Andrews (1993,

Proof of Theorem 1), shows that 7 (7) = Jo(), as a process indexed by 7 € II, where

{ Qo_l/Qﬁg[Tw] (Bo) -I

m) = (1 o gr(bo, ) =
&r(m) (I ® Q )\/Tg (6o, ) [Qo_l/Q{\/TgT(ﬁO)_\/Tg[Tﬂ_](ﬁO)} J

and
Bg (7‘(’)

By (1) — Be(m)

Jg(ﬂ') =

with Bg(w), m € [0, 1], being a vector of £ mutually independent standard Brownian motions on
[0, 1]. Furthermore, Assumptions 1, 2 and 3, and arguments similar to Smith (2011, Lemma A3)

establish that hp Vi (o, ) L ke (7), uniformly in 7, where

T
Zf@ﬂgteﬂ).

Theorem 2 Under assumptions 1-5, every sequence of PSGEL estimators defined by (15) and

(16), T > 1, satisfies

VI (0(r) = 60) = = (A" @ (MMo) ™" M) &r(m) + 0pe(1)
— (A (1)~ @ (M} M) ™" Mg) Jo(r)
WT/hr)i(m) = = (A @9 (U= RY)) () + 0pn(D)

— —(4m 0" (- R)) Jilm)

where => denotes weak convergence to a process indexed by m € 11, provided I has closure in

(0,1), and 0pr(1) denotes terms that are o,(1) uniformly in © € IL. Further, 0(-) and 4 (-) are
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asymptotically uncorrelated.
Alternatively, the weak convergence results could be stated as

(A(m) ® L) VT (é(n) _ 90) — (12 ® (M M) ™" Mé) Jo(r)

(A(m) & I) (VT /hr)i(m) = = (k@ Q" (I = Ry)) Julm).
These results ensure that, from Smith (2005, Theorem 2.1),

sup HhTVf(é(ﬂ),ﬂ) - k:ng(ﬂ)H =o0,(1).

well

and

sup
well

20 = 0,(1).

% Z 99:O(m): 7). _ 1 Go)

The next Theorem details the asymptotic distribution of the restricted PSGEL estimators,

which are constructed as follows. Define the restricted (2¢ x 1) smoothed moment function as

9; (B) 0
0 9; (B)

so that, from (14), gi (8, 8'),7) = ¢3(3, ), and let Q7 (B, v, 7) = % Zle[p(k)\'g'f(ﬁ, ™)) = pol,

then the restricted PSGEL estimators are defined by

B(r) = arg min sup Qr (8,7, 7)
peB yel'r

1 T

[T7]
= argamin | swp =S pNG(G ) — ol + s S NG (8, m) — o)
t=1

eB T
s ACAT £ Yo ACAT & (T 41

and

i) = arg sup = > [p(kN G (3(r), ) — o]

yel'r



so that

(Tx]
. 1 s
Ai(n) = arg Asngf;[p(M G2 (B(m), 7)) — po]
B 1 Z _
falm) = arg swp = D (NG (). W)~ ol
ACAT Ty 1)1

Theorem 3 Under assumptions 1-5, every sequence of restricted PSGEL estimators, T > 1,

satisfies

VI (B~ 60) = = (gMo)" Mg {0 *VTgr(Bo) } +0pm (1)

—  — (M{Mo) ™" M{B(1)

and

/~
S
~
>
H
~——
N

(1) = - (A(7r)_1 — @ P (I, — Po)) &r(m) + opr (1)
- _ﬁ (a(ﬂ) ® 90_1/2) (I — Po) (a(m)' @ I¢) &r(m) + 0pr (1)
= — (A(?T)_l — Loty @ QO_I/Q (I, — PO)) Jo(m)

_ (LQ ® Qo_l/QPO) Bu(1) + (A(ﬂ)_l ® QO‘”Q) Je(m)

where a(m) = (1 —7m, —m).

4 Testing Structural Stability

In this section, we propose tests based on GEL for testing the hypotheses described in Section
2. It turns out to be most convenient to present the tests in the following order: Section 4.1
presents tests for Dy (w) = 0, Section 4.2 presents tests for that Da(7) = 0, and Section 4.3
presents tests for D(m) = 0. Section 4.4 discusses the various tests and includes details of where
percentiles of the limiting distributions are tabulated in the literature. In the presentation of
the tests, we focus on the unknown break point case; the fixed break point case is covered as

part of the discussion in Section 4.4.
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4.1 Testing D;y(7w) =0

To test Di(m) = 0 for a fixed 7, the obvious statistic is the GEL-likelihood ratio statistic (c.f.

Smith, 2011, p.1208)

LRy(x) = 2 (ke/k?) (T/hr) {Qr (B(m).5(x),w) = Qr (B(x),4(m).7) b (17)

In view of extant results in the GEL literature on testing parametric restrictions,'® we also

consider inference based on the GEL-Wald statistic for testing 8, = (s,

Wr(m) = (ka/R)(T/hr) (Balm) — Bom) (v @)} (Bim) — ) (19)

where

v = Y {Ene) TRe)) e}
o = 7 ¥ 2D vie=1 ¥ a0
teT;(m) teT;(m)

and the Lagrange Multiplier statistic, based on 6 () the Lagrange Multiplier associated with the

restriction 37 = s,

—1

LM(m) = (ho/ KT b)) {VEBm) ] )/ (w1 =) (19)

where

Henceforth, let Dy 7(7) denote any one of the statistics in (17), (18) or (19).'

To test Dy(mw) =0 for all m € IT € (0, 1), we utilize results from the structural stability testing

10See Qin and Lawless (1994), Smith (2011).
M This involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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literature and consider inference based on the following functionals of D (),

SUP,cqp 7517T(7r) = sup 7517T(7r)
T [ﬁl,T(ﬂ')} = Ja f)LT(W)dN(ﬂ) = ave 7517T(7r) (20)

log {fn exp {%751T(7r)} dN(ﬂ)} = exp Dy r(7)

where N () defines the prior distribution for the break point 7 € II, which we will assume
to be uniform.!? The following Theorem shows each of these test statistics are (first order)

asymptotically equivalent, for different choices of 7517T(7r) and common choice of functional 7 [.].

Theorem 4 Under the null of Di(mw) = 0 and assumptions 1-5, we have

sup |D1,p(m) — Sp(m)| = 0,(1),
well

where

Sr(m) = m(1l —m)
== (Bg(m) — 7TBkErl()l)l_(ljr];(ﬂ — ) = Wi(nm),

By (m) —m By (1) is a vector of Brownian bridges and By () is a vector of k independent standard

Brownian motions

An immediate consequence of the Continuous Mapping Theorem (CMT) is that
T [@171"(71')} = 7 [Wg(7)]
for each functional (20).

4.2 Testing Ds(r)

To test Do(m) = 0, we consider inference based on the appropriate GEL-likelihood ratio statistic

LR(m) = 2 (ka/K}) (T/hr) Qr ((m),5(m), 7). (21)

123ee Andrews (1993), Andrews and Ploberger (1994) and Sowell (1996).
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Again, motivated by results in the EL testing literature, we also consider inference based on the

following alternative statistics,

Or(m) = (ha/R) (T/hr) g3 0m), ) (V20 0} 30 xy  (22)

LMi(m) = (T/hr)i(r) {VEO(),m) } 3(m) /e (23)

For a fixed 7, Or(7) is the GEL counterpart of the GMM overidentifying test statistic; LM ()
is a Lagrange Multiplier statistic, based on 4(m); and, LR} () is a Likelihood Ratio type statistic.

Letting Dy 7 () denote any one of (21), (22) or (23),"* we use similar ideas to the previous
sub-section to test Do(7) for all © € II based on 7 [@271“(71')}. The limiting distribution of the

latter statistic is given in the following theorem.

Theorem 5 Under the null of Da2(mw) = 0 and assumptions 1-5, we have

sup 7527T(7r) — 8}(#)‘ = 0,(1),
well
where
Sp(m) = &r(n) (A(m)~' @ (I — Ry)) ér(m)
= Jek(m) (A(m) @ Ig) ™" Joi(m) = Wiy (m)
By_y(m) . .
and Jo_i(m) = , where By (m) is a vector of {—k independent standard

Bg_k(l) — Bg_k(ﬂ')
Brownian motions.

Again, the CMT implies that 7 [@gj(ﬂ)} =7 Wy, (m)].

4.3 Testing D(m) =0

Given the discussion in Section 2, testing D(7) = 0 can be achieved by employing statistics which
are functionals of the processes, 7517T(7r) and 7527T(7r). Specifically, we consider the combined

process Dr (m) = 7517T(7r) +7527T(7r) for the choices of 7517T(7r) and 7527T(7r) defined in Sections 4.1

13 Again, this involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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and 4.2 respectively, and the functionals 7 [@T (7‘(‘)} , defined by (20). Then, we have the following

Corollary to Theorems 4 and 5, which implies that 7 [ﬁT(ﬂ')} =7 [Wi(r) + W) (7)]
Corollary 1 Under the null of D(w) = 0 and assumptions 1-5, we have

sup |Dp(w) — Sp(r) — 8}(#)‘ =o0,(1).

well

4.4 Discussion

Sections 4.1-4.3 present tests of the hypotheses of interest in the unknown break point case. The
corresponding results for the fixed break point case follows directly from the proofs of Theorems

4 and 5 and so are presented in the following corollary.

Corollary 2 Under Assumptions 1-5, and if Ho() holds for some m € (0,1) then Dy 7(n) LA
Xi, 7527T(7r) 4, X%(é—k)’ and @T(ﬂ) 4, X%é—k) where 7517T(7r), 7527T(7r) and @T(ﬂ) are defined in
Sections 4.1, 4.2 and 4.3 respectively and x* denotes a chi-squared distribution with v degrees of

freedom.

We now consider the relationship between our statistics and others in the literature. As
noted in the introduction, Guay and Lamarche (2010) derive some of our test statistics from
the perspective of testing the stability of the identifying and overidentifying restrictions, a ter-
minology that derives from Hall and Sen’s (1999) framework for testing structural instability
in models estimated via GMM. Comparing Guay and Lamarche’s (2010) framework specialized
to EL with our info-metric framework, it can be seen that their tests of the stability of the
identifying restrictions are the same as our tests of D;(m) = 0, and their tests of the stability of
the overidentifying restrictions are the same as our tests of Da(7) = 0.'* While the same tests
result, the info-metric approach has the advantage that it is based on the concept of minimiz-
ing the distance between the class of probability distributions restricted to satisfy the moment
condition and the true probability distribution. This allows us to relate the various hypotheses
of interest in structural instability testing to the distance between certain classes of probability
distributions and the true distribution. We believe this is a more fundamental - and also more

instructive - representation of these hypotheses than their expression in terms of identifying

M Guay and Lamarche (2010) do not consider the analog to D(7) = 0 in their framework. However, Sen (1997)
does propose and analyze such a test within the GMM framework.
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restrictions (parameter variation) and overidentifying restrictions as is done in both the GMM
and GEL frameworks. Furthermore, this advantage extends to the partial sum estimators which
also have an informational interpretation within our IT framework for structural change.

Guay and Lamarche (2010) observe that their GEL-based tests are first order asymptotically
equivalent to their GMM counterparts under both the null of stability and local alternatives.'®
Given our previous remarks, this equivalence obviously extends to our statistics as well. One
advantage of this equivalence is that the percentiles for the limiting distributions of our statistics
have already been tabulated in the literature. Specifically, percentiles of 7[W,(7)] are presented
in Andrews (2003)[Table 1] (for 7[-] = sup(-)) and Andrews and Ploberger (1994)[Tables 1
and 2] (for 7[-] = ave(-), exp(-)); the percentiles for 7[W;_,(7)] are presented in Hall and Sen
(1999)[Table 1] and Sen (1997). Percentiles for 7[Wj,(m) + W, (m)]] are reported in Sen (1997).
A second advantage of the equivalence under local alternatives is that Theorem 4 continues to
hold under local alternatives to the moment condition that do not involve parameter variation,
and Theorem 5 continues to hold for local alternatives to the moment condition that involve
parameter variation alone. These properties suggest that the individual applications of tests
based on 7517T(7r) and 7527T(7r) have the potential to reveal when the instability is confined to
parameter variation alone.

Finally we note that the assumption of strict stationarity (Assumption 1) is sufficient but
not necessary for the limiting distributions stated in Theorems 4 and 5. These results would
still apply provided Jacobian and long run variance are homogenous across the sub-samples and
we can apply FCLT to sample moment and ULLN to certain functions of data. However, if
the Jacobian, say, changes at some point in the sample then the limiting distributions are not
anticipated to hold for the same reasons as those diagnosed in Hansen’s (2000) analysis of the
sup— test in the linear regression model when there is a shift in the marginal distribution of the

regressors.

151i (2011) establishes the same result for EL-based test statistics.
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5 Monte Carlo Evidence

In this section, we report simulation results that give insight into the finite sample performance
of the IT-based tests for the special cases of Empirical Likelihood (EL)'6 and Exponential Tilting
(ET).

Following Ghysels, Guay, and Hall (1997) and Hall and Sen (1999), we consider the following

slightly modified data generation process

Ty = (1ai—1 + up + qug_q, us ~ IN (0,1), fort=1,2,...,T/2

$t=ﬁ2xt_1+Ut+OéU/t_1, UtNIN(O,l), fOFtZT/2+1,T/2+2,,T

and corresponding 2 x 1 vector of “instruments”, z, = (21, zt72)' .We suppose that the researcher

estimates an AR(1) model for x; based on the moment condition E[g;(8p)] = 0 where

gt(ﬁ) = 7 (301: — prio1).

Eight Data Generation Processes (DGPs) are employed defined by the choice of parameter
values (1, B2, &) and instruments z;. These are described in Table 1, where: DG Py, DG P, and
DGP; model a situation with no breaks and valid instruments; DG Py, DGPs, DGFPs model
a structural break in the data thorough parameter variation (5; # f32), but the instruments
remain valid; whilst DG P; and DG Py model situations when there is misspecification through
both parameter variation (3 # (2) and invalid instruments.

The sampling experiments consider four different sample sizes of T" = 200, 400, 800, 1600,
where in each case the various test statistics are constructed employing the following estimation
procedures: (i) Empirical Likelihood (EL); (ii) kernel-smoothed empirical likelihood (ELE); (iii)
kernel-smoothed exponential tilting (ETk); and, (iv) asymptotically efficient (kernel-smoothed)
GMM, exploiting kernel-smoothed HAC estimation (GM ME). For each of the IT estimators
(models (i)-(iii)), we calculate the following statistics: 7[D1 ()], 7[Da.r(7)] and 7[Dr ()] for
the three functionals 7[-] defined in (20) and Dy r(7) given by (17)-(19), Do 7(7) given by (21)-

(23) and Dr(n) = Dy (7)) 4+ Da 1 (w), being LR7(7) + LR (), Wr(r) + Or () or LM () +

16To speed up the simulation process, we adopt a modified version of EL estimator proposed by Owen. To
avoid —oo, log(x) for x < 1/T is replaced by a second degree polynomial.
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LM (), respectively. For the GM MFk estimator only the Wald statistic is considered. All
these statistics are calculated using IT = [e,1 — ], for a trimming parameter £ = 0.20, and, for
each DGP and sample size, sampling results are obtained from 1000 replications employing a
5% nominal significance level for each test procedure.'”

We report unsmoothed (EL) and smoothed (ELk, ETk and GM MFk) versions of the test
statistics. In the latter case and exploiting Lemma 3 in the Appendix, the moment condition is
smoothed separately in each sub-sample defined by 7, but with common bandwidth h7.'® That
is
Ak () 0i(®, t=1,.,007]

g:(B) = ‘
IR (#) gi_j(B), t=[Ta]+1,..T,

For ELk and ETk a moment-smoothing counterpart of quadratic spectral kernels is employed

51 1/2 1 6mx
k == —-Ji | —
52k

2v > (-1 2250 (k + 1) (v + k + 1)

(Smith 2011):

yielding k; = (57/2)'/2? and ke = 27. For GM MFk the following quadratic-spectral kernel is

employed 7

25 sin(67x/5
k(x) — o) ( / )
12722 6mx/5

- cos(67rx/5)> .

The bandwidth employed, when smoothing, is “estimated” by hy = 1.3221[&(2)T]'/ where

! 4p26h [ & si )

&2) =) wetts Wo "7 (24)
2T \ 2= T

and p,, 62 are estimated AR(1) coefficients and error variances, respectively, based on moment
functions ¢;(3) (p x 1; a = 1,2,...,p).2% In particular, for ELk and ETk the unsmoothed

version of the objective function is initially optimized to yield B Then, second, B is used to

compute p, and 62 and then to estimate hr (Eq. 24). The process repeats up to 5 times or

"Results for 1% and 10% nominal significance levels and trimmimg parameter values of & =
0.15,0.25,0.30,0.35,0.40,0.45 are available upon request.

18 Results for the case with two different bandwidth windows for the two subsamples perform consistently worse
(see Table 10 and discussion thereof later in this section).

19Simulation results for Bartlett and Parzen implied kernels (Smith 2011) are available upon request.

20This choice corresponds to optimal bandwidth based on an AR(1) approximation to the moment function
with wg = 1; see Andrews (1991)[p.834-5] with w, = 1 in his equation (6.4).
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until A =AY i=2,..,5.

Tables 2-9 summarise the sampling results for DGP; — DGPs and are structured in the
following way. Each table consists of four vertical panels, for EL, ELk, ETk and GM Mk,
respectively, with each panel reporting results for sample sizes T" = 200, 400, 800, 1600. Hor-
izontally, the results are divided into three big blocks for each of the 7517T(7r), 7527T(7r), and
Dr (7) test procedures, within which sampling results for each of the sup(.), exp(.) and ave(.)
functionals are reported. Each of these “functional” blocks consists of LRy (), Wr () (Or(7)
for 7527T(7r)), and LM () test statistics.

We first consider the empirical significance levels of the tests when there is no structural break:
DGP,, DGP;, and DGPs, in Tables 2 — 4. Thus the null hypothesis for all each test procedure is
correct. For DG Py (Table 2), which is the case where kernel-smoothing is redundant, tests based
on E'L exhibit empirical significance levels which converge quite quickly to the nominal 5% level,
but slightly over-reject at T' = 200. For larger T' and each functional, the LR and W variants
have better finite sample properties than that of LM. The Wald test based on GM Mk is slightly
undersized, in all its forms. For tests based on (smoothed) ELk and ETk criteria, convergence
of empirical significance levels appears much slower, however, with the sup functional of all tests
exhibiting empirical significance levels of 6.2% to 10.8%, at T = 1600. The ave functional seems
to be preferable for all test statistics with empirical rejection frequencies in the range 4.7% to
6.5% for T'= 800 and 4.4% to 5.6% for T'= 1600. However, for ELk and ETk criteria, all tests
for T = 200 and most of the tests for T' = 400 exhibit much larger empirical significance levels
than the nominal 5%.

For DG P, and DG P5 (Tables 3-4), and as might be expected, the FL-based tests reject the
null too often since moment conditions are serially correlated (o = 0.4 and 0.8, respectively).
However, for ELk and ETE, although all the sup-tests now perform slightly better the previous
qualitative features remain the same, with tests based on the ave functional yielding rejection
rates in the range 3.5% to 8.7% for T' = 800 and 3.8% to 6.8% for T' = 1600, under DG P,. The
finite sample performance deteriorates a little under DG P3, o = 0.8.

For DGP;, DGPs, and DG P (parameter variation, with & = 0, 0.4 and 0.8, respectively)
7517T(7r) and, consequently, Dy (m) are designed to exhibit some power whilst 7527T(7r) tests should

remain relatively insensitive since its null distribution continues to hold under local parameter
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variation, and it useful to see if this is reflected in the finite sample behaviour. As expected,
empirical rejection rates for all 7517T(7r) and @T(ﬂ) tests increases rapidly towards 100% as the
sample size increases, across all the DG Ps considered. However, those for the YA)T72(7T) do not
so and, indeed, remain fairly stable as the sample increases. For example among the ELk and
ETF based tests the ave(LR](m)) seems least sensitive with rejections rates the range 6.6% to
22.5% across all sample sizes and DG Ps. Tests derived from the GM Mk criteria exhibit similar
behaviour.?!

For DGP; and DGPs (Tables 8, 9) all tests should have power with rejection frequencies
approaching 100% as the sample size grows. However, there are some caveats associated with
kernel-based tests 7517T(7r) and as a result with @T (7). Since 7517T(7r) is based on restricted mod-
els and hr is evaluated for each value for 7, occasional departures from the quasi-optimum lead
to non-convergence issues and associated numerical problems when constructing iLT, covariance
matrices and test statistics. A manifestation of this is observing falling rejection frequencies to
somewhat less than 100% as T increases; this indicates problems with convergence rather than
“falling power” per se. For DG Ps, a = 0.8, this problem is most pronounced. The observed
power of the Dy 7(7) test is very close to 100% from T = 200, for all tests save LR(r) which
implicitly involves estimation of the restricted model. The observed power of the 7517T(7r) tests
are lower due to the non-convergence problems mentioned above.

Finally, we consider the calculation the bandwidth parameter employed with kernel-smoothing
methods. The sampling results (Tables 2-9) are based on reevaluating of hy for each value of T,
however we restrict it to be the same for each of the subsamples that are then used to smooth
the moment function. Two alternative strategies would be (i) reestimate fALWT and fAL(l_W)T for
each of the two subsamples; or, (ii) estimate hr only once using restricted model for parameter
estimation. The simulation results for these two alternative strategies are reported in Table 10
which, specifically, compares statistics based on the sup functional, under DG P;. Such statistics
had relatively inferior finite sample behaviour, as reported in Tables 2-4. The first and second
panels of Table 10 correspond to the first and second strategy accordingly. The first strategy

demonstrates very poor Sup-test performance. Even for T'= 1600 the empirical significance level

21Hall and Sen (1999) propose a strategy in which the break point is estimated by the argument that yields
the supremum of the parameter variation test, and then the fixed break point version of the overidentifying
restrictions test is applied for that estimated break point. They find this approach reduces the sensitivity of the
overidentifying restrictions test to parameter variation. We conjecture a similar approach could be taken using
the IT tests.
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of the test is from two to four times larger than the nominal one. The second strategy performs
much better. For T'= 800 to 1600 the empirical significance level is close to the nominal one and
comparable with Ave- and Exp- tests from Table 2. This, admittedly, limited evidence suggests
that choice of bandwidth is critically important for finite sample behaviour when considering

Information-Theoretic approaches to structural stability testing.

6 Concluding remarks

In this paper, we develop an info-metric framework for testing hypotheses about structural
instability in nonlinear, dynamic models estimated from the information in population moment
conditions. Our methods are designed to distinguish between three states of the world: (i) the
model is structurally stable in the sense that the population moment condition holds at the same
parameter value throughout the sample; (ii) the model parameters change at some point in the
sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms
of instability than a single shift in the parameters. An advantage of the info-metric approach is
that the null hypotheses concerned are formulated in terms of distances between various choices
of probability measures constrained to satisfy (i) and (ii) and the empirical measure of the
sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural
instability at a single point in the sample, referred to as the break point; our analysis allows
for the break point to be either fixed a priori or treated as occurring at some unknown point
within a certain fraction of the sample. We propose various test statistics that can be thought
of as sample analogs of the distances described above, and derive their limiting distributions
under the appropriate null hypothesis. In principle, there are a number of possible measures
of distance that can be used in this context. The limiting distributions of our statistics are
non-standard but coincide with various distributions that arise in the literature on structural
instability testing within the Generalized Method of Moments framework. A small simulation
study employed Empirical Likelihood and Exponential Tilting methods and illustrates the finite
sample performance of our test statistics under both the null of stability and alternatives of
structural instability. This study revealed that the finite sample size properties of the IT tests
are sensitive to the bandwidth used in filtering the sample moment. In particular, estimation of

sub-sample specific bandwidths - arguably the most intuitively natural approach - leads to the
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worst performance. The issue of how best to calculate the bandwidths in this context remains

to be resolved and is an interesting topic for future research.

7 Appendix

Here we collect together some intermediate Lemmas and prove the main Theorems. Following
Andrews (1993), we use the following notation: X7 (7) = opr(1) if sup,cqr [| X7 (7)]| = 0p(1) and
Xr(m) = Ope(1) i sup eyt [ Xr(m)]| = Op(1)

The first result is a FCLT and second a generic (weak) ULLN.

Lemma 1 Under Assumptions 1-3(i),(ii)

K00 VT gt (o) = QYT (Bo) + 0pe(1) (25)

- Bg(ﬂ')
where By(r) is a vector of k mutually independent standard Brownian motions on [0, 1], and

kit (Iz ® 90_1/2) VTG0, ) = (12 ® 90_1/2) VTgr (00, 7) + 0px (1) (26)
Bg(ﬂ')
(Be(1) = By(m))

— Jg(ﬂ') =

Proof of Lemma 1: Following Smith (2011, Lemma A2), we can write

[Tr]—1 =]

VEgiraon = 7= Y k(i) } )

j=1-T t=max[1,1—j]

Now, when j > 0, max[1l,1 —j] =1 and min [T, [Tw] — j] = [Tw] — j. On the other hand when
j <0, max[l,1—j] = 1+ |j| when j > [Tn] — T, whilst max[1,1—j] = 14 |j| = T when

j < [T'w] —T. Exploiting this, some straightforward (but tedious) algebra reveals that

T—-1 . 3

VTGl (8) = _21: % (%) VTG (8) = VT Y_ Ajr(5.7)

j=1-T T =0
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where

| Tl ;
Aor(B,7) = o k’<h—>9[T7r](5)

Tj=lrm) T

R i (Tn]
Air(B,m) = . k(h_>f Z 9:(B)

T 5 T t=[Tn]+1—j

1 -1 j 1 |51 1 [Tw]+|3]
Agr(B,m) = o Z k(h_> fzgt(ﬁ)_f Z 9+(B)

T o1 mrm T t=1 t=[T]+1

1 T4l j 1 1 I
Asr(B,m) = e Z k(a) ngt(ﬁ)_f > ald) -

1-T

Smith (2011, Lemma A1), shows that ZJ 1T th k ( ) = ki+o(1) and Q_I/Q\/Tg 1) (Bo) =
By(m), by Andrews (1993); thus, \/TngW (Bo) = klﬁg 71 (Bo) \/_ZJ 0 Ajr (B, ) + 0pr(1)

and (25) follows if ‘\/TAjT(ﬁO, H = 0pr(1), for j = 0,1, 2, 3. First, lHmyp o = s ZJ 1T ‘kz( )‘ =
O(1), implies limy_, o sup, hT Z ‘kz( )‘ = 0 and thus, since H\/Tg[TW] 5o) H = Op=(1),
H\/_AOT Bo, ™ H = 0pr(1). Second, H\/_Zt (T 41— Jgt(ﬁo) = O,(1), uniformly in j and =

and Smith (2011, Lemma C1) is easily extended to show that limz . 7 ZJ Y pei! ‘kz (hT) ‘

e {it S VIR () o o0

The results for /T Asr(Bo, m) and VT Asr (o, m) follow in a similar fashion so that (25) holds.

0, so that

Similarly,
1 T
ky 1Q_1/2 Z 90_1/2 (\/TQT(ﬁo \/_9 77 (Bo) ) + 0pr (1)
=[Tr
so that

k! (12 ® 90_1/2) VTG (0, 7) = (12 ® 90‘1/2) VTgr (0o, 7) + ops (1),
since gr (0o, 7) = (Gir=1(B0)'s g7(Bo) — Girmy(G0)’), and (26) follows. W

Lemma 2 Define my (8) = m(Z:; 8) and m (8) = E [m (Zy; §)], with Z: satisfying Assumption
1 and assume sufficient regularity (Assumptions 8 (i) and (iii)) so that sup geg ||z (8) — m (B)|| =
op(1), where mr(B) = ZtT=1 m¢(3). Let mi (3) be the smoothed version of my (3), defined in
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an analogous manner to g;(8) at (5), and (following (14)), define

mi’ 1 0
mi(,7) = Tir () - + (1 =T (7))

0 mg (2)
- S 1 = S
my0,m) = T Z m; (0, 7)

t=1
with m(0,7) = (rm(B1), (1 —7)m(B2)")’. Then, Sup,cpSupgee || (0, 7) — kim (0, 7)|| =
op(1).
Proof of Lemma 2: We can write

{# 2 mi80)} — kiem(s)

my(0,m) — kim0, 1) =
(S 1 mi (B2) b = (1= mym(62)

HméTw] (3) klﬂm(ﬁ)H < HméTw] (B) — kymyry (ﬁ)H + k1 ||m[T7T] (B) — ﬂm(ﬁ)”
B T—1 1 j B
< M3 - > ok (E) ] (mH
j=1-T
T—1 1 j
| X gk ()~ I ]

By Andrews (1993, Proof of Lemma A1), sup |m7x1 (B) — 7m(B)|| = 0pr (1) and since ZJ 1T th k ( ) =

k1 + o(1), the second term is also 0pr(1). Then, by the triangle inequality, it remains to show

that
T—1 .

msTTr] (ﬁ) - Z Ek/’ (fZ_T> m[TTr] (ﬁ)H = Opﬂ'(l)a
=1

since & Zth[TW]_H mi(B) = m7(8) = Mip.(8). From the proof of Lemma 1, above, it is clear

that
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where the A;r(8,m) are as before but defined in terms of m; (), rather than g,(5). It is then
straightforward to show that supg || A;7(8, 7)|| = 0px(1), for j = 0, 1,2, 3, and the result follows.H

The technical analysis undertaken in this paper employes (5), which assumes that smooth-
ing is undertaken before the sample separation. Alternatively, the moment function could be

smoothed after sample separation yielding

(1] t—1 .

. 1 1 J

M7 (B) = T Z hr Z k (E) me—;(5)
t=1 " j=t—[Tn]

for some m;(/3) as defined in Lemma 2. This makes no difference asymptotically, as described
in the following Lemma. (The proof is omitted as it follows similar arguments to those used in

the proofs of Lemmas 1 and 2.)
Lemma 3 Define éfTﬂ = meﬂ (B) — mf}ﬂ (8), as above.
(i) Under the assumptions of Lemma 1, with m(8) = g:(5), \/TéfTﬂ (Bo) = 0p=(1).
(ii) Under the assumptions of Lemma 1, supgep HEFTW] (5)“ = 0pr(1).
The following three Lemmas are used to establish consistency of é(ﬂ') and (7).

Lemma 4 Under Assumptions 1, 2(i), 3(i) and /

sup Vg7 (0,7)| = 0pr (1)
€O NElr, 1<t<T

so that w.p.a.l, ky'g; (0,7) €V, for all0 € O,y € T'r and 7 € 1L

Proof of Lemma 4: By Cauchy-Schwartz,

Vg (0,7)]

IN

1 gz (6, 7l

2\7¢ s
A (T/h7) gﬁg{ggg llg: (M)I} :

IN
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Now,

t—1

o up of (0.0 < o sup |5 j_tZ[Tﬂk(,j—T> g3 (9)
t—[Tw]—1 .
s | o t(2) a0
9 T—1 ]
< s s o (9] Ej:lz_Tk<E>‘ ,

where the last inequality is independent of 7. By Assumption 3(i), E [supgep [lg: ()] < A <
0, implying that maxj<¢<7p {SUPBEB lge (5)”} =0p (Tl/”). Furthermore, by previous results,

% = 1 T ‘k’ ( )‘ = O(1). Thus, uniformly in 7,

s g (0.m] < O() (T/h3) o, (T7)

0€O0 ~eT 1, 1<t<T
= 0p(T%) = 0p(1)

where « = § —en(d — 1) < 0, because ¢ > ﬁ, and thus w.p.a.1, ky/g;* (0, 7) € V, for all
0 ecO,vel'rand 7€ I1.A
The above result has the following implications, which will be of use later, as summarised in

the following Lemma.

Lemma 5 Under Assumptions 1-4, there exists a finite constant 0 < A < oo, such that w.p.a.1

and for all € © and v € I'p, and for each m € 11,
h'Qr (00,7, ) < —vrg (0o, 7) — Avpyr (27)
where yp = ky/hr, k = k1/k2 and

Qr(0,7y,m) > —ky' g5 (0, 7) — K*Ay'y. (28)
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Proof of Lemma 5: By a second order Taylor expansion about v = 0, and exploiting Lemma

4, we have that for all § € © and v € I'y, and each 7 € II

T T e
p(ky gT 0, 7)) 1 y *p(k7' g7 (0, 7))
0 = =Y =
QT( a’)/aﬂ-) Z + 9 T; 8’)/8’)/
T 2 o1z
= Z (k995 (0.m)g (0.7) + ' = > p2(k g7 (0. m)g; (0, m)g; (6, 7)'y
— t=1
where 7 is the usual “mean value” vector. Then by Lemma 4 and the normalisation p; = ps = —1,
we can write
, 1 —
QT(Q, Vs 7T) = _k’)/g%(ea 7T) - §k2’7lvig (95 7T)’)/ + Op(l) (29)

1 _
where the 0,(1) error is of smaller order than -kv'g5(6, 7) — §k:2fy'Vi3 0, 7)7.

To establish (27), substitute 6y for 6 in (29) to obtain, w.p.a.1,

_ . 1 _ .
h'Qr (00,7, ) = =1 g7 (0o, ™) — 57'ThTVz§(9oa7T)7T

where, here, yp = kvy/hr € T'r. By arguments similar to Smith (2011, Lemma A3) it can be

shown that hpV:(0p, ) = kaQo () + 0pr (1), we can now write
_ s k
h' Qr(bo,v.7) = Vg5 (bo, m) — S ArQo(m)yr + op(lI7r )

ko
where, again, the error term o,(||yr|°) is negligible relative to ~/.g5 (6o, 7) — gfyTQO( )T

Thus, from standard eigenvalue theory, we can write that w.p.a.1l

h;lQT(GOa v, 7T) S _,73"?%(90’ 7T) - A,Y%,YT

for all v € I'p, and for each 7 € II.
More generally, however, V (0, ) = O, (1), uniformly in 6, so that by similar reasoning, we can

write

QT(Q, v 7T) Z _k’)/g%(ea 7T) - k/)QA’)/,y + OP(H,YHQ)

and (28) follows from this. W
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Lemma 6 Under Assumptions 1-4, there exists a finite constant, A > 0, such that w.p.a.1

hp' sup Qr(0o,7,7) < A g5 (0o, )| = Opr (T7).

yel'r

Proof of Lemma 6: As in Smith (2011, Lemma A5), by equation (27) we have, w.p.a.1 and

each 7 € 11,

sup hp'Qr(0o, v, ™) < A G500, )|
yel'r

Since this holds for each 7 € II,

sup sup hy'Qr(fo, v, ™) < Asup |75 (0o, 7).
well yel'p well

since sup,.cyq [|35(60, 7| = O, ('), from Lemma 1, the result then follows. W
Proof of Theorem 1: By Lemma 5, equation (28) and Lemma 6, we have, w.p.a.1 and for all

v € I'r and each 7 € 11

hy! (—kv'é%(é(ﬂ),ﬂ)—k%v'v) < hy'Qr(0(m), 7, )

< sup hy'Qr(0o, v, )
yel'r
< AHQ%(GOaﬂ-)HQa

for some finite A > 0. Now define ér = B (T/hQT)_E > 0, with B and ¢ as in Assumption 4

so that 67 = O (T?), a = —@ < —%, and let v = —%5T§%(é(7r),7r)/ ‘ g%(é(ﬂ),ﬂ)H e I'r.

Making this substitution in the above yields

(67 /hr) sup g3 (0(m), )| = A0} /b < Asup g0, )]
e e

w.p.a.l or,

sup
well

—sa(p h —s
g3 0(m). )] < b {1+ 55 s g 60 )
T T
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which implies that sup .oy H g5-(0(m) H = . This follows because sup,.cy [|g7 (6o, o =

O, (T~1), so that

B h2 ) . h% 1—-2e .

52 sup HQT(GOJTH = hT 52 Sub 9760, )|I” = hzOp T =0p (hT ) = 0p(1),
T mell T mell

because 1—2¢ > 0 and h#% /T — 0. Therefore, since o7 — 0, sup,cp Hg% o( H 2, 0. But by

Lemma 2, we know that sup ¢y Hg‘}(é(ﬂ), ) — kyg(0(r), H 250. Thus, sup,cq g(8(r)

0p(1). Continuity of g(f) and the identification Assumption 3(iv) then yields sup ¢y

op(1).

In fact, a further refinement of the above argument (similar in spirit to that of Smith (2011,

4]

Lemma A7) shows that sup .oy Hg;(é

‘ = ~1/2) implying that sup,.. Hé(ﬂ') — 90H =
O,(T~1/2). 1t then follows that that h7 Vi (é(ﬂ'), 7) = kaQo(7) + 0pr (1); c.f. Smith (2005)[Theo-
rem 2.1]. Using, this (and arguments similar to the above) it can then be shown that sup < [|¥(7)|| =
Op (hT / VT ) as follows.

By definition, QT(é(ﬂ'), (), ) > QT(é(ﬂ'), v,m), for all v € Tp. Then, setting v =0 € I'r, and
noting that Qr(0,0,7) = 0, for all § € ©, and exploiting Lemma 4, a second-order mean value

expansion yields, w.p.a.1,

0 < - Qr(f(m) Alm).m) = 1 { K () 3 (0(r) ) — T2 () ;<é<w>,m<w>}.

Then, since %Qﬂé(ﬂ),’y(ﬂ),ﬂ) < SUP.er, %QT(GO,% ) < AH\/T@%(GO,W)HQ = Opr(1),

w.p.a.1, by Lemma 6, and then fact that sup <y Hg%(é H = ~1/2) and sup,cpy HhTVT(é(ﬂ), 7T)H =
O,(1), it follows that sup .o [|5(7)|| = Op (hT/\/T) This implies sup, <y [|7(7)[| = op(1).

Proof of Theorem 2: Differentiating Q7 (0,7, 7) = Zle[p(k)\'gf(e, m)) — po] with respect

to 6 and +y, yields the partial-sample first order conditions

aC?T (é(ﬂ-)a ’Ay(ﬂ-)a 7T)

— = TS EDGIOm A =0 @)
AT kLS o) 76,7 6,7) =0 (31)

o~
Il
-
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where

; 9g;(B1)
) 895 0, 7'(') B / 0 0 0
G (0,7) = th — Ly (m) DO G N I,
0 0 0 W

li
Writing ¢(7) = (é( ), 7}5 ) > and @o = (5, 5} 0’)’, and exploiting Lemma 1, a mean value
T
expansion of (31) yields

0= —kkiVTgr (6o, ) + D (¢(m), m) VT ($(m) = 0) + 0pm (1),

since p; = —1, where

i Cr\)QCQT 9 v, T ) h 82QT(95757T)
4 ] D A NOW,

and @(r) is the usual mean value which may differ from row to row. Now

POUCHT = kg > mO3 (500G
2 S pakA () 536, 7)) (6,7) (4 G306, )
A UL LI kQ%T ZPQ(k’?(ﬂ)Igf(G,ﬂ))gf(@,ﬂ)gf(@,ﬂ)'.

T
-

Zalenld
Noting that p; = —1, it follows from Theorem 1, Lemma 4, Lemma 2, as applied to % ZtT:l vee (G (0, m)),
|| = 0p(1), with k?ke = kky, that

and supcyy ||hr Ve (0(m), m) — koo (m

= —kk1VTgr (00, 7) — Dow(ﬂ)ﬁ@(ﬂ) — o) + 0pr (1)

where
Dg(ﬂ') = k’k’l [GQ(?T), QQ(T{'),] .
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Similarly, \{_TTW = —kk1Go(n)'VT (%) + 0pr(1). Combining these results, we

obtain

0 0 B { 0 Go(m) -| JT

—VTgr (6o, 7) [Go(ﬂ) Qo(m) J

Solving for /T (¢() — o), yields

(A (M~ @ (M)~ 1)
VT (@(r) = po) = - R &r () + 0p=(1) (32)
(A (r) @ g2 (1 —PO))
and the result follows. B
Proof of Theorem 3: Consistency of the estimators follows from the general arguments em-

ployed in the proof of Theorem 1, and Theorem 2. Differentiating Qr (3, v, 7) = * ZtT:l [p(EN g2 (8, 7))—

po] with respect to 3 and v = (X;, \,)’, yields the partial-sample first order conditions

0Qr (B(m). 5(m), )

[T7]
e S o ()’ 7 (B G () A )

ap
hi S (R g )G (3 ()
o , t=[Tn]+1
9Qr (ﬁ(;rif(ﬂ%”) _ k%gp1<kxl<w>'gf<5<w>>>gz<B<w>>=o
90z (5 (;)j(”)’ )l tzg;mpl (kXa() g7 (B(m)gt (B(m)) = 0

Using similar arguments to those employed in the proof of Theorem 2, a Taylor expansion of
0Qr (B(x).(m). )
VT

X = 0 about (8),0')’, i = 1,2, yields, exploiting Lemma 1,
i

0 = —k/’klﬁg[Tﬂ—] (ﬁo) - k’k’lﬂ'GQ\/T (ﬁ(ﬂ') — ﬁo) — k/’k’lﬂ'QQ (\/T/hT) 5\1 (7‘(’) + Opﬂ—(l)
0 = —kks(VTgr(6o) = VTgpra) (B0)) — ks (1 = 7) Gov/T (B(x) = o)

—kkq (1 — 7T) Qo (\/T/hT) 5\2(7‘(’) + Opﬂ-(l)
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respectively, or

3
/~
S
~
>
H
~——
>
=
2
I

Qg \/_gTF (Bo) — g Go\/_( (m) 50) + opr (1)
-t (\/T@T(ﬁo - \/TgTﬂ'( Bo )
—(1-m) 1Go\/_( (m) )+0p7r(1)

—_
|
2
/~
S
~
>
H
~——
>
S
2
I

from which we note

7 (\/T/hT) A (m)+(1 — ) (ﬁ/hT) Aa(m) = —Qg 'VTgr(Bo)—Q ' GoV'T (B(ﬂ) - 50)+0p7r(1)-

Similarly, we have

aQT B(?T), Y(m), [T] ] ) ) ~1 )
+k/’% t:[TZH_I P1 (k/’j\g(ﬂ')"gi(B(ﬂ_)))Gi(B(ﬂ_))/ﬁ (AZ(J}'))

= —kk WGO'\F< h( )> —kky (1 —7) Go'VT (XQ(”)> + 0pr(1)

= 0

Combining these results, we obtain

0 = —WGO'\/T<5\1(7T)> (1-mG ( )—i—opw

= 4+Go'Qq \/_gT(ﬁo + Go'Q 1GO\/_ B )+0;mr()

so that

VT (B(m) — b)) = = (MgMo)~" Mo {0 /*VTgr(Bo) } + 0pm (1),

37



and

w (Vb ) M) = =052 {05 VTgpa (50) )

705 2Py {052V g (50) } + 0pm (1)
05 {25 (VTgr(60) = Vg1 (60)) }
+(1-m Q%R {90—1/2ﬁgT(50)} + 0pr (1)

(1—7) (\/T/hT) Ao (1)

or

(VT /hr)3(r)

A 1/2) (7r)

- (A
+ (L2®Q_1/2 ) 0,2 VT Gr(Bo) + opr(1)

(A 2057 er(m) + (121 © 02 Ry) () + 0 (1)
- (A

A(m)~ —L2L2®Q ( P)) §r(m) + 0px(1)

= _7_ a(m)a(m) © Qg '? (I = Po) ) &r(m) + 0pe(1)
(1 —m)

= = (A £ 95) (= Po) aln) © 1) () + 0ym)

where 1, = (1,1)’, a(r)' = (1 =, — =) and the result follows by Lemma 1. B
Proof of Theorem 4: Consider, first, Wr (7). Previous results, exploiting V/T-consistency of
B; (7), show that

(M{Mo) ™" + 0pr (1)

(k) bV Om) = Z7

and, combining this with (32), we obtain

{0702 Vi O} VTG ()t = s (VM) My ) © 1) € (7)o (1)
where a(m)’ = (1 —m, — ), so that
Wa(r) = ér(n)' (a(m) ® 1)’ Po (a(m)’ ® L) &r(r) +ope(1)

(1l —m)
= Sr(m)+ 01077(1)'
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For LMy (7), it can be shown that

VT/ho)im) = ~C33m) {hrV@B) ) Vg (Bm) +ope()

= CH(B(m)) VT Glrm (B(m) + 0pr (1),

say, where gir (B) =+ ZLS{] g; (), so that an asymptotically equivalent variant of LM () is

LMe(r) = (ko BT Gig BN C3(B) {hz VBN ) OB Gy () (x(1 — 7).

An expansion of /T i (B(m)) yields

ﬁﬁf’m (B(r)) k1VTGra)(Bo) + kinGoV'T (B(ﬂ) — ﬁo) + 0pr(1)

= kiVTGira(Bo) — kiwGo (M{Mo) " Moy *VTgr(Bo) + opr (1).

Furthermore, G5-(3(n)) = k1Go + 0pr (1) and hrViE(B(m)) = kaQo + 0px (1), so that

CH (B VTG (Br) = L0 {05 VT gy (80) ~ 725V Tigr() } + s (1)
PN (a(r) @ 1) () + 0pe(1)

and, since h;lVTC(B(W)) = :—gMéMo + 0px (1),

[0/ B VBN ) oA VTGl () = ~(MeMo) ™20 (a(x) © Ir) € () ope (1)

and it immediately follows that sup,cp |LMzp(7) — Sp(7)| = 0p(1).

For LR(r), a key expansion is that of v/Tgs(0(r), 7) = ﬁ ZtT=1 g3 (O(r), ) about 6y, yielding

VTgi(0(m),m) = VTG00, m) + krGo(m)VT(O(r) — ) + 0pr(1)

kiVTgr (8o, m) — ki (12 ® Qé/QPO) §r(m) + opr (1), (33)
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where (32) is exploited. Therefore, and again exploiting (32), we have

kﬁ@®mmyﬁm%wo:(@mh4m&m+%m (34)

~ (Am & ) (VI/hr) 3(m) + 0y (1), (35)

Now, noting that Q7(0,0,7) = 0 and 0Qr(0,0,7)/0v = —kgi-(0, ), for all 0 € ©, a two term

expansion of QT(é (), 4(m), m) about 4(mw) = 0, yields

2 (k/R) (/) Qr (B(m), A(m),w) = =2 (ka/k3) K(VT /) 3(m) VT g (B() , )

+ (ko) (VT ha )i () (hT 82@“%(;2’77(”)’ ”)> (VT /hr ()

= T gp(0(m), ) (A(r) © Q)" g7 (0(m), m) /K7 + 0pm (1) (36)

where () is the usual mean value and the third equality uses (35) and Lemma 4, which ensures
’Qr(0(r),A(r),7) P,
el

that hp —k?koQo(7) = —k%ko (A(T) ® ), uniformly in 7. Similarly,

2 (ka/R2) (T/hr) Q@ (B(r),3(m),7) = T g (B(m), 7Y (A(m)  R0) " 5(0(m), 7)/K + 0pe (1),

where 0(m) = (5(7T)', B(ﬂ)') . Furthermore, an expansion of v/Tg5(A(r), 7) yields

VTgr(b(n),m) = VTg(6o,7) klAMmé®%ﬂ%ﬁﬂﬂ+%AU

VTg5(0(r), m) + k1 (12 — A(m)igthy ® Qé/QPo) Er(m) + 0pr (1)

where the second equality follows from (33) Notice that, by (34),
kTG (B(m). 7 (Am) © Q) (I = Alm)iath © 0/ Ro) €r(n

= kiér(m )( ()7t — 1oty @ (I — PO)PO) Er(m) + opr (1)
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so that

LRy(r) = Y (I — 12, Alr) © QI/QPO) (A(r) @ Q)" (12 — A(m)iatl, ® Qg/QPO) Er(m) + 0 (1)
= &) (I — b A(m) ® Py) (A(m) ® 1) ™ (I — A(m)iath @ Po) &r(m) + 0pr (1)

= 7TI(A7T_1—L2L2®P0)§T( ) + 0pr(1)
(

- SRS
_ g @me Zzlp_ SR o)

= Sp(m) + opx(1).

using (A(m) ™" = 1a1h) (I — A(m)eath) = A(m) ™! — a1l = a(m)a(r) /7(1 — 7).

As in Sowell (1996) and Hall and Sen (1999), we can always write Py = H'ZH, where E is the
diagonal matrix of eigenvalues of Py and H = [H}, H}]' is a (£ x £) orthonormal matrix, so that
H'H =1, = H{H, + H,H,, with HiH{ = I}, and HoH) = I;_j. From the properties of =,

PO = H{Hl, and

H, (a(ﬂ')l ®Ig)§T(7T) — H; (Bg(ﬂ') —WBg(l)) = Bk(ﬂ') —7TBk(1)

(Bi(m) = 7Bx(1))" (Br(r) — 7Bi(1))
(1 —m)
Proof of Theorem 5: Since sup ¢y Hthjﬁ(é(ﬂ), ) — ngo(ﬂ)H = 0,(1) and VTg5-(0(n), 7) =

from which we conclude that Sy (7) = .l

Op=(1), we immediately have that

(kK2 (217 G 0() 7Y { Vi 0(m). )} 3(0(m). )

=T g%(é(ﬂ-)a 7T)I (A( ) ® QO) g%(é(ﬂ-)a ﬂ-)/k% + 0;077(1)

OT(T(')

and, by (35),

LMG(m) = (T/13)A() {heV3(O(x), m) b A(m) ke
= T gi(b(m), m) (A(r) ® Q0) " G5 (0(m), 7)/K3 + 0y (1)

= Op(m) + opx(1).
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By (36) it is immediate that

LRy(x) = T gr(0(r),m) (A(m) @ Q)" g5(0(m), m) /K + 0pr(1)

= Op(m)+ 0p=(1).
This demonstrates the asymptotic equivalence of all three statistics. From (34) we also obtain

Or(r) = &r(m) (A(m)~' @ (I — By)) &r(m) + opr (1)

St(m) + 0pr (1)

Following the arguments in the proof of Theorem 4, I — Py = H,H> so that

Sp(m) = &r(m) (A(m)~" @ (I — Po)) &r(r)

= &(m) (A(r)~" © HyHs) &p(T)

Er(m) (T2 ® Hy)' (A(m) ™' @ L) (12 ® Hy) &p(n).

Since HoH), = Iy, it follows that HyBy(m) = Bi—i (), a (¢ — k)-dimensional vector of inde-

pendent standard Brownian motions and

Bg_k(ﬂ')

Bg_k(l) — Bg_k(ﬂ')

(I2 ® Ha) ér(m) = (I2 ® Ha) Jo(m) =

implying
Si(m) = Jo—x(m) (A(m) ® Le—x) ™" Je—k ().
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Table 1: DGP summary

The table consists of three panels. The first panel corresponds to a no-break case. The second panel
corresponds to a structural break case. The last panel corresponds to model misspecification when
instruments are correlated with the error term.

DGPy, DGP; DGPs DGPy DGPs DGPs DGP; DGPs
51 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
B2 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0.8
« 0 0.4 0.8 0 0.4 0.8 0.4 0.8
Zt,1 Tt—2 Tt—2 Tt—2 Tt—2 Tt—2 Tt—2 Tt—1 Tt—1
Zt,2 Tt—3 Tt—3 Tt—3 Tt—3 Tt—3 Tt—3 Tt—2 Tt—2
Table 2 3 4 5 6 7 8 9
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Table 2: DG P; Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Da.r(7), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wr(w) (Orp(rw) for @Q,T(w)), and LMy ().

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1, 7(m), Sup
LR .068 .057 .055 .045 .190 .129 .103 .093 135 .123 107 .095 .031 .036 .040 .045
W .085 .044 .042 .040 .184 .142 .116 .092 .196 .146 112 .092 .031 .036 .040 .045
LM .074 071 .061 .050 .126 .100 .080 .062 .087 .091 .078 .072 .031 .036 .040 .045
ﬁl,T(ﬂ'), Ave
LR .064 .057 .050 .044 114 .075 .059 .053 .070 .070 .061 .054 .036 .042 .045 .042
W .084 .052 .049 .043 .123 077 .059 .056 .138 .085 .061 .056 .036 .042 .045 .042
LM .038 .045 .044 .043 .042 .060 .053 .051 .034 .056 .052 .053 .036 .042 .045 .042
D1, 7(m), Exp
LR .072 .064 .051 .047 .152 .110 074 .063 114 .103 077 .064 .038 .043 .049 .047
W .096 .054 .049 .047 .155 .103 .074 .070 176 .105 .074 .070 .038 .043 .049 .047
LM .059 .062 .058 .044 .092 .083 .060 .061 .058 071 .066 .059 .038 .043 .049 .047
Da,r(m), Sup
LR .116 .065 .063 .044 218 .153 117 .079 .216 .161 111 .087 .037 .028 .046 .043
W .090 .037 .049 .042 .160 121 .100 .080 .163 .126 .098 .085 .037 .028 .046 .043
LM .193 .098 071 .044 .308 .192 .120 .080 .338 .226 157 .098 .037 .028 .046 .043
ﬁz,T(ﬂ'), Ave
LR .099 .064 .049 .046 .109 .079 .051 .049 125 .075 .053 .050 .045 .045 .044 .043
W .086 .055 .045 .044 .084 .065 .047 .044 .095 .068 .047 .044 .045 .045 .044 .043
LM .126 .066 .046 .045 .159 .085 .051 .049 .198 107 .065 .056 .045 .045 .044 .043
Da,r(7), Exp
LR 115 .065 .053 .050 .166 .104 .078 .062 .169 .105 077 .062 .047 .042 .042 .044
W .095 .049 .041 .046 124 .085 .068 .057 .128 .085 .068 .056 .047 .042 .042 .044
LM .169 .087 .058 .053 237 .140 .082 .059 275 .180 .102 .069 .047 .042 .042 .044
Dr (), Sup
LR .074 .060 .063 .049 .164 119 .101 .084 .150 .116 .101 .082 .030 .027 .040 .039
W .106 .055 .057 .047 .236 .182 .134 .101 244 .184 .132 .108 .030 .027 .040 .039
LM .188 .090 .073 .053 .303 .206 .129 .090 327 .230 .146 107 .030 .027 .040 .039
ﬁT(ﬂ'), Ave
LR .064 .057 .042 .046 077 071 .056 .052 .075 .068 .061 .056 .046 .038 .036 .043
W .102 .052 .041 .044 .108 .067 .051 .054 127 .069 .053 .053 .046 .038 .036 .043
LM 2120 .063 .045 .041 .161 .086 .054 .050 .184 .101 .066 .058 .046 .038 .036 .043
Dr (), Exp
LR .082 .062 .054 .045 135 .096 .078 .060 .122 .096 .078 .061 .044 .034 .040 .043
w .116 .054 .045 .044 .194 .130 .080 072 .206 .132 .083 .074 .044 .034 .040 .043

LM 165 .077  .060 .045 261 143  .078 .058 286 171 .099 .065 .044  .034  .040 .043
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Table 3: DG P, Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR 124 121 111 .123 237 115 .080 .070 135 .094 .079 .072 114 .099 .086 077
W 112 .106 .110 .119 .192 127 .103 077 .193 .130 .103 .079 114 .099 .086 077
LM .151 .132 107 127 .255 137 .090 .080 .102 .079 .082 .076 114 .099 .086 077
ﬁl,T(ﬂ'), Ave
LR .098 .103 .086 .097 .185 .094 .060 .064 .090 .079 .058 .065 .084 .090 .065 .061
W .095 .101 .087 .095 125 .098 .064 .068 .140 .103 .060 .068 .084 .090 .065 .061
LM .097 .103 .080 .091 .150 .089 .064 .064 .057 .070 .054 .061 .084 .090 .065 .061
D1, 7(m), Exp
LR .122 .110 .101 .104 .225 .110 .075 .067 .130 .088 .069 .067 .103 .101 .081 .068
W .108 111 .105 .102 .170 118 .087 .068 .182 .119 .087 .069 .103 .101 .081 .068
LM 131 .122 .094 .108 .228 2120 .081 .074 .085 .078 .069 .069 .103 .101 .081 .068
Da,r(m), Sup
LR 157 135 .108 .105 .163 .089 .065 .051 142 .089 .063 .054 .024 .028 .040 .037
W .094 .095 .092 .093 .104 .048 .039 .035 .063 .043 .036 .035 .024 .028 .040 .037
LM .240 .164 118 .105 .361 214 .116 .073 375 .265 .161 107 .024 .028 .040 .037
ﬁz,T(ﬂ'), Ave
LR .123 .109 .080 .094 107 .079 .052 .045 .105 .079 .048 .044 .034 .050 .040 .042
w .096 .091 .075 .089 .058 .059 .040 .038 .058 .060 .035 .038 .034 .050 .040 .042
LM .159 124 .083 .093 .229 115 .068 .054 .222 .139 .085 .068 .034 .050 .040 .042
Da,r(7), Exp
LR .156 125 .095 .101 .144 .084 .058 .048 .126 .088 .057 .052 .032 .045 .042 .039
W .105 .095 .085 .093 .088 .054 .044 .038 .061 .047 .039 .036 .032 .045 .042 .039
LM 227 .160 .101 .097 .325 174 .094 .062 .326 .216 .123 .087 .032 .045 .042 .039
Dr (), Sup
LR .189 .164 .139 127 207 117 077 .049 .165 .106 .080 .059 071 .075 .069 .053
W .132 .140 .128 .123 .186 .105 .079 .046 .163 .109 077 .050 071 .075 .069 .053
LM 272 .203 .144 124 411 .236 .135 .081 .362 .238 157 107 071 .075 .069 .053
ﬁT(ﬂ'), Ave
LR .146 .131 107 .104 .129 .092 .058 .048 .108 .089 .059 .047 .066 .064 .053 .047
W 2120 118 .105 .104 .097 077 .055 .045 .102 077 .053 .045 .066 .064 .053 .047
LM 173 .138 .105 .106 275 .131 071 .052 218 .129 .087 .061 .066 .064 .053 .047
Dr (), Exp
LR .191 .169 .126 (118 .196 114 074 .055 .145 .095 .075 .059 .075 .075 .058 .047
W 135 .144 119 118 167 .102 .065 .050 .147 .101 .068 .052 .075 .075 .058 .047

LM .258 185  .134 123 377 .208 116 .073 329 213 .138 .085 .075 .075  .058 .047
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Table 4: DG P3 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR .200 179 .161 .168 .391 .196 .119 077 .158 .099 .092 .075 .155 .113 .096 .090
W .162 .161 157 .170 .258 .169 114 .092 .216 .143 .102 .093 .155 113 .096 .090
LM .228 .180 .166 .160 .396 .199 .120 .080 137 .095 .094 .074 .155 113 .096 .090
ﬁl,T(ﬂ'), Ave
LR .145 .138 118 .129 .346 173 .098 .072 .113 .093 .073 .073 .110 .094 .073 .073
W .136 .136 .116 .132 .150 121 .084 .075 .155 112 .082 .076 .110 .094 .073 .073
LM .139 .134 113 .129 297 134 .085 .075 .072 .078 .070 .072 .110 .094 .073 .073
D1, 7(m), Exp
LR .182 .161 141 .154 .388 .189 114 .080 .152 .098 .087 .072 142 .116 .086 .073
W .164 .155 .135 .152 .254 .165 .110 .083 .220 .139 .100 .079 142 .116 .086 .073
LM 214 .166 .136 .149 .369 .187 113 .080 2120 .093 .092 .079 .142 .116 .086 .073
Da,r(m), Sup
LR .230 207 178 171 .180 114 .082 .052 .126 .094 .069 .052 .025 .031 .043 .040
W .144 .153 157 .155 .198 .078 .048 .032 .019 .028 .023 .028 .025 .031 .043 .040
LM .332 .256 .191 177 514 .310 .168 .090 454 .313 197 .130 .025 .031 .043 .040
ﬁz,T(ﬂ'), Ave
LR 176 .162 .134 .133 .130 .091 .068 .047 .095 .082 .060 .048 .038 .054 .040 .048
w 141 .143 127 .130 .110 .078 .039 .039 .038 .050 .033 .037 .038 .054 .040 .048
LM .226 176 .138 .132 401 .199 .101 .060 272 175 111 .084 .038 .054 .040 .048
Da,r(7), Exp
LR .220 .198 .168 .155 177 .116 .085 .053 124 .087 .069 .053 .034 .049 .045 .045
W .166 .151 154 .148 .190 .087 .047 .037 .031 .040 .032 .033 .034 .049 .045 .045
LM .296 234 L1170 .150 .488 275 .149 .079 .409 273 .169 112 .034 .049 .045 .045
Dr (), Sup
LR .290 .263 .226 .213 .187 .143 .096 .064 .163 112 .086 .063 (118 .106 .076 .066
W .220 .223 .213 .205 .284 .146 .092 .056 .168 .109 077 .056 118 .106 .076 .066
LM .381 .304 231 .208 .599 .355 .191 .099 434 297 .202 .129 118 .106 .076 .066
ﬁT(ﬂ'), Ave
LR .230 .201 .168 .163 .136 .102 .069 .048 .119 .096 .066 .048 .079 .072 .060 .046
W .186 .182 .163 .159 .160 .103 .068 .045 .103 .082 .063 .044 .079 .072 .060 .046
LM 274 .209 .169 .168 467 .226 (118 .065 .269 172 .110 .075 .079 072 .060 .046
Dr(r), Exp
LR 294 .249 .210 .193 .181 137 .088 .059 .169 .113 .084 .061 115 .099 .068 .058
W .226 .216 197 .189 276 141 .088 .052 .160 .100 .074 .052 115 .099 .068 .058

LM 368 .279  .209 .196 579 331 174 .089 416 263  .176 .103 115 .099  .068 .058
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Table 5: DG P, Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR 234 422 .783 .986 .369 547 .863 .993 .333 .532 .870 .993 .238 459 .850 .992
W .295 .484 .846 .990 1404 .560 .880 1994 425 576 .881 1994 .238 459 .850 .992
LM 119 .185 422 776 .225 .296 .559 .888 L1170 270 571 1902 .238 459 .850 1992
ﬁl,T(ﬂ'), Ave
LR .301 .519 .850 .988 371 .582 .899 .995 .349 573 .899 1995 .332 .563 .896 1995
W 375 574 .882 .993 .393 597 .909 .995 .435 .600 .909 .995 .332 .563 .896 .995
LM .086 .130 .391 .808 .133 227 .536 .893 .085 211 .556 914 .332 .563 .896 1995
D1,r(7), Exp
LR .288 .498 .845 .989 .392 594 901 .996 .364 572 .902 .996 311 .554 .888 .993
W 371 .566 .881 .992 426 .606 .905 .995 457 .613 .903 .995 311 .554 .888 .993
LM .110 .165 428 .799 .198 278 .554 .890 .143 .252 572 914 311 .554 .888 .993
Da,r(m), Sup
LR .139 .091 112 115 .216 .181 .180 .208 247 .186 .187 217 .034 .045 .087 107
W .101 .065 .100 .110 .147 .139 .163 .206 .168 151 .166 212 .034 .045 .087 107
LM 217 119 2120 112 315 .220 .180 .200 .378 .263 227 .236 .034 .045 .087 107
ﬁz,T(ﬂ'), Ave
LR 111 .070 .069 .078 .109 .082 .066 .084 .148 .095 .074 .085 .047 .045 .058 .069
w .095 .059 .062 074 .082 .069 .060 .080 .110 .082 .066 .080 .047 .045 .058 .069
LM 137 .080 .062 .075 .161 .094 .062 .078 212 .130 .091 .088 .047 .045 .058 .069
Da,r(7), Exp
LR .131 .083 .100 .105 177 .138 .123 .134 197 .144 .128 137 .054 .054 077 .098
W 107 .070 .086 .105 .123 .104 .109 127 .136 .110 112 124 .054 .054 077 .098
LM .194 .100 .099 .099 .250 .162 .122 124 .304 197 .164 .151 .054 .054 077 .098
Dr (), Sup
LR .190 .309 597 .948 .299 428 736 981 .284 424 747 .983 .153 315 .685 977
W .229 .362 .689 967 .368 479 778 .984 .388 .488 779 .984 .153 315 .685 977
LM 215 175 .340 .646 .382 .322 492 .800 .383 .341 .520 .821 .153 315 .685 977
ﬁT(ﬂ'), Ave
LR .193 .316 .608 1940 224 371 679 .964 .223 .368 .688 .965 .186 318 651 .960
W .246 .340 .655 .952 257 376 .689 967 .300 .385 691 967 .186 318 651 .960
LM .152 .116 211 .538 .201 175 .328 .689 231 .203 .344 721 .186 318 651 .960
Dr(r), Bxp
LR 212 .337 .642 .953 .304 432 741 .980 275 434 752 .980 .181 .350 719 979
W .253 .383 717 .970 .347 467 775 981 374 475 778 981 .181 .350 719 979

LM .204  .161  .330 .644 332 263 .434 757 332 290 .464 797 181 .350 .719 979



87

Table 6: DG Ps; Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR .739 .958 .999 1.00 .688 .900 .990 1.00 .690 921 997 1.00 .650 .922 .998 1.00
W 723 .959 .999 1.00 657 921 .998 1.00 .736 1928 .998 1.00 .650 .922 .998 1.00
LM .590 .885 .995 1.00 .810 941 997 1.00 .468 .858 1994 1.00 .650 .922 .998 1.00
ﬁl,T(ﬂ'), Ave
LR 779 .959 .998 1.00 707 .900 .990 1.00 728 1926 997 1.00 719 1929 .998 1.00
W 778 .956 .998 1.00 677 915 997 1.00 772 .935 .998 1.00 719 1929 .998 1.00
LM 611 910 .995 1.00 795 1942 997 1.00 .397 .869 997 1.00 719 1929 .998 1.00
D1, 7(m), Exp
LR .801 .966 .999 1.00 707 907 991 1.00 741 1929 997 1.00 723 1942 .998 1.00
W 795 .964 .999 1.00 697 .935 .998 1.00 .783 .944 .998 1.00 723 1942 .998 1.00
LM .634 .922 .995 1.00 .816 .954 997 1.00 .466 .886 997 1.00 723 1942 .998 1.00
Da,r(m), Sup
LR .194 224 .316 .496 .196 177 211 315 178 .129 176 .316 .036 .072 L1170 .323
W 119 L1170 .300 1493 227 .149 .135 .255 .049 .046 .095 234 .036 .072 .170 .323
LM 291 267 .316 482 567 372 .332 .386 507 .394 371 453 .036 .072 L1170 .323
ﬁz,T(ﬂ'), Ave
LR 127 .135 .189 294 .123 107 .122 .186 114 .087 .110 179 .046 .072 114 .195
w .100 .123 .182 .293 .123 .090 .102 .158 .053 .057 .081 .147 .046 .072 114 .195
LM .163 .145 .188 291 434 .233 179 207 .305 .189 .194 244 .046 .072 114 .195
Da,r(7), Exp
LR 179 .194 277 441 175 .164 .186 .286 .156 .123 157 .288 .055 .089 .162 .293
W .133 .161 .266 435 218 .148 141 .239 .056 .051 .100 .225 .055 .089 .162 .293
LM .258 221 278 435 .526 .330 .285 .337 456 .330 314 .395 .055 .089 .162 .293
Dy (), Sup
LR 676 917 .998 1.00 426 .789 .980 1.00 .580 .834 .993 1.00 .504 .821 1994 1.00
w 617 .906 .998 1.00 .590 .842 .993 1.00 .626 .846 .993 1.00 .504 .821 1994 1.00
LM .596 .820 991 1.00 .843 .908 1994 1.00 .643 .824 .993 1.00 .504 .821 1994 1.00
ﬁT(ﬂ'), Ave
LR 637 .896 1994 1.00 .400 7T .983 1.00 .539 .825 1994 1.00 .501 .796 .990 1.00
W .602 .886 1994 1.00 .522 .819 991 1.00 .555 817 .992 1.00 .501 796 .990 1.00
LM 494 771 .988 1.00 766 .882 .987 1.00 427 767 .993 1.00 501 .796 .990 1.00
Dr(r), Exp
LR .700 1923 997 1.00 452 .813 .985 1.00 .598 .862 1994 1.00 534 .843 .995 1.00
W .649 913 997 1.00 607 .862 .995 1.00 .634 .865 .995 1.00 534 .843 .995 1.00

LM 595 .828  .991 1.00 .836 .914  .992 1.00 592 826 .994 1.00 534  .843  .995 1.00
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Table 7: DG Py Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR .884 .990 .999 1.00 714 915 .998 1.00 766 1942 .998 1.00 .790 .963 .999 1.00
W .867 .993 .999 1.00 722 1942 .998 1.00 .847 .970 .999 1.00 .790 .963 .999 1.00
LM .829 .984 .999 1.00 1925 .982 .998 1.00 .486 .873 .998 .999 .790 .963 .999 1.00
ﬁl,T(ﬂ'), Ave
LR .888 .988 .999 1.00 727 .923 .999 1.00 .788 .948 .998 1.00 .819 .965 .999 1.00
W .875 991 .999 1.00 691 .922 .995 1.00 .856 .969 .999 1.00 .819 .965 .999 1.00
LM .841 .983 .999 1.00 915 975 .998 1.00 .334 .866 997 .999 .819 .965 .999 1.00
D1, 7(m), Exp
LR .904 .993 .999 1.00 725 .930 .999 1.00 .807 .959 .998 1.00 .832 972 .999 1.00
W .889 .995 .999 1.00 .740 .948 997 1.00 871 974 .999 1.00 .832 972 .999 1.00
LM .863 .986 .999 1.00 1929 .983 .998 1.00 453 .893 .998 .999 .832 972 .999 1.00
Da,r(m), Sup
LR .313 .357 .468 712 .248 .250 .255 372 177 .148 .196 .364 .038 .096 .196 .385
W .206 317 .445 .704 .365 .329 217 .309 .022 .039 .079 .249 .038 .096 .196 .385
LM 1420 .392 .480 .702 735 .544 .449 479 .582 .489 447 557 .038 .096 .196 .385
ﬁz,T(ﬂ'), Ave
LR 197 .210 .303 459 .156 .159 .154 .225 .102 .096 .113 .209 .044 .082 .130 .225
w 157 .196 .289 455 .205 .181 .156 .187 .027 .048 .078 .155 .044 .082 .130 .225
LM .239 .225 .305 451 .663 431 .289 274 .380 .264 .248 .328 .044 .082 .130 .225
Da,r(7), Exp
LR .280 .321 424 .644 .246 .238 .228 .347 .147 .143 173 .331 .052 .102 .184 .353
W .196 .282 410 .636 .342 .309 .223 .292 .026 .047 .095 244 .052 .102 .184 .353
LM .381 .344 423 .634 723 .519 .409 435 .530 426 .392 494 .052 .102 .184 .353
Dr (), Sup
LR .864 977 .999 1.00 .340 770 .980 1.00 .656 .887 .995 1.00 .654 .902 997 1.00
w 811 976 .999 1.00 .693 .923 997 1.00 .738 918 997 1.00 .654 1902 997 1.00
LM .837 972 .998 1.00 951 967 .998 1.00 712 877 .996 1.00 .654 1902 997 1.00
ﬁT(ﬂ'), Ave
LR .820 967 .998 1.00 341 762 .984 1.00 .630 .887 1995 1.00 .620 .887 .995 1.00
W .786 .960 .998 1.00 637 901 .995 1.00 .682 .893 .995 1.00 .620 .887 1995 1.00
LM 774 .953 .998 1.00 1926 957 997 1.00 490 .807 .995 .999 .620 .887 .995 1.00
Dr (), Exp
LR .865 976 .998 1.00 .357 796 .986 1.00 678 917 997 1.00 .680 1925 .996 1.00
W .832 979 .998 1.00 721 1942 .996 1.00 754 .932 .996 1.00 .680 1925 .996 1.00

LM .838 .975  .998 1.00 952 972 .998 1.00 .664  .883  .997 -999 .680  .925  .996 1.00
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Table 8: DG P; Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup
LR .686 .930 .995 1.00 .768 .875 .966 -999 .758 1949 .996 1.00 .631 917 998 1.00
W 717 .956 .998 1.00 .646 872 975 .998 77T 944 .998 1.00 .631 917 998 1.00
LM .589 .863 .993 1.00 .834 .922 .988 1.00 .349 .692 .962 1.00 .631 917 998 1.00
Dy, r(x), Ave
LR 773 .955 .998 1.00 764 .882 .954 1994 .653 .892 .986 .999 722 .938 .999 1.00
w 770 L9957 998 1.00 .619 .844 .951 .992 .785 .956 997 1.00 722 .938 -999 1.00
LM .659 918 .996 1.00 .821 1924 .985 1.00 277 678 .970 1.00 722 .938 .999 1.00
D1, 7(m), Exp
LR .758 .954 .998 1.00 769 .890 .969 -999 724 .946 997 1.00 713 .944 .998 1.00
w 779 .968 .998 1.00 .663 .882 977 997 .809 .962 .998 1.00 713 1944 .998 1.00
LM .651 914 .996 1.00 .841 1933 .989 1.00 .343 737 976 1.00 713 1944 .998 1.00
Da,r(m), Sup
LR .888 .989 .995 1.00 754 1932 .987 .998 947 1999 1.00 1.00 773 .997  1.00 1.00
w .876 -999 1.00 1.00 901 997 1.00 1.00 .813 997 1.00 1.00 773 997 1.00 1.00
LM 951 .999 1.00 1.00 -990 -999 1.00 1.00 .992 .999 1.00 1.00 773 997 1.00 1.00
Do, r(x), Ave
LR 1925 .989 .995 1.00 773 1932 .987 .998 976 .999 1.00 1.00 .943 .999 1.00 1.00
W .950 .999 1.00 1.00 .964 -999 1.00 1.00 1941 -999 1.00 1.00 .943 .999 1.00 1.00
LM 971 -999 1.00 1.00 .988 -999 1.00 1.00 .991 .999 1.00 1.00 .943 .999 1.00 1.00
Da,7(m), Exp
LR 912 .989 .995 1.00 773 1932 .987 .998 .970 .999 1.00 1.00 919 .998 1.00 1.00
W 937 .999 1.00 1.00 .956 -999 1.00 1.00 919 -999 1.00 1.00 919 .998 1.00 1.00
LM 967 .999 1.00 1.00 -990 .999 1.00 1.00 .992 .999 1.00 1.00 919 .998 1.00 1.00
Dy (), Sup
LR .935 .991 997 1.00 .508 .697 .905 .995 .985 1.00 1.00 1.00 961 1.00 1.00 1.00
w 974 1.00 1.00 1.00 1941 1.00 1.00 1.00 974 1.00 1.00 1.00 961 1.00 1.00 1.00
LM 1984 1.00 1.00 1.00 .996 1.00 1.00 1.00 .999 1.00 1.00 1.00 961 1.00 1.00 1.00
Dr(n), Ave
LR 1942 .991 997 1.00 .524 .698 .905 .995 .993 1.00 1.00 1.00 .989 1.00 1.00 1.00
W -990 1.00 1.00 1.00 .993 1.00 1.00 1.00 -990 1.00 1.00 1.00 .989 1.00 1.00 1.00
LM .985 1.00 1.00 1.00 997 1.00 1.00 1.00 .997  1.00 1.00 1.00 .989 1.00 1.00 1.00
Dr(r), Exp
LR 1942 .991 997 1.00 525 .698 .905 .995 .997  1.00 1.00 1.00 979 1.00 1.00 1.00
W .986 1.00 1.00 1.00 987  1.00 1.00 1.00 987  1.00 1.00 1.00 979 1.00 1.00 1.00

LM 990  1.00  1.00 1.00 999 1.00  1.00 1.00 999 1.00  1.00 1.00 979  1.00 1.00 1.00
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Table 9: DG Pg Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800, 1600.
Horizontally, the results are divided into three big blocks for Dy r (), Do (), and Dr(w) tests. For each test we report sup(.), exp(.) and

ave(.) statistics. Each statistics block consists of LRy (), Wy (r) (Orp(r) for Dy p(w)), and LMp(w).

EL ELk ETk GMMk

200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600
D1,7(m), Sup

LR .783 871 .980 997 .838 .944 .990 .996 .835 .880 .954 .985 .580 .834 .990 1.00

W 782 1902 .990 .999 647 .874 .984 .999 .861 916 .983 .998 .580 .834 .990 1.00

LM .699 .806 .958 .992 .982 .984 .998 .999 .078 .085 167 .350 .580 .834 .990 1.00
ﬁl,T(ﬂ'), Ave

LR .820 .908 .986 .998 .835 .945 .990 .996 .592 .649 794 .863 627 .851 .988 1.00

W 775 917 .987 .998 57T 718 927 .999 .784 .864 .960 .996 627 .851 .988 1.00

LM 721 .844 .964 .992 975 978 .992 1995 .020 .039 .105 .320 627 .851 .988 1.00
D1, 7(m), Exp

LR .818 .904 .985 .998 .837 1946 991 .996 782 .855 .948 .989 .628 .866 1994 1.00

W .819 .932 .992 .999 .654 .870 .983 1.00 .848 .909 975 997 .628 .866 1994 1.00

LM .733 .849 972 .995 981 .983 997 .999 .048 .069 .134 .361 .628 .866 1994 1.00
Da,r(m), Sup

LR .852 .950 .986 .998 .625 .860 975 1995 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00

W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 .999 1.00 1.00 1.00

LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00
ﬁz,T(ﬂ'), Ave

LR .852 .950 .986 .998 .626 .860 975 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Da,7(m), Exp

LR .852 .950 .986 .998 .626 .860 975 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dy (), Sup

LR .820 957 .987 .998 .131 .348 .693 911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

W 1.00 1.00 1.00 1.00 987 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ﬁT(ﬂ'), Ave

LR .820 957 .987 .998 .131 .348 .693 911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

w 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dr(r), Exp

LR .820 957 .987 .998 .131 .348 .693 911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

LM 1.00  1.00 1.00 1.00 1.00  1.00 1.00 1.00 999 1.00  1.00 1.00 1.00  1.00 1.00 1.00
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Table 10: DG P; Sup-statistics comparison
For the structure of the table see description of Table 2. The table consists of two horizontal panels. The first panel is for the case when h is evaluated
for each iteration of m and for each subsample independently, i.e. iLﬂT, lAL(l,,r)T. The second panel shows the case when hr is evaluated once for the whole
sample using GMM assuming no structural breaks. For each test sup(.) statistics are reported for Dy r (), D2, (w), and Dr () tests.

EL ELk ETk
200 400 800 1600 200 400 800 1600 200 400 800 1600
bty h(a—myr
Dy, (m)
LR .070 .065 .061 .054 291 230 221 .194 249 222 219 191
AW .090 .052 .049 .059 215 149 136 .120 206 .152  .137 121
LM 079 .076 .063 .053 261 .148  .137 116 151 115 123 11
Dy, (m)
LR .081 .088 .047 .042 206 192 142 144 186 1186 .149 145
W 150  .055  .060 .038 128 0150 131 128 105 144 123 128
LM 148 .086  .056 .045 .339 236 158 .148 374 282 .190 171
D ()
LR 085 .091 .056 .044 282 233 194 .165 237 .230  .195 172
AW 095 .073 .058 .042 244 205 185 .169 230 .202  .180 167
LM 232 152 .068 .045 398 276 178 152 365 .283  .200 .164
hr
Dy, (m)
LR 065 .059 .054 .045 245 .101  .073 .055 082  .069 .07 .052
AW 086 .044 .043 .038 204 114 .094 .072 186 .105  .091 071
LM 078 .073 .059 .049 243 .110 .076 .053 .097 .065 .065 .057
Dy, (m)
LR 121 .062  .062 .041 202 .082 .06 .043 157 0 .062  .059 .044
AW .090 .036 .048 .037 115 .026 .033 .031 056 .018 .029 .031
LM 194 .096  .070 .041 401 196 .089 .048 419 246 136 074
Dr(m)
LR 077 .058 .061 .046 209  .105 .077 .048 106 .074 072 .050
AW 108 .052 .056 .045 192 .082  .071 .050 158  .070 .070 .050

LM 190 .089  .073 .048 450 223 .106 .048 402 225 119 .071
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