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Abstract

In this paper, we develop an info-metric framework for testing hypotheses about structural

instability in nonlinear, dynamic models estimated from the information in population moment

conditions. Our methods are designed to distinguish between three states of the world: (i) the

model is structurally stable in the sense that the population moment condition holds at the same

parameter value throughout the sample; (ii) the model parameters change at some point in the

sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms

of instability than a single shift in the parameters. An advantage of the info-metric approach is

that the null hypotheses concerned are formulated in terms of distances between various choices

of probability measures constrained to satisfy (i) and (ii), and the empirical measure of the

sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural

instability at a single point in the sample, referred to as the break point; our analysis allows for

the break point to be either fixed a priori or treated as occuring at some unknown point within

a certain fraction of the sample. We propose various test statistics that can be thought of as

sample analogs of the distances described above, and derive their limiting distributions under

the appropriate null hypothesis. The limiting distributions of our statistics are non-standard but

coincide with various distributions that arise in the literature on structural instability testing

within the Generalized Method of Moments framework. A small simulation study illustrates the

finite sample performance of our test statistics.

Keywords: Moment condition models, structural instability, parameter variation, Generalised

Empirical Likelihood.



1 Introduction

There has been considerable interest in the development of tests for structural instability in

moment condition models. In the majority of this literature, the null hypothesis is structural

stability in the sense that the population moment condition holds at the same parameter value

throughout the sample, and the alternative involves instability at single point in the sample,

known as the break point. Depending on the setting this break point can be treated as known,

in which case the potential point of instability is specified a priori, or unknown, in which case

the point of potential instability is left unspecified. The earliest contributions to this literature

considered inference procedures within the Generalized Method of Moments (GMM) framework

(Hansen, 1982). For the known break point case, Andrews and Fair (1988) introduced tests

for parameter variation, and Ghysels and Hall (1990) introduced so-called predictive tests that

Ghysels, Guay, and Hall (1997) show test jointly parameter constancy and the overidentifying

restrictions in one sub-sample. For the unknown break point case, Andrews (1993) proposes

so-called sup-tests for parameter variation, Sowell (1996) considers a general framework for

the construction of tests for parameter variation, and Ghysels, Guay, and Hall (1997) propose

extensions of the predictive test to this setting. Building from these earlier results, Hall and Sen

(1999) show that the hypothesis of structural stability can be decomposed into one of parameter

constancy and another concerning the validity of the overidentifying restrictions in each sub-

sample, and propose tests for each component. They further show that this approach has the

potential to discriminate between states of the world in which violation of the null is caused by

neglected parameter variation and those in which violation of the null is caused by more general

forms of misspecification of the moment condition.

While all these tests are valid in their own terms, they are developed within the GMM frame-

work and the latter has received some criticism in recent years because it can yield unreliable

inferences in certain settings of interest.1 This criticism has led to the development of alternative

methods for estimation in moment condition models, leading examples of which are Empirical

Likelihood (EL) (Qin and Lawless, 1994) and Exponential Tilting (ET) (Kitamura and Stutzer,

1997). Both EL and ET have a common structure, and this insight has led to the development

of two generic frameworks for the estimation of moment condition models that include EL and
1For a review of this literature see inter alia Hall (2005)[Ch. 6].



ET (and other estimators of interest) as special cases. The first such framework is the Gener-

alized Empirical Likelihood (GEL) introduced by Smith (1997). The second framework is the

information-theoretic framework of Kitamura and Stutzer (1997) and its extensions in Golan

(2002,2006). It is, therefore, of interest to develop tests for structural instability within these

more general frameworks.

In a recent paper, Guay and Lamarche (2010) propose analogous tests to those of Hall and

Sen (1999) for the GEL framework, and present a limiting distribution theory for these statistics

under both null and local alternatives. They observe that the GEL statistics have the same first

order asymptotic properties as their GMM counterparts under null and local alternatives. They

report simulation evidence on their tests based on ET, and find the tests to perform comparably

to their GMM counterparts for the most part but one particular GEL test based on the LM

principle is superior.

In this paper, we consider the derivation of the same tests as Guay and Lamarche (2010)

but from an information-theoretic - or equivalently - info-metric perspective. While the same

tests result, we argue that the info-metric approach has considerable advantage in terms of

the specification of the hypotheses and thus interpretation of the outcome of the tests.2 This

advantage stems from the info-metric approach being based on the concept of minimizing the

distance between the class of probability distributions restricted to satisfy the moment condition

and the true probability distribution. This allows us to relate the various hypotheses of interest

in structural instability testing to the distance between certain classes of probability distributions

and the true distribution. We believe this is a more fundamental - and also more instructive

- representation of these hypotheses than their expression in terms of identifying restrictions

(parameter variation) and overidentifying restrictions as is done in both the GMM and GEL

frameworks. In principle, there are a number of possible measures for the distance between

probability distributions that can be used in developing our info-metric tests for structural

instability. Here, we focus on the Cressie-Read (CR) distance measure (Cressie and Read, 1984).

Like Guay and Lamarche (2010), we assume the data to be weakly dependent and account for

this dependence in estimation using the kernel-smoothing methods advocated by Smith (2011).

An outline of the paper is as follows. Section 2 presents the info-metric approach to the
2Our results are based on Li’s (2011) PhD thesis, which considered only the EL framework. This work was

performed independently of and contemporaneously to Guay and Lamarche (2010).
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specification of the null and alternative hypotheses of our structural instability. Section 3 derives

the required the first order asymptotic properties of the partial info-metric - estimators under

null of structural stability - and are employed in Section 4, which presents the test statistics

and discusses the connection between our info-metric methods and various structural instability

tests derived within the GMM framework. Section 5 summarises results from a small simulation

study that indicates the finite sample performance of our methods. Section 6 concludes. All

proofs are relegated to a mathematical appendix.

2 An info-metric approach to structural stability testing

In this section we propose an Information-Theoretic (IT) approach to testing for evidence of

structural instability in population moment condition models. However, to motivate our ap-

proach, it is useful to begin by briefly reviewing IT estimation of moment condition models

absent of any concerns regarding structural stability.

Suppose a researcher is interested in estimating the k×1 vector of parameters β0 based on the

information in the `×1 moment condition E[g(Z, β0)] = 0 where Z is a d×1 random vector. It is

assumed that ` > k. This model is said to be structurally stable because the moment condition

holds at the same parameter value throughout the sample. Following Kitamura (2006), we can

characterize IT estimation of this model at the population level using the following framework.

Let M denote the set of all probability measures on <d, with

P(β) =
{

P ∈ M :
∫

g(z, β)dP = 0
}

,

and

P = ∪β∈BP(β),

where B is the parameter space. Note that P is the set of all probability measures that are

compatible with the moment condition, and is referred to as a statistical model in this context.

This model is correctly specified if and only if P contains the true measure µ; that is, the data

satisfies the population moment condition at β = β0. A class of IT estimators of β can be defined
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as

arg inf
β∈B

ρ(β, µ), where ρ(β, µ) = inf
P∈P(β)

D(P ‖µ)

in which D(· ‖ ·) is a distance, or divergence, measure between two probability measures3 and

ρ(·) is referred to as the contrast function. Kitamura (2006) shows that if the model is correctly

specified then the minimum of the contrast function is attained at β = β0, the true parameter

value.

Now consider the problem of testing structural stability. Define Z(r) to be a stochastic

process on r ∈ [0, 1]. We focus exclusively on the case where the alternative hypothesis involves

instability at a single point and so we define

Z(r) = Z(1), for r ≤ π

= Z(2), for r > π

where π ∈ (0, 1) is referred to as the break-fraction. In structural stability testing, π may be

fixed a priori, the so-called “known break point case”, or it may be left unrestricted beyond

π ∈ Π ⊂ (0, 1), the so-called “unknown break point case”. Our methods can handle both cases,

but for purposes of exposition here, it is most convenient to first treat π as fixed and then to

discuss the extension to the unknown break point case at the end of the section.

To formalize the null and alternative hypotheses, we need to introduce two sets of probability

measures. First, we define

P0 = ∪β∈BP0(β)

where

P0(β) =
{

(P1, P2) ∈ M ×M :
∫

g(zi, β)dPi = 0, for i = 1, 2
}

,

so that P0 is the set of all pairings of probability measures that are compatible with moment

condition holding at the same parameter value in both sub-samples. Notice that this model

specification differs from P by allowing for the measures for Z(1) and Z(2) to be potentially

different. Second, we define the set

P1 = ∪(β1,β2)∈B×BP1(β1, β2),
3This distance measure must be non-negative and satisfy D(P ‖ Q) = 0 if and only if P = Q.
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where

P1(β1, β2) =
{

(P1, P2) ∈ M ×M :
∫

g(zi, βi)dPi = 0, for i = 1, 2
}

,

so that P1(β1, β2) is the set of all pairings of probability measures that are compatible with

moment condition holding in both sub-samples but at potentially different parameter values.

Using these definitions, the hypotheses of interest can be expressed in terms of (µ1, µ2), the

true measures for (Z(1), Z(2)), with the null being:

H0(π) : (µ1, µ2) ∈ P0. (1)

Thus under H0 the model is structurally stable in the sense that the population moment condition

holds at the same value in both sub-samples. One potential alternative of interest is:

HA(π) : (µ1, µ2) ∈ Pc
0, (2)

which equates to “not H0(π)”. While this alternative is of interest in its own right, we show

below that the states of the world under this alternative can be split into two groups, and such a

decomposition can provide useful model building information. The first such group is captured

by the hypothesis:

HPV (π) : (µ1, µ2) ∈ P1 \P0. (3)

Under HPV (π), the moment condition is satisfied in both sub-samples but at different parameter

values. This situation is commonly referred to as “parameter variation” which is reflected in the

“PV” subscript. The second group is the hypothesis:

HMS(π) : (µ1, µ2) ∈ Pc
1. (4)

Under HMS(π), the population moment condition is not satisfied in one or both sub-samples -

even allowing for the possibility of a parameter shift - indicating the model is misspecified in

that the moment condition fails to hold over the entire sample, which is reflected in the “MS”

subscript.

While both HPV (π) and HMS(π) imply H0(π) is false, they have very different model building

implications. HPV (π) implies that the model is correctly specified once allowance is made for
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the change in parameters, whilst HMS(π) implies the moment condition does not hold and hence

the model is more fundamentally misspecified. As argued by Hall and Sen (1999), it therefore

seems valuable to develop inference procedures that can distinguish these two cases. Hall and

Sen (1999) achieve this goal within a GMM framework by developing separate tests based on the

stability of the identifying restrictions and the stability of the overidentifying restrictions. Here

we develop IT methods that provide similar model-building information. We believe that the

IT approach is more attractive than the GMM framework of Hall and Sen (1999) and also the

GEL framework of Guay and Lamarche (2010) because it is fundamentally anchored in distances

between the underlying probability measures satisfying the various hypotheses considered.

To motivate the form of our inferential procedures, it is useful to consider population measures

for discriminating between H0(π), HPV (π), and HMS(π). To this end, let ρπ([β1, β2], [µ1, µ2])

denote the contrast function for estimation that allows for a break at the point indexed by π,

and let Dπ([p1, p2] ‖ [q1, q2]) denote the measure of divergence between two pairs of measures,

[p1, p2] and [q1, q2], with the first of each pair pertaining to Z(1) and the second to Z(2). It then

follows from the properties of the divergence measure that we have the following:

(i) ρπ([β∗(π), β∗(π)], [µ1, µ2])





= 0, if H0(π) true

> 0, if H0(π) false,

where

β∗(π) = arg inf
β∈B

ρπ([β, β], [µ1, µ2])

for

ρπ([β, β], [µ1, µ2]) = inf
[P1,P2]∈P1(β,β)

Dπ([P1, P2] ‖ [µ1, µ2]);

(ii) ρπ([β1,∗(π), β2,∗(π)], [µ1, µ2])





= 0, if HPV (π) true

> 0, if HPV (π) false,

where

[β1,∗(π), β2,∗(π)] = arg inf
[β1,β2]∈B×B

ρπ([β1, β2], [µ1, µ2]),

for

ρπ([β1, β2], [µ1, µ2]) = inf
[P1,P2]∈P1(β1,β2)

Dπ([P1, P2] ‖ [µ1, µ2]).
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Given these properties, we can decompose D(π) = ρπ([β∗(π), β∗(π)], [µ1, µ2]) into two parts:

D(π) = D1(π) + D2(π)

where

D1(π) = ρπ([β∗(π), β∗(π)], [µ1, µ2]) − ρπ([β1,∗(π), β2,∗(π)], [µ1, µ2]),

D2(π) = ρπ([β1,∗(π), β2,∗(π)], [µ1, µ2]).

It can be recognized that: if H0(π) is true then D1(π) = D2(π) = 0; if HPV (π) is true then

D1(π) 6= 0 but D2(π) = 0; if HMS(π) is true then D1(π) 6= 0 and D2(π) 6= 0. Therefore, an

examination of D(π) reveals whether the model is structurally stable, H0(π), or not, HA(π). On

the other hand, an examination of D1(π) and D2(π) reveals whether the model is structurally

stable, H0(π), or exhibits parameter variation, HPV (π), or is structurally unstable due to more

general forms of misspecification, HMS(π). Therefore, we propose performing inference using

sample analogs of D(π), D1(π) and D2(π).

To present these sample analogs, we need some additional notation. Replace Z(r) by the

time series {Zt; t = 1, 2, . . . , T}. It is assumed that the potential instability occurs at t =

[Tπ] = T1 say, where [·] denotes the integer part in this context. We refer to T1 as the break

point. We divide the sample into two sub-samples of T1 and T2 observations, respectively, where

T1(π) = {1, 2, . . ., T1}, denotes the set of T1 observations up to and including the break point

and T2(π) = {T1 + 1, T1 + 2, . . .T}, the set of T2 observations after the break with T2 = T − T1.

It is well known that IT methods based on the assumption of independently and identi-

cally distributed data are asymptotically inefficient if the data are weakly dependent.4 Various

approaches have been proposed for handling this dependence: we employ quite general kernel

smoothing methods as developed by Smith (2011)5. Within this approach, the original moment

function in period t, g(Zt, β) = gt(β) say, is replaced by the kernel smoothed version,

gs
t (β) =

1
hT

t−1∑

j=t−T

k

(
j

hT

)
gt−j(β), (5)

4See Kitamura (1997) and Kitamura and Stutzer (1997).
5Kitamura and Stutzer (1997) handle dependencyvia smoothing using a rectangular kernel, as well as blocking

methods (see also Kitamura, 1997); Kitamura (2006) uses parametric models.
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where the superscript s indicates the operation of kernel smoothing with hT and k(.) denoting

the bandwidth and a kernel function, respectively, details of which are given in Section 3. To

implement IT estimation using kernel smoothing, we replace the true measures, [µ1, µ2] by the

empirical measures [µ̂1, µ̂2]. Notice that these measures relate to the stationary distributions

of Z(1) and Z(2).6 Since we allow for the measures to be different, µ̂1,t = T−1
1 for t ∈ T1(π)

and µ̂2,s = T−1
2 for T2 = T − T1 and s ∈ T2(π). Following Kitamura and Stutzer (1997),

we also replace the measures Pi by the probability mass functions P̂1 = [p1,1, p1,2 . . . , p1,T1],

P̂2 = [p2,1, p2,2 . . . , p2,T2].

In our inference procedures, βi,∗(π) and β∗(π) are replaced, respectively, by the partial-sample

IT estimators, β̂i(π), and the restricted partial-sample IT estimator, β̂R(π), defined as follows.

The (unrestricted) partial-sample IT estimators are,

[β̂1(π), β̂2(π)] = arg inf
[β1,β2]∈B×B

ρπ,T ([β1, β2], [µ̂1, µ̂2]) (6)

where

ρπ,T ([β1, β2], [µ̂1, µ̂2]) = inf
[P̂1,P̂2 ]∈P̂1(β1,β2)

Dπ([P̂1, P̂2] ‖ [µ̂1, µ̂2]) (7)

and

P̂1(β1, β2) =



 (P̂1, P̂2) : pi,t > 0,

∑

t∈Ti(π)

pi,t = 1,
∑

t∈Ti(π)

pi,tg
s
t (βi), i = 1, 2



 . (8)

On the other hand, the restricted partial-sample IT estimator is,

β̂R(π) = arg inf
[β,β]∈B×B

ρπ,T ([β, β], [µ̂1, µ̂2]). (9)

We propose performing inference based on scaled versions of the following analogs to D(π),

D1(π) and D2(π),

D̂T (π) = D̂1,T (π) + D̂2,T (π) (10)

D̂1,T (π) = ρπ,T ([β̂R(π), β̂R(π)], [µ̂1, µ̂2]) − ρπ,T ([β̂1(π), β̂2(π)], [µ̂1, µ̂2]) (11)

D̂2,T (π) = ρπ,T ([β̂1(π), β̂2(π)], [µ̂1, µ̂2]) (12)

6See Smith (2011)[p.1195].
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To implement our procedures, it is necessary to choose a measure of divergence. Kitamura

and Stutzer (1997) use the Kullback-Leibler information criterion (KLIC) distance. Golan (2002,

2006) considers the extension of Kitamura and Stutzer’s (1997) methods to more general mea-

sures such as the generalized cross entropy and Cressie-Read (CR) divergence measure (Cressie

and Read, 1984). The framework above can be applied to any of these settings, but for con-

creteness we focus on the CR divergence measure which is given as follows in our context:

D(α)
π ([P̂1, P̂2] ‖ [µ̂1, µ̂2]) =

α

1 + α





2∑

i=1

∑

t∈Ti(π)

pi,t

{(
pi,t

µ̂i,t

)α

− 1
}
 (13)

and which is defined for −∞ < α < ∞. Appropriate choices of α lead to certain familiar

estimation methods: for example, limα→0D
(α)
π (·‖·) yields the optimand for Exponential Tilting

(ET) estimator of Kitamura and Stutzer (1997) in each sub-sample, and limα→−1D
(α)
π (·‖·) yields

the Empirical Likelihood (EL) estimator of Owen (2001) in each sub-sample.

So far, we have focused on the fixed break point case. The extension to the unknown break

point case is as follows. The null hypothesis of structural stability becomes H0(Π) : H0(π) ∀π ∈

Π ⊂ (0, 1). The difference between H0(π) and H0(Π) is that the former specifies precisely the

point at which the structural break is suspected. This difference is reflected in the associated

test statistics, with tests for H0(π) being designed to have power against a break at π and the

tests for H0(Π) being designed to maximize power against a weighted sequence of alternatives

that allows for breaks at all points in Π. These test statistics, and their asymptotic properties

under the null hypothesis, are developed in Section 4.

In the following section, we first derive the first order asymptotic behaviour of the unrestricted

and restricted partial-sample IT estimators under the null hypothesis..

3 Large sample behaviour of partial-sample IT estimators

For the purposes of developing the asymptotic theory underpinning the partial-sample IT es-

timators, it is convenient to exploit the equivalence between Generalised Empirical Likelihood

(GEL) estimation and that of an IT approach based on the CR divergence measure. That is,

any such IT estimator has a GEL equivalent; see Newey and Smith (2004). As discussed in

Newey and Smith (2004), and also Smith (2011), let ρ(v) be a continuous, twice differentiable
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and concave function on its domain V, an open interval containing 0. Let ρj(v) ≡ ∂jρ(v)/∂vj ,

ρj = ρj(0) for j = 0, 1, 2, . . ., and impose the normalisation that ρ1 = ρ2 = −1. Then, based on

the full sample, the GEL (IT) criterion function would be7

QT (β, λ) =
1
T

T∑

t=1

[ρ(kλ′gs
t (β)) − ρ0]

where gs
t (β) is defined at (5) and k = k1/k2 with kj =

∫∞
−∞ k(ω)jdω, j = 1, 2. Whilst β ∈ B ⊂ <k,

the auxiliary GEL parameters λ ∈ ΛT are restricted so that w.p.a.1 (with probability approaching

1) kλ′gs
t (β) ∈ V, for all (β′, λ′)′ ∈ B × ΛT and t = 1, ..., T . Specifically, ΛT imposes bounds

on λ that “shrink” with T , but at a slower rate than hT /
√

T (see Assumption 4) which is the

convergence rate of both the GEL and partial-sample GEL estimator for λ.

The (full-sample) GEL estimator is then defined as

β̃ ≡ arg min
β∈B

sup
λ∈ΛT

QT (β, λ).

Estimation proceeds in two steps:

1. QT (β, λ) is maximised over λ, for given β, yielding

λ̃ (β) = arg sup
λ∈ΛT

QT (β, λ) .

2. The GEL estimator, β̃, is the minimiser of the profile GEL objective function, QT

(
β, λ̃(β)

)
:

β̃ = arg min
β∈B

QT

(
β, λ̃(β)

)
,

and λ̃ ≡ λ̃(β̃).

Whilst still employing gs
t (β), consider, now, splitting the sample according to Ti(π), i = 1, 2,

for all π ∈ Π, to obtain the (unrestricted) partial-sample GEL (PSGEL) estimators β̂i(π),

7We adopt the notation QT (β,λ) rather than P̂ (β,λ), employed by Smith (2011), to avoid confusion with P
as discussed in Section 2.
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i = 1, 2, based on the two sub-samples t ∈ Ti(π), i = 1, 2, respectively.8 Specifically,

β̂i(π) = arg min
β∈B

sup
λ∈ΛT

1
T

∑

t∈Ti(π)

[ρ(kλ′gs
t (β)) − ρ0], i = 1, 2,

and, correspondingly,

λ̂i(π) = arg sup
λ∈ΛT

1
T

∑

t∈Ti(π)

[ρ(kλ′gs
t (β̂i(π))) − ρ0], i = 1, 2.

To analyse these estimators for all π ∈ Π ⊂ (0, 1) define θ′ = (β′
1, β

′
2)

′ ∈ Φ = B × B,

γ′ = (λ′
1, λ

′
2)

′ ∈ ΓT = ΛT × ΛT and the following (2` × 1) unsmoothed and smoothed moment

functions

gt(θ, π) = It,T (π)




gt(β1)

0


 + (1 − It,T (π))




0

gt(β2)




gs
t (θ, π) = It,T (π)




gs
t (β1)

0


 + (1− It,T (π))




0

gs
t (β2)


 (14)

where It,T (π) is an indicator variable that takes the value 1 if t ≤ [Tπ] and the value 0 otherwise.

Let

QT (θ, γ, π) =
1
T

T∑

t=1

[ρ(kλ′gs
t (θ, π)) − ρ0]

then we have θ̂(π) =
(
β̂1(π)′, β̂2(π)′

)′
where

θ̂(π) = arg min
θ∈Θ

sup
γ∈ΓT

QT (θ, γ, π) (15)

with

γ̂(π) = arg sup
γ∈ΓT

QT (θ̂(π), γ, π). (16)

Throughout this paper, the asymptotic analysis addresses behaviour under the null hypoth-

esis, only, and requires certain assumptions that follow the spirit of Smith (2011). The data

satisfy the following condition:

8To present the main results, the moment functions are smoothed before splitting the sample according to π.
Another possible avenue is to smooth the moment functions after splitting the sample. Indeed, the latter might
be viewed as more natural and this is pursued in the Monte Carlo study, Section 5. However, whilst there is no
difference asymptotically between the two approaches, the proofs are more straightforward in the former case.
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Assumption 1 Data are generated by a sequence of strictly stationary and strong mixing Z-

valued random vectors {Zt}∞t=1, with mixing coefficients, α(j), satisfying
∑∞

j=1 j2α(j)(υ−1)/υ <

∞, for some υ > 1, where Z is a Borel subset of <d.

As noted in the previous section, we handle the dependence in the data implied by Assumption

1 through kernel smoothing. The next assumption addresses the bandwidth, hT , and choice of

kernel, k(.), such that they obey conditions similar to those laid out in Theorem 1(a) of Andrews

(1991). Let

k̄ (ω) =





supb≥ω |k (b)| , ω ≥ 0

supb≤ω |k (b)| , ω < 0

and K(λ) = (2π)−1
∫

k(x) exp(−ιxλ)dx, the spectral window generator of the kernel k(.), with

kj =
∫∞
−∞ k(ω)jdω , j = 1, 2.

Assumption 2 (i) hT = O(T
1
2δ ) for some δ > 1; (ii) k(.) : < → [−kmax, kmax], kmax < ∞,

k(0) 6= 0, k1 6= 0, and k(.) is continuous at 0 and almost everywhere; (iii)
∫∞
−∞ k̄(ω)dω < ∞;

(iv) |K(x)| ≥ 0 for all x ∈ <.

Assumption 2(i) is a slight adaptation of Smith (2011), as used by Guay and Lamarche

(2010), which simplifies certain aspects of the proofs at no extra cost.

We must also place restrictions on the (unsmoothed) moment function gt(β) = g(Zt, β),

and these are specified in the following assumptions. Define the following quantities: ḡT (β) =

1
T

∑T
t=1 gt(β), Ω(β) = limT→∞ var

(√
T ḡT (β)

)
, and ḡ[Tπ](β) = 1

T

∑[Tπ]
t=1 gt(β). The smoothed

counterparts of ḡT (β) and ḡ[Tπ](β) are ḡs
T (β) = 1

T

∑T
t=1 gs

t (β) and ḡs
[Tπ](β) = 1

T

∑[Tπ]
t=1 gs

t (β),

respectively.

Assumption 3 (i) E[supβ∈B ||gt(β)||η] < ∞ for some η > max
[
4υ, 2δ

δ−1

]
; (ii) Ω(β) is finite

and p.d. for all β ∈ B ⊂ <k, where B is a compact parameter set; (iii) The moment function

g(z, β) ⊂ <` is continuous in z for all β ∈ B, and is continuous at each β ∈ B w.p.a.1; (iv)

g(β0) = 0 and infπ∈Π ‖g (θ, π)‖ > 0 for all θ 6= θ0 = (β′
0, β

′
0)

′
.

The existence of g(β) ≡ E [gt(β)] and g(θ, π) ≡ (πg(β1)′, (1 − π) g(β2)′)
′ is guaranteed by

Assumption 3(i), whilst Assumption 3(iv) ensures the population moment condition is satis-

fied at β0 and also provides a global identification condition. Assumptions 1-3 ensure that an

12



appropriate FCLT applies to both
√

T ḡ[Tπ](β0), with limT→∞ var
(√

T ḡ[Tπ](β0)
)

= πΩ0, and
√

T ḡs
[Tπ](β0), with limT→∞ var

(√
T ḡs

[Tπ](β0)
)

= k1πΩ0, for all π ∈ [0, 1], where Ω0 = Ω(β0).

These assumptions also ensure that a (weak) ULLN not obly applies to ḡT (β), but also to both

ḡT (θ, π) ≡ 1
T

∑T
t=1 gt(θ, π) and ḡs

T (θ, π) ≡ 1
T

∑T
t=1 gs

t (θ, π), with the latter two being uniform

over π ∈ [0, 1] .9

The following assumption formally imposes the restrictions on ρ(.) and also restricts the

bounds on λ, ensuring that they shrink to zero more slowly than the stochastic rate of convergence

of both λ̃ and γ̂(π).

Assumption 4 (a) ρ(v) is a continuous, twice differentiable and concave function on its domain

V, an open interval containing 0, such that ρ1 = ρ2 = −1; (b) λ ∈ ΛT =
{
λ : ‖λ‖ ≤ B

(
T/h2

T

)−ε
}
,

where δ
η(δ−1) < ε < 1

2 , for some finite B > 0.

Under the above assumptions, we can establish the consistency of the PSGEL estimator as

follows:

Theorem 1 Under Assumptions 1-4: (i) supπ∈Π

∥∥∥θ̂(π) − θ0

∥∥∥ = op(1), and (ii) supπ∈Π ‖γ̂(π)‖ =

op(1).

To establish asymptotic normality, the following assumptions are made regarding the (un-

smoothed) derivative of the moment function Gt(β) = ∂gt(β)/∂β′, and it will be useful to define

G(β) = E [Gt(β)], which exists by Assumption 5(i), below.

Assumption 5 (i) E[supβ∈B ||Gt(β)||η/(η−1)] < ∞ for some η > max[4v, 2δ
δ−1

]; (ii) The moment

function g(z, β) ⊂ <` is continuously partially differentiable in β in a neighbourhood B0 of

β0 ∈ int(B), w.p.a.1; (iii) G0 ≡ G(β0) has full rank k.

It will also be useful to define the following matrices

A(π) =




π 0

0 1 − π




9Indeed, Andrews (1993, Proof of Theorem A1) shows that supπ supθ ‖ḡT (θ, π) − ḡ(θ, π)‖ = op(1).
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Ω0(π) = lim
T→∞

var
(√

T ḡT (θ0, π)
)

=




πΩ0 0

0 (1 − π) Ω0


 = A(π) ⊗ Ω0

G0(π) =




πG0 0

0 (1 − π) G0


 = A(π) ⊗ G0

and M0 = Ω−1/2
0 G0, P0 = M0 (M ′

0M0)
−1

M ′
0. Under Assumptions 1 and 3, Andrews (1993,

Proof of Theorem 1), shows that ξT (π) =⇒ J`(π), as a process indexed by π ∈ Π, where

ξT (π) =
(
I2 ⊗ Ω−1/2

0

)√
T ḡT (θ0, π) =




Ω−1/2
0

√
T ḡ[Tπ](β0)

Ω−1/2
0

{√
T ḡT (β0) −

√
T ḡ[Tπ](β0)

}




and

J`(π) =




B`(π)

B`(1) − B`(π)




with B`(π), π ∈ [0, 1], being a vector of ` mutually independent standard Brownian motions on

[0, 1]. Furthermore, Assumptions 1, 2 and 3, and arguments similar to Smith (2011, Lemma A3)

establish that hT V̄ s
T (θ0, π) p→ k2Ω0(π), uniformly in π, where

V̄ s
T (θ, π) =

1
T

T∑

t=1

gs
t (θ, π) gs

t (θ, π)′ .

Theorem 2 Under assumptions 1-5, every sequence of PSGEL estimators defined by (15) and

(16), T ≥ 1, satisfies

√
T
(
θ̂(π) − θ0

)
= −

(
A (π)−1 ⊗ (M ′

0M0)
−1

M ′
0

)
ξT (π) + opπ(1)

=⇒ −
(
A (π)−1 ⊗ (M ′

0M0)
−1

M ′
0

)
J`(π)

(
√

T/hT )γ̂(π) = −
(
A (π)−1 ⊗ Ω−1/2

0 (I` − P0)
)

ξT (π) + opπ(1)

=⇒ −
(
A (π)−1 ⊗ Ω−1/2

0 (I` − P0)
)

J`(π)

where =⇒ denotes weak convergence to a process indexed by π ∈ Π, provided Π has closure in

(0, 1), and opπ(1) denotes terms that are op(1) uniformly in π ∈ Π. Further, θ̂(·) and γ̂ (·) are
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asymptotically uncorrelated.

Alternatively, the weak convergence results could be stated as

(A(π) ⊗ Ik)
√

T
(
θ̂(π) − θ0

)
=⇒ −

(
I2 ⊗ (M ′

0M0)
−1

M ′
0

)
J`(π)

(A(π) ⊗ I`) (
√

T/hT )γ̂(π) =⇒ −
(
I2 ⊗ Ω−1/2

0 (I` − P0)
)

J`(π).

These results ensure that, from Smith (2005, Theorem 2.1),

sup
π∈Π

∥∥∥hT V̄ s
T (θ̂(π), π) − k2Ω0(π)

∥∥∥ = op(1).

and

sup
π∈Π

∥∥∥∥∥
1
T

T∑

t=1

∂gs
t (θ̂(π), π)

∂θ′
− k1G0(π)

∥∥∥∥∥ = op(1).

The next Theorem details the asymptotic distribution of the restricted PSGEL estimators,

which are constructed as follows. Define the restricted (2` × 1) smoothed moment function as

ġs
t (β, π) = It,T (π)




gs
t (β)

0


+ (1 − It,T (π))




0

gs
t (β)


 ,

so that, from (14), gs
t ((β′, β′)′, π) ≡ ġs

t (β, π), and let Q̇T (β, γ, π) = 1
T

∑T
t=1[ρ(kλ′ġs

t (β, π))−ρ0],

then the restricted PSGEL estimators are defined by

β̃(π) = arg min
β∈B

sup
γ∈ΓT

Q̇T (β, γ, π)

= arg min
β∈B



 sup

λ∈ΛT

1
T

[Tπ]∑

t=1

[ρ(kλ′ġs
t (β, π)) − ρ0] + sup

λ∈ΛT

1
T

T∑

t=[Tπ]+1

[ρ(kλ′ġs
t (β, π)) − ρ0]





and

γ̃(π) = arg sup
γ∈ΓT

1
T

T∑

t=1

[ρ(kλ′ġs
t (β̃(π), π)) − ρ0]
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so that

λ̃1(π) = arg sup
λ∈ΛT

1
T

[Tπ]∑

t=1

[ρ(kλ′ġs
t (β̃(π), π)) − ρ0]

λ̃2(π) = arg sup
λ∈ΛT

1
T

T∑

t=[Tπ]+1

[ρ(kλ′ġs
t (β̃(π), π)) − ρ0].

Theorem 3 Under assumptions 1-5, every sequence of restricted PSGEL estimators, T ≥ 1,

satisfies

√
T
(
β̃(π) − β0

)
= − (M ′

0M0)
−1

M ′
0

{
Ω−1/2

0

√
T ḡT (β0)

}
+ opπ(1)

=⇒ − (M ′
0M0)

−1
M ′

0B`(1)

and

(√
T/hT

)
γ̃(π) = −

(
A(π)−1 − ι2ι

′
2 ⊗ Ω−1/2

0 (I` − P0)
)

ξT (π) + opπ(1)

= − 1
π(1 − π)

(
a(π) ⊗ Ω−1/2

0

)
(I` − P0) (a(π)′ ⊗ I`) ξT (π) + opπ(1)

=⇒ −
(
A(π)−1 − ι2ι

′
2 ⊗ Ω−1/2

0 (I` − P0)
)

J`(π)

=
(
ι2 ⊗ Ω−1/2

0 P0

)
B`(1) +

(
A(π)−1 ⊗ Ω−1/2

0

)
J`(π)

where a(π)′ = (1 − π, − π).

4 Testing Structural Stability

In this section, we propose tests based on GEL for testing the hypotheses described in Section

2. It turns out to be most convenient to present the tests in the following order: Section 4.1

presents tests for D1(π) = 0, Section 4.2 presents tests for that D2(π) = 0, and Section 4.3

presents tests for D(π) = 0. Section 4.4 discusses the various tests and includes details of where

percentiles of the limiting distributions are tabulated in the literature. In the presentation of

the tests, we focus on the unknown break point case; the fixed break point case is covered as

part of the discussion in Section 4.4.
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4.1 Testing D1(π) = 0

To test D1(π) = 0 for a fixed π, the obvious statistic is the GEL-likelihood ratio statistic (c.f.

Smith, 2011, p.1208)

LRT (π) = 2
(
k2/k2

1

)
(T/hT )

{
Q̇T

(
β̃(π), γ̃(π), π

)
− QT

(
θ̂(π), γ̂(π), π

)}
. (17)

In view of extant results in the GEL literature on testing parametric restrictions,10 we also

consider inference based on the GEL-Wald statistic for testing β1 = β2,

WT (π) = (k2/k2
1)(T/hT )

(
β̂1(π) − β̂2(π)

)′ {
V W

T (θ̂(π))
}−1 (

β̂1(π) − β̂2(π)
)

(18)

where

V W
T (θ) =

2∑

i=1

{
Ḡs

Ti
(βi)′

{
V̄ s

Ti
(βi)

}−1
Ḡs

Ti
(βi)

}−1

Ḡs
Ti

(β) =
1
T

∑

t∈Ti(π)

∂gs
t (β)

∂β′ , V̄ s
Ti

(β) =
1
T

∑

t∈Ti(π)

gs
t (β)gs

t (β)′

and the Lagrange Multiplier statistic, based on ζ̃(π) the Lagrange Multiplier associated with the

restriction β1 = β2,

LMT (π) = (k2/k2
1)(T/hT )ζ̃(π)′

{
V ζ

T (β̃(π))
}−1

ζ̃(π)/ (π(1 − π)) (19)

where

V ζ
T (β) = Ḡs

T (β)′
{
V̄ s

T (β)
}−1

Ḡs
T (β)

Ḡs
T (β) =

1
T

T∑

t=1

∂gs
t (β)

∂β′ , V̄ s
T (β) =

1
T

T∑

t=1

gs
t (β)gs

t (β)′.

Henceforth, let D̂1,T (π) denote any one of the statistics in (17), (18) or (19).11

To test D1(π) = 0 for all π ∈ Π ∈ (0, 1), we utilize results from the structural stability testing

10See Qin and Lawless (1994), Smith (2011).
11This involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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literature and consider inference based on the following functionals of D̂1,T (π),

τ
[
D̂1,T (π)

]
=





supπ∈Π D̂1,T (π) ≡ sup D̂1,T (π)
∫
Π
D̂1,T (π)dN (π) ≡ ave D̂1,T (π)

log
{∫

Π
exp

{
1
2 D̂1,T (π)

}
dN (π)

}
≡ exp D̂1,T (π)

(20)

where N (π) defines the prior distribution for the break point π ∈ Π, which we will assume

to be uniform.12 The following Theorem shows each of these test statistics are (first order)

asymptotically equivalent, for different choices of D̂1,T (π) and common choice of functional τ [.] .

Theorem 4 Under the null of D1(π) = 0 and assumptions 1-5, we have

sup
π∈Π

∣∣∣D̂1,T (π) − ST (π)
∣∣∣ = op(1),

where

ST (π) =
ξT (π)′ (a(π) ⊗ I`)

′
P0 (a(π) ⊗ I`) ξT (π)

π(1 − π)

=⇒ (Bk(π) − πBk(1))′ (Bk(π) − πBk(1))
π(1 − π)

≡ Wk(π),

Bk(π)−πBk (1) is a vector of Brownian bridges and Bk(π) is a vector of k independent standard

Brownian motions

An immediate consequence of the Continuous Mapping Theorem (CMT) is that

τ
[
D̂1,T (π)

]
=⇒ τ [Wk(π)]

for each functional (20).

4.2 Testing D2(π)

To test D2(π) = 0, we consider inference based on the appropriate GEL-likelihood ratio statistic

LR∗
T (π) = 2

(
k2/k2

1

)
(T/hT ) QT

(
θ̂(π), γ̂(π), π

)
. (21)

12See Andrews (1993), Andrews and Ploberger (1994) and Sowell (1996).
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Again, motivated by results in the EL testing literature, we also consider inference based on the

following alternative statistics,

OT (π) = (k2/k2
1) (T/hT ) ḡs

T (θ̂(π), π)′
{

V̄ s
T (θ̂(π), π)

}−1

ḡs
T (θ̂(π), π)′ (22)

LM∗
T (π) = (T/hT )γ̂(π)′

{
V̄ s

T (θ̂(π), π)
}

γ̂(π)/k2. (23)

For a fixed π, OT (π) is the GEL counterpart of the GMM overidentifying test statistic; LM∗
T (π)

is a Lagrange Multiplier statistic, based on γ̂(π); and, LR∗
T (π) is a Likelihood Ratio type statistic.

Letting D̂2,T (π) denote any one of (21), (22) or (23),13 we use similar ideas to the previous

sub-section to test D2(π) for all π ∈ Π based on τ
[
D̂2,T (π)

]
. The limiting distribution of the

latter statistic is given in the following theorem.

Theorem 5 Under the null of D2(π) = 0 and assumptions 1-5, we have

sup
π∈Π

∣∣∣D̂2,T (π) − S∗
T (π)

∣∣∣ = op(1),

where

S∗
T (π) = ξT (π)′

(
A(π)−1 ⊗ (I` − P0)

)
ξT (π)

=⇒ J`−k(π)′ (A(π) ⊗ I`−k)−1
J`−k(π) ≡ W ∗

`−k(π)

and J`−k(π) =




B`−k(π)

B`−k(1) − B`−k(π)


, where B`−k(π) is a vector of `−k independent standard

Brownian motions.

Again, the CMT implies that τ
[
D̂2,T (π)

]
=⇒ τ

[
W ∗

`−k(π)
]
.

4.3 Testing D(π) = 0

Given the discussion in Section 2, testing D(π) = 0 can be achieved by employing statistics which

are functionals of the processes, D̂1,T (π) and D̂2,T (π). Specifically, we consider the combined

process D̂T (π) = D̂1,T (π)+D̂2,T (π) for the choices of D̂1,T (π) and D̂2,T (π) defined in Sections 4.1

13Again, this involves a slight abuse of notation compared to Section 2 because the distances here are scaled.
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and 4.2 respectively, and the functionals τ
[
D̂T (π)

]
, defined by (20). Then, we have the following

Corollary to Theorems 4 and 5, which implies that τ
[
D̂T (π)

]
=⇒ τ

[
Wk(π) + W ∗

`−k(π)
]

:

Corollary 1 Under the null of D(π) = 0 and assumptions 1-5, we have

sup
π∈Π

∣∣∣D̂T (π) − ST (π) − S∗
T (π)

∣∣∣ = op(1).

4.4 Discussion

Sections 4.1-4.3 present tests of the hypotheses of interest in the unknown break point case. The

corresponding results for the fixed break point case follows directly from the proofs of Theorems

4 and 5 and so are presented in the following corollary.

Corollary 2 Under Assumptions 1-5, and if H0(π) holds for some π ∈ (0, 1) then D̂1,T (π) d→

χ2
k, D̂2,T (π) d→ χ2

2(`−k), and D̂T (π) d→ χ2
2`−k, where D̂1,T (π), D̂2,T (π) and D̂T (π) are defined in

Sections 4.1, 4.2 and 4.3 respectively and χ2
ν denotes a chi-squared distribution with ν degrees of

freedom.

We now consider the relationship between our statistics and others in the literature. As

noted in the introduction, Guay and Lamarche (2010) derive some of our test statistics from

the perspective of testing the stability of the identifying and overidentifying restrictions, a ter-

minology that derives from Hall and Sen’s (1999) framework for testing structural instability

in models estimated via GMM. Comparing Guay and Lamarche’s (2010) framework specialized

to EL with our info-metric framework, it can be seen that their tests of the stability of the

identifying restrictions are the same as our tests of D1(π) = 0, and their tests of the stability of

the overidentifying restrictions are the same as our tests of D2(π) = 0.14 While the same tests

result, the info-metric approach has the advantage that it is based on the concept of minimiz-

ing the distance between the class of probability distributions restricted to satisfy the moment

condition and the true probability distribution. This allows us to relate the various hypotheses

of interest in structural instability testing to the distance between certain classes of probability

distributions and the true distribution. We believe this is a more fundamental - and also more

instructive - representation of these hypotheses than their expression in terms of identifying
14Guay and Lamarche (2010) do not consider the analog to D(π) = 0 in their framework. However, Sen (1997)

does propose and analyze such a test within the GMM framework.
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restrictions (parameter variation) and overidentifying restrictions as is done in both the GMM

and GEL frameworks. Furthermore, this advantage extends to the partial sum estimators which

also have an informational interpretation within our IT framework for structural change.

Guay and Lamarche (2010) observe that their GEL-based tests are first order asymptotically

equivalent to their GMM counterparts under both the null of stability and local alternatives.15

Given our previous remarks, this equivalence obviously extends to our statistics as well. One

advantage of this equivalence is that the percentiles for the limiting distributions of our statistics

have already been tabulated in the literature. Specifically, percentiles of τ [Wk(π)] are presented

in Andrews (2003)[Table 1] (for τ [·] = sup(·)) and Andrews and Ploberger (1994)[Tables 1

and 2] (for τ [·] = ave(·), exp(·)); the percentiles for τ [W ∗
`−k(π)] are presented in Hall and Sen

(1999)[Table 1] and Sen (1997). Percentiles for τ [Wk(π) + W ∗
`−k(π)]] are reported in Sen (1997).

A second advantage of the equivalence under local alternatives is that Theorem 4 continues to

hold under local alternatives to the moment condition that do not involve parameter variation,

and Theorem 5 continues to hold for local alternatives to the moment condition that involve

parameter variation alone. These properties suggest that the individual applications of tests

based on D̂1,T (π) and D̂2,T (π) have the potential to reveal when the instability is confined to

parameter variation alone.

Finally we note that the assumption of strict stationarity (Assumption 1) is sufficient but

not necessary for the limiting distributions stated in Theorems 4 and 5. These results would

still apply provided Jacobian and long run variance are homogenous across the sub-samples and

we can apply FCLT to sample moment and ULLN to certain functions of data. However, if

the Jacobian, say, changes at some point in the sample then the limiting distributions are not

anticipated to hold for the same reasons as those diagnosed in Hansen’s (2000) analysis of the

sup− test in the linear regression model when there is a shift in the marginal distribution of the

regressors.
15Li (2011) establishes the same result for EL-based test statistics.
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5 Monte Carlo Evidence

In this section, we report simulation results that give insight into the finite sample performance

of the IT-based tests for the special cases of Empirical Likelihood (EL)16 and Exponential Tilting

(ET).

Following Ghysels, Guay, and Hall (1997) and Hall and Sen (1999), we consider the following

slightly modified data generation process

xt = β1xt−1 + ut + αut−1, ut ∼ IN (0, 1) , for t = 1, 2, . . . , T/2

xt = β2xt−1 + ut + αut−1, ut ∼ IN (0, 1) , for t = T/2 + 1, T/2 + 2, . . . , T .

and corresponding 2×1 vector of “instruments”, zt = (zt,1, zt,2)
′
.We suppose that the researcher

estimates an AR(1) model for xt based on the moment condition E[gt(β0)] = 0 where

gt(β) =




zt,1

zt,2


 (xt − βxt−1) .

Eight Data Generation Processes (DGPs) are employed defined by the choice of parameter

values (β1, β2, α) and instruments zt. These are described in Table 1, where: DGP1, DGP2 and

DGP3 model a situation with no breaks and valid instruments; DGP4, DGP5, DGP6 model

a structural break in the data thorough parameter variation (β1 6= β2), but the instruments

remain valid; whilst DGP7 and DGP8 model situations when there is misspecification through

both parameter variation (β1 6= β2) and invalid instruments.

The sampling experiments consider four different sample sizes of T = 200, 400, 800, 1600,

where in each case the various test statistics are constructed employing the following estimation

procedures: (i) Empirical Likelihood (EL); (ii) kernel-smoothed empirical likelihood (ELk); (iii)

kernel-smoothed exponential tilting (ETk); and, (iv) asymptotically efficient (kernel-smoothed)

GMM, exploiting kernel-smoothed HAC estimation (GMMk). For each of the IT estimators

(models (i)-(iii)), we calculate the following statistics: τ [D̂1,T (π)], τ [D̂2,T (π)] and τ [D̂T (π)] for

the three functionals τ [·] defined in (20) and D̂1,T (π) given by (17)-(19), D̂2,T (π) given by (21)-

(23) and D̂T (π) = D̂1,T (π) + D̂2,T (π), being LRT (π) + LR∗
T (π), WT (π) + OT (π) or LMT (π) +

16To speed up the simulation process, we adopt a modified version of EL estimator proposed by Owen. To
avoid −∞, log(x) for x < 1/T is replaced by a second degree polynomial.
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LM∗
T (π), respectively. For the GMMk estimator only the Wald statistic is considered. All

these statistics are calculated using Π = [ε, 1 − ε], for a trimming parameter ε = 0.20, and, for

each DGP and sample size, sampling results are obtained from 1000 replications employing a

5% nominal significance level for each test procedure.17

We report unsmoothed (EL) and smoothed (ELk, ETk and GMMk) versions of the test

statistics. In the latter case and exploiting Lemma 3 in the Appendix, the moment condition is

smoothed separately in each sub-sample defined by π, but with common bandwidth hT .18 That

is

gs
t (β) =





1
hT

∑t−1
j=t−[Tπ] k

(
j

hT

)
gt−j(β), t = 1, ..., [Tπ]

1
hT

∑t−[Tπ]−1
j=t−T k

(
j

hT

)
gt−j(β), t = [Tπ] + 1, ..., T,

.

For ELk and ETk a moment-smoothing counterpart of quadratic spectral kernels is employed

(Smith 2011):

k(x) =
(

5π

8

)1/2 1
x

J1

(
6πx

5

)

Jν(z) =
zν

2ν

∞∑

k=0

(−1)k z2k

22kΓ(k + 1)Γ(ν + k + 1)

yielding k1 = (5π/2)1/2 and k2 = 2π. For GMMk the following quadratic-spectral kernel is

employed 19

k(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

The bandwidth employed, when smoothing, is “estimated” by ĥT = 1.3221[α̂(2)T ]1/5 where

α̂(2) =
p∑

a=1

wa
4ρ̂2

aσ̂4
a

(1 − ρ̂a)8

{
p∑

a=1

wa
σ̂4

a

(1 − ρ̂a)4

}−1

(24)

and ρ̂a, σ̂2
a are estimated AR(1) coefficients and error variances, respectively, based on moment

functions gt(β̂) (p × 1; a = 1, 2, . . ., p).20 In particular, for ELk and ETk the unsmoothed

version of the objective function is initially optimized to yield β̂. Then, second, β̂ is used to

compute ρ̂a and σ̂2
a and then to estimate ĥT (Eq. 24). The process repeats up to 5 times or

17Results for 1% and 10% nominal significance levels and trimmimg parameter values of ε =
0.15,0.25,0.30,0.35,0.40,0.45 are available upon request.

18Results for the case with two different bandwidth windows for the two subsamples perform consistently worse
(see Table 10 and discussion thereof later in this section).

19Simulation results for Bartlett and Parzen implied kernels (Smith 2011) are available upon request.
20This choice corresponds to optimal bandwidth based on an AR(1) approximation to the moment function

with wa = 1; see Andrews (1991)[p.834-5] with wa = 1 in his equation (6.4).
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until ĥ
(i)
T = ĥ

(i−1)
T , i = 2, ..., 5.

Tables 2-9 summarise the sampling results for DGP1 − DGP8 and are structured in the

following way. Each table consists of four vertical panels, for EL, ELk, ETk and GMMk,

respectively, with each panel reporting results for sample sizes T = 200, 400, 800, 1600. Hor-

izontally, the results are divided into three big blocks for each of the D̂1,T (π), D̂2,T (π), and

D̂T (π) test procedures, within which sampling results for each of the sup(.), exp(.) and ave(.)

functionals are reported. Each of these “functional” blocks consists of LRT (π), WT (π) (OT (π)

for D̂2,T (π)), and LMT (π) test statistics.

We first consider the empirical significance levels of the tests when there is no structural break:

DGP1, DGP2, and DGP3, in Tables 2 – 4. Thus the null hypothesis for all each test procedure is

correct. For DGP1 (Table 2), which is the case where kernel-smoothing is redundant, tests based

on EL exhibit empirical significance levels which converge quite quickly to the nominal 5% level,

but slightly over-reject at T = 200. For larger T and each functional, the LR and W variants

have better finite sample properties than that of LM. The Wald test based on GMMk is slightly

undersized, in all its forms. For tests based on (smoothed) ELk and ETk criteria, convergence

of empirical significance levels appears much slower, however, with the sup functional of all tests

exhibiting empirical significance levels of 6.2% to 10.8%, at T = 1600. The ave functional seems

to be preferable for all test statistics with empirical rejection frequencies in the range 4.7% to

6.5% for T = 800 and 4.4% to 5.6% for T = 1600. However, for ELk and ETk criteria, all tests

for T = 200 and most of the tests for T = 400 exhibit much larger empirical significance levels

than the nominal 5%.

For DGP2 and DGP3 (Tables 3-4), and as might be expected, the EL-based tests reject the

null too often since moment conditions are serially correlated (α = 0.4 and 0.8, respectively).

However, for ELk and ETk, although all the sup-tests now perform slightly better the previous

qualitative features remain the same, with tests based on the ave functional yielding rejection

rates in the range 3.5% to 8.7% for T = 800 and 3.8% to 6.8% for T = 1600, under DGP2. The

finite sample performance deteriorates a little under DGP3, α = 0.8.

For DGP4, DGP5, and DGP6 (parameter variation, with α = 0, 0.4 and 0.8, respectively)

D̂1,T (π) and, consequently, D̂T (π) are designed to exhibit some power whilst D̂2,T (π) tests should

remain relatively insensitive since its null distribution continues to hold under local parameter
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variation, and it useful to see if this is reflected in the finite sample behaviour. As expected,

empirical rejection rates for all D̂1,T (π) and D̂T (π) tests increases rapidly towards 100% as the

sample size increases, across all the DGP s considered. However, those for the D̂T,2(π) do not

so and, indeed, remain fairly stable as the sample increases. For example among the ELk and

ETk based tests the ave(LR∗
T (π)) seems least sensitive with rejections rates the range 6.6% to

22.5% across all sample sizes and DGP s. Tests derived from the GMMk criteria exhibit similar

behaviour.21

For DGP7 and DGP8 (Tables 8, 9) all tests should have power with rejection frequencies

approaching 100% as the sample size grows. However, there are some caveats associated with

kernel-based tests D̂1,T (π) and as a result with D̂T (π). Since D̂1,T (π) is based on restricted mod-

els and ĥT is evaluated for each value for π, occasional departures from the quasi-optimum lead

to non-convergence issues and associated numerical problems when constructing ĥT , covariance

matrices and test statistics. A manifestation of this is observing falling rejection frequencies to

somewhat less than 100% as T increases; this indicates problems with convergence rather than

“falling power” per se. For DGP8, α = 0.8, this problem is most pronounced. The observed

power of the D̂2,T (π) test is very close to 100% from T = 200, for all tests save LR∗
T (π) which

implicitly involves estimation of the restricted model. The observed power of the D̂1,T (π) tests

are lower due to the non-convergence problems mentioned above.

Finally, we consider the calculation the bandwidth parameter employed with kernel-smoothing

methods. The sampling results (Tables 2–9) are based on reevaluating of ĥT for each value of π,

however we restrict it to be the same for each of the subsamples that are then used to smooth

the moment function. Two alternative strategies would be (i) reestimate ĥπT and ĥ(1−π)T for

each of the two subsamples; or, (ii) estimate ĥT only once using restricted model for parameter

estimation. The simulation results for these two alternative strategies are reported in Table 10

which, specifically, compares statistics based on the sup functional, under DGP1. Such statistics

had relatively inferior finite sample behaviour, as reported in Tables 2-4. The first and second

panels of Table 10 correspond to the first and second strategy accordingly. The first strategy

demonstrates very poor Sup-test performance. Even for T = 1600 the empirical significance level
21Hall and Sen (1999) propose a strategy in which the break point is estimated by the argument that yields

the supremum of the parameter variation test, and then the fixed break point version of the overidentifying
restrictions test is applied for that estimated break point. They find this approach reduces the sensitivity of the
overidentifying restrictions test to parameter variation. We conjecture a similar approach could be taken using
the IT tests.
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of the test is from two to four times larger than the nominal one. The second strategy performs

much better. For T = 800 to 1600 the empirical significance level is close to the nominal one and

comparable with Ave- and Exp- tests from Table 2. This, admittedly, limited evidence suggests

that choice of bandwidth is critically important for finite sample behaviour when considering

Information-Theoretic approaches to structural stability testing.

6 Concluding remarks

In this paper, we develop an info-metric framework for testing hypotheses about structural

instability in nonlinear, dynamic models estimated from the information in population moment

conditions. Our methods are designed to distinguish between three states of the world: (i) the

model is structurally stable in the sense that the population moment condition holds at the same

parameter value throughout the sample; (ii) the model parameters change at some point in the

sample but otherwise the model is correctly specified; (iii) the model exhibits more general forms

of instability than a single shift in the parameters. An advantage of the info-metric approach is

that the null hypotheses concerned are formulated in terms of distances between various choices

of probability measures constrained to satisfy (i) and (ii) and the empirical measure of the

sample. Under the alternative hypotheses considered, the model is assumed to exhibit structural

instability at a single point in the sample, referred to as the break point; our analysis allows

for the break point to be either fixed a priori or treated as occurring at some unknown point

within a certain fraction of the sample. We propose various test statistics that can be thought

of as sample analogs of the distances described above, and derive their limiting distributions

under the appropriate null hypothesis. In principle, there are a number of possible measures

of distance that can be used in this context. The limiting distributions of our statistics are

non-standard but coincide with various distributions that arise in the literature on structural

instability testing within the Generalized Method of Moments framework. A small simulation

study employed Empirical Likelihood and Exponential Tilting methods and illustrates the finite

sample performance of our test statistics under both the null of stability and alternatives of

structural instability. This study revealed that the finite sample size properties of the IT tests

are sensitive to the bandwidth used in filtering the sample moment. In particular, estimation of

sub-sample specific bandwidths - arguably the most intuitively natural approach - leads to the
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worst performance. The issue of how best to calculate the bandwidths in this context remains

to be resolved and is an interesting topic for future research.

7 Appendix

Here we collect together some intermediate Lemmas and prove the main Theorems. Following

Andrews (1993), we use the following notation: XT (π) = opπ(1) if supπ∈Π ‖XT (π)‖ = op(1) and

XT (π) = Opπ(1) if supπ∈Π ‖XT (π)‖ = Op(1).

The first result is a FCLT and second a generic (weak) ULLN.

Lemma 1 Under Assumptions 1-3(i),(ii)

k−1
1 Ω−1/2

0

√
T ḡs

[Tπ](β0) = Ω−1/2
0

√
T ḡ[Tπ](β0) + opπ(1) (25)

=⇒ B`(π)

where B`(π) is a vector of k mutually independent standard Brownian motions on [0, 1], and

k−1
1

(
I2 ⊗ Ω−1/2

0

)√
T ḡs

T (θ0, π) =
(
I2 ⊗ Ω−1/2

0

)√
T ḡT (θ0, π) + opπ(1) (26)

=⇒ J`(π) =




B`(π)

(B`(1) − B`(π))


 .

Proof of Lemma 1: Following Smith (2011, Lemma A2), we can write

√
T ḡs

[Tπ](β0) =
1

hT

[Tπ]−1∑

j=1−T

k

(
j

hT

)


1√
T

min[T,[Tπ]−j]∑

t=max[1,1−j]

gt (β0)



 .

Now, when j ≥ 0, max [1, 1 − j] = 1 and min [T, [Tπ] − j] = [Tπ] − j. On the other hand when

j < 0, max [1, 1− j] = 1 + |j| when j > [Tπ] − T , whilst max [1, 1− j] = 1 + |j| = T when

j ≤ [Tπ] − T . Exploiting this, some straightforward (but tedious) algebra reveals that

√
T ḡs

[Tπ](β) =
T−1∑

j=1−T

1
hT

k

(
j

hT

)√
T ḡ[Tπ](β) −

√
T

3∑

j=0

AjT (β, π)
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where

A0T (β, π) =
1

hT

T−1∑

j=[Tπ]

k

(
j

hT

)
ḡ[Tπ](β)

A1T (β, π) =
1

hT

[Tπ]−1∑

j=0

k

(
j

hT

)
1
T

[Tπ]∑

t=[Tπ]+1−j

gt(β)

A2T (β, π) =
1

hT

−1∑

j=1−T+[Tπ]

k

(
j

hT

)


1
T

|j|∑

t=1

gt(β) − 1
T

[Tπ]+|j|∑

t=[Tπ]+1

gt(β)





A3T (β, π) =
1

hT

−T+[Tπ]∑

j=1−T

k

(
j

hT

)


1
T

|j|∑

t=1

gt(β) − 1
T

T∑

t=[Tπ]+1

gt(β)



 .

Smith (2011, Lemma A1), shows that
∑T−1

j=1−T
1

hT
k
(

j
hT

)
= k1+o(1) and Ω−1/2

0

√
T ḡ[Tπ](β0) =⇒

B`(π), by Andrews (1993); thus,
√

T ḡs
[Tπ](β0) = k1

√
T ḡ[Tπ](β0) −

√
T
∑3

j=0 AjT (β, π) + opπ(1)

and (25) follows if
∥∥∥
√

TAjT (β0, π)
∥∥∥ = opπ(1), for j = 0, 1, 2, 3.First, limT→∞

1
hT

∑T−1
j=1−T

∣∣∣k
(

j
hT

)∣∣∣ =

O(1), implies limT→∞ supπ
1

hT

∑T−1
j=[Tπ]

∣∣∣k
(

j
hT

)∣∣∣ = 0 and thus, since
∥∥∥
√

T ḡ[Tπ](β0)
∥∥∥ = Opπ(1),

∥∥∥
√

TA0T (β0, π)
∥∥∥ = opπ(1). Second,

∥∥∥∥ 1√
|j|

∑[Tπ]
t=[Tπ]+1−j gt(β0)

∥∥∥∥ = Op(1), uniformly in j and π

and Smith (2011, Lemma C1) is easily extended to show that limT→∞
1

hT

∑T−1
j=1−T

√
|j|
T

∣∣∣k
(

j
hT

)∣∣∣ =

0, so that

sup
π

∥∥∥
√

TA1T (β0, π)
∥∥∥ ≤





1
hT

T−1∑

j=0

√
|j|
T

∣∣∣∣k
(

j

hT

)∣∣∣∣



Op(1) = op(1).

The results for
√

TA2T (β0, π) and
√

TA3T (β0, π) follow in a similar fashion so that (25) holds.

Similarly,

k−1
1 Ω−1/2

0

1√
T

T∑

t=[Tπ]+1

gs
t (β0) = Ω−1/2

0

(√
T ḡT (β0) −

√
T ḡ[Tπ](β0)

)
+ opπ(1)

so that

k−1
1

(
I2 ⊗ Ω−1/2

0

)√
T ḡs

T (θ0, π) =
(
I2 ⊗ Ω−1/2

0

)√
T ḡT (θ0, π) + opπ(1),

since ḡT (θ0, π) =
(
ḡ[Tπ](β0)′, ḡT (β0)′ − ḡ[Tπ](β0)′

)′, and (26) follows. �

Lemma 2 Define mt (β) = m (Zt; β) and m (β) = E [m (Zt; β)], with Zt satisfying Assumption

1 and assume sufficient regularity (Assumptions 3 (i) and (iii)) so that supβ∈B ‖m̄T (β) − m (β)‖ =

op(1), where m̄T (β) = 1
T

∑T
t=1 mt(β). Let ms

t (β) be the smoothed version of mt (β), defined in
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an analogous manner to gs
t (β) at (5), and (following (14)), define

ms
t (θ, π) = It,T (π)




ms
t (β1)

0


+ (1 − It,T (π))




0

ms
t (β2)




m̄s
T (θ, π) =

1
T

T∑

t=1

ms
t (θ, π)

with m(θ, π) = (πm(β1)′, (1 − π) m(β2)′)
′. Then, supπ∈Π supθ∈Θ ‖m̄s

T (θ, π) − k1m (θ, π)‖ =

op(1).

Proof of Lemma 2: We can write

m̄s
T (θ, π) − k1m (θ, π) =




{
1
T

∑[Tπ]
t=1 ms

t (β1)
}
− k1πm(β1)

{
1
T

∑T
t=[Tπ]+1 ms

t (β2)
}
− k1(1 − π)m(β2)




In particular, and by the triangle inequality with m̄s
[Tπ](β) = 1

T

∑[Tπ]
t=1 ms

t (β),

∥∥∥m̄s
[Tπ](β) − k1πm(β)

∥∥∥ ≤
∥∥∥m̄s

[Tπ](β) − k1m̄[Tπ](β)
∥∥∥ + k1

∥∥m̄[Tπ](β) − πm(β)
∥∥

≤

∥∥∥∥∥∥
m̄s

[Tπ](β) −
T−1∑

j=1−T

1
hT

k

(
j

hT

)
m̄[Tπ](β)

∥∥∥∥∥∥

+

∣∣∣∣∣∣

T−1∑

j=1−T

1
hT

k

(
j

hT

)
− k1

∣∣∣∣∣∣
∥∥m̄[Tπ](β)

∥∥

+k1

∥∥m̄[Tπ](β) − πm(β)
∥∥ .

By Andrews (1993, Proof of Lemma A1), supβ

∥∥m̄[Tπ](β) − πm(β)
∥∥ = opπ(1) and since

∑T−1
j=1−T

1
hT

k
(

j
hT

)
=

k1 + o(1), the second term is also opπ(1). Then, by the triangle inequality, it remains to show

that

sup
β∈B

∥∥∥∥∥∥
m̄s

[Tπ](β) −
T−1∑

j=1−T

1
hT

k

(
j

hT

)
m̄[Tπ](β)

∥∥∥∥∥∥
= opπ(1),

since 1
T

∑T
t=[Tπ]+1 ms

t (β) = m̄s
T (β) − m̄s

[Tπ](β). From the proof of Lemma 1, above, it is clear

that

m̄s
[Tπ](β) =

T−1∑

j=1−T

1
hT

k

(
j

hT

)
m̄[Tπ](β) −

3∑

j=0

AjT (β, π)
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where the AjT (β, π) are as before but defined in terms of mt(β), rather than gt(β). It is then

straightforward to show that supβ ‖AjT (β, π)‖ = opπ(1), for j = 0, 1, 2, 3, and the result follows.�

The technical analysis undertaken in this paper employes (5), which assumes that smooth-

ing is undertaken before the sample separation. Alternatively, the moment function could be

smoothed after sample separation yielding

m̄s∗
[Tπ](β) =

1
T

[Tπ]∑

t=1

1
hT

t−1∑

j=t−[Tπ]

k

(
j

hT

)
mt−j(β)

for some mt(β) as defined in Lemma 2. This makes no difference asymptotically, as described

in the following Lemma. (The proof is omitted as it follows similar arguments to those used in

the proofs of Lemmas 1 and 2.)

Lemma 3 Define ēs
[Tπ] = m̄s

[Tπ](β) − m̄s∗
[Tπ](β), as above.

(i) Under the assumptions of Lemma 1, with mt(β) ≡ gt(β),
√

T ēs
[Tπ](β0) = opπ(1).

(ii) Under the assumptions of Lemma 1, supβ∈B

∥∥∥ēs
[Tπ](β)

∥∥∥ = opπ(1).

The following three Lemmas are used to establish consistency of θ̂(π) and γ̂(π).

Lemma 4 Under Assumptions 1, 2(i), 3(i) and 4

sup
θ∈Θ,γ∈ΓT ,1≤t≤T

|γ′gs
t (θ, π)| = opπ(1)

so that w.p.a.1, kγ′gs
t (θ, π) ∈ V, for all θ ∈ Θ, γ ∈ ΓT and π ∈ Π.

Proof of Lemma 4: By Cauchy-Schwartz,

|γ′gs
t (θ, π)| ≤ ‖γ‖ ‖gs

t (θ, π)‖

≤ ∆
(
T/h2

T

)−ε max
1≤t≤T

{
sup
θ∈Θ

‖gs
t (θ, π)‖

}
.
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Now,

max
1≤t≤T

sup
θ∈Θ

‖gs
t (θ, π)‖ ≤ max

1≤t≤[Tπ]
sup
β∈B

∥∥∥∥∥∥
1

hT

t−1∑

j=t−[Tπ]

k

(
j

hT

)
gt−j (β)

∥∥∥∥∥∥

+ max
1≤t≤[Tπ]+1

sup
β∈B

∥∥∥∥∥∥
1

hT

t−[Tπ]−1∑

j=t−T

k

(
j

hT

)
gt−j(β)

∥∥∥∥∥∥

≤ max
1≤t≤T

sup
β∈B

‖gt (β)‖





2
hT

T−1∑

j=1−T

∣∣∣∣k
(

j

hT

)∣∣∣∣



 ,

where the last inequality is independent of π. By Assumption 3(i), E
[
supβ∈B ‖gt (β)‖η] ≤ ∆ <

∞, implying that max1≤t≤T

{
supβ∈B ‖gt (β)‖

}
= op

(
T 1/η

)
. Furthermore, by previous results,

1
hT

∑T−1
j=1−T

∣∣∣k
(

j
hT

)∣∣∣ = O(1). Thus, uniformly in π,

sup
θ∈Θ,γ∈ΓT ,1≤t≤T

|γ′gs
t (θ, π)| ≤ O(1)

(
T/h2

T

)−ε
op

(
T 1/η

)

= op (T α) = op(1)

where α = δ − εη(δ − 1) < 0, because ε > δ
η(δ−1) , and thus w.p.a.1, kγ′gsa

t (θ, π) ∈ V, for all

θ ∈ Θ, γ ∈ ΓT and π ∈ Π.�

The above result has the following implications, which will be of use later, as summarised in

the following Lemma.

Lemma 5 Under Assumptions 1-4, there exists a finite constant 0 < ∆ < ∞, such that w.p.a.1

and for all θ ∈ Θ and γ ∈ ΓT , and for each π ∈ Π,

h−1
T QT (θ0, γ, π) ≤ −γ′

T ḡs
T (θ0, π) − ∆γ′

T γT (27)

where γT = kγ/hT , k = k1/k2 and

QT (θ, γ, π) ≥ −kγ′ḡs
T (θ, π) − k2∆γ′γ. (28)
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Proof of Lemma 5: By a second order Taylor expansion about γ = 0, and exploiting Lemma

4, we have that for all θ ∈ Θ and γ ∈ ΓT , and each π ∈ Π

QT (θ, γ, π) = γ′ 1
T

T∑

t=1

∂ρ(kγ̄′gs
T (θ, π))

∂γ
+

1
2
γ′ 1

T

T∑

t=1

∂2ρ(kγ̄′gs
t (θ, π))

∂γ∂γ′ γ

≡ kγ′ 1
T

T∑

t=1

ρ1(kγ̄′gs
t (θ, π))gs

t (θ, π) +
k2

2
γ′ 1

T

T∑

t=1

ρ2(kγ̄′gs
t (θ, π))gs

t (θ, π)gs
t (θ, π)′γ

where γ̄ is the usual “mean value” vector. Then by Lemma 4 and the normalisation ρ1 = ρ2 = −1,

we can write

QT (θ, γ, π) = −kγ′ ḡs
T (θ, π) − 1

2
k2γ′V̄ s

T (θ, π)γ + op(1) (29)

where the op(1) error is of smaller order than -kγ′ḡs
T (θ, π) − 1

2
k2γ′V̄ s

T (θ, π)γ.

To establish (27), substitute θ0 for θ in (29) to obtain, w.p.a.1,

h−1
T QT (θ0, γ, π) = −γ′

T ḡs
T (θ0, π) − 1

2
γ′

T hT V̄ s
T (θ0, π)γT

where, here, γT = kγ/hT ∈ ΓT . By arguments similar to Smith (2011, Lemma A3) it can be

shown that hT V̄ s
T (θ0, π) ≡ k2Ω0(π) + opπ(1), we can now write

h−1
T QT (θ0, γ, π) = −γ′

T ḡs
T (θ0, π) − k2

2
γ′

T Ω0(π)γT + op(‖γT ‖2)

where, again, the error term op(‖γT ‖2) is negligible relative to γ′
T ḡs

T (θ0, π) − k2

2
γ′

T Ω0(π)γT .

Thus, from standard eigenvalue theory, we can write that w.p.a.1

h−1
T QT (θ0, γ, π) ≤ −γ′

T ḡs
T (θ0, π) − ∆γ′

T γT

for all γ ∈ ΓT , and for each π ∈ Π.

More generally, however, V̄T (θ, π) = Opπ(1), uniformly in θ, so that by similar reasoning, we can

write

QT (θ, γ, π) ≥ −kγ′ ḡs
T (θ, π) − k2∆γ′γ + op(‖γ‖2)

and (28) follows from this. �
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Lemma 6 Under Assumptions 1-4, there exists a finite constant, ∆ > 0, such that w.p.a.1

h−1
T sup

γ∈ΓT

QT (θ0, γ, π) ≤ ∆ ‖ḡs
T (θ0, π)‖2 = Opπ

(
T−1

)
.

Proof of Lemma 6: As in Smith (2011, Lemma A5), by equation (27) we have, w.p.a.1 and

each π ∈ Π,

sup
γ∈ΓT

h−1
T QT (θ0, γ, π) ≤ ∆ ‖ḡs

T (θ0, π)‖2

Since this holds for each π ∈ Π,

sup
π∈Π

sup
γ∈ΓT

h−1
T QT (θ0, γ, π) ≤ ∆ sup

π∈Π
‖ḡs

T (θ0, π)‖2
.

since supπ∈Π ‖ḡs
T (θ0, π‖2 = Op

(
T−1

)
, from Lemma 1, the result then follows. �

Proof of Theorem 1: By Lemma 5, equation (28) and Lemma 6, we have, w.p.a.1 and for all

γ ∈ ΓT and each π ∈ Π

h−1
T

(
−kγ′ ḡs

T (θ̂(π), π) − k2∆γ′γ
)

≤ h−1
T QT (θ̂(π), γ, π)

≤ sup
γ∈ΓT

h−1
T QT (θ0, γ, π)

≤ ∆ ‖ḡs
T (θ0, π)‖2

,

for some finite ∆ > 0. Now define δT = B
(
T/h2

T

)−ε
> 0, with B and ε as in Assumption 4

so that δT = O (T α), α = − ε(δ−1)
δ

< − 1
η
, and let γ = − 1

k
δT ḡs

T (θ̂(π), π)/
∥∥∥ḡs

T (θ̂(π), π)
∥∥∥ ∈ ΓT .

Making this substitution in the above yields

(δT /hT ) sup
π∈Π

∥∥∥ḡs
T (θ̂(π), π)

∥∥∥− ∆δ2
T /hT ≤ ∆ sup

π∈Π
‖ḡs

T (θ0, π)‖2

w.p.a.1 or,

sup
π∈Π

∥∥∥ḡsa
T (θ̂(π), π)

∥∥∥ ≤ ∆δT

{
1 +

hT

δ2
T

sup
π∈Π

‖ḡs
T (θ0, π)‖2

}
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which implies that supπ∈Π

∥∥∥ḡs
T (θ̂(π), π)

∥∥∥ = Op (δT ). This follows because supπ∈Π ‖ḡs
T (θ0, π)‖2 =

Op

(
T−1

)
, so that

hT

δ2
T

sup
π∈Π

‖ḡs
T (θ0, π‖2 = h−1

T

h2
T

δ2
T

sup
π∈Π

‖ḡs
T (θ0, π)‖2 = h−1

T Op

((
h2

T

T

)1−2ε
)

= op

(
h−1

T

)
= op(1),

because 1−2ε > 0 and h2
T /T → 0. Therefore, since δT → 0, supπ∈Π

∥∥∥ḡs
T (θ̂(π), π)

∥∥∥ p−→ 0. But by

Lemma 2, we know that supπ∈Π

∥∥∥ḡs
T (θ̂(π), π) − k1g(θ̂(π), π)

∥∥∥ p−→ 0. Thus, supπ∈Π g(θ̂(π), π) =

op(1). Continuity of g(β) and the identification Assumption 3(iv) then yields supπ∈Π

∥∥∥θ̂(π) − θ0

∥∥∥ =

op(1).

In fact, a further refinement of the above argument (similar in spirit to that of Smith (2011,

Lemma A7) shows that supπ∈Π

∥∥∥ḡs
T (θ̂(π), π)

∥∥∥ = Op(T−1/2), implying that supπ∈Π

∥∥∥θ̂(π) − θ0

∥∥∥ =

Op(T−1/2). It then follows that that hT V̄ s
T (θ̂(π), π) = k2Ω0(π) + opπ(1); c.f. Smith (2005)[Theo-

rem 2.1]. Using, this (and arguments similar to the above) it can then be shown that supπ∈Π ‖γ̂(π)‖ =

Op

(
hT /

√
T
)

as follows.

By definition, QT (θ̂(π), γ̂(π), π) ≥ QT (θ̂(π), γ, π), for all γ ∈ ΓT . Then, setting γ = 0 ∈ ΓT , and

noting that QT (θ, 0, π) ≡ 0, for all θ ∈ Θ, and exploiting Lemma 4, a second-order mean value

expansion yields, w.p.a.1,

0 ≤ T

hT
QT (θ̂(π), γ̂(π), π) =

T

hT

{
−kγ̂(π)′ḡs

T (θ̂(π), π) − 1
2
k2γ̂(π)′V̄ s

T (θ̂(π), π)γ̂(π)
}

.

Then, since
T

hT
QT (θ̂(π), γ̂(π), π) ≤ supγ∈ΓT

T

hT
QT (θ0, γ, π) ≤ ∆

∥∥∥
√

T ḡs
T (θ0, π)

∥∥∥
2

= Opπ(1),

w.p.a.1, by Lemma 6, and then fact that supπ∈Π

∥∥∥ḡs
T (θ̂(π), π)

∥∥∥ = Op(T−1/2) and supπ∈Π

∥∥∥hT V̄T (θ̂(π), π)
∥∥∥ =

Op(1), it follows that supπ∈Π ‖γ̂(π)‖ = Op

(
hT /

√
T
)
. This implies supπ∈Π ‖γ̂(π)‖ = op(1).

Proof of Theorem 2: Differentiating QT (θ, γ, π) = 1
T

∑T
t=1[ρ(kλ′gs

t (θ, π)) − ρ0] with respect

to θ and γ, yields the partial-sample first order conditions

∂QT (θ̂(π), γ̂(π), π)
∂θ

= k
1
T

T∑

t=1

ρ1(kγ̂(π)′gs
t (θ, π))Gs

t (θ̂(π), π)′γ̂(π) = 0 (30)

∂QT (θ̂(π), γ̂(π), π)
∂γ

= k
1
T

T∑

t=1

ρ1(kγ̂(π)′gs
t (θ, π))gs

t (θ, π) = 0 (31)
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where

Gs
t (θ, π) =

∂gs
t (θ, π)
∂θ′

= It,T (π)




∂gs
t (β1)
∂β′

1
0

0 0


+ (1 − It,T (π))




0 0

0 ∂gs
t (β2)
∂β′

2


 .

Writing ϕ̂(π) =
(

θ̂(π)′,
γ̂(π)
hT

′)′

and ϕ0 = (β′
0, β

′
0, 0

′)′, and exploiting Lemma 1, a mean value

expansion of (31) yields

0 = −kk1

√
T ḡT (θ0, π) + D̄ϕ

T (ϕ̄(π), π)
√

T (ϕ̂(π) − ϕ0) + opπ(1),

since ρ1 = −1, where

D̄ϕ
T (ϕ, π) =

1
T

T∑

t=1

[
∂2QT (θ, γ, π)

∂γ∂θ′
, hT

∂2QT (θ, γ, π)
∂γ∂γ′

]

and ϕ̄(π) is the usual mean value which may differ from row to row. Now

∂2QT (θ, γ, π)
∂γ∂θ′

= k
1
T

T∑

t=1

ρ2(kγ̂(π)′gs
t (θ, π))Gs

t (θ, π)

+k2 1
T

T∑

t=1

ρ2(kγ̂(π)′gs
t (θ, π))gs

t (θ, π) (γ̂(π)′Gs
t(θ, π))

hT
∂2QT (θ, γ, π)

∂γ∂γ′ = k2 hT

T

T∑

t=1

ρ2(kγ̂(π)′gs
t (θ, π))gs

t (θ, π)gs
t (θ, π)′.

Noting that ρ2 = −1, it follows from Theorem 1, Lemma 4, Lemma 2, as applied to 1
T

∑T
t=1 vec (Gs

t (θ, π)),

and supπ∈Π

∥∥hT V̄T (θ̄(π), π) − k2Ω0(π)
∥∥ = op(1), with k2k2 = kk1, that

0 = −kk1

√
T ḡT (θ0, π) − Dϕ

0 (π)
√

T (ϕ̂(π) − ϕ0) + opπ(1)

where

Dϕ
0 (π) = kk1 [G0(π), Ω0(π), ] .
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Similarly,
√

T
hT

∂QT (θ̂(π),γ̂(π),π)
∂θ = −kk1G0(π)′

√
T
(

γ̂(π)
hT

)
+ opπ(1). Combining these results, we

obtain

0 =




0

−
√

T ḡT (θ0, π)


 −




0 G0(π)′

G0(π) Ω0(π)



√

T (ϕ̂(π) − ϕ0) + opπ(1).

Solving for
√

T (ϕ̂(π) − ϕ0), yields

√
T (ϕ̂(π) − ϕ0) = −




(
A (π)−1 ⊗ (M ′

0M0)
−1

M ′
0

)

(
A (π)−1 ⊗ Ω−1/2

0 (I` − P0)
)


 ξT (π) + opπ(1) (32)

and the result follows. �

Proof of Theorem 3: Consistency of the estimators follows from the general arguments em-

ployed in the proof of Theorem 1, and Theorem 2. Differentiating Q̇T (β, γ, π) = 1
T

∑T
t=1[ρ(kλ′ġs

t (β, π))−

ρ0] with respect to β and γ = (λ′
1, λ

′
2)

′, yields the partial-sample first order conditions

∂Q̇T

(
β̃(π), γ̃(π), π

)

∂β
= k

1
T

[Tπ]∑

t=1

ρ1(kλ̃1(π)′gs
t (β̃(π)))Gs

t (β̃(π))′λ̃1(π)

+k
1
T

T∑

t=[Tπ]+1

ρ1(kλ̃2(π)′gs
t (β̃(π)))Gs

t (β̃(π))′λ̃2(π)

= 0

∂Q̇T

(
β̃(π), γ̃(π), π

)

∂λ1
= k

1
T

[Tπ]∑

t=1

ρ1(kλ̃1(π)′gs
t (β̃(π)))gs

t (β̃(π)) = 0

∂Q̇T

(
β̃(π), γ̃(π), π

)

∂λ2
= k

1
T

T∑

t=[Tπ]+1

ρ1(kλ̃2(π)′gs
t (β̃(π)))gs

t (β̃(π)) = 0.

Using similar arguments to those employed in the proof of Theorem 2, a Taylor expansion of

√
T

∂Q̇T

(
β̃(π), γ̃(π), π

)

∂λi
= 0 about (β′

0, 0′)
′, i = 1, 2, yields, exploiting Lemma 1,

0 = −kk1

√
T ḡ[Tπ](β0) − kk1πG0

√
T
(
β̃(π) − β0

)
− kk1πΩ0

(√
T/hT

)
λ̃1(π) + opπ(1)

0 = −kk1(
√

T ḡT (β0) −
√

T ḡ[Tπ](β0)) − kk1 (1 − π) G0

√
T
(
β̃(π) − β0

)

−kk1 (1 − π) Ω0

(√
T/hT

)
λ̃2(π) + opπ(1)
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respectively, or

π
(√

T/hT

)
λ̃1(π) = −Ω−1

0

√
T ḡ[Tπ](β0) − πΩ−1

0 G0

√
T
(
β̃(π) − β0

)
+ opπ(1)

(1 − π)
(√

T/hT

)
λ̃2(π) = −Ω−1

0

(√
T ḡT (β0) −

√
T ḡ[Tπ](β0)

)

− (1 − π) Ω−1
0 G0

√
T
(
β̃(π) − β0

)
+ opπ(1),

from which we note

π
(√

T/hT

)
λ̃1(π)+(1 − π)

(√
T/hT

)
λ̃2(π) = −Ω−1

0

√
T ḡT (β0)−Ω−1

0 G0

√
T
(
β̃(π) − β0

)
+opπ(1).

Similarly, we have

√
T

hT

∂Q̇T

(
β̃(π), γ̃(π), π

)

∂β
= k

1
T

[Tπ]∑

t=1

ρ1(kλ̃1(π)′gs
t (β̃(π)))Gs

t (β̃(π))′
√

T

(
λ̃1(π)
hT

)

+k
1
T

T∑

t=[Tπ]+1

ρ1(kλ̃2(π)′gs
t (β̃(π)))Gs

t (β̃(π))′
√

T

(
λ̃2(π)
hT

)

= −kk1πG0
′
√

T

(
λ̃1(π)
hT

)
− kk1 (1 − π) G0

′
√

T

(
λ̃2(π)
hT

)
+ opπ(1)

= 0

Combining these results, we obtain

0 = −πG0
′
√

T

(
λ̃1(π)
hT

)
− (1 − π) G0

′
√

T

(
λ̃2(π)
hT

)
+ opπ(1)

= +G0
′Ω−1

0

√
T ḡT (β0) + G0

′Ω−1
0 G0

√
T
(
β̃(π) − β0

)
+ opπ(1)

so that
√

T
(
β̃(π) − β0

)
= − (M ′

0M0)
−1

M0

{
Ω−1/2

0

√
T ḡT (β0)

}
+ opπ(1),
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and

π
(√

T/hT

)
λ̃1(π) = −Ω−1/2

0

{
Ω−1/2

0

√
T ḡ[Tπ](β0)

}

+πΩ−1/2
0 P0

{
Ω−1/2

0

√
T ḡT (β0)

}
+ opπ(1)

(1 − π)
(√

T/hT

)
λ̃2(π) = −Ω−1/2

0

{
Ω−1/2

0

(√
T ḡT (β0) −

√
T ḡ[Tπ](β0)

)}

+ (1 − π) Ω−1/2
0 P0

{
Ω−1/2

0

√
T ḡT (β0)

}
+ opπ(1)

or

(
√

T/hT )γ̃(π) = −
(
A(π)−1 ⊗ Ω−1/2

0

)
ξT (π)

+
(
ι2 ⊗ Ω−1/2

0 P0

)
Ω−1/2

0

√
T ḡT (β0) + opπ(1)

= −
(
A(π)−1 ⊗ Ω−1/2

0

)
ξT (π) +

(
ι2ι

′
2 ⊗ Ω−1/2

0 P0

)
ξT (π) + opπ(1)

= −
(
A(π)−1 − ι2ι

′
2 ⊗ Ω−1/2

0 (I` − P0)
)

ξT (π) + opπ(1)

= − 1
π(1 − π)

(
a(π)a(π)′ ⊗ Ω−1/2

0 (I` − P0)
)

ξT (π) + opπ(1)

= −
1

π(1 − π)

(
a(π) ⊗ Ω−1/2

0

)
(I` − P0) (a(π)′ ⊗ I`) ξT (π) + opπ(1)

where ι2 = (1, 1)′, a(π)′ = (1 − π, − π) and the result follows by Lemma 1. �

Proof of Theorem 4: Consider, first, WT (π). Previous results, exploiting
√

T -consistency of

β̂i(π), show that
(
k2
1/k2

)
hT V W

T (θ̂(π)) =
1

π(1 − π)
(M ′

0M0)
−1 + opπ(1)

and, combining this with (32), we obtain

−
{(

k2
1/k2

)
hT V W

T (θ̂(π))
}−1/2 √

T (β̂1(π)−β̂2(π)) =
1√

π(1 − π)
(M ′

0M0)
−1/2

M ′
0 (a(π)′ ⊗ I`) ξT (π)+opπ(1)

where a(π)′ = (1 − π, − π) , so that

WT (π) =
ξT (π)′ (a(π) ⊗ I`)

′
P0 (a(π)′ ⊗ I`) ξT (π)

π(1 − π)
+ opπ(1)

= ST (π) + opπ(1).
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For LMT (π), it can be shown that

(
√

T/hT )ζ̃(π) = −Ḡs
T (β̃(π))′

{
hT V̄ s

T (β̃(π))
}−1 √

T ḡs
[Tπ](β̃(π)) + opπ(1)

= C̄s
T (β̃(π))′

√
T ḡs

[Tπ](β̃(π)) + opπ(1),

say, where ḡs
[Tπ](β) = 1

T

∑[Tπ]
t=1 gs

t (β), so that an asymptotically equivalent variant of LMT (π) is

LMT (π) = (k2/k2
1)T ḡs

[Tπ](β̃(π))C̄s
T (β̃(π))

{
h−1

T V ζ
T (β̃(π))

}−1

C̄s
T (β̃(π))′ḡs

[Tπ](β̃(π))/(π(1 − π)).

An expansion of
√

T ḡs
[Tπ](β̃(π)) yields

√
T ḡs

[Tπ](β̃(π)) = k1

√
T ḡ[Tπ](β0) + k1πG0

√
T
(
β̃(π) − β0

)
+ opπ(1)

= k1

√
T ḡ[Tπ](β0) − k1πG0 (M ′

0M0)
−1

M0Ω
−1/2
0

√
T ḡT (β0) + opπ(1).

Furthermore, Ḡs
T (β̃(π)) = k1G0 + opπ(1) and hT V̄ s

T (β̃(π)) = k2Ω0 + opπ(1), so that

C̄s
T (β̃(π))′

√
T ḡs

[Tπ](β̃(π)) = −k2
1

k2
M ′

0

{
Ω−1/2

0

√
T ḡ[Tπ](β0) − πΩ−1/2

0

√
T ḡT (β0)

}
+ opπ(1)

= −k2
1

k2
M ′

0 (a(π)′ ⊗ I`) ξT (π) + opπ(1)

and, since h−1
T V ζ

T (β̃(π)) = k2
1

k2
M ′

0M0 + opπ(1),

{(
k2
1/k2

)
h−1

T V ζ
T (β̃(π))

}−1/2

C̄s
T (β̃(π))′

√
T ḡs

[Tπ](β̃(π)) = −(M ′
0M0)−1/2M ′

0 (a(π)′ ⊗ I`) ξT (π)+opπ(1)

and it immediately follows that supπ∈Π |LMT (π) − ST (π)| = op(1).

For LRT (π), a key expansion is that of
√

T ḡs
T (θ̂(π), π) = 1√

T

∑T
t=1 gs

t (θ̂(π), π) about θ0, yielding

√
T ḡs

T (θ̂(π), π) =
√

T ḡs
T (θ0 , π) + k1G0(π)

√
T (θ̂(π) − θ0) + opπ(1)

= k1

√
T ḡT (θ0 , π) − k1

(
I2 ⊗ Ω1/2

0 P0

)
ξT (π) + opπ(1), (33)
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where (32) is exploited. Therefore, and again exploiting (32), we have

k−1
1

(
I2 ⊗ Ω−1/2

0

)√
T ḡs

T (θ̂(π), π) = (I2 ⊗ (I` − P0)) ξT (π) + opπ(1) (34)

= −
(
A(π) ⊗ Ω1/2

0

)(√
T/hT

)
γ̂(π) + opπ(1). (35)

Now, noting that QT (θ, 0, π) ≡ 0 and ∂QT (θ, 0, π)/∂γ = −kḡs
T (θ, π), for all θ ∈ Θ, a two term

expansion of QT (θ̂ (π) , γ̂(π), π) about γ̂(π) = 0, yields

2
(
k2/k2

1

)
(T/hT ) QT

(
θ̂(π), γ̂(π), π

)
= −2

(
k2/k2

1

)
k(
√

T/hT )γ̂(π)′
√

T ḡs
T (θ̂(π) , π)

+
(
k2/k2

1

)
(
√

T/hT )γ̂(π)′
(

hT
∂2QT (θ̂(π), γ̄(π), π)

∂γ∂γ′

)
(
√

T/hT )γ̂(π)

= T ḡs
T (θ̂(π) , π)′ (A(π) ⊗ Ω0)

−1
ḡs

T (θ̂(π), π)/k2
1 + opπ(1) (36)

where γ̄(π) is the usual mean value and the third equality uses (35) and Lemma 4, which ensures

that hT
∂2QT (θ̂(π), γ̂(π), π)

∂γ∂γ′
p→ −k2k2Ω0(π) = −k2k2 (A(π) ⊗ Ω0), uniformly in π. Similarly,

2
(
k2/k2

1

)
(T/hT ) Q̇T

(
β̃(π), γ̃(π), π

)
= T ḡs

T (θ̃(π), π)′ (A(π) ⊗ Ω0)
−1

ḡs
T (θ̃(π), π)/k2

1 + opπ(1),

where θ̃(π) =
(
β̃(π)′, β̃(π)′

)′
. Furthermore, an expansion of

√
T ḡs

T (θ̃(π), π) yields

√
T ḡs

T (θ̃(π), π) =
√

T ḡs
T (θ0, π) − k1

(
A(π)ι2ι′2 ⊗ Ω1/2

0 P0

)
ξT (π) + opπ(1)

=
√

T ḡs
T (θ̂(π), π) + k1

(
I2 − A(π)ι2ι′2 ⊗ Ω1/2

0 P0

)
ξT (π) + opπ(1)

where the second equality follows from (33). Notice that, by (34),

k1

√
T ḡs

T (θ̂(π), π)′ (A(π) ⊗ Ω0)
−1
(
I2 − A(π)ι2ι′2 ⊗ Ω1/2

0 P0

)
ξT (π)

= k1ξT (π)
(
A(π)−1 − ι2ι

′
2 ⊗ (I` − P0)P0

)
ξT (π) + opπ(1)
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= opπ(1)

so that

LRT (π) = ξT (π)′
(
I2 − ι2ι

′
2A(π) ⊗ Ω1/2

0 P0

)
(A(π) ⊗ Ω0)

−1
(
I2 − A(π)ι2ι′2 ⊗ Ω1/2

0 P0

)
ξT (π) + opπ(1)

= ξT (π)′ (I2 − ι2ι
′
2A(π) ⊗ P0) (A(π) ⊗ I`)

−1 (I2 − A(π)ι2ι′2 ⊗ P0) ξT (π) + opπ(1)

= ξT (π)′
(
A(π)−1 − ι2ι

′
2 ⊗ P0

)
ξT (π) + opπ(1)

=
ξT (π)′ (a(π)a(π)′ ⊗ P0) ξT (π)

π(1 − π)
+ opπ(1)

=
ξT (π)′ (a(π) ⊗ I`)

′
P0 (a(π)′ ⊗ I`) ξT (π)

π(1 − π)
+ opπ(1)

= ST (π) + opπ(1).

using
(
A(π)−1 − ι2ι

′
2

)
(I2 − A(π)ι2ι′2) = A(π)−1 − ι2ι

′
2 = a(π)a(π)′/π(1 − π).

As in Sowell (1996) and Hall and Sen (1999), we can always write P0 = H ′ΞH, where Ξ is the

diagonal matrix of eigenvalues of P0 and H = [H ′
1, H

′
2]
′ is a (` × `) orthonormal matrix, so that

H ′H = I` = H ′
1H1 + H ′

2H2, with H1H
′
1 = Ik and H2H

′
2 = I`−k. From the properties of Ξ,

P0 = H ′
1H1, and

H1 (a(π)′ ⊗ I`) ξT (π) =⇒ H1 (B`(π) − πB`(1)) = Bk(π) − πBk(1)

from which we conclude that ST (π) =⇒ (Bk(π) − πBk(1))′ (Bk(π) − πBk(1))
π(1 − π)

. �

Proof of Theorem 5: Since supπ∈Π

∥∥∥hT V̄ s
T (θ̂(π), π) − k2Ω0(π)

∥∥∥ = op(1) and
√

T ḡs
T (θ̂(π), π) =

Opπ(1), we immediately have that

OT (π) = (k2/k2
1) (T/hT ) ḡs

T (θ̂(π), π)′
{

V̄ s
T (θ̂(π), π)

}−1

ḡs
T (θ̂(π), π)

= T ḡs
T (θ̂(π), π)′ (A(π) ⊗ Ω0)

−1
ḡs

T (θ̂(π), π)/k2
1 + opπ(1)

and, by (35),

LM∗
T (π) = (T/h2

T )γ̂(π)′
{

hT V̄ s
T (θ̂(π), π)

}
γ̂(π)/k2

= T ḡs
T (θ̂(π), π)′ (A(π) ⊗ Ω0)

−1 ḡs
T (θ̂(π), π)/k2

1 + opπ(1)

= OT (π) + opπ(1).

41



By (36) it is immediate that

LR∗
T (π) = T ḡs

T (θ̂(π) , π)′ (A(π) ⊗ Ω0)
−1

ḡs
T (θ̂(π), π)/k2

1 + opπ(1)

= OT (π) + opπ(1).

This demonstrates the asymptotic equivalence of all three statistics. From (34) we also obtain

OT (π) = ξT (π)′
(
A(π)−1 ⊗ (I` − P0)

)
ξT (π) + opπ(1)

= S∗
T (π) + opπ(1)

Following the arguments in the proof of Theorem 4, I − P0 = H ′
2H2 so that

S∗
T (π) = ξT (π)′

(
A(π)−1 ⊗ (I` − P0)

)
ξT (π)

= ξT (π)′
(
A(π)−1 ⊗ H ′

2H2

)
ξT (π)

= ξT (π)′ (I2 ⊗ H2)
′ (

A(π)−1 ⊗ I`−k

)
(I2 ⊗ H2) ξT (π).

Since H2H
′
2 = I`−k, it follows that H2B`(π) = B`−k(π), a (` − k)-dimensional vector of inde-

pendent standard Brownian motions and

(I2 ⊗ H2) ξT (π) =⇒ (I2 ⊗ H2) J`(π) =




B`−k(π)

B`−k(1) − B`−k(π)




implying

S∗
T (π) =⇒ J`−k(π)′ (A(π) ⊗ I`−k)−1

J`−k(π).

�
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Table 1: DGP summary

The table consists of three panels. The first panel corresponds to a no-break case. The second panel
corresponds to a structural break case. The last panel corresponds to model misspecification when

instruments are correlated with the error term.

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

β1 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
β2 0.4 0.4 0.4 0.8 0.8 0.8 0.8 0.8
α 0 0.4 0.8 0 0.4 0.8 0.4 0.8

zt,1 xt−2 xt−2 xt−2 xt−2 xt−2 xt−2 xt−1 xt−1

zt,2 xt−3 xt−3 xt−3 xt−3 xt−3 xt−3 xt−2 xt−2

Table 2 3 4 5 6 7 8 9
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Table 2: DGP1 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .068 .057 .055 .045 .190 .129 .103 .093 .135 .123 .107 .095 .031 .036 .040 .045
W .085 .044 .042 .040 .184 .142 .116 .092 .196 .146 .112 .092 .031 .036 .040 .045
LM .074 .071 .061 .050 .126 .100 .080 .062 .087 .091 .078 .072 .031 .036 .040 .045

D̂1,T (π), Ave
LR .064 .057 .050 .044 .114 .075 .059 .053 .070 .070 .061 .054 .036 .042 .045 .042
W .084 .052 .049 .043 .123 .077 .059 .056 .138 .085 .061 .056 .036 .042 .045 .042
LM .038 .045 .044 .043 .042 .060 .053 .051 .034 .056 .052 .053 .036 .042 .045 .042

D̂1,T (π), Exp
LR .072 .064 .051 .047 .152 .110 .074 .063 .114 .103 .077 .064 .038 .043 .049 .047
W .096 .054 .049 .047 .155 .103 .074 .070 .176 .105 .074 .070 .038 .043 .049 .047
LM .059 .062 .058 .044 .092 .083 .060 .061 .058 .071 .066 .059 .038 .043 .049 .047

D̂2,T (π), Sup
LR .116 .065 .063 .044 .218 .153 .117 .079 .216 .161 .111 .087 .037 .028 .046 .043
W .090 .037 .049 .042 .160 .121 .100 .080 .163 .126 .098 .085 .037 .028 .046 .043
LM .193 .098 .071 .044 .308 .192 .120 .080 .338 .226 .157 .098 .037 .028 .046 .043

D̂2,T (π), Ave
LR .099 .064 .049 .046 .109 .079 .051 .049 .125 .075 .053 .050 .045 .045 .044 .043
W .086 .055 .045 .044 .084 .065 .047 .044 .095 .068 .047 .044 .045 .045 .044 .043
LM .126 .066 .046 .045 .159 .085 .051 .049 .198 .107 .065 .056 .045 .045 .044 .043

D̂2,T (π), Exp
LR .115 .065 .053 .050 .166 .104 .078 .062 .169 .105 .077 .062 .047 .042 .042 .044
W .095 .049 .041 .046 .124 .085 .068 .057 .128 .085 .068 .056 .047 .042 .042 .044
LM .169 .087 .058 .053 .237 .140 .082 .059 .275 .180 .102 .069 .047 .042 .042 .044

D̂T (π), Sup
LR .074 .060 .063 .049 .164 .119 .101 .084 .150 .116 .101 .082 .030 .027 .040 .039
W .106 .055 .057 .047 .236 .182 .134 .101 .244 .184 .132 .108 .030 .027 .040 .039
LM .188 .090 .073 .053 .303 .206 .129 .090 .327 .230 .146 .107 .030 .027 .040 .039

D̂T (π), Ave
LR .064 .057 .042 .046 .077 .071 .056 .052 .075 .068 .061 .056 .046 .038 .036 .043
W .102 .052 .041 .044 .108 .067 .051 .054 .127 .069 .053 .053 .046 .038 .036 .043
LM .120 .063 .045 .041 .161 .086 .054 .050 .184 .101 .066 .058 .046 .038 .036 .043

D̂T (π), Exp
LR .082 .062 .054 .045 .135 .096 .078 .060 .122 .096 .078 .061 .044 .034 .040 .043
W .116 .054 .045 .044 .194 .130 .080 .072 .206 .132 .083 .074 .044 .034 .040 .043
LM .165 .077 .060 .045 .261 .143 .078 .058 .286 .171 .099 .065 .044 .034 .040 .043
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Table 3: DGP2 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .124 .121 .111 .123 .237 .115 .080 .070 .135 .094 .079 .072 .114 .099 .086 .077
W .112 .106 .110 .119 .192 .127 .103 .077 .193 .130 .103 .079 .114 .099 .086 .077
LM .151 .132 .107 .127 .255 .137 .090 .080 .102 .079 .082 .076 .114 .099 .086 .077

D̂1,T (π), Ave
LR .098 .103 .086 .097 .185 .094 .060 .064 .090 .079 .058 .065 .084 .090 .065 .061
W .095 .101 .087 .095 .125 .098 .064 .068 .140 .103 .060 .068 .084 .090 .065 .061
LM .097 .103 .080 .091 .150 .089 .064 .064 .057 .070 .054 .061 .084 .090 .065 .061

D̂1,T (π), Exp
LR .122 .110 .101 .104 .225 .110 .075 .067 .130 .088 .069 .067 .103 .101 .081 .068
W .108 .111 .105 .102 .170 .118 .087 .068 .182 .119 .087 .069 .103 .101 .081 .068
LM .131 .122 .094 .108 .228 .120 .081 .074 .085 .078 .069 .069 .103 .101 .081 .068

D̂2,T (π), Sup
LR .157 .135 .108 .105 .163 .089 .065 .051 .142 .089 .063 .054 .024 .028 .040 .037
W .094 .095 .092 .093 .104 .048 .039 .035 .063 .043 .036 .035 .024 .028 .040 .037
LM .240 .164 .118 .105 .361 .214 .116 .073 .375 .265 .161 .107 .024 .028 .040 .037

D̂2,T (π), Ave
LR .123 .109 .080 .094 .107 .079 .052 .045 .105 .079 .048 .044 .034 .050 .040 .042
W .096 .091 .075 .089 .058 .059 .040 .038 .058 .060 .035 .038 .034 .050 .040 .042
LM .159 .124 .083 .093 .229 .115 .068 .054 .222 .139 .085 .068 .034 .050 .040 .042

D̂2,T (π), Exp
LR .156 .125 .095 .101 .144 .084 .058 .048 .126 .088 .057 .052 .032 .045 .042 .039
W .105 .095 .085 .093 .088 .054 .044 .038 .061 .047 .039 .036 .032 .045 .042 .039
LM .227 .160 .101 .097 .325 .174 .094 .062 .326 .216 .123 .087 .032 .045 .042 .039

D̂T (π), Sup
LR .189 .164 .139 .127 .207 .117 .077 .049 .165 .106 .080 .059 .071 .075 .069 .053
W .132 .140 .128 .123 .186 .105 .079 .046 .163 .109 .077 .050 .071 .075 .069 .053
LM .272 .203 .144 .124 .411 .236 .135 .081 .362 .238 .157 .107 .071 .075 .069 .053

D̂T (π), Ave
LR .146 .131 .107 .104 .129 .092 .058 .048 .108 .089 .059 .047 .066 .064 .053 .047
W .120 .118 .105 .104 .097 .077 .055 .045 .102 .077 .053 .045 .066 .064 .053 .047
LM .173 .138 .105 .106 .275 .131 .071 .052 .218 .129 .087 .061 .066 .064 .053 .047

D̂T (π), Exp
LR .191 .169 .126 .118 .196 .114 .074 .055 .145 .095 .075 .059 .075 .075 .058 .047
W .135 .144 .119 .118 .167 .102 .065 .050 .147 .101 .068 .052 .075 .075 .058 .047
LM .258 .185 .134 .123 .377 .208 .116 .073 .329 .213 .138 .085 .075 .075 .058 .047
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Table 4: DGP3 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .200 .179 .161 .168 .391 .196 .119 .077 .158 .099 .092 .075 .155 .113 .096 .090
W .162 .161 .157 .170 .258 .169 .114 .092 .216 .143 .102 .093 .155 .113 .096 .090
LM .228 .180 .166 .160 .396 .199 .120 .080 .137 .095 .094 .074 .155 .113 .096 .090

D̂1,T (π), Ave
LR .145 .138 .118 .129 .346 .173 .098 .072 .113 .093 .073 .073 .110 .094 .073 .073
W .136 .136 .116 .132 .150 .121 .084 .075 .155 .112 .082 .076 .110 .094 .073 .073
LM .139 .134 .113 .129 .297 .134 .085 .075 .072 .078 .070 .072 .110 .094 .073 .073

D̂1,T (π), Exp
LR .182 .161 .141 .154 .388 .189 .114 .080 .152 .098 .087 .072 .142 .116 .086 .073
W .164 .155 .135 .152 .254 .165 .110 .083 .220 .139 .100 .079 .142 .116 .086 .073
LM .214 .166 .136 .149 .369 .187 .113 .080 .120 .093 .092 .079 .142 .116 .086 .073

D̂2,T (π), Sup
LR .230 .207 .178 .171 .180 .114 .082 .052 .126 .094 .069 .052 .025 .031 .043 .040
W .144 .153 .157 .155 .198 .078 .048 .032 .019 .028 .023 .028 .025 .031 .043 .040
LM .332 .256 .191 .177 .514 .310 .168 .090 .454 .313 .197 .130 .025 .031 .043 .040

D̂2,T (π), Ave
LR .176 .162 .134 .133 .130 .091 .068 .047 .095 .082 .060 .048 .038 .054 .040 .048
W .141 .143 .127 .130 .110 .078 .039 .039 .038 .050 .033 .037 .038 .054 .040 .048
LM .226 .176 .138 .132 .401 .199 .101 .060 .272 .175 .111 .084 .038 .054 .040 .048

D̂2,T (π), Exp
LR .220 .198 .168 .155 .177 .116 .085 .053 .124 .087 .069 .053 .034 .049 .045 .045
W .166 .151 .154 .148 .190 .087 .047 .037 .031 .040 .032 .033 .034 .049 .045 .045
LM .296 .234 .170 .150 .488 .275 .149 .079 .409 .273 .169 .112 .034 .049 .045 .045

D̂T (π), Sup
LR .290 .263 .226 .213 .187 .143 .096 .064 .163 .112 .086 .063 .118 .106 .076 .066
W .220 .223 .213 .205 .284 .146 .092 .056 .168 .109 .077 .056 .118 .106 .076 .066
LM .381 .304 .231 .208 .599 .355 .191 .099 .434 .297 .202 .129 .118 .106 .076 .066

D̂T (π), Ave
LR .230 .201 .168 .163 .136 .102 .069 .048 .119 .096 .066 .048 .079 .072 .060 .046
W .186 .182 .163 .159 .160 .103 .068 .045 .103 .082 .063 .044 .079 .072 .060 .046
LM .274 .209 .169 .168 .467 .226 .118 .065 .269 .172 .110 .075 .079 .072 .060 .046

D̂T (π), Exp
LR .294 .249 .210 .193 .181 .137 .088 .059 .169 .113 .084 .061 .115 .099 .068 .058
W .226 .216 .197 .189 .276 .141 .088 .052 .160 .100 .074 .052 .115 .099 .068 .058
LM .368 .279 .209 .196 .579 .331 .174 .089 .416 .263 .176 .103 .115 .099 .068 .058
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Table 5: DGP4 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .234 .422 .783 .986 .369 .547 .863 .993 .333 .532 .870 .993 .238 .459 .850 .992
W .295 .484 .846 .990 .404 .560 .880 .994 .425 .576 .881 .994 .238 .459 .850 .992
LM .119 .185 .422 .776 .225 .296 .559 .888 .170 .270 .571 .902 .238 .459 .850 .992

D̂1,T (π), Ave
LR .301 .519 .850 .988 .371 .582 .899 .995 .349 .573 .899 .995 .332 .563 .896 .995
W .375 .574 .882 .993 .393 .597 .909 .995 .435 .600 .909 .995 .332 .563 .896 .995
LM .086 .130 .391 .808 .133 .227 .536 .893 .085 .211 .556 .914 .332 .563 .896 .995

D̂1,T (π), Exp
LR .288 .498 .845 .989 .392 .594 .901 .996 .364 .572 .902 .996 .311 .554 .888 .993
W .371 .566 .881 .992 .426 .606 .905 .995 .457 .613 .903 .995 .311 .554 .888 .993
LM .110 .165 .428 .799 .198 .278 .554 .890 .143 .252 .572 .914 .311 .554 .888 .993

D̂2,T (π), Sup
LR .139 .091 .112 .115 .216 .181 .180 .208 .247 .186 .187 .217 .034 .045 .087 .107
W .101 .065 .100 .110 .147 .139 .163 .206 .168 .151 .166 .212 .034 .045 .087 .107
LM .217 .119 .120 .112 .315 .220 .180 .200 .378 .263 .227 .236 .034 .045 .087 .107

D̂2,T (π), Ave
LR .111 .070 .069 .078 .109 .082 .066 .084 .148 .095 .074 .085 .047 .045 .058 .069
W .095 .059 .062 .074 .082 .069 .060 .080 .110 .082 .066 .080 .047 .045 .058 .069
LM .137 .080 .062 .075 .161 .094 .062 .078 .212 .130 .091 .088 .047 .045 .058 .069

D̂2,T (π), Exp
LR .131 .083 .100 .105 .177 .138 .123 .134 .197 .144 .128 .137 .054 .054 .077 .098
W .107 .070 .086 .105 .123 .104 .109 .127 .136 .110 .112 .124 .054 .054 .077 .098
LM .194 .100 .099 .099 .250 .162 .122 .124 .304 .197 .164 .151 .054 .054 .077 .098

D̂T (π), Sup
LR .190 .309 .597 .948 .299 .428 .736 .981 .284 .424 .747 .983 .153 .315 .685 .977
W .229 .362 .689 .967 .368 .479 .778 .984 .388 .488 .779 .984 .153 .315 .685 .977
LM .215 .175 .340 .646 .382 .322 .492 .800 .383 .341 .520 .821 .153 .315 .685 .977

D̂T (π), Ave
LR .193 .316 .608 .940 .224 .371 .679 .964 .223 .368 .688 .965 .186 .318 .651 .960
W .246 .340 .655 .952 .257 .376 .689 .967 .300 .385 .691 .967 .186 .318 .651 .960
LM .152 .116 .211 .538 .201 .175 .328 .689 .231 .203 .344 .721 .186 .318 .651 .960

D̂T (π), Exp
LR .212 .337 .642 .953 .304 .432 .741 .980 .275 .434 .752 .980 .181 .350 .719 .979
W .253 .383 .717 .970 .347 .467 .775 .981 .374 .475 .778 .981 .181 .350 .719 .979
LM .204 .161 .330 .644 .332 .263 .434 .757 .332 .290 .464 .797 .181 .350 .719 .979
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Table 6: DGP5 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .739 .958 .999 1.00 .688 .900 .990 1.00 .690 .921 .997 1.00 .650 .922 .998 1.00
W .723 .959 .999 1.00 .657 .921 .998 1.00 .736 .928 .998 1.00 .650 .922 .998 1.00
LM .590 .885 .995 1.00 .810 .941 .997 1.00 .468 .858 .994 1.00 .650 .922 .998 1.00

D̂1,T (π), Ave
LR .779 .959 .998 1.00 .707 .900 .990 1.00 .728 .926 .997 1.00 .719 .929 .998 1.00
W .778 .956 .998 1.00 .677 .915 .997 1.00 .772 .935 .998 1.00 .719 .929 .998 1.00
LM .611 .910 .995 1.00 .795 .942 .997 1.00 .397 .869 .997 1.00 .719 .929 .998 1.00

D̂1,T (π), Exp
LR .801 .966 .999 1.00 .707 .907 .991 1.00 .741 .929 .997 1.00 .723 .942 .998 1.00
W .795 .964 .999 1.00 .697 .935 .998 1.00 .783 .944 .998 1.00 .723 .942 .998 1.00
LM .634 .922 .995 1.00 .816 .954 .997 1.00 .466 .886 .997 1.00 .723 .942 .998 1.00

D̂2,T (π), Sup
LR .194 .224 .316 .496 .196 .177 .211 .315 .178 .129 .176 .316 .036 .072 .170 .323
W .119 .170 .300 .493 .227 .149 .135 .255 .049 .046 .095 .234 .036 .072 .170 .323
LM .291 .267 .316 .482 .567 .372 .332 .386 .507 .394 .371 .453 .036 .072 .170 .323

D̂2,T (π), Ave
LR .127 .135 .189 .294 .123 .107 .122 .186 .114 .087 .110 .179 .046 .072 .114 .195
W .100 .123 .182 .293 .123 .090 .102 .158 .053 .057 .081 .147 .046 .072 .114 .195
LM .163 .145 .188 .291 .434 .233 .179 .207 .305 .189 .194 .244 .046 .072 .114 .195

D̂2,T (π), Exp
LR .179 .194 .277 .441 .175 .164 .186 .286 .156 .123 .157 .288 .055 .089 .162 .293
W .133 .161 .266 .435 .218 .148 .141 .239 .056 .051 .100 .225 .055 .089 .162 .293
LM .258 .221 .278 .435 .526 .330 .285 .337 .456 .330 .314 .395 .055 .089 .162 .293

D̂T (π), Sup
LR .676 .917 .998 1.00 .426 .789 .980 1.00 .580 .834 .993 1.00 .504 .821 .994 1.00
W .617 .906 .998 1.00 .590 .842 .993 1.00 .626 .846 .993 1.00 .504 .821 .994 1.00
LM .596 .820 .991 1.00 .843 .908 .994 1.00 .643 .824 .993 1.00 .504 .821 .994 1.00

D̂T (π), Ave
LR .637 .896 .994 1.00 .400 .777 .983 1.00 .539 .825 .994 1.00 .501 .796 .990 1.00
W .602 .886 .994 1.00 .522 .819 .991 1.00 .555 .817 .992 1.00 .501 .796 .990 1.00
LM .494 .771 .988 1.00 .766 .882 .987 1.00 .427 .767 .993 1.00 .501 .796 .990 1.00

D̂T (π), Exp
LR .700 .923 .997 1.00 .452 .813 .985 1.00 .598 .862 .994 1.00 .534 .843 .995 1.00
W .649 .913 .997 1.00 .607 .862 .995 1.00 .634 .865 .995 1.00 .534 .843 .995 1.00
LM .595 .828 .991 1.00 .836 .914 .992 1.00 .592 .826 .994 1.00 .534 .843 .995 1.00
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Table 7: DGP6 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .884 .990 .999 1.00 .714 .915 .998 1.00 .766 .942 .998 1.00 .790 .963 .999 1.00
W .867 .993 .999 1.00 .722 .942 .998 1.00 .847 .970 .999 1.00 .790 .963 .999 1.00
LM .829 .984 .999 1.00 .925 .982 .998 1.00 .486 .873 .998 .999 .790 .963 .999 1.00

D̂1,T (π), Ave
LR .888 .988 .999 1.00 .727 .923 .999 1.00 .788 .948 .998 1.00 .819 .965 .999 1.00
W .875 .991 .999 1.00 .691 .922 .995 1.00 .856 .969 .999 1.00 .819 .965 .999 1.00
LM .841 .983 .999 1.00 .915 .975 .998 1.00 .334 .866 .997 .999 .819 .965 .999 1.00

D̂1,T (π), Exp
LR .904 .993 .999 1.00 .725 .930 .999 1.00 .807 .959 .998 1.00 .832 .972 .999 1.00
W .889 .995 .999 1.00 .740 .948 .997 1.00 .871 .974 .999 1.00 .832 .972 .999 1.00
LM .863 .986 .999 1.00 .929 .983 .998 1.00 .453 .893 .998 .999 .832 .972 .999 1.00

D̂2,T (π), Sup
LR .313 .357 .468 .712 .248 .250 .255 .372 .177 .148 .196 .364 .038 .096 .196 .385
W .206 .317 .445 .704 .365 .329 .217 .309 .022 .039 .079 .249 .038 .096 .196 .385
LM .420 .392 .480 .702 .735 .544 .449 .479 .582 .489 .447 .557 .038 .096 .196 .385

D̂2,T (π), Ave
LR .197 .210 .303 .459 .156 .159 .154 .225 .102 .096 .113 .209 .044 .082 .130 .225
W .157 .196 .289 .455 .205 .181 .156 .187 .027 .048 .078 .155 .044 .082 .130 .225
LM .239 .225 .305 .451 .663 .431 .289 .274 .380 .264 .248 .328 .044 .082 .130 .225

D̂2,T (π), Exp
LR .280 .321 .424 .644 .246 .238 .228 .347 .147 .143 .173 .331 .052 .102 .184 .353
W .196 .282 .410 .636 .342 .309 .223 .292 .026 .047 .095 .244 .052 .102 .184 .353
LM .381 .344 .423 .634 .723 .519 .409 .435 .530 .426 .392 .494 .052 .102 .184 .353

D̂T (π), Sup
LR .864 .977 .999 1.00 .340 .770 .980 1.00 .656 .887 .995 1.00 .654 .902 .997 1.00
W .811 .976 .999 1.00 .693 .923 .997 1.00 .738 .918 .997 1.00 .654 .902 .997 1.00
LM .837 .972 .998 1.00 .951 .967 .998 1.00 .712 .877 .996 1.00 .654 .902 .997 1.00

D̂T (π), Ave
LR .820 .967 .998 1.00 .341 .762 .984 1.00 .630 .887 .995 1.00 .620 .887 .995 1.00
W .786 .960 .998 1.00 .637 .901 .995 1.00 .682 .893 .995 1.00 .620 .887 .995 1.00
LM .774 .953 .998 1.00 .926 .957 .997 1.00 .490 .807 .995 .999 .620 .887 .995 1.00

D̂T (π), Exp
LR .865 .976 .998 1.00 .357 .796 .986 1.00 .678 .917 .997 1.00 .680 .925 .996 1.00
W .832 .979 .998 1.00 .721 .942 .996 1.00 .754 .932 .996 1.00 .680 .925 .996 1.00
LM .838 .975 .998 1.00 .952 .972 .998 1.00 .664 .883 .997 .999 .680 .925 .996 1.00
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Table 8: DGP7 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .686 .930 .995 1.00 .768 .875 .966 .999 .758 .949 .996 1.00 .631 .917 .998 1.00
W .717 .956 .998 1.00 .646 .872 .975 .998 .777 .944 .998 1.00 .631 .917 .998 1.00
LM .589 .863 .993 1.00 .834 .922 .988 1.00 .349 .692 .962 1.00 .631 .917 .998 1.00

D̂1,T (π), Ave
LR .773 .955 .998 1.00 .764 .882 .954 .994 .653 .892 .986 .999 .722 .938 .999 1.00
W .770 .957 .998 1.00 .619 .844 .951 .992 .785 .956 .997 1.00 .722 .938 .999 1.00
LM .659 .918 .996 1.00 .821 .924 .985 1.00 .277 .678 .970 1.00 .722 .938 .999 1.00

D̂1,T (π), Exp
LR .758 .954 .998 1.00 .769 .890 .969 .999 .724 .946 .997 1.00 .713 .944 .998 1.00
W .779 .968 .998 1.00 .663 .882 .977 .997 .809 .962 .998 1.00 .713 .944 .998 1.00
LM .651 .914 .996 1.00 .841 .933 .989 1.00 .343 .737 .976 1.00 .713 .944 .998 1.00

D̂2,T (π), Sup
LR .888 .989 .995 1.00 .754 .932 .987 .998 .947 .999 1.00 1.00 .773 .997 1.00 1.00
W .876 .999 1.00 1.00 .901 .997 1.00 1.00 .813 .997 1.00 1.00 .773 .997 1.00 1.00
LM .951 .999 1.00 1.00 .990 .999 1.00 1.00 .992 .999 1.00 1.00 .773 .997 1.00 1.00

D̂2,T (π), Ave
LR .925 .989 .995 1.00 .773 .932 .987 .998 .976 .999 1.00 1.00 .943 .999 1.00 1.00
W .950 .999 1.00 1.00 .964 .999 1.00 1.00 .941 .999 1.00 1.00 .943 .999 1.00 1.00
LM .971 .999 1.00 1.00 .988 .999 1.00 1.00 .991 .999 1.00 1.00 .943 .999 1.00 1.00

D̂2,T (π), Exp
LR .912 .989 .995 1.00 .773 .932 .987 .998 .970 .999 1.00 1.00 .919 .998 1.00 1.00
W .937 .999 1.00 1.00 .956 .999 1.00 1.00 .919 .999 1.00 1.00 .919 .998 1.00 1.00
LM .967 .999 1.00 1.00 .990 .999 1.00 1.00 .992 .999 1.00 1.00 .919 .998 1.00 1.00

D̂T (π), Sup
LR .935 .991 .997 1.00 .508 .697 .905 .995 .985 1.00 1.00 1.00 .961 1.00 1.00 1.00
W .974 1.00 1.00 1.00 .941 1.00 1.00 1.00 .974 1.00 1.00 1.00 .961 1.00 1.00 1.00
LM .984 1.00 1.00 1.00 .996 1.00 1.00 1.00 .999 1.00 1.00 1.00 .961 1.00 1.00 1.00

D̂T (π), Ave
LR .942 .991 .997 1.00 .524 .698 .905 .995 .993 1.00 1.00 1.00 .989 1.00 1.00 1.00
W .990 1.00 1.00 1.00 .993 1.00 1.00 1.00 .990 1.00 1.00 1.00 .989 1.00 1.00 1.00
LM .985 1.00 1.00 1.00 .997 1.00 1.00 1.00 .997 1.00 1.00 1.00 .989 1.00 1.00 1.00

D̂T (π), Exp
LR .942 .991 .997 1.00 .525 .698 .905 .995 .997 1.00 1.00 1.00 .979 1.00 1.00 1.00
W .986 1.00 1.00 1.00 .987 1.00 1.00 1.00 .987 1.00 1.00 1.00 .979 1.00 1.00 1.00
LM .990 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00 .979 1.00 1.00 1.00
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Table 9: DGP8 Results
The table consists of four vertical panels: unsmoothed empirical likelihood (EL), kernel-smoothed Empirical Likelihood (ELk), kernel-smoothed
Exponential Tilting (ETk) and kernel-smoothed GMM (GMMk). Each vertical panel report results for sample sizes T = 200, 400, 800,1600.
Horizontally, the results are divided into three big blocks for D̂1,T (π), D̂2,T (π), and D̂T (π) tests. For each test we report sup(.), exp(.) and
ave(.) statistics. Each statistics block consists of LRT (π), WT (π) (OT (π) for D̂2,T (π)), and LMT (π).

EL ELk ETk GMMk
200 400 800 1600 200 400 800 1600 200 400 800 1600 200 400 800 1600

D̂1,T (π), Sup
LR .783 .871 .980 .997 .838 .944 .990 .996 .835 .880 .954 .985 .580 .834 .990 1.00
W .782 .902 .990 .999 .647 .874 .984 .999 .861 .916 .983 .998 .580 .834 .990 1.00
LM .699 .806 .958 .992 .982 .984 .998 .999 .078 .085 .167 .350 .580 .834 .990 1.00

D̂1,T (π), Ave
LR .820 .908 .986 .998 .835 .945 .990 .996 .592 .649 .794 .863 .627 .851 .988 1.00
W .775 .917 .987 .998 .577 .718 .927 .999 .784 .864 .960 .996 .627 .851 .988 1.00
LM .721 .844 .964 .992 .975 .978 .992 .995 .020 .039 .105 .320 .627 .851 .988 1.00

D̂1,T (π), Exp
LR .818 .904 .985 .998 .837 .946 .991 .996 .782 .855 .948 .989 .628 .866 .994 1.00
W .819 .932 .992 .999 .654 .870 .983 1.00 .848 .909 .975 .997 .628 .866 .994 1.00
LM .733 .849 .972 .995 .981 .983 .997 .999 .048 .069 .134 .361 .628 .866 .994 1.00

D̂2,T (π), Sup
LR .852 .950 .986 .998 .625 .860 .975 .995 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 1.00 1.00 1.00 .999 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 .999 1.00 1.00 1.00

D̂2,T (π), Ave
LR .852 .950 .986 .998 .626 .860 .975 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D̂2,T (π), Exp
LR .852 .950 .986 .998 .626 .860 .975 .995 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D̂T (π), Sup
LR .820 .957 .987 .998 .131 .348 .693 .911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 .987 1.00 1.00 1.00 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D̂T (π), Ave
LR .820 .957 .987 .998 .131 .348 .693 .911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00

D̂T (π), Exp
LR .820 .957 .987 .998 .131 .348 .693 .911 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
W 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LM 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 10: DGP1 Sup-statistics comparison
For the structure of the table see description of Table 2. The table consists of two horizontal panels. The first panel is for the case when ĥ is evaluated

for each iteration of π and for each subsample independently, i.e. ĥπT , ĥ(1−π)T . The second panel shows the case when ĥT is evaluated once for the whole

sample using GMM assuming no structural breaks. For each test sup(.) statistics are reported for D̂1,T (π), D̂2,T (π), and D̂T (π) tests.

EL ELk ETk
200 400 800 1600 200 400 800 1600 200 400 800 1600

ĥπT , ĥ(1−π)T

D̂1,T (π)
LR .070 .065 .061 .054 .291 .230 .221 .194 .249 .222 .219 .191
W .090 .052 .049 .059 .215 .149 .136 .120 .206 .152 .137 .121
LM .079 .076 .063 .053 .261 .148 .137 .116 .151 .115 .123 .111

D̂2,T (π)
LR .081 .088 .047 .042 .206 .192 .142 .144 .186 .186 .149 .145
W .150 .055 .060 .038 .128 .150 .131 .128 .105 .144 .123 .128
LM .148 .086 .056 .045 .330 .236 .158 .148 .374 .282 .190 .171

D̂T (π)
LR .085 .091 .056 .044 .282 .233 .194 .165 .237 .230 .195 .172
W .095 .073 .058 .042 .244 .205 .185 .169 .230 .202 .180 .167
LM .232 .152 .068 .045 .398 .276 .178 .152 .365 .283 .200 .164

ĥT

D̂1,T (π)
LR .065 .059 .054 .045 .245 .101 .073 .055 .082 .069 .07 .052
W .086 .044 .043 .038 .204 .114 .094 .072 .186 .105 .091 .071
LM .078 .073 .059 .049 .243 .110 .076 .053 .097 .065 .065 .057

D̂2,T (π)
LR .121 .062 .062 .041 .202 .082 .06 .043 .157 .062 .059 .044
W .090 .036 .048 .037 .115 .026 .033 .031 .056 .018 .029 .031
LM .194 .096 .070 .041 .401 .196 .089 .048 .419 .246 .136 .074

D̂T (π)
LR .077 .058 .061 .046 .209 .105 .077 .048 .106 .074 .072 .050
W .108 .052 .056 .045 .192 .082 .071 .050 .158 .070 .070 .050
LM .190 .089 .073 .048 .450 .223 .106 .048 .402 .225 .119 .071
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