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Abstract

This paper studies identification robust inference when moments have singular vari-

ance at the true parameter θ0. Existing robust methods assume non-singular moment

variance at θ0 up to a particular known matrix of parameters, Andrews and Cheng

(2012). This is shown to restrict the class of identification failure for which current

results on robust methods hold. General conditions under which the GAR statistic

has a χ2
m limit distribution are derived utilizing second order asymptotic eigensystem

expansions of the sample variance matrix around θ0. This method prevents the neces-

sity of restrictive assumptions on the form of singular variance. A crucial condition

for this result requires that the null space of the moment variance lies within that of

the outer product of the expected first order derivative at θ0. When this condition is

violated the GAR statistic is Op(n), which is termed the ‘moment-singularity bias’.

Empirically relevant examples of this problem are provided and the bias verified in a

simulation.

Keywords: Generalized Anderson Rubin Statistic, Identification Failure, Singular Vari-

ance, Non-linear models, Matrix Perturbation Theory.

1 Introduction

Identification robust methods of inference have gained increasing prominence in the econo-

metrics literature in the last decade. Broadly its objective has been to provide asymptoti-

cally valid methods of inference on some unknown parameter θ0 robust to failures of either
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global or first-order identification. A substantive part of this literature derives confidence

sets containing θ0 with asymptotically correct probability inverting a pre-specified test

statistic over a parameter space.

A large part of this literature has focussed on Linear Instrumental Variable (IV) settings

with its roots in the work of Anderson and Rubin (1949). A now sizeable literature has

developed providing alternative procedures aiming to make as few possible assumptions

to justify asymptotically valid inference on θ0, including but not limited to Kleibergen

(2002,2005), Moreira (2003), Chernozhukov & Hansen (2008), Kleibergen & Mavroeidis

(2009), Magnusson (2010), Guggenberger et al (2012).

General non-linear moment functions have received relatively little attention in this litera-

ture, a notable exception1 being the GAR statistic of Newey and Windmeijer (2009). Also

known as the Continuous Updating Estimator (CUE) statistic, Guggenberger, Ramalho

and Smith (2005) and confidence regions based on the GAR statistic defined as ‘S-Sets’

in Stock and Wright (2000) .

Let wi (i = 1, .., n) be an independent and identically distributed (i.i.d) data set with a

known m× 1 moment function g(w, θ) satisfying the moment condition E[g(wi, θ)] = 0 at

the true parameter θ0 ∈ Θ ⊆ Rp. Define the sample moment function and corresponding

variance matrix respectively ĝ(θ) := 1
n

∑n
i=1 gi(wi, θ), Ω̂(θ) := 1

n

∑n
i=1 gi(wi, θ)gi(wi, θ)

′.

The GAR statistic is defined

T̂GAR(θ) := nĝ(θ)′Ω̂(θ)−1ĝ(θ)

Under a set of assumptions including the asymptotic moment variance Ω:= E[g(wi, θ0)g(wi, θ0)′]

is non-singular T̂GAR(θ0) converges in distribution to χ2
m (e.g Stock and Wright (2000)).

The majority of the literature on identification robust inference makes no explicit assump-

tion of first order identification. Namely that G := E[Gi(θ0)] is full column rank where

Gi(θ) := ∂g(wi, θ)/∂θ
′.

The impetus for this paper stems from the fact that Ω must be singular when G is not

full rank for a broad class of non-linear moment functions. This result has mainly gone

unmentioned in the identification robust literature. In light of this issue current results in

the identification robust literature justify valid inference for a restricted class of identifi-

cation failure, limited largely to linear models.

1The K-Statistic of Kleibergen (2005) also permits general non-linear moment functions, however the

proof of asymptotic validity does not adequately account for singular variance in the transformed moment

function considered. This issue is beyond the scope of this paper, however the author intends to work on

this in future research
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An exception is (Cheng (2008), Andrews and Cheng (2012)) who note the link between

identification failure and singular variance for a particular form of identification failure

in semi-linear regression models. Cheng (2008) derives the limit distribution of the Non-

Linear Least Squares (NLS) estimator for such models. Using this result the distribution

of the t, Wald and Quasi-Likelihood Ratio (QLR) statistic are evaluated and methods of

identification robust inference are proposed based on such statistics. These results are

extended in Andrews & Cheng (2012) to general extremum estimation.

Both papers overcome the issue of singularity of Ω arising from identification failure for

asymptotic analysis by an assumption that the form of the singularity is known up to a

matrix of model parameters. The class of identification failure (and hence singular vari-

ance) that satisfy this assumption is shown to be restrictive, being difficult to motivate

outside of the particular examples of identification failure studied in both papers.

This paper differs from Andrews and Cheng (2012) in two ways. (i) Conditions which the

GAR statistic is asymptotically χ2
m are provided for general forms of identification failure

requiring no assumptions on the form of moment singularity. (ii) To achieve (i) the GAR

statistic is expanded around θ0 via second order asymptotic expansions of the eigensystem

of Ω̂(θ)−1. This method is of interest in its own right and would prove useful extending

results for other identification robust statistics and estimators to allow for general forms

of identification failure.

Second order asymptotic expansions of the eigenvectors of Ω̂(θ) around θ0 are derived

borrowing results from Matrix Perturbation Theory with its roots in Kato (1982). This

field has not readily made it in to the mainstream econometric literature- exceptions being

Ratsimalahelo (2002) who consider tests of matrix rank, Moon and Weidner (2010) derive

expansions of the Quasi Maximum Likelihood profile function for panel data models and

Hassani et al (2011) use such expansions for Singular Spectral Analysis.

Utilizing this result general second order eigenvalue expansions of Ω̂(θ) around θ0 are es-

tablished. Specific expansions under an i.i.d assumption (along with requisite regularity

conditions) are then derived. These eigensystem expansions will prove useful when ex-

tending the results of this paper to non-i.i.d settings and are new in the identification

literature.

In order for the result (i) to hold further conditions on Gi(θ) and Ω̂(θ) at θ0 are required

when considering general forms of identification failure. A key condition requires those

δ ∈ Rm such that δ′Ω = 0 imply δ′G = 0 (i.e the null space of Ω is a subset of that of

GG′). For example this rules out singular variance when the strong identification condi-

3



tions hold in just-identified models. In this case the GAR statistic is shown to be bounded

in probability of order n. This issue currently unknown in the literature is termed the

‘moment-singularity bias’.

Simulation evidence demonstrates this bias in a Linear IV Simultaneous Equation setup.

The small sample approximation of the GAR statistic by a χ2
m distribution is shown to be

poor when the null space of Ω almost does not lie within that of GG′ (i.e when δ′Ω ≈ 0

and δ′G 6= 0). In this case the GAR statistic is shown to be oversized even for large sample

sizes.

Numerous examples of singular variance for commonly used moment functions are pro-

vided including financial econometric models and Non-Linear IV Simultaneous Equations.

Many cases where the assumption on the form of the singularity in Andrews and Cheng

(2012) is violated are provided.

Section 2 explores the relationship between G and Ω for conditional moment restrictions.

Section 3 sets out the asymptotic approach, deriving second order asymptotic expansions

of the eigensystem of Ω̂(θ) and specific expansions in the case wi is i.i.d. Section 4 provides

conditions under which the GAR statistic is asymptotically locally χ2
m and explains the

‘moment-singularity bias’. An extensive simulation study is also provided demonstrating

the main results of this paper. Section 5 presents conclusions and directions for further

research. An Appendix collects proofs of the main theorems.

2 Identification and Singular Variance

The link between identification failure and singular variance is not a new idea in the

identification robust literature. Andrews and Cheng (2012) provide asymptotic results

under the assumption that there exists B(θ),

B(θ) = diag(Im∗×m∗ , ι(θ)Im̄×m̄) (1)

Where m∗ = Rank(Ω) and m̄ = m−m∗, ι(θ) = ||θ|| such that,

B(θn)−1Ω̂(θn)B(θn)−1 p→ Ω̄ (2)

For all θn = θ0 + ∆n where ||∆n|| > 0 and ||∆n|| = op(n
−1/2) and Rank(Ω̄) = m.

They derive asymptotic properties of (functions) of general extremum estimators working

with the transformed moment function B(θn)−1√nĝ(θn) where asymptotic singularity of
√
nĝ(θn) is eradicated. Once the moment function is transformed the limit variance is
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non-singular and standard asymptotic analysis is feasible. The existence of such a matrix

B(θ) satisfying (2) is restrictive, being difficult to motivate generally outside of piecewise

linear models with particular forms of identification failure, see Section 2.2.

Section 2.1 studies the relationship between G and Ω more generally from moment condi-

tions derived from a system of conditional moment restrictions. Conditions under which

Null(Ω) ⊆ Null(GG′) are derived for general non-linear models with arbitrary forms of

identification failure. As demonstrated in Section 4.2 this condition turns out to be cru-

cial for T̂GAR(θn) to be bounded in probability with a χ2
m limit distribution. Empirically

relevant examples are given where this condition does not hold in Section 2.2.2

2.1 Conditional Moments

Consider a J × 1 residual function ρ(θ) := ρ(x, θ) where ρ(·, ·) : X×Θ 7−→ RJ , x ∈ X ⊆ Rl

with a h× 1 instrument z satisfying,

E[ρ(θ)|z] = 0 at θ = θ0 (3)

Broadly speaking there are two types of moment function derived from (3) depending

upon whether E[∂ρ(θ)/∂θ′|z] must be estimated beforehand.

Namely whether (i) E[∂ρ(θ)/∂θ′|z] = ∂ρ(θ)/∂θ′ a.s(z) for example Non-Linear Least

Squares (NLS) and Unconditional Maximum Likelihood where x = z or (ii) E[∂ρ(θ)/∂θ′|z] 6=

∂ρ(θ)/∂θ′ for z with measure greater than zero, for example non-linear instrumental vari-

ables where generally z 6= x.

2.1.1 Case (i): E[∂ρ(θ)/∂θ′|z] = ∂ρ(θ)/∂θ′

Define D(θ, z) := E[∂ρ(θ)/∂θ′|z]′ and Ωρ(θ, z) = E[ρ(θ)ρ(θ)′|z]. In the i.i.d setting the

optimal instrument is D(θ0, z)Ωρ(θ0, z)
−1, Newey (1993).

Take the case J = 1 forming the moment g(θ) = D(θ, z)ρ(θ),

Ω = E[ρ(θ0)2D(θ0, z)D(θ0, z)
′]

G = E[D(θ0, z)D(θ0, z)
′]

Hence for any δ ∈ Rp such that δ′Ωδ = 0 implies

E[ρ(θ0)2(δ′D(θ0, z))
2] = 0

δ′D(θ0, z) = 0 a.s(z). Therefore δ′Gδ = E[(δ′D(θ0, z))
2] = 0. The reverse is also simple

to establish, so that Null(Ω) ≡ Null(G) ≡ Null(GG′). First order under-identification and
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singular variance are equivalent for single equation NLS. This result may break down for

J ≥ 2 if Ωρ(θ0, z) is singular a.s(z) existing cases where the null space of GG′ and Ω are

not equivalent2.

Proposition 1: For g(θ) = D(θ, z)ρ(θ)

Null(Ω) ⊆ Null(GG′) iff @ δ ∈ Rp such that D(θ0, z)
′δ ∈ Null(Ωρ(θ0), z)/0 a.s(z)

Proof For δ 6= 0, δ′Ωδ = E[δ′D(θ0, z)Ωρ(θ0, z)D(θ0, z)
′δ] = 0 iff ∃δ ∈ Rp such that

D(θ0, z)
′δ lies in the null space of Ωρ(θ0, z) a.s(z) since δ′G = 0 iff δ′D(θ0, z) = 0 a.s(z).

Q.E.D

2.1.2 Case (ii) E[∂ρ(θ)/∂θ′|z] 6= ∂ρ(θ)/∂θ′

Commonly when D(θ0, z) is not known a priori the fact that (3) implies the following

moment condition for any m× 1 Z := (φ1(z), .., φm(z))′ where {φj(.) : j = {1, ..,m}} are

arbitrary functions of z (e.g polynomials in z up to order m),

E[ρ(θ)⊗ Z] = 0 at θ = θ0

For example the Consumption Capital Asset Pricing Model moment conditions in Stock

and Wright (2000). In this case

G = E[D(θ0, z)
′ ⊗ Z]

Ω = E[Ωρ(θ0, z)⊗ ZZ ′]

Where G is an mJ × p matrix and Ω is mJ ×mJ . In this case in general the null space

of Ω and GG′ are not necessarily linked. Given that Z includes no linearly redundant

combinations of instruments then Ω may be less than full rank only when Ωρ(θ0, z) is not

full rank a.s(z). Define δ := (δ′1, .., δ
′
J)′ where δj ∈ Rm for j = {1, ..,m}.

Proposition 2: Null(Ω) ⊆ Null(GG′) iff @ δ ∈ RmJ where(δ′1Z, .., δ
′
JZ)′ ∈ Null(Ωρ(θ0, z))

a.s(z) such that δ ∝ ν for some ν ∈ RmJ s.t ν ′G 6= 0

Proof: For δ 6= 0 then δ′Ωδ = E[(δ′1Z, .., δ
′
JZ)Ωρ(θ0, z)(δ

′
1Z, .., δ

′
JZ)′] hence δ′Ω = 0 iff

(δ′1Z, .., δ
′
JZ)′ ∈ Null(Ωρ(θ0, z)) a.s(z). The null space of Ω will not lie in that of GG′ iff

2Note a similar result can also be shown based utilizing an estimate of the optimal instrument based

on an a consistent estimator of a generalized inverse Ωρ(θ0, z)
− noting that the Rank(Ωρ(θ0, z)) =

Rank(Ωρ(θ0, z)
−).
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∃δ ∈ RmJ such that (δ′1Z, .., δ
′
JZ) ∈ Null(Ωρ(θ0, z)) where δ ∝ ν for some ν ∈ RmJ where

ν ′G 6= 0.

Q.E.D

Remarks:

(i) When Ωρ(θ0, z) is homoscedastic (i.e Ωρ(θ0, z) = Ωρ a.s(z) for some p.s.d symmetric

m × m matrix Ωρ) then it is straightforward to show that Rank(Ω) = m(J − r) where

r = Rank(Ωρ).

(ii)If for any function a(.) of z ∃ π ∈ Rm such that

E[(π′Z − a(z))2]→ 0 (4)

For m → ∞ then Rank(Ω) ≤ mJ − r∗ (as m → ∞) where r∗ = J − Rank(Ωρ(θ0, z))

a.s(z). Since by (4) there will exist at least r∗ linearly independent vectors δ ∈ RmJ s.t

(δ′1Z, .., δ
′
JZ)′ can be expressed as some linear combination of elements of the null space

of Ω(θ0, z) a.s(z) for m large.

Especially a concern is (ii) as even if ρ(θ0) has no perfectly correlated (linear combination

of) elements (E[Ωρ(z, θ0)] is full rank), Ω will be singular for m large when there exists

perfect conditional correlation in elements of ρ(θ0) (i.e r∗ > 0). This would violate the

condition for GAR to be asymptotically χ2
m. An example of this case is provided Example

3 in Section 2.2 with a corresponding simulation provided in Section 4.2.

2.2 Examples of Singular Variance

This sections provides examples of moment functions with singular variance both with and

without identification- specifically when the condition that Null(Ω) ⊆ Null(GG′) holds or

does not.

2.2.1 Singular Variance : Null(Ω) ⊆ Null(GG′)

A class of identification failure satisfying Null(Ω) ⊆ Null(GG′) is the stochastic semi-linear

parametric equations (for J = 1) considered in Cheng (2008)3.

y = α′x+ πf(z, γ) + ε

3Cheng (2008) allow for a vector of non-linear functions though for simplicity this special case is highlight

to demonstrate the infeasibility of the assumption on the form of the singular variance made in both Cheng

(2008) and Andrews and Cheng (2012).
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Where θ = (α, γ, π), α ∈ Rq, π ∈ R, γ ∈ Rl and f(·, ·) : Rd × Rl → R is a continuously

differentiable function.

Let w = (y, x, z) where y is a scalar random variable, x is q × 1 and z is d × 1 where

E[ε|x, z] = 0 at θ = θ0 for some parameter vector θ0 = (α0, γ0, π0).

Define f(γ) := f(z, γ), ε(θ) := y − α′x− πf(γ),

∂ε(θ)

∂θ
= (x, f(γ), π∂f(γ)/∂γ)′

Then the moment function utilized in NLS is

g(θ) = ε(θ)(x, f(γ), π∂f(γ)/∂γ)′

Under the i.i.d assumption the variance of the moments at any θ ∈ Θ is

Ω(θ) = Eε(θ)2


xx′ f(γ)x πx∂f(γ)/∂γ′

f(γ)x′ πf(γ)2 πf(γ)∂f(γ)/∂γ′

π∂f(γ)/∂γx′ πf(γ)∂f(γ)/∂γ π2∂f(γ)/∂γ∂f(γ)/∂γ′


Ω would be singular in the following three cases (and potentially others),

(i) θ0 = (α, γ, 0) for any (α, γ) ∈ Rq+l.

(ii) f(γ0) = δ′x for some δ ∈ Rq.

(iii) δ′1∂f(γ0)/∂γ = δ′2x for some δ1 ∈ Rl and δ2 ∈ Rq. where ||δ1|| > 0.

Case (i) falls under the assumption of Andrews and Cheng (2012). Namely for the matrix

B(θ) =

 I2×2 02

02 π

 then B(θ)−1Ω(θ)B(θ)−1 is no longer a function of π. In this case

singularity cased by π0 = 0 is removed. However there exist no matrix of the form B(θ)

that will remove the singularity for cases (ii) and (iii) and more generally for arbitrary

forms of singularity that depend upon the Data Generating Process.

Example 1: Heckman Selection Consider a Heckman Selection Regression where

f(z, γ) = φ(z′γ)/Φ(−z′γ) is the Inverse Mills Ratio and z corresponds to variables which

govern sample selection. If z′γ0 = c for some constant c and x includes a constant then

singularity arises from (ii). Even if this condition does not hold, as noted by Puhani (2000)

and others the Inverse Mills Ratio is approximately linear for a wide range of γ. In this
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case if x and z contain coinciding variables then NLS would be weakly identified with

almost singular variance.

Example 2 provides a case of a general non-linear moment function where Null(Ω) ⊆

Null(GG′). Also note that in this case there exists no matrix B(θ) satisfying (1.2).

Example 2: Interest Rate Dynamics

r − r−1 = a(b− r−1) + εσrγ

Where r−1 is the first lag of the interest rate r. Define θ = (a, b, σ, γ). Under the assump-

tion that ε is stationary at θ = θ0 where θ0 = (a0, b0, σ0, γ0) then using the test-function

approach of Hansen and Scheinkman (1995) the following moment function is derived in

Jagannathan and Wang (2002),

g(θ) =


a(b− r)r−2γ − γσ2r−1

a(b− r)r−2γ+1 − (γ − 1
2)σ2

(b− r)r−a − 1
2σ

2r2γ−a−1

a(b− r)r−σ − 1
2σ

3r2γ−σ−1


satisfying E[g(θ)] = 0 at θ = θ0.

When σ0 = a0, γ0 = 1/2(a0 + 1) or γ0 = 1/2(σ0 + 1) redundant moments exist at the true

parameter. For example if all three conditions held simultaneously the rank of Ω and G

would both be 1.

2.2.2 Singular Variance: Null(Ω) * Null(GG′)

Common causes of singular variance arise from a lack of identification. It is however

plausible that singular variance occurs where Null(Ω) * Null(GG′), for example in just-

identified settings when G is full rank (first-order identified) though Ω is singular.

Example 3: IV Simultaneous Equations

Consider an example of a conditional moment restriction where J = 2,

ρ1(θ0) = ε
√
h1(z)

ρ2(θ0) = ε
√
h2(z)

Where E[ε2|z] = 1 and h1(z) and h2(z) are the conditional heteroscedasticity for equations

1 and 2 respectively. Let Z be an m× 1 vector function of z used as instruments.
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Let δ = (δ′1, δ
′
2)′ where δ1, δ2 ∈ Rm then

δ′Ωδ = E[h1(z)(δ′1Z)2] + E[h2(z)(δ′2Z)2] + 2E[
√
h1(z)h2(z)δ′1Zδ

′
2Z]

For example if δ′1Z = 1/
√
h1(z), δ′2Z = −1/

√
h2(z) then Ω is singular. In the case where

h1(z) = h2(z) then any δ1, δ2 ∈ Rm where δ′1Z = −δ′2Z would yield δ′Ωδ = 0. This is

an example of Proposition 2 and in general δ′Ω = 0 does not imply δ′G = 0. Take for

example

ρ1(θ) = y1 − θ1x1

ρ2(θ) = y2 − θ2x2

Where θ = (θ1, θ2), x = (y1, y2, x1, x2) with instrument vector Z = (1, z). Assuming

E[x1|z] = π̄(1+z), E[x2|z] = −π̄(1+z2) and z ∼ N(0, 1) it is straightforward to establish,

G =

 π̄(1, 1)′ 02

0′2 π̄(−2, 0)′


If h1(z) = h2(z) then δ1 = (c, 0), δ2 = (−c, 0) for c 6= 0 imply δ′Ω = 0 however δ′G =

(cπ̄, 2cπ̄) 6= 0 when π̄ 6= 0. Note that if instruments were irrelevant (π̄ = 0) then δ′G = 0

for all directions δ ∈ R4.

Though the example here is somewhat pathological (requiring ρ1(θ0), ρ2(θ0) be perfectly

correlated) the problem extends also to the case where no equations are perfectly corre-

lated, i.e h1(z) 6= h2(z)).

For example if h1(z) = exp(−ζ1z) and h2(z) = exp(−ζ2z) (where ζ1 6= ζ2) if Z includes

polynomial orders of z up tom then δ1 and δ2 such that δ′1z = 1+1/2ζ1z+...+(1/2ζ1z)
m/m!

and δ′2z = −(1 + 1/2ζ2z + ... + (1/2ζ2z)
m/m!) will well approximate 1/

√
h1(z) and

−1/
√
h2(z) respectively for m large. When using many instruments (and/or with J large)

it is entirely plausible there exist directions in which δ′Ω = 0 that do not imply δ′G=0.

3 Matrix Perturbation Theory

Section 1.4 derives conditions under which T̂GAR(θn) converges in distribution to a χ2
m

limit for any local sequence θn = θ0 + ∆n where ||∆n|| = op(n
−1/2) without an assumption

the form of the singularity is known. To do so the GAR statistic at θn is expanded around

the point of singularity θ0, requiring second order expansions of the eigensystem of Ω̂(θn)

around θ0. This section is concerned with deriving these expansions.
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Firstly definitions for the eigensystem of the functional matrix Ω(θ) and Ω̂(θ) are outlined.

By construction both matrices are p.s.d and symmetric hence the following decompositions

can be made for all θ ∈ Θ. Let the m × m matrix P (θ) be the matrix of population

eigenvalues where Ω(θ) = P (θ)Λ(θ)P (θ)′ Such that P (θ)′P (θ) = Im and Λ(θ) contains

the eigenvalues of Ω across the diagonal and zeros on the off-diagonal. Define the rank

of Ω(θ) as m − m̄(θ) where 0 ≤ m(θ) ≤ m. Express P (θ) = (P+(θ), P0(θ)) and Λ(θ) = Λ+(θ) 0

0 Λ0(θ)

 where Λ+(θ) is an (m − m̄(θ)) × (m − m̄(θ)) diagonal matrix with

the non-zero eigenvalues of Ω(θ) on the diagonal with corresponding eigenvector matrix

P+(θ). Λ0(θ) = 0m̄(θ)×m̄(θ) with corresponding eigenvector matrix P0(θ). Performing an

eigenvalue decomposition re-write Ω(θ) as

Ω(θ) = P+(θ)Λ+(θ)P+(θ)′ + P0(θ)Λ0(θ)P0(θ)′

Performing a similar decomposition for Ω̂(θ)

Ω̂(θ) = P̂+(θ)Λ̂+(θ)P̂+(θ)′ + P̂0(θ)Λ̂0(θ)P̂0(θ)′

Where P̂+(θ) is an (m − m̄(θ)) × (m − m̄(θ)) matrix of sample eigenvector estimates of

P+(θ) with corresponding sample eigenvalue Λ̂+(θ). P̂0(θ) and Λ̂0(θ) are similarly the

sample estimates of P0(θ) and Λ0(θ) respectively letting P̂ (θ) := (P̂+(θ), P̂0(θ)).

Define Ω = Ω(θ0) and Ω̂ = Ω̂(θ0) and m̄(θ0) := m̄ for notational simplicity throughout and

let the eigenvalues/vector matrices of both Ω and Ω̂ be defined without θ0, for example

P := P (θ0), P̂ := P̂ (θ0) and so on.

3.1 Asymptotic Eigensystem Expansions

Borrowing results from the Matrix Perturbation literature second order expansions of the

eigenvectors of Ω̂(θn) are derived, Hassani et al. (2011). Using this result second order

expansions of the eigenvalues around θ0 are established. These results for the sample mo-

ment variance matrix are new in the literature and of interest in their own right.

Assumption 1 (A1): General Eigensystem Expansions

(i) c ≤ [Λ+]jj ≤ K for some 0 < c ≤ K < ∞ ∀ j = {1, .., m̄}, (ii) ||Ω̂(θ) − Ω̂(θ∗)|| ≤

M̂ ||θ − θ∗|| ∀θ, θ∗ ∈ Θ for some M̂ = Op(1), (iii) m <∞

A1(i) is a relatively trivial condition which assumes the non-zero eigenvalues are well

separated from zero and bounded. A2(ii) requires an asymptotic Lipschitz condition on
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the sample variance matrix. A3(iii) is an assumption of a finite number of moments

which is made for simplicity, all results could readily be extended to allow m → ∞ with

appropriate rate restrictions relative to n.

Define Ω+ = P+Λ+P
′
+ and Ω∗+ = P+Λ−1

+ P ′+

Theorem 1 (T1): General Eigensystem expansions of

Under A1

P̂+(θn) = P+ +Op(||Ω̂− Ω|| ∧ ||∆n||) (5)

Λ̂+(θn) = Λ+ +Op(||Ω̂− Ω|| ∧ ||∆n||) (6)

P̂0(θn) = P0 − Ω∗+Ω̂(θn)P0 +Op((||∆n|| ∧ ||Ω̂− Ω||)2) (7)

Λ̂0(θn) = P ′0Ω̂(θn)P0 − P ′0Ω̂(θn)Ω∗+Ω̂(θn)P0 +Op((||∆n|| ∧ ||Ω̂− Ω||)3) (8)

Second order expansions for the eigenvectors/values corresponding to non-zero eigenval-

ues are also provided in Lemma A2. As shown in Section 1.4 second order terms in

Λ̂+(θn),P̂+(θn) do not enter first order asymptotics for T̂GAR(θn) these results are omitted

here for brevity. Theorem 2 provides expansions of the eigensystem of Ω̂(θn) around θ0

under an i.i.d assumption on wi with corresponding regularity conditions.

Assumption 2 (A2) : i.i.d Eigensystem Expansions

(i) wi(i = 1, .., n) is an i.i.d sequence, (ii) E[||gi||2] < ∞,(iii) 1
n

∑n
i=1 ||Gi(θ) − Gi(θ∗)|| ≤

M̂ ||θ − θ∗|| ∀θ, θ∗ ∈ Θ where M̂ = Op(1), (iv) E[||Gi||2] <∞

A2(i) is made largely for simplicity, all results could be extended to allow for dependence

and heteroscedasticity under further regularity conditions. A2(iii) requires that for n large

enough the average of any elements of Gi(θ) is sufficiently continuous. This is a weaker

condition than Gi(θ) is continuous, though a sufficient condition for A2(ii) is that Gi(·)

satisfies the Lipschitz condition. A2 (ii), (iv) are both required such that the remainder

terms in the eigensystem expansions are bounded.

For any arbitrary sequence ∆n where ||∆n|| > 0, ||∆n|| = op(n
−1/2) define ∆̄n = ||∆n||−1∆n

where ∆̄n
p→ ∆ where ||∆|| > 0 and is bounded. Define gi := gi(θ0), Gi := Gi(θ0) and the

following4 Γ = P ′0E[Gi∆∆′G′i]P0,Ψ = P ′0E[Gi∆g
′
i], Φ := Γ−ΨΩ∗+Ψ′.

4For simplicity w omit dependence of Γ, Ψ on the arbitrary limit ∆.
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Theorem 2 (T2): i.i.d Eigensystem Expansions

Under A1, A2

P̂+(θn)
p→ P+ (9)

Λ̂+(θn)
p→ Λ+ (10)

||∆n||−1(P̂0(θn)− P0)
p→ Ω∗+Ψ′ (11)

||∆n||−2Λ̂0(θn)
p→ Φ (12)

4 Generalized Anderson Rubin Statistic with Singular Vari-

ance

This section derives conditions under which the GAR statistic has a χ2
m limit distribution

making no assumption on the form of singularity.

The GAR statistic T̂GAR(θ) does not exist at θ = θ0 when Ω is singular. However if

Rank(Ω(θ)) = m for all θ ∈ B(θ0, ε)/θ0 for some ε > 0 then TGAR(θn) will exist w.p.1.

The formal condition under which T̂GAR(θn) exists asymptotically is given in Assumption

3(ii). As such the limit of the GAR statistic is derived at a point arbitrarily close to θ0
5.

Assumption 3 (A3) : Limit Distribution of GAR Statistic

(i) Null(Ω) ⊆ Null(GG′), (ii) Φ is s.p.d.

A3(i) is a crucial condition needed for the GAR statistic to have the standard χ2
m limit

distribution. Note that this assumption always holds for NLS where J = 1 by the results

in Section 1.2.1. When A3(i) is violated the GAR statistic in general is Op(n) as shown

in Theorem 4. This is termed the ‘moment-singularity bias’ in Section 1.4.2.

A3(ii) is required for T̂GAR(θn) to exist w.p.1 when the function does not exist at θ0 due

to a singularity in Ω. Φ = P ′0(E[Gi∆∆′G′i] − E[Gi∆g
′
i]Ω
∗
+E[gi∆

′G′i])P0 is p.s.d and in

general will be p.d unless P ′0Gi = 0 which would arise in the case where P ′0gi(θ) = 0 for

all θ ∈ B(θ0, ε) where ε > 0. In this case P ′0Gi(θ) = 0 which implies P ′0Gi = 0. Singularity

5Note that this is not an assumption that the true parameter is a sequence converging to θ0 at some

rate, merely that we are evaluating the distribution of TGAR(θ) at points arbitrarily close to θ0. Using these

results the true parameter could be modeled as some sequence converging to a limit θ0 which is commonly

used to model certain forms of weak-identification in the literature, for example Stock and Wright (2000),

Andrews and Cheng (2012).
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from identification failure invariably occurs at discrete points in the parameter space. It

is unusual to find a case of identification failure where some linear combination x ∈ Rm

such that x′g(θ) = 0 for all θ ∈ B(θ0, ε) where ε > 0. Example 1,2 and 3 all have singular

variance occurring at a point θ0 where the variance is non-singular at some perturbation

away from θ0.

Theorem 3 (T3): Under A1, A2,A3

T̂GAR(θn)
d→ χ2

m (13)

Remarks (i) Note that in the standard case where Ω is assumed to be non-singular,

A2 (iii), (iv) and A3 are not made. In this case all that is required to establish (13)

is
√
nĝ(θn)

d→ N(0,Ω) which holds under A2(i),(ii) and that Ω̂(θ) is (asymptotically)

continuous around θ0 which follows from A1(ii). It is then straightforward to show that

T̂GAR(θn)
d→ χ2

m .

(ii) When Ω is singular second order terms in the eigensystem expansions of Ω̂(θn)−1

enter first order asymptotics. As such second order terms in
√
nĝ(θn) impact first order

asymptotics, requiring further regularity conditions on the first order derivative. These

conditions are currently unknown in the literature.

Theorem 3 is confirmed in a simulation based on the Heckman Selection example in Section

1.2.2. In this case the crucial assumption that Null(Ω) ⊆ Null(GG′) holds as this is NLS

with J = 1.

4.1 Simulation : Heckman Selection

Consider the setup in Example 1 where

y = θ1 + θ2x+ θ3
φ(θ4 + θ5x)

Φ(−(θ4 + θ5x))
+ ε

Where (x, e) are i.i.d and x ∼ N(0, 1) and ε|x ∼ N(0, 1).

Setting θ0 = (1, 1, 0.2, 0.1, κ) for κ = {0.05, 0.5, 1}, N = {100, 500, 1000, 5000, 50000}

For κ close to zero NLS is poorly identified as the Inverse Mills Ratio is approximately

linear for arguments less than 2, Puhani (2000). Rejection probabilities for the event that

the GAR function at θ0 + 1/n is less than the 90% quantile of a χ2
5 based on R = 10000

simulations are calculated. Evidence in Table 1.1 shows that for n large the GAR has

correct coverage based on a χ2
5 approximation. Hence the GAR statistic provides correct

coverage asymptotically for general non-linear forms of identification failure under A1-A3

as shown in Theorem 3.

14



Table 1: GAR Rejection Probabilities: Heckman Selection

κ = 0.05 κ = 0.5 κ = 1

n = 100 0.101 0.079 0.076

n = 500 0.087 0.085 0.09

n = 1000 0.0892 0.088 0.095

n = 5000 0.093 0.094 0.096

n = 50000 0.103 0.102 0.109

4.2 Moment-Singularity Bias when Null(Ω) * Null(GG′)

A3(i) is critical in the proof of Theorem 3. When this condition is violated- with examples

given in Section 1.2.2 in general T̂GAR(θn) is unbounded in probability.

Theorem 4 (T4) : Under A1, A2, A3(ii) when A3(i) is violated

T̂GAR(θn)/n
p→ ∆′G′P0Φ−1P ′0G∆ (14)

Where ∆′G′P0Φ−1P ′0G∆ > 0 since Φ is full rank by A3(ii). Hence the GAR statistic is

Op(n) when A3(ii) is violated. When A3(i) is almost violated the GAR statistic is shown

in the simulation below to be potentially very oversized even for large sample sizes.

Theorem 4 is particularly striking as it implies there exist cases of correctly specified

moments which strongly identify θ0 where identification robust inference based on the

GAR statistic would (asymptotically) yield the empty set. This would usually regarded

as a sign of moment misspecification.

4.2.1 Simulation : Linear IV Simultaneous Equations

Consider Example 3 where

y1 = x1 + ε1

y2 = 0.5x2 + ε2

x1 = π̄(1 + z) + η1
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x2 = −π̄(1 + z2) + η2

η1 = υ1 exp(−ζ1z), η2 = υ2 exp(−ζ2z)

υ1 =

√
1 + ρ

2
ζ1 +

√
1− ρ

2
ζ2, υ2 =

√
1 + ρ

2
ζ1 −

√
1− ρ

2
ζ2

(ζ1, ζ2, ε1, ε2)′|z i.i.d∼ N(04,Ξ) Ξ =


1 0 0.3 0

0 1 0.5 0

0.3 0 1 0

0 0.5 0 1


For each π̄ = {0, 0.1, 0.5} (uncorrelated, weak, strong) instruments the following simu-

lation is performed. For instrument sets I1 = {1, z}, I2 = {1, z, z2} , I3 = {1, z, z2, z3}

which respectively yield m = {4, 6, 8} moments rejection probabilities are formulated for

the GAR statistic based on a the 0.9 quantile of the relevant χ2
m based on 5000 rep-

etitions where θn = (1, 1/2) + 1/n for z
i.i.d∼ N(0, 1) n = {100, 500, 1000, 5000, 50000},

ρ = {0.9995, 0.999995, 1} (ζ1, ζ2) = {(0, 0), (0, 0.5), (0, 1)}.

When π̄ = 0 the condition Null(Ω) ⊆ Null(GG′) is automatically satisfied, in which case

the GAR statistic should have a rejection probability around 0.1 for large sample sizes and

is verified in Table 1.2. For brevity only the case ζ1 = ζ2 = 0 is reported, similar results

were found for both other cases.

When π̄ 6= 0 then when Ω is singular in directions G does not vanish the GAR statistic is

in general oversized

(i) When ρ = 1 and ζ1 = ζ2 = 0 then Ω is singular as shown in Example 3 δ′Ω = 0 implies

δ′G = 0 if and only if π̄ = 0. The stronger the instruments (the larger is π̄) the more

oversized the rejection probability for any m.

(ii) When ρ = 1 and ζ1 6= ζ2 then Ω approaches a singular matrix as m increases. Fixing

ζ1 = 0 and let ζ2 equal 0.5 and 1. The larger is ζ2 the less well that any m polynomials

of z can approximate exp(ζ2/2z) (i.e h2(z)−1/2 from notation in Example 3). The GAR

rejection probability is decreasing in ζ2 for any given m, π̄ and increasing in both m and

π̄.

(iii) When ρ < 1 then Ω is full rank, however the closer ρ is to 1 in general the larger the

GAR statistic as π̄ increases. Even for large sample sizes the rejection probabilities can

be very close to 1.

Table 1.3 shows the rejection probabilities for the weak instrument case. As expected

when ρ = 1 and ζ1 = ζ2 = 0 the rejection probabilities converge to 1 as n increases (since

GAR is unbounded in this case for any m). For ρ = 0.999995 and 0.9995 the rejection
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Table 2: GAR Rejection Probabilities π̄ = 0

ρ = 0.9995 ρ = 0.99995 ρ = 1

m = 4 m = 6 m = 8 m = 4 m = 6 m = 8 m = 4 m = 6 m = 8

ζ 1
=
ζ 2

=
0

n = 100 0.099 0.080 0.074 0.090 0.092 0.077 0.099 0.904 0.074

n = 500 0.099 0.099 0.097 0.095 0.093 0.087 0.101 0.094 0.084

n = 1000 0.010 0.102 0.0891 0.097 0.103 0.096 0.098 0.094 0.09

n = 5000 0.098 0.093 0.103 0.093 0.106 0.104 0.101 0.097 0.099

n = 50000 0.010 0.102 0.096 0.098 0.101 0.098 0.102 0.091 0.102

probabilities for any n,m are smaller then when ρ = 1 however still oversized in small

samples.

As ζ2 increases then in general the rejection probabilities decrease for any ρ as for any

given m the instrument set less well approximate the null space of Ω(z, θ0). As m increases

the rejection probabilities increase.

This pattern is again observed in Table IV for strong instruments. In this case the rejection

probabilities for any given n,m, ρ, ζ2 is relatively more oversized in general than when

π̄ = 0.1. This corresponds to the fact the condition Null(Ω) ⊆ Null(GG′) is potentially

more strongly violated in this case.
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Table 3: GAR Rejection Probabilities π̄ = 0.1

ρ = 0.9995 ρ = 0.999995 ρ = 1

m = 4 m = 6 m = 8 m = 4 m = 6 m = 8 m = 4 m = 6 m = 8

ζ 1
=
ζ 2

=
0

n = 100 0.135 0.123 0.198 0.428 0.38 0.8 0.492 0.421 0.867

n = 500 0.11 0.114 0.132 0.727 0.724 0.998 0.995 0.996 1

n = 1000 0.106 0.1 0.12 0.628 0.6412 0.992 1 1 1

n = 5000 0.091 0.103 0.095 0.251 0.253 0.599 1 1 1

n = 50000 0.092 0.1 0.108 0.117 0.11 0.15 1 1 1

ζ 1
=

0
ζ 2

=
0.

5

n = 100 0.117 0.118 0.36 0.204 0.292 0.8 0.218 0.329 0.85

n = 500 0.102 0.107 0.267 0.124 0.542 1 0.119 0.954 1

n = 1000 0.106 0.103 0.194 0.105 0.461 1 0.104 1 1

n = 5000 0.105 0.098 0.109 0.106 0.196 0.986 0.094 1 1

n = 50000 0.103 0.105 0.103 0.099 0.107 0.278 0.095 0.676 1

ζ 1
=

0
ζ 2

=
1

n = 100 0.080 0.107 0.521 0.089 0.234 0.739 0.076 0.263 0.764

n = 500 0.094 0.099 0.623 0.086 0.247 1 0.094 0.314 1

n = 1000 0.087 0.099 0.42 0.099 0.162 1 0.095 0.199 1

n = 5000 0.098 0.088 0.150 0.093 0.102 0.972 0.102 0.096 1

n = 50000 0.101 0.096 0.095 0.099 0.095 0.230 0.104 0.098 1
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Table 4: GAR Rejection Probabilities π̄ = 0.5

ρ = 0.9995 ρ = 0.999995 ρ = 1

m = 4 m = 6 m = 8 m = 4 m = 6 m = 8 m = 4 m = 6 m = 8

ζ 1
=
ζ 2

=
0

n = 100 0.927 0.893 0.999 1 1 1 1 1 1

n = 500 0.495 0.477 0.939 1 1 1 1 1 1

n = 1000 0.317 0.286 0.706 1 1 1 1 1 1

n = 5000 0.145 0.144 0.222 1 1 1 1 1 1

n = 50000 0.104 0.102 0.110 0.530 0.544 0.964 1 1 1

ζ 1
=

0
ζ 2

=
0.

5

n = 100 0.761 0.895 1 0.988 1 1 0.992 1 1

n = 500 0.292 0.480 1 0.690 1 1 0.713 1 1

n = 1000 0.193 0.283 1 0.404 1 1 0.425 1 1

n = 5000 0.106 0.125 0.642 0.148 1 1 0.148 1 1

n = 50000 0.100 0.106 0.150 0.102 0.340 1 0.107 1 1

ζ 1
=

0
ζ 2

=
1

n = 100 0.171 0.707 1 0.200 1 1 0.194 0.996 1

n = 500 0.101 0.277 1 0.097 0.996 1 0.089 0.955 1

n = 1000 0.096 0.182 1 0.091 0.936 1 0.098 0.349 1

n = 5000 0.088 0.109 0.978 0.094 0.306 1 0.092 0.102 1

n = 50000 0.095 0.105 0.220 0.102 0.108 1 0.091 0.102 1

5 Conclusion

This paper studies identification robust inference based on the GAR statistic with general

forms of identification failure. As demonstrated the non-singular variance assumption is

inextricably linked to the assumption of first order identification. This issue has largely

been overlooked in the identification literature. A notable exception is Andrews and Cheng

(2012) who deal with the singular variance from identification failure under an assumption
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the form of singular variance is known up to model parameters.

In order to study properties of the GAR statistic with singular variance second order ex-

pansions of the eigensystem of the moment variance matrix around the true parameter

were derived. This asymptotic approach is new in the identification literature and will

prove useful for extending results for other identification robust statistics.

Without making any identification assumptions (and hence allowing for general forms of

singular variance) the GAR statistic is asymptotically χ2
m under a further set of condi-

tions. Crucially one condition requires the null space of the moment variance matrix lie

within that of the outer product of the expected first order derivative matrix. When this

assumption is violated the GAR statistic is unbounded. In this case confidence sets based

on inverting the GAR statistic would asymptotically yield the empty set. This result is

unknown in the literature and is termed the ‘moment-singular bias’

Examples of how this condition could be violated are provided. Roughly speaking this

problem can occur when moments are not weakly identified and are highly correlated at

the true parameter. This paper models moments as exactly singular, an interesting exten-

sion would model moments as weakly-singular. Namely model the smallest eigenvalues as

shrinking to zero at some rate, analogous to the weak-instrument methodology for mod-

eling weak identification. Simulation evidence shows that when the condition on the null

space of Ω and GG′ is almost not satisfied that the GAR statistic in general is oversized.

The majority of the literature on properties of estimators and identification robust in-

ference make the assumption moments have non-singular variance or singular variance

of known form. This paper is the first step in providing a platform to extend results in

other settings without making a non-singular variance assumption, or assumptions on the

form of singularity Andrews & Cheng (2012). Examples include dropping the non-singular

variance assumption for identification robust inference from the GEL objective function

made in Guggenberger, Ramalho & Smith (2008).

6 Appendix

Definitions

For any random variables x E[x] refers to the mathematical expectation taken with respect

to (w.r.t) the density of x. Denote
p→ ,

d→, as convergence in probability and convergence in

distribution respectively. For any deterministic sequence an and constant b then an → b

denotes b as the deterministic limit of an.
d∼ is shorthand for ‘ is distributed as” and
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‘w.p.a.1’ denotes ‘with probability approaching 1’ and ‘w.p.1’ denotes ‘with probability 1’.

op(a) refers to a variable that converges to zero w.p.a.1 when divided by a and similarly

Op(a) a variable bounded in probability when divided by a. Let A refer to any arbitrary

matrix then R(·) be such that R(A) denote the rank of A .||A|| and tr(A) are the Euclidean

Norm and Trace of a matrix A respectively. CMT refers to the Continuous Mapping

Theorem. For any a > 0 Ia×a refers to the a × a Identity Matrix and 0a an a × 1 vector

of zeroes. a ∧ b := max{a, b}

Appendix A1: Auxiliary Lemmas

Lemma A1: w.p.1

Λ̂0 = 0

Proof of Lemma A1:

P ′0ΩP0 = 0 by definition of P0.

E[P ′0gig
′
iP0] = 0

Since P ′0gig
′
iP0 is p.d then P ′0gi = 0 a.s(z) Hence P ′0Ω̂P0 = 1

n

∑n
i=1 P

′
0gig

′
iP0 = 0 So the

rank of Ω̂(θ0) ≤ m− m̄ w.p.1 and hence Λ̂0(θ0) = 0.

Q.E.D

Lemma A2: Let Â and A be two square matrices of dimension r where Rank(A) = r̄

and ||Â − A|| = Op(εn) for some bounded non-negative sequence εn. Eigen-decompose

A = RDR′ where RR′ = Ir×r and RDR′ = R+D+R
′
+ + R0D0R

′
0 where D0 = 0r̄×r̄ and

D+ is a full rank diagonal (r− r̄)×(r− r̄) matrix with the eigenvalues of A on the diagonal

where 0 ≤ ||D+|| ≤ K for K <∞. Similarly express Â = R̂D̂R̂′ = R̂+D̂+R̂
′
+ + R̂0D̂0R̂

′
0.

Define B = Â−A

R̂+ = R+ −R0R
′
0B
′R+D

−1
+ +Op(ε

2
n)

R̂0 = R0 −R+D
−1
+ R′+BR0 +Op(ε

2
n)

By CS||R0R
′
0B
′R+D

−1
+ || ≤ ||R0||2Op(||D+||)Op(||B||) = Op(εn) since ||D+|| = O(1) then

R̂+ = R+ +Op(εn)
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Proof of Lemma A2: This result follows from equations (8),(9) in Hassani et al. (2011)

.

Q.E.D

Lemma A3: Under A1,A2

||∆n||−2P ′0Ω̂(θn)P0
p→ Γ

Proof of Lemma A3:

Ω̂(θn) =
1

n

n∑
i=1

gi(θn)gi(θn)′

Taylor expand gi(θn) around θ0

gi(θn) = gi +Gi(θ̄n)∆n (15)

Where θ̄n is a vector between θ0 and θn Define Ḡi := Gi(θ̄n)

Ω̂(θn) = Ω̂ +
1

n

n∑
i=1

Ḡi∆n∆′nḠ
′
i +

1

n

n∑
i=1

gi∆
′
nḠ
′
i +

1

n

n∑
i=1

Ḡi∆ng
′
i (16)

By Lemma A1(i) Pr{P ′0gi(θ0) = 0} = 1 so that w.p.1

P ′0Ω̂(θn)P0 =
1

n

n∑
i=1

P ′0Ḡi∆n∆′nḠ
′
iP0 (17)

=
1

n

n∑
i=1

P ′0((Ḡi −Gi)∆n∆′nḠ
′
i +Gi∆n∆′n(Ḡi −Gi)′)P0 +

1

n

n∑
i=1

P ′0Gi∆n∆′nG
′
iP0

By repeated application of CS

|| 1
n

n∑
i=1

P ′0(Ḡi −Gi)∆n∆′nG
′
iP0|| ≤ ||∆n||2||||P0||2

1

n

n∑
i=1

||G′i(Ḡi −Gi)|| (18)

≤ ||∆n||2||||P0||2 1
n

∑n
i=1 ||Gi||

1
n

∑n
i=1 ||Ḡi −Gi||

By A2(iii) 1
n

∑n
i=1 ||Ḡi − Gi|| = Op(||∆n||) and 1

n

∑n
i=1 ||Gi|| = Op(1) by A2 (i),(iv). Since

||P0|| = m̄ <∞ by A1(iii)

|| 1
n

n∑
i=1

P ′0((Ḡi −Gi)∆n∆′nG
′
iP0|| = Op(||∆n||3) (19)

Similarly it can be shown that || 1n
∑n

i=1 P
′
0((Ḡi − Gi)∆n∆′nḠ

′
iP0|| = Op(||∆n||3) Define

Γ̂n = P ′0
1
n

∑n
i=1Gi∆̄n∆̄′nG

′
iP0, Γn = P ′0

1
n

∑n
i=1 E[Gi∆̄n∆̄′nG

′
i]P0,
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Then by (18) and (19) substituted in to (17) implies

||∆n||−2P ′0Ω̂(θn)P0 = Γ̂n +Op(||∆n||) (20)

Finally to show Γ̂n
p→ Γ establishing the result

As E[Γ̂n] = Γn and by application of CS

||Γn|| ≤ ||∆̄n||2E[||Gi||2] = O(1) (21)

Where ∆̄n = O(1) and by A2(iv) E[||Gi||2] = O(1)

Under A2(i) wi(i = 1, .., n) is i.i.d and E[Γ̂n] = Γn → Γ by CMT (since ∆̄n∆̄′n → ∆∆′ and

Γn is a continuous function of the bounded sequence ∆̄n). An application of the Khinctine

Weak Law of Large of Numbers (KWLLN) element by element to Γ̂n then Γ̂n
p→ Γ and

by (20) noting that ||∆n|| = op(n
−1/2) establishes the result.

Q.E.D

Lemma A4: Under A1, A2

||∆n||−1P ′0Ω̂(θn)
p→ Ψ

Proof of Lemma 4:

By Lemma A1(i) and (16)

P ′0Ω̂(θn) = P ′0

n∑
i=1

Ḡi∆ng
′
i + P ′0

1

n

n∑
i=1

Ḡi∆n∆′nḠ
′
i (22)

Where ||P ′0 1
n

∑n
i=1 Ḡi∆n∆′nḠ

′
i|| = Op(||∆n||2) as shown in the proof of Lemma A3 as ||Γ|| =

O(1) by (1.21)

P ′0Ω̂(θn) = P ′0

n∑
i=1

Ḡi∆ng
′
i +Op(||∆n||2) (23)

By CS,

||P ′0
1

n

n∑
i=1

(Ḡi −Gi)∆ng
′
i|| ≤ ||P0||

1

n

n∑
i=1

||Ḡi −Gi||||∆n||||
1

n

n∑
i=1

||gi|| (24)

Where 1
n

∑n
i=1 ||gi|| = Op(1) by KWLLN under A2(i) and A2(ii) that E[||gi||2] = O(1) and

1
n

∑n
i=1 ||Ḡi −Gi|| = Op(||∆n||) by A2(iii) so that ||P ′0 1

n

∑n
i=1(Ḡi −Gi)∆ng

′
i|| = Op(||∆n||2).

Define Ψ̂n := P ′0
1
n

∑n
i=1Gi∆̄ng

′
i, Ψn = P ′0E[Gi∆̄ng

′
i] then by (24)

||∆n||−1P ′0
1

n

n∑
i=1

Gi∆ng
′
i = Ψ̂n +Op(||∆n||) (25)
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Since E[Ψ̂n] = Ψn where Ψn is bounded for all n since by CS

||Ψn|| ≤ ||∆̄n||E[||Gi||]E[||gi||] (26)

Where E[||Gi||] = O(1) E[||gi||] = O(1) by A2 (ii),(iv). By the KWLLN Ψ̂n
p→ Ψn where

||∆̄n|| = O(1) where Ψn → Ψ by CMT establishing the result.

Q.E.D

Appendix A2: Main Theorems

Proof of Theorem 1:

Define the following from Lemma A2

Â = Ω̂(θn), A = Ω where B = Ω̂(θn)−Ω and ||Ω̂(θn)−Ω|| ≤ ||Ω̂(θn)− Ω̂||+ ||Ω̂−Ω|| by T ,

||Ω̂(θn)− Ω̂|| = Op(||∆n||) by A1(ii)so that εn := ||Ω̂−Ω|| ∧ ||∆n|| where R+ = P+, R0 = P0,

R̂+ = P̂+(θn), R̂0 = P̂0(θn) and D+ = Λ+ then Since ||Λ−1
+ ||||P0||||P+||||Ω̂(θn) − Ω̂|| =

O(1)Op(||∆n||) since m = O(1) by A1 (iii) hence ||P0|| = m̄ = O(1) where 0 ≤ m̄ ≤ m and

||P+|| = m− m̄ = O(1) where ||Λ−1
+ || = O(1) by A1(i).

Then by Lemma A2

P̂+(θn) = P+ +Op(||Ω̂− Ω|| ∧ ||∆n||) (27)

Establishing (1.5).

||Λ̂(θn)− Λ|| ≤ ||Ω̂(θn)− Ω|| (28)

By Theorem 4.2 of Bosq (2000). Where it has been shown that ||Ω̂(θn) − Ω|| = Op(||Ω̂ −

Ω̂|| ∧ ||∆n) establishing (6).

Now to show (7) and (8) again using Lemma A2,

P̂0(θn) = P0 − Ω∗+Ω̂(θn)P0 +Op((||∆n|| ∧ ||Ω̂− Ω||)2) (29)

Establishing (7).

Λ̂0(θn) = P̂0(θn)′Ω̂(θn)P̂0(θn) (30)

= (P̂0(θn)− P0)′Ω̂(θn)(P̂0(θn)− P0) + P ′0Ω̂(θn)(P̂0(θn)− P0)

+(P̂0(θn)− P0)′Ω̂(θn)P0 + P ′0Ω̂(θn)P0
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Where by (7) P̂0(θn)− P0 = −Ω∗+Ω̂(θn)P0 +Op(||∆n||2)

Noting that Ω = Ω+ and by CS ||Ω∗+Ω̂(θn)P0|| ≤ ||Ω∗+||||P0||||Ω̂(θn) − Ω̂(θ0)|| = Op(||∆n||)

since ||Ω∗+|| = O(1) by A1(i) and P0Ω̂(θn) = P ′0(Ω̂(θn)− Ω̂(θ0)) by Lemma A1(i) so that,

(P̂0(θn)− P0)′Ω̂(θn)(P̂0(θn)− P0) (31)

= P ′0Ω̂(θn)Ω∗+Ω̂(θn)P0 +Op(||∆n|| ∧ ||Ω̂− Ω||)3)

P ′0Ω̂(θn)(P̂0(θn)− P0) (32)

= −P ′0Ω̂(θn)Ω∗+(Ω̂(θn)P0 +Op((||∆n|| ∧ ||Ω̂− Ω||)3)

Hence plugging (31),(32) in to(30)

Λ̂0(θn) = P ′0Ω̂(θn)P0 − P ′0Ω̂(θn)Ω∗+Ω̂(θn)P0 +Op((||∆n|| ∧ ||Ω̂− Ω||)3) (33)

Which establishes (8).

Q.E.D

Proof of Theorem 2:

By (1.7)

P̂+ = P+ +Op(||∆n|| ∧ ||Ω̂− Ω||) (34)

Λ̂+ = Λ+ +Op(||∆n|| ∧ ||Ω̂− Ω||) (35)

Where ||Ω̂− Ω|| = Op(n
−1/2) by A2(i),(ii) and ||∆n|| = op(n

−1/2) establishing (9),(10).

By T1

||∆n||−1(P̂0(θn)− P0) = −||∆n||−1Ω∗+Ω̂(θn)P0 + op(n
−1/2) (36)

Since ||∆n||−1Op((||∆n|| ∧ ||Ω̂−Ω||)2) = op(n
−1/2) since ||∆n|| = op(n

−1/2) By the CMT and

Lemma A3 ||∆n||−1Ω∗+Ω̂(θn)P0
p→ Ω∗+Ψ′ establishing (1.11).

By (8)

||∆||−2Λ̂0(θn) = ||∆n||−2P ′0Ω̂(θ0)P0 (37)

−||∆n||−2P ′0Ω̂(θn)Ω∗+Ω̂(θn)P0 + op(n
−1/2)
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Since ||∆n||−2Op((||∆n|| ∧ ||Ω̂ − Ω||)3) = op(n
−1/2) By Lemma A2 ||∆n||−2P ′0Ω̂(θ0)P0

p→ Γ

and by Lemma A3 and CMT

||∆n||−2P ′0Ω̂(θn)Ω∗+Ω̂(θn)P0
p→ ΨΩ∗+Ψ′ establishing (1.12).

Q.E.D

Proof of Theorem 3:

T̂GAR(θn) = nP̂+(θn)′ĝ(θn)′Λ̂+(θn)−1P̂ ′+(θn)ĝ(θn) (38)

+nP̂0(θn)′ĝ(θn)′Λ̂0(θn)−1nP̂0(θn)′ĝ(θn)

Using the expansion of ĝ(θn) around θ0 summed across i in (15)

√
nĝ(θn) =

√
nĝ(θ0) +

√
nĜ(θ̄n)∆n (39)

By repeated application of CS,

||
√
n(Ĝ(θ̄n)− Ĝ(θ0))∆n|| ≤

√
n||∆n||

1

n

n∑
i=1

||Ḡi −Gi|| = Op(n
1/2||∆n||2) (40)

By A2 (ii) where ||∆n||2n1/2 = op(n
−1/2) hence

√
nĝ(θn) =

√
nĝ(θ0) +

√
nĜ(θ0)∆n + op(n

−1/2) (41)

Firstly establish that

n(P̂+(θn)′ĝ(θn))′Λ̂(θn)−1P̂+(θn)′ĝ(θn) = n(P ′+ĝ(θ0))′Λ−1
+ P ′+ĝ(θ0) + op(1) (42)

By (1.9) P̂+(θn) = P+ + op(1) and (41)

P̂+(θn)′
√
nĝ(θn) = P ′+(

√
nĝ(θ0) + Ĝ(θ0)

√
n∆n) + op(1) (43)

= P ′+
√
nĝ(θ0) + op(1) (44)

Since ||P ′+Ĝ(θ0)
√
n∆n|| ≤ n1/2||P+||||Ĝ(θ0)|||||∆n|| = n1/2O(1)Op(1)op(n

−1/2) = op(1).

Λ̂+(θn) = Λ+ + op(1) by (10) and under A1 (i) then Λ−1
+ exists so that by CMT

Λ̂+(θn)−1 = Λ−1
+ + op(1) (45)

Together with (44) implies (42) so that n(P̂+(θn)′ĝ(θn))′Λ̂(θn)−1P̂+(θn)′ĝ(θn)
d→ χ2

m−m̄.

Since
√
nP ′0ĝ(θ0)

p→ N(0,Λ+) by A2(i),(ii) and the Lindberg-Levy Central Limit Theorem.

26



Under A1, A2 , A3 it can be shown that

||∆n||−1√nP̂0(θn)′ĝ(θn) = P ′0
√
n(Ĝ(θ0)−G)∆̄n −ΨΩ∗+

√
nĝ(θ0) + op(1) (46)

By (1.11) ||∆n||−1(P̂ (θn)− P0) = −Ω∗+Ψ′ + op(1)

||∆n||−1√nP̂0(θn)′ĝ(θn) = (−Ω∗+Ψ′ + op(1))′
√
nĝ(θn) + ||∆n||−1P ′0

√
nĝ(θn) (47)

Where by (39)
√
nĝ(θn) =

√
nĝ(θ0)+op(1) hence (−Ω∗+Ψ′+op(1))′

√
nĝ(θn) = −ΨΩ∗+

√
nĝ(θ0)+

op(1) To established the first part on the right hand side of (1.46) note that

||∆n||−1P ′0
√
nĝ(θn) = P ′0(Ĝ(θn)−G)∆̄n + op(1) (48)

Since by Lemma A1 (i) P ′0
√
nĝ(θ0) = 0 w.p.1. and by A3(i) P ′0G = 0. By (12)

||∆n||−2Λ̂0(θn) = Φ + op(1) (49)

Where Φ is p.d by A3(ii). By CMT and (49)

(||∆n||−2Λ̂0(θn))−1 = Φ−1 + op(1) (50)

Together (146),(50) establish that w.p.a.1

n(P̂0(θn)′ĝ(θn))′Λ̂0(θn)−1P̂0(θn)′ĝ(θn)) (51)

= (P ′0(
√
n(Ĝ(θ0)−G)∆̄n−ΨΩ∗+

√
nĝ(θ0)))′Φ−1(P ′0(

√
n(Ĝ(θ0)−G)∆̄n−ΨΩ∗+

√
nĝ(θ0)))

Now it can be established that

P ′0(
√
n(Ĝ(θ0)−G)∆̄n −Ψ′Ω∗+

√
nĝ(θ0))

d→ N(0,Φ) (52)

Define bi = P ′0((Gi −G)−ΨΩ∗+gi)

P ′0(
√
n(Ĝ(θ0)−G)∆̄n −ΨΩ∗+

√
nĝ(θ0)) =

1√
n

n∑
i=1

bi (53)

Where E[ 1√
n

∑n
i=1 bi] = 0

E[
1

n

n∑
i=1

bib
′
i] = P ′0E[Gi∆̄n∆̄n

′
G′i]P0 −ΨnΩ∗+ΩΩ∗+Ψ′n (54)

By A1 (i) that wi is i.i.d and by definition Ψn = P ′0E[Gi∆̄ng
′
i] → Ψ since ∆̄n → ∆

where ||∆|| < ∞ (and likewise Γn := P ′0E[Gi∆̄n∆̄′nG
′
i]P0 → Γ by CMT) as E[||Gi||2] < ∞,

E[||gi||2] <∞ by A2(ii),(iv).

E[
1

n

n∑
i=1

bib
′
i]→ Φ (55)
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As wi is i.i.d then so is bi and Φ then by the Multivariate Lindberg-Levy Central Limit

theorem

P ′0(
√
n(Ĝ(θ0)−G)∆̄n −ΨΩ∗+

√
nĝ(θ0))

d→ N(0,Φ) (56)

Hence (51) converges in distribution to χ2
m̄ since both terms on right hand side of (38) are

orthogonal asymptotically and the sum of the two is asymptotically χ2
m.

Q.E.D

Proof of Theorem 4:

Divide equation (51) by n (noting that P ′0G 6= 0 since A3(i) is violated) it is straightforward

to establish that

(P̂0(θn)′ĝ(θn))′Λ̂0(θn)−1P̂0(θn)′ĝ(θn))
p→ ∆′G′P0Φ−1P ′0G∆ (57)

By A2(i),(iv) then P0Ĝ(θ0)
p→ P ′0G. Since the first term on the right hand side of (38)

converges to zero in probability when divided by n, then it is straightforward to establish

that T̂GAR(θn)/n
p→ ∆′G′P0Φ−1P ′0G∆.

Q.E.D

28



References

[1] Andrews, K. (19987). Asymptotic Results for Generalized Wald Tests, Econometric

Theory, Cambridge University Press, vol. 3(03), pages 348-358, June.

[2] Bathia, N. , Yao, Q. and Ziegelmann, F. (2010). Identifying the finite dimen-

sionality of curve time series, Ann. Statist. Volume 38, Number 6 (2010), 3352-3386.

[3] Bosq, D. (2000). Linear Processes in Function Spaces, New York: Springer- Verlag.

[4] Grant, N. (2012). GMM with Weakly Singular Variance (work in progress).

[5] Hansen, H.L (1982). Large Sample Properties of Generalized Method of Moments

Estimators, Econometrica, 50, issue 4, p. 1029-54

[6] Jagannathan, R. and Wang, G. (2002). Generalized Method of Moments: Appli-

cations in Finance, Journal of Business & Economic Statistics, American Statistical

Association, vol. 20(4), pages 470-81, October.

[7] Kato, T. (1982). A short introduction to the perturbation theory of linear operators.,

Springer-Verlag 1982.

[8] Kleibergen, F. (2005). Testing Parameters in GMM Without Assuming that They

Are Identified, Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.

[9] Kleibergen, F. (2011). Improved accuracy of weak instrument robust GMM statistics

through bootstrap and Edgeworth approximations, working paper.

[10] Newey, W. and McFadden,D. (1994). Large Sample Estimation and Hypothesis

Testing,Handbook of Econometrics, Vol.4, 2111-2245.

[11] Newey, W.N. and Windmeijer, F. (2009). Generalized Method of Moments With

Many Weak Moment Conditions, Econometrica, Econometric Society, vol. 77(3), pages

687-719, 05.

[12] Penaranda, F. and Sentana, E. (2010). Spanning tests in return and stochastic

discount factor mean-variance frontiers: A unifying approach, Economics Working Pa-

pers 1101, Department of Economics and Business, Universitat Pompeu Fabra, revised

Sep 2010.

29



[13] Renault, E. and Donovon, P. (2009). GMM Overidentification Test with First

Order Underidentification, ? working paper (2009).

[14] Sargan, J. D. (1983). Identification and Lack of Identification, Econometrica,

Econometric Society, vol. 51(6), pages 1605-33, November

[15] Staiger, D. and Stock, J.H. (1997). Instrumental Variables Regression with Weak

Instruments, Econometrica, Econometric Society, vol. 65(3):557-586.

[16] Stock, J.H. and Wright, J. (2000). GMM with Weak Identification,Econometrica,

Econometric Society, vol. 68(5), pages 1055-1096, September.

30


