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Abstract

We study a standard model of exchange economies with individual endow-

ments. It is well known that no rule is individually rational, e�cient, and strategy-

proof. In order to quantify the extent of this impossibility, we parametrize axioms

on allocation rules. Given an axiom A, a parametrization of A is a continuum of

axioms {δ-A}δ∈[0,1] such that (i) δ-A is equivalent to A only if δ = 1; (ii) δ-A is

vacuous only if δ = 0; and (iii) for each pair δ, δ′ ∈ [0, 1] with δ < δ′, δ′-A implies

δ-A. Thus, as δ decreases from 1 to 0, δ-A weakens monotonically, eventually to a

vacuous requirement. We consider two parametrizations {δ-e�ciency}δ∈[0,1] and

{δ-strategy-proofness}δ∈[0,1], and investigate their compatibility with individual

rationality for the class of two-agent economies de�ned on a domain containing

linear preference relations. We show that (i) for each δ ∈ (0, 1], no rule is individ-

ually rational, δ-e�cient, and strategy-proof ; and (ii) for each δ ∈ (0, 1], no rule is

individually rational, e�cient, and δ-strategy-proof. These results strengthen ex-

isting impossibility theorems in two directions that have not been explored so far.
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1 Introduction

We study standard exchange economies with individual endowments. There is a set of

perfectly divisible commodities. Each agent has a preference relation de�ned over non-

negative amounts of those commodities. He also owns some amounts of the commodi-

ties, which we call an (individual) endowment. An economy is a pro�le of preference

relations and endowments, and an allocation for the economy is a pro�le of (consump-

tion) bundles whose sum is equal to the sum of the endowments. An (allocation) rule

assigns to each economy an allocation for it.

Our objective is to search for rules satisfying some desirable properties, or axioms,

and the following three axioms have long dominated the literature on this quest: (i) in-

dividual rationality, the requirement that for each economy, a rule assign to each agent

a bundle that he �nds at least as desirable as his endowment; (ii) e�ciency, the require-

ment that for each economy, a rule select an allocation such that no other allocation

Pareto dominates it; and (iii) strategy-proofness, the requirement that a rule select al-

locations in such a way that no agent ever bene�ts from lying about his preference

relation.

The three requirements, however, are incompatible. Hurwicz (1972) shows that for

the class of two-agent and two-commodity economies, no rule meets all of them.1 Sub-

sequent studies strengthen this theorem mainly in two directions.2 The �rst strengthen-

ing involves establishing similar results on smaller preference domains. Hurwicz (1972)

works with classical preference relations (i.e., those that are continuous, monotone, and

strictly convex). As it turns out, this is quite a rich domain, and one can derive his

impossibility theorem with a much smaller subset of preference relations. Parallel re-

sults are available on the domain of linear preference relations (Schummer, 1997) and

the domain of CES preference relations (Ju, 2003).

The second way of strengthening is to show that each e�cient and strategy-proof

rule violates some fairness axiom, and then obtain Hurwicz's (1972) theorem as a corol-

lary. A number of papers consider the following as fairness criteria: (i) non-dictatorship,

1Hurwicz's (1972) theorem covers only two-agent and two-commodity economies, and Serizawa
(2002) generalizes it to economies with an arbitrary number of agents and an arbitrary number of
commodities.

2Most papers cited here pursue the two directions simultaneously.
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the requirement that there be no agent who receives everything for each economy (Das-

gupta, Hammond, and Maskin, 1979; Ju, 2003; and Schummer, 1997); (ii) non�inverse-

dictatorship, the requirement that there be no agent who receives nothing for each econ-

omy (Zhou, 1991); and (iii) minimum consumption guarantee, the requirement that each

agent receive a bundle bounded away from the origin (Serizawa and Weymark, 2003).

Among this range of stronger impossibility results, absent is a theorem that weakens

e�ciency or strategy-proofness while maintaining individual rationality.3 We attribute

the absence to two sources. The �rst relates to the indisputable normative appeal of

e�ciency and strategy-proofness. Viewed separately, e�ciency is so mild a requirement

that weakening it appears hardly necessary (no economist would object to making

one agent better o� without hurting any other agent). On the other hand, strategy-

proofness, though demanding, is an axiom that we cannot dispense with in the context

where agents' private information, e.g., preference relations, should be elicited. On

these grounds, the two axioms are widely accepted, to the extent that most axiomatic

analyses take them as �basic� requirements and study the consequences of imposing

some other axioms additionally.

The inherent di�culty in weakening e�ciency or strategy-proofness has also played

an important role. When a rule violates e�ciency, it is not trivial to quantify the extent

of that violation. On the other hand, if a rule is not strategy-proof, it is often subjected

to the following test: in �how many� economies can an agent pro�tably misreport his

private information?4 While this is one way of quantifying the degree of manipulability,

it does not measure how much an agent can gain with strategic behavior.

Our motivation to weaken e�ciency and strategy-proofness goes beyond theoretical

interest and is based on the following scenario we model. A group of agents, each with

an endowment, gather to �nd an allocation that is bene�cial to all. The endowments

are privately owned, and we operationalize this notion of private ownership by giving

each agent the right to consume his endowment if he so desires. Then as the agents

negotiate on who gets what, their endowments serve as a critical benchmark: whenever

3When the preference domain on which a rule is de�ned becomes smaller, the scope, and hence
strength, of strategy-proofness decreases. However, even on the smaller domain, the spirit of strategy-
proofness that no agent ever bene�ts from lying about his preference relation, remains the same.

4E.g., Aleskerov and Kurbanov (1999), Kelly (1993), Maus, Peters, and Storcken (2007a, 2007b),
and Smith (1999).
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the collective decision assigns an agent a bundle less desirable than his endowment,

he can simply walk out. In situations like this, individual rationality is an axiom that

should be met at all costs, and Hurwicz (1972) suggests that we cannot have both

e�ciency and strategy-proofness. Then how much of e�ciency should we sacri�ce to

have an individually rational and strategy-proof rule? Or how much of strategy-proofness

should we abandon to have an individually rational and e�cient rule? These are the

questions we address.

The contribution of this paper consists in (i) providing weakenings of e�ciency

and strategy-proofness�in fact, parametrizations thereof; and (ii) showing that when

combined with individual rationality, either of the two axioms forces a rule to satisfy only

the vacuous version of the remaining axiom. Before introducing our parametrizations,

let us �rst explain an underlying principle. Let A be an axiom. Let [0, 1] be the

parameter space and δ the parameter. A parametrization of A is a continuum of axioms

{δ-A}δ∈[0,1] such that (i) δ-A is equivalent to A only if δ = 1; (ii) δ-A is vacuous only

if δ = 0; and (iii) for each pair δ, δ′ ∈ [0, 1] with δ < δ′, δ′-A implies δ-A. In short,

decreasing δ from 1 to 0 weakens A monotonically, eventually to a vacuous requirement.

Our parametrizations of e�ciency and strategy-proofness are in line with this spirit,

and in order to weaken the axioms monotonically, we use the Hausdor� distance in the

Euclidean space.

More speci�cally, the parametrization of e�ciency is obtained by the following

procedure. Given an economy, normalize to one the Hausdor� distance (induced by

the standard Euclidean distance) between the set of e�cient allocations and the set of

feasible allocations.5 For each δ ∈ [0, 1], an allocation is δ-e�cient if the normalized

distance between the allocation and the set of e�cient allocations is 1 − δ. As δ

decreases from 1 to 0, the set of δ-e�cient allocations expands monotonically, eventually

coinciding with the set of feasible allocations. A rule is δ-e�cient if for each economy,

it selects a δ-e�cient allocation.

Next, to illustrate the parametrization of strategy-proofness, let δ ∈ [0, 1]. Fix

an economy and an agent. Normalize to one the Hausdor� distance between (i) the

5Our de�nition of feasibility requires that the sum of bundles equals the sum of endowments. Since
we work with strictly monotone preference relations, the latter de�nition allows us to ignore those
uninteresting allocations that waste some of endowments.
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set of feasible bundles; and (ii) the intersection of the set of feasible bundles and the

lower contour set of his true preference relation at the bundle he receives by telling

the truth. Then δ-strategy-proofness requires that each bundle he can obtain with

misrepresentation lie within the normalized distance 1 − δ of set (ii). As δ decreases

from 1 to 0, the set of bundles that the agent can receive by lying expands monotonically,

and when δ = 0, δ-strategy-proofness places no restriction.

Our parametrizations enable us to measure the �degree� of incompatibility of individ-

ual rationality, e�ciency, and strategy-proofness. In light of Hurwicz's (1972) theorem,

one may expect that for δ ∈ [0, 1) su�ciently close to 1, (i) no rule is individual ratio-

nal, δ-e�cient, and strategy-proof ; and (ii) no rule is individual rational, e�cient, and

δ-strategy-proof. But what we show is much stronger than these conjectures. We es-

tablish that for the class of two-agent economies de�ned on a domain containing linear

preference relations, for each δ ∈ (0, 1], statements (i) and (ii) above are true (Theo-

rems 1 and 2, respectively). The remaining case of δ = 0 is an exception. For (i), the

no-trade rule, namely the rule that for each economy, selects the endowment pro�le as

an allocation, satis�es the three axioms; and for (ii), any rule that for each economy,

selects an individually rational and e�cient allocation, satis�es the three axioms.

One may criticize our parametrizations, saying that the expansion process used

to de�ne δ-e�ciency and δ-strategy-proofness have little welfare content in it. For

instance, there is an economy with, say, a 0.3-e�cient allocation that Pareto dominates

a 0.6-e�cient allocation; and an agent may bene�t more greatly by manipulating a

0.3-strategy-proof rule than by manipulating a 0.6-strategy-proof rule. Such criticism

would be warranted if we compared the 0.3-e�cient and 0.6-e�cient allocations and

announced, say, that the latter is more desirable than the former; or if we argued that

the 0.6-strategy-proof rule is less vulnerable to strategic misrepresentation than the

0.3-strategy-proof rule is. But we make no comparison of this kind, nor is it our focus.

Rather, our focus is on weakening e�ciency and strategy-proofness to the extent that

each of them reduces to a near-vacuous requirement, and showing that even in such

extreme case, they remain incompatible with other axioms.

Further, as δ approaches zero, the Euclidean distance plays an increasingly minor

role in our parametrizations. Since preference relations are continuous, for δ ∈ (0, 1]
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su�ciently close to zero, almost all feasible allocations, and hence almost all pro�les of

feasible welfare levels, are considered δ-e�cient ; similarly, δ-strategy-proofness allows

an agent to attain almost all feasible bundles, and hence almost all feasible welfare

levels, by manipulating a rule. These observations suggest that the Euclidean distance

is not the main driving factor in our impossibility results. Motivated by the latter

intuition, we check whether our results are robust to changes in the distance notion in

the Euclidean space or the parametrization method.

Concerning the issue of using di�erent distance notions, Theorem 1 remains true

even if an arbitrary distance is used to de�ne δ-e�ciency ; and Theorem 2 holds as

long as a distance satisfying a mild requirement is used to de�ne δ-strategy-proofness.

Similarly, the two theorems continue to hold if we adopt di�erent parametrization

methods. We provide conditions that reasonable parametrizations of e�ciency and

strategy-proofness should satisfy, and then show that similar results follow under those

conditions (Theorems 3 and 4).

The rest of the paper proceeds as follows. We set up the model in Section 2 and

introduce axioms on rules in Section 3. Our impossibility results are in Section 4, and

we check their robustness in Section 5.

2 The Model

Let N ≡ {1, · · · , n} be the set of agents andM ≡ {1, · · · ,m} the set of commodities.

For each i ∈ N , agent i has (i) a continuous, strictly monotone,6 and convex preference

relation Ri on RM
+ ; and (ii) an endowment ωi ≡ (ωi1, · · · , ωim) ∈ RM

+ . Denote by Pi

and Ii the strict preference and indi�erence relations, respectively, associated with Ri.

Let R be a domain of admissible preference relations on RM
+ . Let R ≡ (Ri)i∈N be the

preference pro�le and ω ≡ (ωi)i∈N the endowment pro�le.

We are primarily concerned with linear preference relations, i.e., those that can be

represented by linear functions. Let Rlin be the domain of linear preference relations.

For each R0 ∈ Rlin, all relevant information about R0 is captured by a vector r0 ∈
6A preference relation Ri is strictly monotone if for each pair xi, yi ∈ RM+ such that for each ` ∈M ,

xi` ≥ yi`, with at least one strict inequality, xi Pi yi.
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RM
+ that is normal to indi�erence curves (surfaces) of R0.

7 When there are only two

commodities, i.e., m = 2, we simply take the common slope of indi�erence curves of R0

and denote its absolute value by s(R0).

An economy is a list (R,ω) ∈ RN × RMN
+ . Let E(R) be the collection of all

economies in which each agent has a preference relation in R. Given an endowment

pro�le ω ∈ RMN
+ , a (feasible) allocation is a pro�le x ≡ (xi)i∈N ∈ RMN

+ such that (i) for

each i ∈ N , xi ≡ (xi1, · · · , xim) ∈ RM
+ ; and (ii) for each ` ∈ M ,

∑
i∈N xi` =

∑
i∈N ωi`.

For each i ∈ N , we call xi agent i's (consumption) bundle. Let Z(ω) be the set

of all feasible allocations. For each i ∈ N , let Zi(ω) ≡ {xi ∈ RM
+ : for each ` ∈

M,xi` ≤
∑

j∈N ωj`} be the projection of Z(ω) onto agent i's consumption space RM
+ .

An (allocation) rule, denoted by ϕ, is a mapping from E(R) to RMN
+ such that for

each (R,ω) ∈ E(R), ϕ(R,ω) ∈ Z(ω). For each (R,ω) ∈ E(R) and each i ∈ N , denote

agent i's bundle in ϕ(R,ω) by ϕi(R,ω).

Note that we require equality in the de�nition of feasibility. To explain why we

use this formulation, consider a pro�le of bundles whose sum is less than the sum of

endowments. Since we work with strictly monotone preference relations, we can always

make the agents better o� by distributing the remaining amount. Consequently, as

agents negotiate on allocation of the endowments, the proposed pro�le of bundles is

not renegotiation-proof. In this regard, such pro�les of bundles are not appealing, and

our formulation of feasibility allows us to ignore them from the outset (for consequences

of this formulation, see Footnote 10).

Finally, we use the following notation. For each R0 ∈ R and each x0 ∈ RM
+ ,

let L(R0, x0) ≡ {y0 ∈ RM
+ : x0R0 y0} be the lower contour set of R0 at x0. Let

|| · || be the Euclidean distance on RMN
+ ; i.e., for each pair a, b ∈ RMN

+ , ||a − b|| ≡[∑
i∈N,`∈M(ai` − bi`)2

]1/2

. Given a point a ∈ RMN
+ and a non-empty set B ⊆ RMN

+ ,

let d(a,B) ≡ infb∈B ||a − b|| . Given non-empty sets A,B ⊆ RMN
+ , let d(A,B) ≡

max {supa∈A d(a,B), supb∈B d(b, A)}. When applied to sets in RMN
+ , d(·, ·) is the Haus-

dor� distance induced by the Euclidean distance || · ||. Similarly, we can de�ne the

distances between (i) a pair of points in RM
+ ; (ii) a point and a set in RM

+ ; and (iii) a

pair of sets in RM
+ . Denote these distances by || · || and d(·, ·) as well.

7Preference relations and bundles that are attached to no particular agent are denoted by R0 and x0,
respectively.
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Also, given an arbitrary Euclidean space Rk
+ and distinct points a, b ∈ Rk

+, let

seg[a, b] ≡ {ta+(1−t)b : 0 ≤ t ≤ 1} be the line segment connecting a and b. Similarly,

let seg(a, b] ≡ {ta + (1− t)b : 0 ≤ t < 1} and seg[a, b) ≡ {ta + (1− t)b : 0 < t ≤ 1}.
Given distinct points a1, ..., ah ∈ Rk

+, denote by pol[a1, · · ·, ah] the polygon whose

sides are given by line segments seg[a1, a2], seg[a2, a3], · · · , seg[ah−1, ah], and seg[ah, a1].

3 Axioms on Allocation Rules

In this section, we introduce axioms on rules. Our �rst axiom places a lower bound

on agents' welfare. Given an economy, each agent is equipped with an endowment.

Interpreting this as his private ownership, we are interested in allocations that respect it.

Therefore, in order for an allocation to be desirable, it should assign each agent a bundle

that he �nds at least as preferable as his endowment. Formally, for each (R,ω) ∈ E(R)

and each x ∈ Z(ω), x is individually rational for (R,ω) if for each i ∈ N , xiRi ωi.

Let IR(R,ω) be the set of all individually rational allocations for (R,ω). The following

axiom requires that for each economy, a rule select an individually rational allocation.

Individual Rationality: For each (R,ω) ∈ E(R), ϕ(R,ω) is individually rational

for (R,ω).

To introduce our next axiom, we �rst de�ne the notion of Pareto dominance. Let

(R,ω) ∈ E(R). For each pair x, y ∈ Z(ω), x Pareto dominates y for (R,ω) if (i) for

each i ∈ N , xiRi yi; and (ii) for some j ∈ N , xj Pj yj. For each x ∈ Z(ω), x is e�cient

for (R,ω) if there is no y ∈ Z(ω) such that y Pareto dominates x for (R,ω). Let

E(R,ω) be the set of all e�cient allocations for (R,ω). The following axiom requires

that for each economy, a rule select an e�cient allocation.

E�ciency: For each (R,ω) ∈ E(R), ϕ(R,ω) is e�cient for (R,ω).

Now we introduce the notion of parametrization of an axiom. Let A be an axiom.

Let [0, 1] be the parameter space and δ the parameter. A parametrization of A

(in terms of strength) is a continuum of axioms {δ-A}δ∈[0,1] such that (i) δ-A is

equivalent to A only if δ = 1; (ii) δ-A is vacuous only if δ = 0; and (iii) for each pair

7
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Figure 1: Illustration of δ-e�ciency (Example 1). Let N = {1, 2} and M = {1, 2}. For the

economy (R,ω) as speci�ed in the �gure, E(R,ω) = seg[O1, a] ∪ seg[a,O2]. Also, E0.7(R,ω) =

pol[O1, a, O2, d, c, b] (shaded) and E0.2(R,ω) = pol[O1, a, O2, g, f, e]. As δ ∈ (0, 1) becomes

smaller, Eδ(R,ω) expands monotonically while maintaining a similar shape, and when δ = 0, it

coincides with the set of feasible allocations.

δ, δ′ ∈ [0, 1] with δ < δ′, δ′-A implies δ-A.8 In short, decreasing δ from 1 to 0 weakens

A monotonically, eventually to a vacuous requirement.

To parametrize e�ciency, note that the axiom requires a rule to select from the

set of e�cient allocations. In other words, the Euclidean distance between the chosen

allocation and the set of e�cient allocations is zero. If a rule is not e�cient, then the

latter distance is positive, the maximum of which is the Hausdor� distance between

the set of feasible allocations and the set of e�cient allocations. Thus, one way of

weakening e�ciency is to allow a rule to choose an allocation that lies within a certain

distance from the set of e�cient allocations, relative to the maximum distance (as long

as the maximum distance is positive).

8In a model where agents collectively own an endowment, Moulin and Thomson (1988) take a
similar approach to weakening �individual rationality from equal division of the aggregate resources�,
the requirement that a rule assign to each agent a bundle that is at least as desirable as equal division
of the collective endowment.
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Formally, let δ ∈ [0, 1]. For each (R,ω) ∈ E(R) and each x ∈ Z(ω), x is δ-

e�cient for (R,ω) if d (x,E(R,ω)) ≤ (1 − δ) d (Z(ω), E(R,ω)).9 Let Eδ(R,ω) be

the set of all δ-e�cient allocations for (R,ω). As δ decreases from 1 to 0, the set

of δ-e�cient allocations expands monotonically, and when δ = 0, it covers the set of

feasible allocations.10 The following axiom requires that for each economy, a rule select

a δ-e�cient allocation.

δ-E�ciency: For each (R,ω) ∈ E(R), ϕ(R,ω) is δ-e�cient for (R,ω).

Example 1. Illustration of δ-e�ciency. Let N = {1, 2} and M = {1, 2}. Let ω1 =

(1, 0) and ω2 = (0, 1). Let R ∈ RN
lin be as speci�ed in Figure 1. We use the Edgeworth

box representation of allocations. First, E(R,ω) = seg[O1, a] ∪ seg[a,O2]. Since ω

is the point in Z(ω) with the maximum distance from E(R,ω), d (Z(ω), E(R,ω)) =

d (ω,E(R,ω)). In order to obtain E0.7(R,ω), for each x ∈ E(R,ω), take a closed ball

of radius 0.3d (ω,E(R,ω)) centered at x, and then take the union of all those balls.

This construction yields that E0.7(R,ω) = pol[O1, a, O2, d, c, b] (shaded). Similarly,

E0.2(R,ω) = pol[O1, a, O2, g, f, e]. As δ ∈ (0, 1) becomes smaller, Eδ(R,ω) expands

monotonically while maintaining a similar shape. When δ = 0, Eδ(R,ω) = Z(ω) and

δ-e�ciency has no bite. 4

Our last axiom pertains to the strategic behavior of agents. In many applications,

agents' preference relations are private information and agents are not constrained to

tell the truth. In fact, an agent may �nd it pro�table to misrepresent his preference

relation and manipulate the rule in his favor. Thus, we require that a rule be immune

to such misrepresentation. Whatever the announcement of other agents are, no agent

ever bene�ts from lying about his preference relation.

Strategy-proofness: For each (R,ω) ∈ E(R), each i ∈ N , and each R′i ∈ R,
ϕi(R,ω)Ri ϕi(R

′
i, R−i, ω).

9If ||ω|| is small, even a slight expansion of the set of e�cient allocations may contain the set of
feasible allocations. Therefore, we use the distance d (Z(ω), E(R,ω)) as a normalizing factor so that
δ-e�ciency properly factors in the �size� of an economy under consideration.

10Our de�nition of feasibility requires that the sum of bundles equal the sum of endowments. There-
fore, if δ = 0, Eδ(R,ω) coincides with the set of allocations that satisfy this condition, but it still
excludes those that do not fully allocate the endowments among the agents. We believe that the latter
allocations do not deserve much attention since we work with strictly monotone preference relations.
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i∈N ωi
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a
b c d
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g

h

ϕi(R,ω)

Ri

Figure 2: Illustration of δ-strategy-proofness (Example 2). Let M = {1, 2} and

(R,ω) ∈ E(R). Let i ∈ N , and suppose that Ri and ϕi(R,ω) are as speci�ed in the �g-

ure. Let R′i ∈ R. Strategy-proofness requires that ϕi(R
′
i, R−i, ω) ∈ pol[O1, a, b, e]. By con-

trast, 0.7-strategy-proofness only requires that ϕi(R
′
i, R−i, ω) lie within 0.3α of pol[O1, a, b, e];

i.e., ϕi(R
′
i, R−i, ω) ∈ pol[O1, a, c, g, f ] (shaded). Similarly, 0.3-strategy-proofness requires that

ϕi(R
′
i, R−i, ω) ∈ pol[O1, a, d, h, f ]. If δ = 0, then δ-strategy-proofness allows agent i to obtain

any feasible bundle with misrepresentation.

Note incidentally that our notion of misrepresentation is restricted to that of pref-

erence relations, excluding endowments. We can also imagine a situation where each

agent's endowment is private information and a rule takes as an input whatever the

agents submit as their endowments. This provides agents with an additional incentive

to lie, where the lie can take various forms (e.g., withhold or destroy part of one's en-

dowment; and borrow some amount of the commodities from the outside world and add

it to one's endowment). The following papers examine the implications of endowment

manipulation: Aumann and Peleg (1974), Hurwicz (1972, 1978), Postlewaite (1979),
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and Thomson (2008)

Now we parametrize strategy-proofness much the same way we parametrized e�-

ciency. Let δ ∈ [0, 1]. Let (R,ω) ∈ E(R) and i ∈ N . Strategy-proofness requires

that for each R′i ∈ R, ϕi(R′i, R−i, ω) lie in the lower contour set of Ri at ϕi(R,ω); i.e.,

d (ϕi(R
′
i, R−i, ω), L(Ri, ϕi(R,ω) ∩ Zi(ω)) = 0. We relax this zero-distance requirement

by allowing ϕi(R
′
i, R−i, ω) to lie in a region whose distance from L (Ri, ϕi(R,ω))∩Zi(ω),

relative to the distance from L(Ri, ϕi(R,ω)) ∩ Zi(ω) to Zi(ω), is 1− δ.11

δ-Strategy-proofness: For each (R,ω) ∈ E(R), each i ∈ N , and each R′i ∈ R,
d (ϕi(R

′
i, R−i, ω), L(Ri, ϕi(R,ω)) ∩ Zi(ω)) ≤ (1− δ)d (Zi(ω), L(Ri, ϕi(R,ω)) ∩ Zi(ω)).

As δ decreases from 1 to 0, δ-strategy-proofness expands the set of bundles that an

agent can attain with misrepresentation. When δ = 0, the latter set is the same as the

set of feasible bundles and δ-strategy-proofness has no bite.

Example 2. Illustration of δ-strategy-proofness. Let M = {1, 2} and (R,ω) ∈ E(R).

Let i ∈ N , and suppose that Ri and ϕi(R,ω) are as speci�ed in Figure 2. Strategy-

proofness requires that for each R′i ∈ R, ϕi(R′i, R−i, ω) ∈ pol[O1, a, b, e]. Now let α ≡
d (Zi(ω), L(Ri, ϕi(R,ω)) ∩ Zi(ω)). Then 0.7-strategy-proofness requires that any bundle

that agent i obtains by reporting a preference relation lie within 0.3α of pol[O1, a, b, e];

i.e., for each R′i ∈ R, ϕi(R′i, R−i, ω) ∈ pol[O1, a, c, g, f ] (shaded). Similarly, if we impose

0.4-strategy-proofness, then any bundle that agent i obtains by reporting a preference

relation should lie within 0.6α of pol[O1, a, b, e]; i.e., for each R
′
i ∈ R, ϕi(R′i, R−i, ω) ∈

pol[O1, a, d, h, f ]. As δ ∈ [0, 1] decreases, the set of bundles that agent i can achieve

expands monotonically, eventually containing all feasible bundles when δ = 0. 4

4 Impossibility Results

It is well known that no rule is individually rational, e�cient, and strategy-proof. Start-

ing with Hurwicz (1972), a number of works prove this under di�erent restrictions on

the preference domain (Dasgupta, Hammond, and Maskin, 1979; Ju, 2003; Schummer,

11As was the case with δ-e�ciency (see Footnote 9), if ||ω|| is small, even a slight expansion
of L(Ri, ϕi(R,ω)) ∩ Zi(ω) may contain the set of feasible bundles for agent i. Thus, we use
d (Zi(ω), L(Ri, ϕi(R,ω)) ∩ Zi(ω)) as a normalizing factor.
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1997; Serizawa and Weymark, 2003; Zhou, 1991). Now we quantify the extent of the

impossibility result by replacing e�ciency by δ-e�ciency and decreasing δ until the

three axioms admit a rule satisfying them. The following theorem says that unless

δ-e�ciency is vacuous, the three axioms are incompatible. If δ = 0, then the no-trade

rule, which, for each economy, selects the endowment pro�le as an allocation, meets the

three axioms.

Theorem 1. Let N = {1, 2}. Suppose that Rlin ⊆ R. For each δ ∈ (0, 1], no rule

de�ned on E(R) is individually rational, δ-e�cient, and strategy-proof.

Proof. The proof is by means of an example. Let δ ∈ (0, 1]. Suppose, by contradiction,

that a rule ϕ de�ned on E(R) satis�es the three axioms listed in the theorem. Since

there are only two agents, we use the Edgeworth box representation of allocations.

Case 1: There are two commodities; i.e., M = {1, 2}.
(Figure 3) Let ω1 = (1, 0), ω2 = (0, 1), and Ω ≡ ω1 +ω2. First, we label some points

in the Edgeworth box.12 Let k̄ ∈ N be the largest integer such that 2k̄−1δ ≤ 1 (Figure 3

illustrates the argument for the case k̄ = 3). Let K ≡ {1, · · · , k̄}. For each R ∈ RN
lin

such that 1 < s(R1) < s(R2), and each k ∈ K, de�ne

ak(R2) ≡
(

1− 2k−1δ

s(R2)
, 2k−1δ

)
;

bk(R1) ≡
(

1− 2k−1δ

s(R1)
, 2k−1δ

)
;

ck(R) ≡
(

1− 2k−1δ

s(R1)
− 2k−1δ

s(R2)
, 2kδ

)
;

dk(R) ≡
(

1− 1− 2k−1δ

s(R1)
− 2k−1δ

s(R2)
, 1

)
; and

ek(R) ≡
(

1− 2k−1δ

s(R1)
− 1− 2k−1δ

s(R2)
, 1

)
.

Also, de�ne d0(R1) ≡
(

1− 1
s(R1)

, 1
)
and e0(R2) ≡

(
1− 1

s(R2)
, 1
)
.

In words, �rst draw (i) the R1- and R2-indi�erence curves through ω; and (ii)

a square of size δ whose bottom-right vertex lies at ω.13 The R2-indi�erence curve

12To lighten notation, we refer to all points using the coordinates with respect to agent 1's origin.
13Since we use the Edgeworth box representation, �the R2-indi�erence curve through ω� is, in fact,

12



O1

O2

ω

δ

2δ

4δ

1− δ

a1

a2

a3

b1

b2

b3

c1

c2

d0 d1 d2 d3 e0e1e2e3

R1

R2

Figure 3: Illustration of Case 1 in the proof of Theorem 1. Let δ ∈ (0, 1]. Let ω1 = (1, 0)

and ω2 = (1, 0). Let k̄ ∈ N be the largest integer such that 2k̄−1δ ≤ 1 (the �gure illustrates the

argument for the case k̄ = 3). Let R ∈ RNlin be such that 1 < s(R1) < s(R2). We show by

induction that for each k ∈ {1, · · · , k̄}, ϕ1(R,ω)R1 a
k(R2) and ϕ2(R,ω)R2

(
Ω− bk(R1)

)
(in

the �gure, the arguments of ak(·), bk(·), ck(·), dk(·), and ek(·) are suppressed). In particular, the

latter statement is true for k = k̄. Because 2k̄δ > 1, the R1-indi�erence curve through a
k̄(R2) and

the R2-indi�erence curve through bk̄(R1) intersect at a point outside the Edgeworth box. Thus,

ϕ(R,ω) violates feasibility, a contradiction.
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through ω crosses the top of the square at a1(R2) and the top of the Edgeworth box

at e0. Similarly, the R1-indi�erence curve through ω crosses the top of the square

at b1(R1) and the top of the Edgeworth box at d0. Next, the R1-indi�erence curve

through a1(R2) crosses the top of the Edgeworth box at d1(R) and the R2-indi�erence

curve through b1(R1) crosses the top of the Edgeworth box at e1(R). Moreover, the two

indi�erence curves intersect at c1(R). To obtain a2(R2), move c1(R) horizontally to the

right until it lies on the R2-indi�erence curve through ω. Similarly, to obtain b2(R1),

move c1(R) horizontally to the left until it lies on the R1-indi�erence curve through ω.

Now the R1-indi�erence curve through a2(R2) and the R2-indi�erence curve through

b2(R1) intersect at c2(R). Repeating the above argument, we construct the remaining

points.

Now we proceed in two steps.

Step 1: For each R ∈ RN
lin such that 1 < s(R1) < s(R2), and each k ∈ K,

ϕ1(R,ω)R1 a
k(R2) and ϕ2(R,ω)R2 (Ω− bk(R1)).

The proof is by induction. First, let k = 1. Let R ∈ RN
lin be such that 1 < s(R1) <

s(R2). Let x ≡ ϕ(R,ω). Note that IR(R,ω)∩Eδ(R,ω) = pol[a1(R2), b1(R1), d0(R1), e0(R2)].

To show that x1R1 a
1(R2), suppose, by contradiction, that the R1-indi�erence curve

through x1 passes through some point f ≡ (f1, f2) ∈ seg (a1(R2), b1(R1)]. Let R′1 ∈ Rlin

be such that δ
1−f1 < s(R′1) < s(R2); i.e., typical indi�erence curves of R′1 are steeper

than the line segment joining (1, 0) and f , but �atter than those of R2. Note that

ϕ1(R′1, R2, ω) ∈ IR(R′1, R2, ω) ∩ Eδ(R′1, R2, ω) = pol[a1(R2), b1(R′1), d0(R′1), e0(R2)].

Among the points in the latter set, b1(R′1) uniquely minimizes R1, and yet b1(R′1)P1 x1.

Thus, if agent 1 with true preference relation R1 faces agent 2 announcing R2, he is

better o� announcing R′1 than telling the truth, in violation of strategy-proofness. A

symmetric argument shows that x2R2 (Ω− b1(R1)).

Now suppose that the claim holds for some k ≥ 1 and that k + 1 ∈ K. Let

R ∈ RN
lin be such that 1 < s(R1) < s(R2). Let x ≡ ϕ(R,ω). Let R′1 ∈ Rlin be such

that s(R1) < s(R′1) < s(R2), and we apply the induction hypothesis to (R′1, R2, ω).

the R2-indi�erence curve through ω2. Throughout the paper, all statements concerning agent 2's
indi�erence curves should be understood this way. Only when comparing bundles according to agent 2's
preference relation, we use the coordinate system with respect to agent 2's origin; e.g., we write
�ϕ2(R,ω)R2

(
Ω− b1(R1)

)
�, but not �ϕ2(R,ω)R2 b

1(R1)�.
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The R′1-indi�erence curve through ak(R2) crosses the top of the Edgeworth box at

dk(R′1, R2) and the R2-indi�erence curve through bk(R′1) crosses the top of the Edge-

worth box at ek(R′1, R2). The two indi�erence curves intersect at ck(R′1, R2). Thus,

ϕ1(R′1, R2, ω) ∈ pol[ck(R′1, R2), dk(R′1, R2), ek(R′1, R2)]. Among the points in the latter

set, ck(R′1, R2) uniquely minimizes R1. If ck(R′1, R2)P1 x1, then when agent 1 with

true preference relation R1 faces agent 2 announcing R2, he is better o� announcing

R′1 than telling the truth, in violation of strategy-proofness. Thus, x1R1 c
k(R′1, R2).

Note that this is true for each R′1 ∈ Rlin such that s(R1) < s(R′1) < s(R2). Now

construct a sequence of preference relations {Rν
1}ν∈N such that (i) for each ν ∈ N,

s(R1) < s(Rν
1) < s(R2); and (ii) and limν→∞ s(R

ν
1) = s(R2). Then for each ν ∈ N,

x1R1 c
k(Rν

1 , R2), so that x1R1 limν→∞ c
k(Rν

1 , R2) = ak+1(R2). A symmetric argument

shows that x2R2

(
Ω− bk+1(R1)

)
, and the claim is established for k + 1.

Step 2: Concluding.

Let R ∈ RN
lin be such that 1 < s(R1) < s(R2). Let x ≡ ϕ(R,ω). By Step 1, for each

k ∈ K, x1R1 a
k(R2) and x2R2 (Ω − bk(R1)), and in particular, this is true for k = k̄.

Because 2k̄δ > 1, the R1-indi�erence curve through ak̄(R2) and the R2-indi�erence

curve through bk̄(R1) intersect at a point outside the Edgeworth box. Thus, ϕ(R,ω)

violates feasibility, a contradiction.

Case 2: There are more than two commodities; i.e., M = {1, · · · ,m}, where m ≥ 3.

(Figure 4 illustrates the argument for the case m = 3.) Let ω1 = (1, 0, · · · , 0) and

ω2 = (0, 1, · · · , 1). It is easy to see that for each R ∈ RN
lin such that r1 = (r11, 1, · · · , 1),

r2 = (r21, 1, · · · , 1), and 1 < r11 < r21, E(R,ω) = {x ∈ Z(ω) : either x11 = 0 or

x22 = · · · = x2m = 0} (if m = 3, then E(R,ω) = pol[O1, a, b, c] ∪ seg[b, O2]). Also,

d (Z(ω), E(R,ω)) = d (ω,E(R,ω)). Thus, we can construct a hypercube of size δ in the

m dimensional Edgeworth box such that (i) one of its vertices lies at ω; and (ii) it does

not intersect with the interior of Eδ(R,ω) (if m = 3, then Eδ(R,ω) is the closure of

the neighborhood of E(R,ω) with radius 1 − δ).14 Since the counterpart of the latter

hypercube in Case 1 is the square of size δ whose bottom-right vertex lies at ω, we can

now proceed as in Case 1.

14For simplicity, here we identify a feasible allocation with agent 1's bundle. If we treat the hypercube
as an object in Z(ω), which is a 2m dimensional space, then its size is

√
2δ.
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O1

O2

Commodity 1

Commodity 2

Commodity 3

ω

a

b

c

δ

Figure 4: Illustration of Case 2 in the proof of Theorem 1. Assume that m = 3. Let

δ ∈ (0, 1]. Let ω1 = (1, 0, 0) and ω2 = (0, 1, 1). For each R ∈ RNlin such that r1 = (r11, 1, 1),

r2 = (r21, 1, 1), and 1 < r11 < r21, it follows that E(R,ω) = pol[O1, a, b, c] ∪ seg[b,O2], and

Eδ(R,ω) is the closure of the neighborhood of E(R,ω) with radius 1−δ. The rest of the argument

is similar to that in Case 1.

Next, we replace strategy-proofness by δ-strategy-proofness while retaining individ-

ual rationality and e�ciency. The next theorem shows that, again, unless δ-strategy-

proofness is vacuous, the three axioms are incompatible. If δ = 0, then we can easily

construct an individually rational and e�cient rule.

Theorem 2. Let N = {1, 2}. Suppose that Rlin ⊆ R. For each δ ∈ (0, 1], no rule

de�ned on E(R) is individually rational, e�cient, and δ-strategy-proof.

Proof. The proof is by means of an example. Let δ ∈ (0, 1]. Suppose, by contradiction,

that a rule ϕ de�ned on E(R) satis�es the three axioms listed in the theorem. Since

there are only two agents, we use the Edgeworth box representation of allocations.

Case 1: There are two commodities; i.e., M = {1, 2}.
(Figure 5) Let ω1 = (1, 0) and ω2 = (0, 1). Let s̄ ∈ (0, δ). Let R ∈ RN

lin be such
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O1
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ω
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R1

a

b

R2

e

R′1

d

1− s̄

c

1− δ

Figure 5: Illustration of Case 1 in the proof of Theorem 2. Let δ ∈ (0, 1] . Let ω1 = (1, 0) and

ω2 = (1, 0). Let s̄ ∈ (0, δ). Let R ∈ RNlin be such that s(R1) = s̄ and s(R2) = 1
s̄ . By individual

rationality and e�ciency , ϕ(R,ω) ∈ seg[a, b] ∪ seg[b, e]. Without loss of generality, assume that

ϕ(R,ω) ∈ seg[a, b]. Then for R′1 ∈ Rlin such that 1
δ < s(R′1) < 1

s̄ , ϕ(R′1, R2, ω) ∈ seg[d, e], in

violation of δ-strategy-proofness.

that s(R1) = s̄ and s(R2) = 1
s̄
. Let a ≡ (0, s̄), b ≡ (0, 1), and e ≡ (1 − s̄, 1). Let

x ≡ ϕ(R,ω). By individual rationality and e�ciency, x ∈ seg[a, b] ∪ seg[b, e]. Without

loss of generality, assume that x ∈ seg[a, b]. Let c ≡ (1 − δ, 1). If x = b, then by

δ-strategy-proofness, for each R′1 ∈ R, ϕ1(R′1, R2, ω) lies on or below the R1-indi�erence

curve through c (note that the ratio of the distance from O2 to the R1-indi�erence curve

through c to the distance from O2 to the R1-indi�erence curve through b is δ). Similarly,

if x ∈ seg[a, b), then for each R′1 ∈ R, ϕ1(R′1, R2, ω) lies below the R1-indi�erence curve

through c. Now let R′1 ∈ Rlin be such that 1
δ
< s(R′1) < 1

s̄
. Let d ≡ (1− s(R′1), 1).

Then by individual rationality and e�ciency, ϕ1(R′1, R2, ω) ∈ seg[d, e], in violation of

δ-strategy-proofness.
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Figure 6: Illustration of Case 2 in the proof of Theorem 2. Assume that m = 3. Let

δ ∈ (0, 1]. Let ω1 = (1, 0, 0) and ω2 = (0, 1, 1). Let t ∈
(
0, δ2
)
. Let R ∈ RNlin be such that

r1 = (t, 1, · · · , 1) and r2 = (1
t , 1, · · · , 1) (the R1- and R2-indi�erence surfaces through ω are

pol[ω, a, b] and pol[ω, c, d, e], respectively). By individual rationality and e�ciency , ϕ(R,ω) ∈
pol[a, b, h, g, f ] ∪ seg[g, d]. The rest of the argument is similar to that in Case 1.

Case 2: There are more than two commodities; i.e., M = {1, · · · ,m}, where m ≥ 3.

(Figure 6 illustrates the argument for the case m = 3.) Let ω1 = (1, 0, · · · , 0) and

ω2 = (0, 1, · · · , 1). It is easy to see that for each R ∈ RN
lin such that r1 = (r11, 1, · · · , 1),

r2 = (r21, 1, · · · , 1), and 0 < r11 < r21, E(R,ω) = {x ∈ Z(ω) : either x11 = 0 or

x22 = · · · = x2m = 0} (if m = 3, then E(R,ω) = pol[O1, f, g, h] ∪ seg[g,O2]). Let

t ∈
(
0, δ

m−1

)
. Let R ∈ RN

lin be such that r1 = (t, 1, · · · , 1) and r2 = (1
t
, 1, · · · , 1)

(if m = 3, then the R1- and R2-indi�erence surfaces through ω are pol[ω, a, b] and

pol[ω, c, d, e], respectively). Let x ≡ ϕ(R,ω). Let B ≡ IR(R,ω) ∩ E(R,ω). Then for

each z ∈ Z(ω), z ∈ B if and only if either (i) z11 = 0 and z12 + · · · + z1m ≥ t; or (ii)

z22 = · · · = z2m = 0 and z21 ≥ t(m−1)} (ifm = 3, then B = pol[a, b, h, g, f ] ∪ seg[g, d]).

By individual rationality and e�ciency, x ∈ B. Since the counterpart of B in Case 1

is seg[a, b] ∪ seg[b, e], we can now proceed as in Case 1.
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Now we connect Theorems 1 and 2 with existing results in the literature. To

that end, let us consider an arbitrary parametrization of individual rationality, say

{δ-individual rationality}δ∈[0,1].
15 Previous studies show that under some assumptions

on the preference domain, if ϕ is e�cient and strategy-proof, then for each ω ∈ RMN ,

there is i ∈ N such that for each R ∈ RN , ϕi(R,ω) =
∑

i∈N ωi;
16 see, e.g., Dasgupta,

Hammond, and Maskin (1979), Ju (2003), Schummer (1997), and Serizawa (2002). By

Schummer (1997), in particular, we obtain the following corollary: for the class of two-

agent economies de�ned on a domain containing linear preference relations, for each

δ ∈ (0, 1], no rule is δ-individually rational, e�cient, and strategy-proof.

Thus, we have three impossibility results, each of which involves two axioms in the

standard form and one parametrized axiom. Denote by δI , δE, and δS the parameters for

{δ-individually rationality}δ∈[0,1], {δ-e�ciency}δ∈[0,1], and {δ-strategy-proofness}δ∈[0,1],

respectively. Consider the (δI , δE, δS)-space in Figure 7. Since (δI , δE, δS) ∈ [0, 1]3,

it can be represented as a point in the three-dimensional unit cube. Hurwicz (1972)

shows that (under some assumptions on the preference domain) no rule is individually

rational, e�cient, and strategy-proof, which corresponds to the non-existence of a rule

at point a ≡ (1, 1, 1).

Most of previous papers study the implications of e�ciency and strategy-proofness

in terms of fairness. Let us adopt δ-individual rationality as a fairness criterion. Then

since δE and δS are �xed at 1, their approach can be seen as departing from point a

along seg[a, b] in search of an existence result. The corollary above says that at each

point in seg[a, b), we still have an impossibility.

By contrast, our approach is to �x δI at 1 and vary δE or δS, one at a time. First,

we set δI = δS = 1 and decrease δE, i.e., depart from point a along seg[a, c], until

an existence result emerges. Theorem 1 says that this way of weakening is no more

promising: at each point in seg[a, c), no rule satis�es the three axioms. Next, if we set

δI = δE = 1 and decrease δS, i.e., depart from point a along seg[a, d], then Theorem 2

15For instance, we may de�ne {δ-individual rationality}δ∈[0,1] as follows. First, for each R0 ∈ R and
each x0 ∈ RM+ , let U(R0, x0) ≡ {y0 ∈ RM+ : y0R0 x0} be the upper contour set of R0 at x0. Let
δ ∈ [0, 1]. For each (R,ω) ∈ E(R) and each x ∈ Z(ω), x is δ-individually rational for (R,ω) if for
each i ∈ N , d (xi, U(Ri, ωi) ∩ Zi(ω)) ≤ (1 − δ)d (Zi(ω), U(Ri, ωi) ∩ Zi(ω)). A rule is δ-individually
rational if for each (R,ω) ∈ E(R), ϕ(R,ω) is δ-individually rational for (R,ω)

16The identity of agent i may vary depending on the endowment pro�le chosen. However, once we
�x ω ∈ RMN

+ and treat a preference pro�le as an economy, the rule ϕ(·, ω) : RN → RMN
+ is dictatorial.
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Figure 7: Connection between Theorems 1 and 2 and existing impossibility results. Denote

by δI , δE , and δS the parameters for {δ-individually rationality}δ∈[0,1], {δ-e�ciency}δ∈[0,1], and

{δ-strategy-proofness}δ∈[0,1], respectively. Since (δI , δE , δS) ∈ [0, 1]3, it can be represented as a

point in the three-dimensional unit cube. Hurwicz (1972) shows that if (δI , δE , δS) = (1, 1, 1),

i.e., at point a in the �gure, no rule is δI -individually rational , δE-e�cient, and δS-strategy-proof .

Earlier studies show that at each point in seg[a, b), the three axioms are incompatible. Theorems 1

and 2 show that the same is true on seg[a, c) and seg[a, d), respectively.

answers our question: at each point in seg[a, d), no rule satis�es the three axioms. In

sum, the region indicated by thick solid line segments in Figure 7 represents the set of

(δI , δE, δS) at which we have an impossibility.

5 Robustness of the Results

Since Theorems 1 and 2 rely on the de�nition of δ-e�ciency and δ-strategy-proofness,

one may ask how our results would be a�ected if the two axioms are de�ned di�erently.

Now we pursue this question of robustness in two directions.

Using di�erent distance notions

In de�ning δ-e�ciency and δ-strategy-proofness, we use the standard Euclidean
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distance for convenience, but Theorems 1 and 2 can be proved with di�erent distance

notions. We explain how the results can be extended in this regard.

First, concerning Theorem 1, any distance can be used. Let d̂(·, ·) be a distance

de�ned on RMN . The distance d̂(·, ·) induces the distances between (i) a point and

a set in RMN ; and (ii) a pair of sets in RMN . Denote those distances by d̂(·, ·) as

well. Let us now revisit the proof of Theorem 1. Let δ ∈ (0, 1]. We only consider

the two-commodity case for simplicity, but the argument can easily be adapted to the

case of three or more commodities. The Euclidean distance allows us to obtain that

for each R ∈ Rlin such that 1 < s(R1) < s(R2), ω lies at a positive distance, according

to d(·, ·), from the set IR(R,ω) ∩ Eδ(R,ω). For such R, E(R,ω) is the left and top

sides of the Edgeworth box. Therefore, even if d̂(·, ·) is used in place of d(·, ·) to de�ne

δ-e�ciency, it still follows that d̂ (Z(ω), E(R,ω)) = d̂ (ω,E(R,ω)), so that ω lies at a

positive distance, according to d̂(·, ·), from IR(R,ω)∩Eδ(R,ω). The only di�erence is

that IR(R,ω)∩Eδ(R,ω) may not be a polygon, and the rest of the argument is similar.

Next, concerning Theorem 2, the following property su�ces. Let d̂(·, ·) be a distance
de�ned on RM . Again, the distance d̂(·, ·) induces the distances between (i) a point and

a set in RM ; and (ii) a pair of sets in RM . Denote those distances by d̂(·, ·). In the proof

of Theorem 2, the Euclidean distance is used to deduce an implication of δ-strategy-

proofness : for each R′1 ∈ R, ϕ1(R′1, R2, ω) lies on or below the R1-indi�erence surface

through (1− δ, 1, · · · , 1) (and a symmetric implication for agent 2). As long as there is

(R̂, ω̂) ∈ E(R) such that d̂(·, ·) yields similar implications, the rest of the argument still

holds. In particular, this is the case if d̂(·, ·) is a �weighted� Euclidean distance; i.e.,

there is w ∈ RM
++ such that for each pair a, b ∈ RM , d̂(a, b) =

[∑
`∈M w`(a` − b`)2

]1/2
.

Using di�erent parametrization methods

As another way of checking the robustness of Theorems 1 and 2, we work with a

general parametrization method. We �rst consider a requirement that a reasonable

parametrization should meet, and then show that as long as a parametrization satis�es

it, the results similar to Theorems 1 and 2 obtain.

E�ciency and strategy-proofness concern agents' welfare. Therefore, it is best to

formulate a parametrization so that a change in welfare is captured precisely. However,

the data in our model is not so amenable to such analysis. Each agent only has an
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ordinal preference relation. Unless we take its numerical representation, it is impossible

to measure the change in welfare in exact terms. This challenge led us to use the

Euclidean distance in our parametrizations. The Euclidean distance is certainly a coarse

measure of welfare (the distance between two consumption bundles does not perfectly

re�ect the di�erence in welfare that an agent derives from them). Yet, as we argue

now, when δ approaches zero, the imprecision of δ-e�ciency and δ-strategy-proofness

in capturing welfare changes vanishes.

Recall that Theorem 1 establishes the non-existence of a rule for any δ ∈ (0, 1]. If δ

is su�ciently close to zero, the set of δ-e�cient allocations is �almost� the same as the

set of feasible allocations. Since preference relations are continuous, this means that we

can attain almost all pro�les of feasible welfare levels with δ-e�cient allocations. In

sum, as δ approaches zero, the idiosyncrasy of the Euclidean distance disappears and

δ-e�ciency behaves just as well as any appealing parametrization of e�ciency does.

To demonstrate this point formally, we �rst introduce some concepts. Assume,

henceforth, that N = {1, 2} and Rlin ⊆ R. For each (R,ω) ∈ E(R) and each x ∈
Z(ω), x is most ine�cient for (R,ω) if (i) x is not e�cient ; and (ii) there is no

y ∈ Z(ω) such that x Pareto dominates y for (R,ω).17 Let Ê(R) ⊆ E(R) be the class

of economies (R,ω) such that (i) R ∈ RN
lin; (ii) r1 = (r11, 1, · · · , 1), r2 = (r21, 1, · · · , 1),

and 1 < r11 < r21; and (iii) ω1 = (1, 0, · · · , 0) and ω2 = (0, 1, · · · , 1) (if m = 2, then

ω1 = (1, 0) and ω2 = (0, 1)). The economies in Ê(R) are the ones used in the proof of

Theorem 1.

Now we de�ne a property that a reasonable parametrization should satisfy. Let

{γ-e�ciency}γ∈[0,1] be a parametrization of e�ciency. Let (R,ω) ∈ Ê(R). Because

ω is most ine�cient for (R,ω)�hence, least desirable in terms of e�ciency�we may

require that ω be announced γ-e�cient for (R,ω) only if γ-e�ciency has no bite. Now

�x γ ∈ (0, 1]. Since ω is not γ-e�cient for (R,ω) and since the preference relations are

continuous, there is a su�ciently small neighborhood of ω consisting of allocations that

are almost as ine�cient as ω. We should also announce these allocations not γ-e�cient.

Moreover, since for each economy in Ê(R), the set of e�cient allocations is the same,

17We embed condition (i) in the de�nition of most ine�cient allocations to exclude e�cient alloca-
tions that satisfy (ii). An allocation can be e�cient and satisfy (ii) because we restrict attention to
pro�les of bundles whose sums equal the sum of endowments.
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the neighborhood of ω should be independent of the choice of (R,ω). This argument

motivates the following property: for each γ ∈ (0, 1] and each γ-e�cient rule ϕ, there

is ε > 0 such that for each (R,ω) ∈ Ê(R), ||ϕ(R,ω) − ω|| ≥ ε. We call this property

condition C1. The next result shows that condition C1 is enough for the impossibility

in Theorem 1.

Theorem 3. Let N = {1, 2}. Suppose that Rlin ⊆ R. Let {γ-e�ciency}γ∈[0,1] be

a parametrization of e�ciency satisfying condition C1. For each γ ∈ (0, 1], no rule

de�ned on E(R) is individually rational, γ-e�cient, and strategy-proof.

Proof. The proof is by means of an example. Let γ ∈ (0, 1]. Suppose, by contradiction,

that a rule ϕ de�ned on E(R) satis�es the three axioms listed in the theorem. Since

the parametrization {γ-e�ciency}γ∈[0,1] satis�es condition C1, there is ε > 0 such that

for each (R,ω) ∈ Ê(R), ||ϕ(R,ω)− ω|| ≥ ε.

Now let ω1 = (1, 0, · · · , 0) and ω2 = (0, 1, · · · , 1) (if m = 2, then ω1 = (1, 0) and

ω2 = (0, 1)). Let B ≡ {x ∈ Z(ω) : ||x− ω|| ≥ ε}. Then there is δ ∈ (0, 1] such that

for each R ∈ RN
lin with (R,ω) ∈ Ê(R), B ⊆ Eδ(R,ω). Thus, ϕ is individually rational,

δ-e�cient, and strategy-proof on Ê(R).18 However, the proof of Theorem 1 shows that

for each δ > 0, no rule is individually rational, δ-e�cient, and strategy-proof on Ê(R),

a contradiction.

Next, we turn to the robustness of Theorem 2. The theorem establishes the non-

existence of a rule for any δ ∈ (0, 1]. If δ is su�ciently close to zero, then δ-strategy-

proofness allows an agent to attain almost all feasible bundles by manipulating a rule.

Since his true preference relation is continuous, this means that he can achieve a welfare

level that is arbitrarily close to the maximum welfare level possible for him. Thus, as δ

approaches zero, the role of the Euclidean distance in the construction becomes immate-

rial and {δ-strategy-proofness}δ∈[0,1] behaves in a way that any reasonable parametriza-

tion of strategy-proofness should.

18Let E(R)∗ ⊆ E(R) and let ϕ be a rule de�ned on E(R). Let δ ∈ [0, 1]. Then ϕ is individually
rational on E(R)∗ if for each (R,ω) ∈ E(R)∗, ϕ(R,ω) is individually rational for (R,ω); ϕ is
δ-e�cient on E(R)∗ if for each (R,ω) ∈ E(R)∗, ϕ(R,ω) is δ-e�cient for (R,ω); and ϕ is strategy-
proof on E(R)∗ if for each (R,ω) ∈ E(R)∗, each i ∈ N , and each R′i ∈ R such that (R′i, R−i, ω) ∈
E(R)∗, ϕi(R,ω)Ri ϕi(R

′
i, R−i, ω).

23



Now we give a formal argument expressing this idea. Assume, henceforth, that N =

{1, 2}. Let {γ-strategy-proofness}γ∈[0,1] be a parametrization of strategy-proofness. Let

ω1 = (1, 0), ω2 = (0, 1), and Ω ≡ ω1+ω2. Fix γ ∈ (0, 1] and suppose that ϕ is γ-strategy-

proof. Consider an arbitrary agent, say i ∈ N . Let R ∈ RN
lin be such that ϕi(R,ω) 6= Ω.

When agent i with true preference relation Ri faces agent j ∈ N\{i} announcing Rj, he

does not get all of the endowments, Ω, by telling the truth. Since γ-strategy-proofness

requires ϕ to have at least a minimal form of immunity to manipulation, agent i should

not be allowed to attain, by lying, a welfare level that is arbitrarily close to the level

that Ω provides, or in physical terms, a bundle that is arbitrarily close to Ω. This

suggests imposing the following property on parametrizations of strategy-proofness : for

each γ ∈ (0, 1], each γ-strategy-proof rule ϕ, and each i ∈ N , there is ε > 0 such that

for each R ∈ RN
lin with ϕi(R,ω) 6= Ω, and each R′i ∈ Rlin, ||ϕi(R′i, R−i, ω) − Ω|| ≥

ε||ϕi(R,ω) − Ω||. We call this property condition C2. The next result shows that

condition C2 is enough for the impossibility in Theorem 2.

Theorem 4. Let N = {1, 2}. Suppose that Rlin ⊆ R. Let {γ-strategy-proofness}γ∈[0,1]

be a parametrization of strategy-proofness satisfying condition C2. For each γ ∈ (0, 1],

no rule de�ned on E(R) is individually rational, e�cient, and γ-strategy-proof.

Proof. The proof is by means of an example. Let γ ∈ (0, 1]. Suppose, by contradiction,

that a rule ϕ de�ned on E(R) satis�es the three axioms listed in the theorem. Then

for each i ∈ N , there is εi > 0 satisfying the requirement of condition C2. Let ε ≡
min{ε1, ε2} > 0.

Case 1: There are two commodities; i.e., M = {1, 2}.
(Figure 8) Let ω1 = (1, 0), ω2 = (0, 1), and Ω ≡ ω1 +ω2. Let s̄ ∈ (0, ε). Let R ∈ RN

lin

be such that s(R1) = s̄ and s(R2) = 1
s̄
. Let a ≡ (0, s̄), b ≡ (0, 1), and e ≡ (1 − s̄, 1).

Let x ≡ ϕ(R,ω). By individual rationality and e�ciency, x ∈ seg[a, b] ∪ seg[b, e], so

that x1 6= Ω. Without loss of generality, assume that x ∈ seg[a, b]. Let c ≡ (1 − ε, 1).

By γ-strategy-proofness, for each R′1 ∈ R, ||ϕ1(R′1, R2, ω) − Ω|| ≥ ε||x1 − Ω|| ≥ ε (if

x = b, then ||x1 − Ω|| = 1; otherwise, ||x1 − Ω|| > 1). Now let R′1 ∈ Rlin be such that
1
ε
< s(R′1) < 1

s̄
. Let d ≡ (1− s(R′1), 1). Then by individual rationality and e�ciency,

ϕ1(R′1, R2, ω) ∈ seg[d, e], a contradiction.
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Figure 8: Illustration of Case 1 in the proof of Theorem 4. Let γ ∈ (0, 1] and let ϕ be

γ-strategy-proof . Let ε > 0 satisfy the requirement of condition C2. Let ω1 = (1, 0), ω2 = (0, 1),

and Ω ≡ ω1+ω2. Let R ∈ RNlin be as speci�ed in the �gure. By individual rationality and e�ciency ,

ϕ(R,ω) ∈ seg[a, b] ∪ seg[b, e]. Without loss of generality, assume that ϕ(R,ω) ∈ seg[a, b]. By

condition C2, for each R
′
1 ∈ Rlin, ||ϕ1(R′1, R2, ω) − Ω|| ≥ ε. Now let R′1 be as speci�ed in the

�gure. By individual rationality and e�ciency , ϕ(R′1, R2, ω) ∈ seg[d, e], a contradiction.

Case 2: There are more than two commodities; i.e., M = {1, · · · ,m}, where m ≥ 3.

The argument in Case 1 can be adapted to allow for more than two commodities�as

in the proof of Theorem 2. We omit the obvious proof.

6 Concluding Remarks

We conclude by discussing two issues.

Assumptions on the preference domain.

Each of our results assumes that the preference domain contains linear preference
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relations. In proofs, we use linear preference relations primarily because they allow us

to explicitly calculate the coordinates of the points we are interested in. It is clear that

one can derive similar impossibility results, essentially with the same proof, imposing

weaker assumptions on the preference domain. For instance, to prove an analog of

Theorem 1, it is enough to assume that the preference domain contains the following:

(i) a pair of preference relations, say R1 and R2, such that the R1-indi�erence surface

through ω is everywhere �atter than the R2-indi�erence surface through ω; and (ii) a

collection of preference relations, whose indi�erence surfaces through ω lie between the

R1- and R2-indi�erence surfaces through ω and are arbitrarily close to them.

Identifying the possibility-impossibility boundary in the (δI, δE, δS)-space.

Figure 7 shows that for each (δI , δE, δS) ∈ seg[a, b) ∪ seg[a, c) ∪ seg[a, d), no rule is

δI-individually rational, δE-e�cient, and δS-strategy-proof. Yet the region seg[a, b) ∪
seg[a, c)∪ seg[a, d) only represents a su�cient condition for the non-existence of a rule.

In particular, we do not know whether a rule exists on the faces or in the interior of the

unit cube. Thus, one may attempt to identify the possibility-impossibility boundary in

the (δI , δE, δS)-space.

While the question is intriguing in itself, it would necessitate a completely new

proof technique. Impossibility results are typically proved by a �pathological� counter-

example, for which one of the axioms imposed is violated. Therefore, even though no

rule exists at a particular point (δI , δE, δS) in the unit cube, there is no guarantee that

the same proof technique would work in a neighborhood of (δI , δE, δS). Moreover, when

it does not work, we cannot be assured that we are near the possibility-impossibility

boundary; we still need to check if all examples fail to deliver an impossibility. Since

there are a continuum of economies in the domain and a continuum of ways in which

agents can misrepresent, this task will prove demanding.

Further, even if a satisfactory answer is available, it would be di�cult to extract a

meaningful economic content from the answer. The possibility-impossibility boundary

characterizes the tradeo� between the three axioms. Since it also serves as a necessary

condition for impossibility results, it is very sensitive to the parametrization method

chosen. A slight perturbation of the parametrization method may greatly a�ect the

boundary. Therefore, we cannot deduce a robust interpretation from, e.g., the statement
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that a rule exists at (δI , δE, δS) if and only if δI + δE + δS ≤ 1.
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