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Abstract: For the famous prospect theory model there is hitherto no preference foundation for general

sets of outcomes. All existing models assume a rich structure for the set of outcomes and propose preference

conditions that hinge upon that structure. Yet in many important applications where prospect theory is

assumed, like health or insurance, the set of outcomes is degenerate. Beyond the standard assumptions, it is

unclear what preference conditions are required to determine prospect theory in these more general settings. This

paper proposes a consistency principle for elicited probability midpoints that requires a consistent treatment

of probabilities of gains and similarly a consistent treatment of probabilities of losses. We show that in the

presence of the other standard preference conditions this consistency principle implies prospect theory.
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1 Introduction

Kahneman and Tversky (1979) provided us with a powerful descriptive theory for decision under

risk. Later, in Tversky and Kahneman (1992), prospect theory2 (PT) was extended to uncertainty

and ambiguity by incorporating the requirements of rank-dependence introduced by Quiggin (1981,

1982) and Schmeidler (1989), and received a sound preference foundation by using the tools underlying

continuous utility measurement developed in Wakker (1989) (see also Wakker and Tversky 1993). Due

to the ability to incorporate and account for sign-dependent probabilistic risk attitudes, ambiguity

attitudes, reference-dependence, loss aversion and diminishing sensitivity of utility, PT became the

most popular and well-known descriptive theory for risk and uncertainty (Starmer 2000, Kahneman

and Tversky 2000, Wakker 2010). Yet, since its original form, it took many years before the first

foundations of PT for decision under risk was made readily available (Chateauneuf and Wakker 1999).

Recently, Kotyal, Spinu and Wakker (2011) provided foundations of PT for continuous distributions.

All these theoretical developments assumed that the set of outcomes is endowed with a sufficiently

rich structure that then allows for the derivation of continuous cardinal utility.

This paper takes a different approach. It does not assume richness of the set of outcomes, but

instead it follows the traditional approach pioneered by von Neumann and Morgenstern (1944) of

using the natural structure given by the probability interval. This approach has been used to derive

preference foundations for rank-dependent utility (RDU) by Chateauneuf (1999), Abdellaoui (2002)

and more recently by Zank (2010); specific parametric probability weighting functions were provided

by Diecidue, Schmidt and Zank (2009), Abdellaoui, l’Haridon and Zank (2010) and Webb and Zank

(2011). Neither of these have looked at PT-preferences.3 Indeed, these late discoveries and preference

foundations for RDU may explain why until now PT has not been derived using this “probabilistic

2Some authors prefer to distinguish the original prospect theory of Kahneman and Tversky (1979) from the modern

version, cumulative prospect theory, of Tversky and Kahneman (1992). Indeed, as Wakker (2010, Apendix 9.8) clarifies,

in general these models make different predictions. Here we restrict attention to the modern version, and hence, we use

the shorter name prospect theory.
3An exception is Prelec (1998), where PT is assumed, however, the key preference condition there requires a continuous

utility.
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approach.” Our aim is to fill this gap and to show that PT can be obtained from preference conditions

that rely solely on the objective probabilities for outcomes being given while the set of outcomes can

be very general.

The importance of having sound preference foundations for decision models, in particular for PT,

has recently been reiterated by Kotyal, Spinu and Wakker (2011, pp. 196—197). If a continuous

utility is not available, as a result of outcomes being discrete (e.g., as in health or insurance), the

relationship between the empirical primitive (i.e., the preference relation) and the assumption of PT

becomes unclear, which is undesirable. In that case one can no longer be sure that our predictions and

estimates are in line with the behavior induced by the preference relation. Our preference conditions

are necessary and sufficient for PT and, therefore, they help clarifying which assumptions one makes

by invoking the model.

Our key preference condition is based on the idea of probability midpoint elicitations. It requires

that elicited probability midpoints are independent of the outcomes (i.e., the stimuli) used to derive

these midpoints, whenever all outcomes are of the same sign (i.e., either all outcomes are gains or all

are losses). Indeed, under PT the probability weighting function for gain probabilities may be different

to the probability weighting function for probabilities of losses, that is, we observe sign-dependence.

Many empirical studies provided evidence on sign-dependence (Edwards 1953, 1954, Hogarth and

Einhorn 1990, Tversky and Kahneman 1992, Abdellaoui 2000, Bleichrodt, Pinto, and Wakker 2001,

Etchard-Vincent 2004, Payne 2005, Abdellaoui, Vossmann and Weber 2005, Abdellaoui, l’Haridon and

Zank 2010).4 We therefore invoke consistency of probability midpoints for gains and consistency of

probability midpoints for losses. It turns out that this principle of consistency is sufficient to obtain

PT in the presence of some standard preference conditions.

The original elicitation technique for nonparametric probability weighting functions was presented

4Sign-dependence is one of the consequences of reference dependence. The latter serves as the key explanation for

prominent phenomena like the disparity between willingness to pay and willingness to accept (Kahneman, Knetsch, and

Thaler 1990, Bateman et al. 1997, Viscusi, Magat and Huber 1987, Viscusi and Huber 2012), the endowment effect

(Thaler 1980, Loewenstein and Adler 1995), and the status quo bias (Samuelson and Zeckhauser, 1988).
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in Abdellaoui (2000) and Bleichrodt and Pinto (2000). These papers invoke utility measurements prior

to the elicitation of probability weighting functions and, hence, require continuous utility. A simplified

version of the method appeared recently in van de Kuilen and Wakker (2011). The latter method,

which also applies to the study of ambiguity attitude, that is, when uncertainty is not described by

objective probabilities, requires one single utility midpoint elicitation. For that midpoint continuous

utility is required but subsequent steps in their method do not rely on continuous utility. In contrast,

the method of Wu, Wang and Abdellaoui (2005) can be applied in the probability triangle and does not

necessitate utility midpoint elicitation. We assume probabilities are given and extend these methods to

derive PT axiomatically. In this way we obtain preference conditions that are empirically meaningful

and we also provide behavioral foundations for PT for decision under risk.

Next we present preliminary notation and recall the standard preference condition and some im-

plications thereof. In Section 3 we elaborate and present our main preference condition and the main

theorem. Extensions are discussed in Section 4 and the concluding remarks in Section 5 are followed

by an Appendix with proofs.

2 Preliminaries

In this section we recall the standard ingredients for decision under risk and the traditional preference

conditions that are shared by expected utility and prospect theory.

2.1 Notation

Let  denote the set of outcomes. For simplicity of exposition, we make several assumptions that will

later, in Section 4, be relaxed to demonstrate the full generality of our approach. First, we assume

a finite set of outcomes, such that  = {1     }, with   4. A prospect is a finite probability

distribution over the set . Prospects can be represented by  = (̃1 1;    ; ̃ ) meaning that

outcome  ∈  is obtained with probability ̃ , for  = 1     . Naturally, ̃ ≥ 0 for  = 1     
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and
P

=1 ̃ = 1. Let L denote the set of all prospects.

A preference relation < is assumed over L, and its restriction to subsets of L (e.g., all degenerate

prospects where one of the outcomes is received for sure) is also denoted by <. The symbol Â denotes

strict preference while ∼ denotes indifference (4 and ≺ denote reversed weak and strict preferences,

respectively).

Our second expositional simplification is the assumption that no two outcomes in  are indifferent,

and further, that outcomes are ordered from best to worst, i.e., 1 Â · · · Â . We assume that 

contains a reference point: for some  ∈ {1     } let  be this reference point such that all outcomes

 Â  are gains and all outcomes  Â  are losses. We assume that  contains at least two gains

and at least two losses.

It will be convenient to use an alternative notation for prospects, following Abdellaoui (2002)

and Zank (2010). In the (de)cumulative probabilities notation  = (1     ), where  =
P

=1 ̃

denotes the probability of obtaining outcome  or better,  = 1     .
5 Obviously,  = 1. Note that

we have dropped outcomes from the cumulative probability notation for prospects to further simplify

the exposition.

Recall, that under expected utility (EU) prospects are evaluated by

(1     ) =

X
=1

[ − −1]() (1)

with a utility function, , which assigns to each outcome a real number and is monotone (that is, 

agrees with the preference ordering over outcomes: () ≥ ()⇔  < ).
6 Under EU the utility

is cardinal, i.e., it is unique up to multiplication by a positive constant and translation by a location

parameter.

A more general model is rank-dependent utility (RDU) where prospect  = (1     ) is evaluated

5Similarly, in the cumulative probabilities notation  = (1 1− 1     1− −1) where entries denote the probability
of obtaining outcome  or less,  = 1     .

6Here and elsewhere we use the convention that summation over zero elements is equal to 0. E.g., 0 =
0

=1 ̃ = 0.
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by

(1     ) =

X
=1

[()− (−1)]() (2)

Utility is similar to EU, however, RDU involves a weighting function for probabilities,  that is

uniquely determined. Formally, the weighting function, , is a mapping from the probability interval

[0 1] into [0 1] that is strictly increasing with (0) = 0 and (1) = 1. In this paper the axiomatically

derived weighting functions are continuous on [0 1]. There is, however, empirical and theoretical inter-

est in discontinuous weighting functions at 0 and at 1 (Kahneman and Tversky 1979, Birnbaum and

Stegner 1981, Bell 1985, Cohen 1992, Wakker 1994, 2001, Chateauneuf, Eichberger and Grant 2007,

Webb and Zank 2011). We discuss relaxing the continuity assumption at the extreme probabilities in

Section 4.

The model of interest in this paper extends RDU by incorporating reference-dependence. This has

the implication that the weighting function will depend on whether the cumulative probabilities are

those of gains or whether they are probabilities of losses. For this reason the term sign-dependence

is used to highlight that the nonlinear treatment of probabilities depends on the sign of the outcome

attached to each probability. Under Prospect Theory (PT) the prospect  = (1     ) is evaluated

by

 (1     ) =

−1X
=1

[+()− +(−1)]() +
X

=+1

[−(1− −1)− −(1− )]() (3)

where () = 0 is assumed and 
+ and − are continuous and strictly increasing probability weight-

ing functions for cumulative probabilities of gains and losses, respectively. Under PT the utility is a

ratio scale (i.e., it is unique up to multiplication by a positive constant) and the weighting functions

are uniquely determined.

The definition of the probability weighting functions over cumulated probabilities starting with the

largest gain (loss) is the familiar presentation of the PT-formula for evaluating prospects. Sometimes,
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in the literature, the dual of the weighting function for probabilities of losses is employed: ̃−() =

1− −(1− )  ∈ [0 1]. Then, the decision weight [−(1− −1) − −(1 − )] for a loss     

in Equation (3) can be rewritten as [̃−()− ̃−(−1)].

As mentioned in the introduction several preference foundations for PT have been proposed using

the approach based on continuous utility. Foundations with general continuous utility include Tversky

and Kahneman (1992), Wakker and Tversky (1993), Chateauneuf and Wakker (1999), Köbberling and

Wakker (2003, 2004), Wakker (2010) and Kotyal, Spinu and Wakker (2011). Derivations of CPT with

specific forms of the utility function (linear/exponential, power, and variants of multiattribute utility)

have been provided in Zank (2001), Wakker and Zank (2002), Schmidt and Zank (2009). Bleichrodt,

Schmidt and Zank (2009) assume attribute specific reference points for derivations of functionals that

combine PT and multiattribute utility. In the next subsection we present the standard preference

conditions that all functionals presented in this section have to satisfy.

2.2 Traditional Preference Conditions

This subsection presents the classical preference conditions that are necessary for RDU and PT. We

are interested in conditions for a preference relation, < on the set of prospects L in order to represent

the preference relation by a function  . That is,  assigns a real value to each prospect, such that

for all  ∈ L

 < ⇔  ( ) ≥  ()

A requirement for such a representation  is that < is a weak order, i.e., the following axiom holds:

Weak Order: The preference relation < is complete ( <  or  4  for all  ∈ L) and

transitive.

Further requirements are those of first order stochastic dominance and of continuity in probabilities.

Dominance: The preference relation satisfies first order stochastic dominance (or monotonicity in

7



cumulative probabilities) if  Â  whenever  ≥  for all  = 1      and  6= .

Continuity: The preference relation < satisfies Jensen-continuity on the set of prospects L if

for all prospects  Â  and  there exist   ∈ (0 1) such that  + (1 − ) Â  and

 Â + (1− ).7

A monotonic weak order that satisfies Jensen-continuity on L also satisfies the stronger Euclidean-

continuity on L (see, e.g., Abdellaoui 2002, Lemma 18). Further, the three conditions taken together

imply the existence of a continuous function  : L → R strictly increasing in each cumulative

probability, that represents <.8 The latter follows from results of Debreu (1954).

Next, we focus on the additive separability property across outcomes for the representing function

 . This property requires an independence condition for common cumulative probabilities. To define

this condition we introduce a useful notation. For  ∈ {1     − 1},  ∈ L and  ∈ [0 1], we denote

by  the prospect that agrees with  except that  is replaced by . Whenever this notation is used

it is implicitly assumed that −1 ≤  ≤ +1 (respectively,  ≤ +1 if  = 1 and −1 ≤  if  = − 1)

to ensure that  ∈ L. More generally, for any nonempty subset  ⊂ {1      − 1} we write 

for the prospect  with  replaced by  ∈ [0 1] for all  ∈ . Clearly, for  to be a well-defined

prospect, set  must include all indices between and including the smallest (min{ :  ∈ }) and the

largest (max{ :  ∈ }) in .

Independence: The preference relation < satisfies independence of common cumulative probabilities

if  < ⇔  <  for all     ∈ L.

The next lemma follows from results of Wakker (1993) on additive representations on rank-ordered

sets.

Lemma 1 The following two statements are equivalent for a preference relation < on L:
7The -probability mixture of  with  is the prospect  + (1− ) = (1 + (1− )1      + (1− )).
8This function may be unbounded at  or 1.
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(i) The preference relation < on L is represented by an additive function

 ( ) =

−1X
=1

()

with continuous strictly increasing functions 1     −1 : [0 1] → R which are bounded with

the exception of 1 and −1 which could be unbounded at extreme probabilities (i.e., 1 may be

unbounded at 0 and −1 may be unbounded at 1).

(ii) The preference relation < is a Jensen-continuous weak order that satisfies first order stochastic

dominance and independence of common cumulative probabilities.

The functions 1     −1 are jointly cardinal, that is, they are unique up to multiplication by a

common positive constant and addition of a real number. ¤

Next we focus on the condition that, if added to Lemma 1, delivers PT. We present this principle

in the next Section.

3 Consistent Probability Midpoints

In this section we present consistency requirements for elicited probability midpoints. These re-

quirements will depend only on the sign of the outcomes attached to these midpoints. In this way

sign-dependence, a novelty introduced by PT, is accounted for. Our main theorem shows that, when

added to statement (ii) of Lemma 1, our consistency principle for elicited midpoints indeed delivers

PT.

To motivate our consistency property, suppose that we have  = {1     } with    and for

some   ∈ [0 1],   , we observe the indifference  ∼ . Such indifferences can be elicited as

indicated in Figure 1 below, by asking subjects to indicate or reveal the probability that makes them

indifferent between the prospect in Panel (a), where  indicates that residual probability (1− ) is
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given to outcomes    ∈  as specified by  , and the prospect in Panel (b).

  x1 

xP 

α 

1 ‐ α

(a)

~

x1 β

1 ‐ β

(b)

?

xQ 

Figure 1: Eliciting probability  to give indifference  ∼ .

Such elicitation methods work well for empirical utility measurement (e.g., Baillon, Driessen and

Wakker 2012, Abdellaoui, Attema and Bleichrodt 2010), for measuring discounting functions for time

preferences (Attema, et al. 2010), and have been adopted for measurements of weighting functions

under risk and uncertainty (Abdellaoui, et al. 2011, Abdellaoui, Diecidue and Onçuler 2011). These

methods can also play an important role in decomposing weighting functions under uncertainty into

a probabilistic risk component and a pure belief component as suggested in Wakker (2004).

Notice that all outcomes    ∈  in the preceding prospects are gains. Suppose that for the

prospect  we improve the likelihood of the gain 1 by  −  (by taking this probability away

from outcome ), resulting in the prospect  . In that case, for the prospect  we require an

improvement in the likelihood of outcomes 1 to restore the preceding indifference. Suppose that

 −  is required to maintain the indifference, such that we obtain the new indifference  ∼ .

Both improvements in the probability of outcome 1 come at the expense of reducing the (cumulative)

probability of outcome +1 by the corresponding probability mass. Condition    ensures that +1

is not a loss; +1 is a gain or can be the reference point. This means that the probabilities of losses

remain unaffected by these joint improvements, and in general they can be chosen equal in  and

, such that, according to the assumption of independence of common cumulative probabilities, they

should be of no influence for the derived indifferences.
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0
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Figure 2: Elicited probability midpoints (a) and perceived impact on + (b).

In Figure 2 (a) above, the original indifference before and after the improvements are depicted in a

probability triangle. This means that the improvement − in the cumulative probability of prospect

 is of similar weight (or treated the same) as the improvement − in the cumulative probability

of prospect .

Panel (b) of Figure 2 shows how these improvements are treated by the weighting function for gain

probabilities. Substitution of PT from Equation (3) into the indifferences  ∼  and  ∼ ,

and taking the difference of the resulting equations implies, after elimination of common terms, that

[+()− +()](1) = [
+()− +()](1)

As 1 Â  we have (1)  0, which is common on both sides of the preceding equation and can,

therefore, be eliminated. We obtain

+()− +() = +()− +()
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or

+() =
+() + +()

2
 (4)

This shows that, under PT,  is perceived as the probability midpoint between  and  on the +-

scale. Moreover, Equation (4) is independent of any gains or the utility thereof, which suggests that

the joint improvements  −  and  −  should be treated the same irrespective of the common gain

where the improvement is made. For example if the cumulative probability of the gain 2 is improved

in both prospects we should observe 1\{1} ∼ 1\{1}. Indeed one can verify, similar to the

preceding derivation, that substitution of PT into  ∼  and 1\{1} ∼ 1\{1} also implies

Equation (4). The following consistency property for elicited probability midpoints is obtained.

Midpoint Consistency: The preference < satisfies probability midpoint consistency if  ∼ 

and  ∼  imply \ ∼ \ whenever  ⊂  ⊂ {1      − 1} such that either

all   ∈ , are gains or all +1  ∈ , are losses.

Before we present the main result of the paper, we illustrate the analogous derivation of midpoints

for the weighting function for loss probabilities. Suppose that we have  = {     −1} with  ≤  and

for some   ∈ [0 1],   , we observe the indifference 
0 ∼ 

0. Then reducing the probability

of obtaining  by  −  in prospect 
0 gives the improved prospect  0. This improvement

comes as a result of simultaneously increasing the likelihood of outcome +1 by −. To reestablish

indifference after this improvement we need to reduce the probability of  in prospect 
0 by − 

(and increase the likelihood of +1 by  − ). We obtain 
0 ∼ 

0. Then substitution of PT

for 
0 ∼ 

0 and for  0 ∼ 
0 and taking the difference of the two equations gives, after

cancellation of common terms, the following relationship:

[−(1− )− −(1− )]() = [
−(1− )− −(1− )]()

Given that  ≤    and  ≺  we have 0  (). We eliminate () from the preceding
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equation and obtain

−(1− ) =
−(1− ) + −(1− )

2
 (5)

This means that, given (1− ) and (1− ) for the weighting function for loss probabilities, (1− ) is

a probability midpoint. Reformulated in terms of the dual ̃− of − one obtains

̃−() =
̃−() + ̃−()

2

confirming that  is a probability midpoint of  and  for the dual of the weighting function for loss

probabilities. Again we notice that the latter two equations are independent of the utilities of the

losses that were attached to the elicited probability midpoint if PT is assumed.

We can now formulate the main result of the paper.

Theorem 2 The following two statements are equivalent for a preference relation < on L:

(i) The preference relation < on L is represented by prospect theory with strictly increasing and

continuous probability weighting functions + and −, and utility  :  → R that agrees with

the ordering of outcomes and assigns () = 0 to the reference point .

(ii) The preference relation < is a Jensen-continuous weak order that satisfies first order stochastic

dominance, independence of common cumulative probabilities and probability midpoint consis-

tency.

The probability weighting functions are uniquely determined and the utility function is a ratio

scale. ¤

4 Extensions

In the previous sections we have assumed that we have strictly ordered outcomes and at least two

gains and two losses in addition to the reference point. First, the strict ordering can be relaxed if there
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are at least five strictly ordered outcomes, two gains, two losses in addition to the reference point.

If  is finite all results remain valid if we take representatives for each set of indifferent outcomes.

These outcomes will then be given the same utility value. If, however,  is infinite, then results

remain valid for each finite subset of outcomes  that contains at least two gains, two losses and the

reference point all of which are strictly ordered. We can then extend the PT-representations on the

sets of prospects over the different finite subsets to a general PT-representation by using the fact that

the representations on any such sets of prospects over  and of prospects over  0 must agree with the

representation on the set of prospects over  ∪  0. Hence a common PT-representation must exist

over prospects over the possibly infinite .

Second, the requirement of having at least five strictly ordered outcomes can be relaxed to having

at least four strictly ordered outcomes. If contains only gains and possibly the reference outcome (or

only losses and possibly the reference outcome), then the probability midpoint consistency condition

comes down to the consistency in probability attitudes principle of Zank (2010). In that case PT

reduces to RDU and we can apply the results of Zank (2010) to obtain a corresponding preference

foundation.

If there are only three strictly ordered outcomes, the probability midpoint consistency principle

is void. In that case, we can still obtain RDU if we do not have outcomes of opposite signs (i.e., all

outcomes are gains or two gains and a reference outcome or all outcomes are losses or two losses and

the reference outcome) by invoking the probability tradeoff consistency principle of Abdellaoui (2002)

or a refinement of that principle as proposed in Köbberling and Wakker (2003). In that case one can

also drop independence of common cumulative probabilities as it is implied by the stronger probability

tradeoff consistency principle. If, however, we have one gain, the reference outcome and one loss, then

Lemma 1 no longer holds as independence of common cumulative probabilities is insufficient to deliver

additive separability. We can still derive an additive representation by using stronger conditions

like the Thomsen condition or triple cancellation as in Wakker (1993, Theorem 3.2). Then, if those
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additive functions are finite at extreme probabilities, they can be seen as the product of utility times

the corresponding weighting function, and we immediately obtain PT. For fewer than three strictly

ordered outcomes first stochastic dominance and weak order are sufficient for an ordinal representation

of preferences.

In our derivation of PT it has been essential that the weighting functions are continuous at 0 and

at 1. Discontinuities at these extreme probabilities are, however, empirically meaningful. We could

adopt a weaker version of Jensen-continuity that is restricted to prospects that have common best and

worst outcomes with positive objective probability. Such conditions have been used in Cohen (1992)

and more recently in Webb and Zank (2011) where probability weighting functions are derived that

are linear and discontinuous at extreme probabilities. These weighting functions can then be described

by two parameters one for optimism and one for pessimism. As Webb and Zank show, this relaxation

of continuity in probabilities comes at a price. They require additional structural assumptions for

the preference in order to obtain consistency of the parameters across sets of prospects with different

minimal and maximal outcomes. Also specific consistency principles that imply the uniqueness of

these parameters are required. We conjecture that in our framework such consistency principles can

be formulated for nonlinear weighting functions that are discontinuous at 0 and at 1. A formal

derivation of PT with such weighting functions is, however, beyond the scope of this paper.

5 Conclusion

Prospect theory is currently the most popular descriptive theory for decision under risk and uncer-

tainty. PT incorporates several prominent behavioral phenomena and can explain many empirical

regularities that influence risk attitudes. Loss aversion and diminishing sensitivity of utility are seen

as features of a continuous utility function (Kahneman and Tversky 1979, Tversky and Kahneman

1992, Tversky and Wakker 1993, Köbberling and Wakker 2005) and this may explain why all exist-

ing foundations of prospect theory have accordingly provided preference conditions that rely on the
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existence of a continuous utility. The focus of this paper has been on sign-dependence, the different

treatment of probabilities depending on whether the latter are attached to gains or to losses. We have

complemented the existing foundations for PT in the “continuous utility approach” with preference

foundations based on the “continuous weighting function approach” by adopting a familiar tool from

empirical measurement of probability weighting functions and we have demonstrated how PT can be

obtained from behavioral principles in an efficient and tractable manner.

Appendix: Proofs

Proof of Lemma 1: The proof of the lemma follows from results for additive representations on

rank-ordered sets in Wakker (1993, Theorem 3.2 and Corollary 3.6). That statement (i) implies

statement (ii) is immediate from the properties of the functions    = {1      − 1}. As we have

a preference relation < defined on a rank-ordered set of cumulative probabilities (i.e., a rank-ordered

subset of [0 1]−1) and < satisfies weak order, Jensen-continuity and first order stochastic dominance,

we also have Euclidean continuity (by Lemma 18 in Abdellaoui 2002) for <. First order stochastic

dominance comes down to strong monotonicity in cumulative probabilities. Further, as   4 we can

use independence of common cumulative probabilities, which comes down to coordinate independence

of Wakker (1993), and note that statement (ii) of Theorem 3.2 of Wakker is satisfied. Then statement

(i) of the lemma follows from statement (i) of Theorem 3.2 of Wakker, the only difference being

that our strong monotonicity implies that the functions    = {1     − 1} are strictly increasing.

Uniqueness results are as in Wakker’s Theorem 3.2. This concludes the proof of Lemma 1. ¤

Proof of Theorem 2: The derivation of statement (ii) from statement (i) follows from Lemma

1 and the analysis preceding the theorem in the main text on the consistency of elicited probability

midpoints under PT.

We now prove that statement (ii) implies statement (i) of the theorem. Assume that < on L

is a weak order that satisfies first order stochastic dominance, independence of common cumulative
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probabilities and probability midpoint consistency. Then, by statement (i) of Lemma 1 the preference

< on L is represented by an additive function

 ( ) =

−1X
=1

() (6)

with continuous strictly increasing functions 1     −1 : [0 1]→ R which are bounded except maybe

1 and −1 which could be unbounded at extreme probabilities.

Next we restrict our analysis to cumulative probabilities different from 0 or 1 in order to avoid the

problems with the unboundedness of 1 and −1. For any  ∈ (0 1) and   0 let () be the open

neighborhood around  with Euclidean distance . Take any    ∈ () such that

−1X
=1

[()− ()] =

−1X
=1

[()− ()] (7)

Then, for   0 sufficiently small, by continuity of the functions   =       − 1, there exists

lotteries  ∈ L with
−1X
=1

() +

−1X
=

() =

−1X
=1

() +

−1X
=

()

and

−1X
=1

() +

−1X
=

() =

−1X
=1

() +

−1X
=

()

The latter two equations are equivalent to the respective indifferences

 ∼  and  ∼ 

where  = {1      − 1} meaning that the cumulative probabilities    are attached to gains.

Consider the case    (and note that the case    is completely analogous). By first order
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stochastic dominance it follows that   . Further, probability midpoint consistency requires that

\ ∼ \

for all  = {1     }  ∈ \{ − 1}. First take  = 1. Then, substitution of Equation (6) into

 ∼  implies

−1X
=1

() +

−1X
=

() =

−1X
=1

() +

−1X
=

()

and substitution of Equation (6) into 1\{1} ∼ 1\{1} gives

1() +

−1X
=2

() +

−1X
=

() = 1() +

−1X
=2

() +

−1X
=

()

Taking the difference of the two latter equations and cancelling common terms implies

−1X
=2

[()− ()] =

−1X
=2

[()− ()]

Similarly, joint substitution of Equation (6) into  ∼  and 1\{1} ∼ 1\{1}, taking

differences and cancelling common terms, implies

1()− 1() = 1()− 1() (8)

Similarly, if  = 2, we obtain

−1X
=3

[()− ()] =

−1X
=3

[()− ()]

and

2X
=1

[()− ()] =

2X
=1

[()− ()]
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and using Equation (8) we obtain

2()− 2() = 2()− 2()

By induction on  we conclude that if Equation (7) holds then for all  = 1      − 1 we have

()− () = ()− ()

That the converse holds is immediate. We conclude that for any  ∈ (0 1) and sufficiently small   0

for    ∈ () we have

−1X
=1

[()− ()] =

−1X
=1

[()− ()]

⇔

()− () = ()− () for all  = 1      − 1

This means that locally the functions  ,  = 1      − 1, are proportional and also proportional

to their sum, which we denote  +. Global proportionality follows from local proportionality and

continuity. This means that there exist positive constants 1     −1 and real numbers 1     −1

such that

(·) = 
+(·) +    = 1      − 1

Following Proposition 3.5 of Wakker (1993) the functions  can be taken finite at 0 and 1, and can

continuously be extended to all of [0 1].

Similar arguments, now applying midpoint consistency for probability midpoints of losses, can be

used to derive proportionality of the functions  − :=
P−1

=  and  ,  =      − 1. Proposition

3.5 of Wakker (1993) applies again saying that the functions  can be taken finite at 0 and 1, and can

continuously be extended to all of [0 1]. We conclude that there exist positive constants      −1
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and real numbers      −1 such that

(·) = 
−(·) +    =      − 1

Next, we derive the weighting functions for probabilities of gains and losses and the utility for

outcomes. We fix  +(1) +  −(1) = 1 and (0) = 0 for  = 1      − 1 and (1) = 0 for  =

     −1, thereby fixing the scale and location of the otherwise jointly cardinal functions  . Then,

1 = · · · = −1 = 0 must hold and it follows that  +(1) = 1. We define

+() :=  +() =

−1X
=1

() +

−1X
=

(1)

Therefore, +(0) = 0 +(1) = 1 and + is strictly increasing and continuous on [0 1], and is, indeed,

a well-defined probability weighting function. It is the probability weighting function for probabilities

of gains.

Next we derive −. First we define

̂() :=
 −()
 −(0)

=

P−1
=1 (0) +

P−1
= ()P−1

=1 (0) +
P−1

= (0)


This is a well-defined function given that the functions    =      − 1, are strictly increasing and

bounded, and thus, ()  0 for all  =       − 1, whenever   1 such that the denominatorP−1
=1 (0) +

P−1
= (0) 6= 0 and finite. It then follows that the function ̂ has the following

properties: ̂(1) = 0 and ̂(0) = 1 and ̂ is strictly decreasing and continuous on [0 1]. We set

̃−() := 1− ̂() =
 −(0)−  −()

 −(0)


for each  ∈ [0 1], which gives us the dual weighting function for probabilities of losses. A useful
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rearrangement of this equation gives

 −() =  −(0)[1− ̃−()]

From ̃− we obtain − through −() = 1− ̃−(1− ) for all  ∈ [0 1].

Next we derive the utility function for outcomes. From the derivation of + and (·) = 
+(·)  =

1      − 1, we obtain

(·) = 
+(·)  = 1      − 1

and from the derivation of ̃− and (·) = 
−(·)  =      − 1 we obtain

(·) = 
−(0)[1− ̃−(·)]  =      − 1

Noting that the degenerate lottery that gives  for sure is expressed as the prospect 0{1−1}(1     1),

for each  = 1     , we define utility as follows:

() :=  (0{1−1}(1     1))

=  −(1)

= 0

Then, for  =  − 1     1 we iteratively define

() := (+1) + 

And for  =  + 1      we iteratively define

() := (−1) + −1 −(0)
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These definitions of utility functions for gains and losses imply that the ordering of the utility for

outcomes is (1)  · · ·  (), thus in agreement with the ordering according to the preference <.

Next, substitution into  ( ), gives

 ( ) =

−1X
=1

() +

−1X
=

()

=

−1X
=1


+() +

−1X
=


−(0)[1− ̃−()]

Note that for  = 1      − 1 we have  = () − (+1) and for  =       − 1 we have


−(0) = (+1)− (). Substitution into the preceding equation gives

 ( ) =

−1X
=1

+()[()− (+1)] +

−1X
=

[(+1)− ()][1− ̃−()]

=

−1X
=1

[+()− +(−1)]() +
−1X
=

[(+1)− ()][1− ̃−()]

where, in the latter equation, the term relating to probabilities of gains has been rearranged using the

properties that +(−1) = 0 for  = 1 and (+1) = 0 for  =  − 1. Next we rearrange the term

relating to probabilities of losses. After substitution of ̃−() = 1− −(1− ), we obtain

 ( ) =

−1X
=1

[+()− +(−1)]() +
−1X
=

[(+1)− ()]
−(1− )

=

−1X
=1

[+()− +(−1)]() +
X

=+1

[()− (−1)]−(1− −1)

Rearranging we obtain

 ( ) =

−1X
=1

[+()− +(−1)]() +
X

=+1

[−(1− −1)−−(1− )]() =  ( ) (9)

where, in the derivation latter expression for loss probabilities, we have used that (−1) = 0 for
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 =  + 1 and −(1− ) = 0 for  =  (recall that  = 1). We conclude that the representation 

of < on L is, in fact, a PT-functional. Hence, PT represents < on L. This concludes the derivation of

statement (i) from statement (ii) in Theorem 2.

To complete the proof of the theorem we need to derive the uniqueness results for the weighting

functions and utility. In the derivation of + and − we have fixed the scale and location of the

otherwise jointly cardinal functions    = 1      − 1. That is, given any other representation of

preferences that is additively separable as in Lemma 1, fixing scale and location as required in the proof

above will lead to the same probability weighting functions. This shows that the weighting functions

+ and − are uniquely determined. From the definition of the utility function  it is clear that the

only freedom that we have in defining utility is the starting value at the reference point  (i.e., the

location parameter) and a scaling parameter due to the jointly cardinal functions    = 1     − 1.

So, utility can, at most, be cardinal. However, in order to rewrite  in form of the PT-functional it

is critical that () = 0. Otherwise, if () 6= 0 the terms +()() and ()
−(1 − ) will

appear in Equation (9). With these terms added in Equation (9) a functional is obtained that violates

first order stochastic dominance and continuity, hence, cannot be a representation of < on L. This

means that  must be a ratio scale.

This concludes the proof of Theorem 2. ¤
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