
 

 

Economics 
Discussion Paper Series 
EDP-1123 

 
 
 
 
 

 
 

 
 

Risk Behaviour for Gain, Loss and Mixed 
Prospects 

Peter Brooks 

Simon Peters 

Horst Zank 

October 2011 

Economics 
School of Social Sciences 

The University of Manchester 
Manchester M13 9PL 



Risk Behavior for Gain, Loss and Mixed Prospects

Peter Brooks,a Simon Petersb and Horst Zankb,1

aResearch, Economics & Strategy, Barclays Wealth, Singapore2

bEconomics, School of Social Sciences, University of Manchester, United Kingdom

14 October 2011

Abstract: This experimental study considers choice behavior of people facing prospects

of three different types: gain prospects (no losses), loss prospects (no gains), and mixed

prospects (contain both gains and losses). The data confirm that the distinction of risk

behavior into these three categories of prospects is meaningful. At the aggregate level we

find evidence that decision weighting, as proposed in prospect theory, is also influencing

choice behavior for gain prospects and for loss prospects. A closer look at the combined

data for only gain and loss prospects reveals that choice behavior is significantly influenced

by the expected value of prospects: there is more risk aversion for choices among pairs

of prospects with higher expected value. In the mixed domain we do not find evidence

for loss aversion except for choices where one prospect is degenerate. As all choices in

our experiment involve a prospect and a mean preserving spread of that prospect, we

also obtain evidence regarding the validity of newly developed second order stochastic

dominance principles (Levy and Levy 2002, Baucells and Heukamp 2006) which take into

account key aspects of prospect theory.

Keywords: Binary Choice, Prospect Theory, Risk Aversion, Second Order Stochastic

0Financial support from the British Academy for the Research Grant SG-36804 is gratefully

acknowledged.
1Correspondence: Horst Zank, Economics, School of Social Sciences, University of Manchester,

Oxford Road, M13 9PL Manchester, UK. Phone: ++44-161-2754872, Fax: ++44-161-2754812,

E-mail: horst.zank@manchester.ac.uk
2Disclaimer: The views expressed in this article are those of the authors and should not be

taken to represent the views of Barclays Bank PLC or any member of the Barclays Group.

Whilst every care has been taken in the compilation of this information and every attempt made

to present up-to-date information, we cannot guarantee that inaccuracies will not occur. The

authors will not be held responsible for any claim, loss, damage or inconvenience caused as a result

of any information within this article.

1



Dominance.

Journal of Economic Literature Classification: D81, C91

2



1 Introduction

Dominance criteria play an important role for decision making. They are used in

economics, finance, management science and in many related disciplines (see Bawa

1982 for a listing of early literature, and the review of Levy 1992). Managers, in-

vestors, consumers and other decision makers can use them to eliminate options

and strategies that are regarded inferior according to the dominance principle em-

ployed. If a dominance principle is accepted as a decision aid, then algorithms can

be developed to assist the decision making process.

We designed an experiment to study dominance principles that take account of

key features of prospect theory (PT), the current most popular decision theory for

risk and uncertainty (Wakker 2010). Most decisions involve a considerable degree

of risk and the development of appropriate dominance principles for decision un-

der risk is ongoing. Criteria that are appreciated for prescriptive use may suffer

from descriptive inaccuracy. A famous example is the much debated von Neumann

and Morgenstern independence axiom (von Neumann and Morgenstern 1944, Her-

stein and Milnor 1953, Fishburn 1970, Luce 2000) which is regarded as a normative

dominance principle for decision making under risk, and which has been challenged

for its descriptive shortcomings (e.g., Allais 1953, MacCrimmon and Larsson 1979,

Machina 1987, Luce 2000, Starmer 2000). The independence axiom requires that

the preference between any two prospects should remain unchanged whenever com-

mon risk is introduced. So, if prospect  is preferred to prospect , then also the

prospect “ with probability  and otherwise ” is preferred to the prospect “

with probability  and otherwise ” whatever common prospect  and common

positive probability  are taken.

The independence axiom and variants of the principle have been used to de-

velop more sophisticated decision criteria for descriptive and prescriptive use. For

example, expected utility uses the full force of the principle while rank-dependent

utility (Quiggin 1982, Schmeidler 1989) and prospect theory (Tversky and Kahne-

man 1992, Köbberling and Wakker 2003) use specific relaxations. A difficulty for
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the use of the independence axiom (and its weaker variants) is that it requires an a

priori ranking between two prospects which may well be subjective. Different rank-

ings of prospects may occur due to the different risk captured within each prospect

and the heterogeneous risk attitudes of decision makers.

The independence axiom, however, entails itself a dominance principle that is

appealing. First order stochastic dominance (FSD) requires that prospects which

have higher cumulative likelihood for outcomes should be preferred. More precisely,

the prospect  FS-dominates  if, for any outcome, the cumulative likelihood of

obtaining that outcome or worse is at least as high (and for some outcome higher)

with  than it is with  . FSD is a simple criterion, people agree with this princi-

ple and apply it in simple situations. Though, in nontransparent choice situations

many violate this dominance criterion (see Birnbaum and Navarette (1998) and more

recently Birnbaum (2005) for experimental evidence).

Although FSD can help identifying and eliminating prospects bearing unnec-

essary risk, in general many prospects are available and it will not be possible to

compare all of them using FSD in order to select a dominant one. Among the re-

maining prospects a decision maker would be interested in eliminating those that

are regarded as riskier than others, and thereby reduce the number of prospects

further. A different principle has been invoked to aid here. Second order stochas-

tic dominance (SSD) has been used by Rothschild and Stiglitz (1970) and Hadar

and Russell (1969) to develop a measure of “ is more risky than  .” Denoting

by  the cumulative distribution of prospect , this principle requires that, ifR 
−∞[ () − ()] ≤ 0 for all outcomes  with at least one inequality being

strict,  is preferred to . Because , compared to  , assigns more probability

mass to at least one lower ranked outcome and does not sufficiently compensate by

assigning more probability mass to better ranked outcomes,  is regarded as more

risky, and thus is dominated by  in the SSD-sense.

The theoretical implications of SSD are well understood for expected utility the-

ory (i.e., an increasing and concave utility function; see the review in Levy 1992)
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and for rank-dependent utility theory (increasing and concave utility, and increas-

ing and convex probability weighting function; see Chew, Karni and Safra 1987).

Schmidt and Zank (2008) provided an analysis the implications of SSD for prospect

theory (PT). Recall, that under prospect theory outcomes are modeled as deviations

from a reference point, with positive deviations being gains and negative ones being

losses. A PT-decision maker has utility over gains and losses and separate weighting

functions for probabilities of gains and losses. In the evaluation of a prospect, utili-

ties of gains (losses) are multiplied by decision weights which are generated by the

corresponding weighting function. The gain-loss separability assumption underlying

prospect theory implies that the PT-value of a mixed prospect is the sum of the

separate PT-values of the gain part of the prospect (i.e., the original prospect with

all losses replaced by the reference point) and the loss part of the prospect (i.e., the

original prospect with all gains replaced by the reference point). Schmidt and Zank

showed that SSD requires that utility is concave for gains and concave for losses

but not necessarily concave at the reference point. Further, SSD implies an overall

convex gain weighting function and an overall concave loss weighting function.

The theoretical implications of SSD for PT do not fit well with the empirical

evidence, which suggests that utility is concave for gains but convex for losses (see

Abdellaoui, Bleichrodt and Paraschiv (2007) and Wakker (2010) for summaries and

discussions of recent empirical evidence) and that the weighting functions have an

inverse- shape, being concave for small probabilities and convex for large proba-

bilities (Hogarth and Einhorn 1990, Tversky and Kahneman 1992, Wu and Gon-

zalez 1996, Gonzalez and Wu 1999, Abdellaoui 2000, Bleichrodt and Pinto 2000,

Bleichrodt, Pinto and Wakker 2001, Etchardt-Vincent 2004, Abdellaoui, Vossmann

and Weber 2005, Abdellaoui, Baillon, Placido and Wakker 2011). The theoretical

implications of SSD are, however, natural because, as with expected utility and

rank-dependent utility, SSD requires global risk averse behavior. Under prospect

theory risk behavior is not globally consistent in the former sense because outcomes

are not final wealth positions as in the afore mentioned theories but deviations from
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a reference point. A distinction between risk behavior for gains and separately

the risk behavior for losses seems meaningful. Additionally, loss aversion (utility is

steeper for losses than for similar sized gains; see Wakker and Tversky (1993) for

a definition) suggests additional aversion to increases in risk when gains are traded

off against losses of similar size.

Accounting for the evidence regarding utility curvature for gains and that for

losses, Levy and Levy (2002) proposed restrictions on the general SSD-principle.

Prospect stochastic dominance (PSD) requires SSD for gain part of prospects but

for loss part of prospects the opposite of SSD (i.e., a preference for the dominated

prospect) is demanded. The Markowitz stochastic dominance (MSD), inspired by

the utility curvature proposed in Markowitz (1952), requires SSD for the loss part of

prospects and the opposite of SSD for the gain part of prospects. For prospects with

equal mean PSD predicts the opposite of MSD, but this may not hold for prospects

that have different means. Levy and Levy ran experiments involving mixed prospects

containing both gains and losses and interpreted their results as evidence for MSD

and, hence, as evidence against PT. Accounting for probability weighting as in the

modern PT model of Tversky and Kahneman (1992), Wakker (2003) demonstrated

that the choice behavior observed by Levy and Levy is, however, consistent with PT.

A similar result was concluded in the study of Baucells and Heukamp (2004). The

latter authors argued, in Baucells and Heukamp (2006), for further adjustments of

PSD, which take into account inverse- probability weighting and also loss aversion

as suggested in modern PT.

While the study of Levy and Levy (2002) is inconclusive about violations of

modern PT, the findings of Baltussen, Post and van Vliet (2006) show that choice

behavior between mixed prospects may not always be in agreement with PT pre-

dictions. They reconsider a specific choice task of Levy and Levy that involved a

choice between a mixed prospect  and another one, , that results from  through

simultaneous increases in risk for the gain part and also for the loss part of  . They

design an “intermediate” mixed prospect, , which agrees with  on the gain part
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but has increases in risk that only involve losses. As a result they obtain additional

information about risk behavior among mixed prospects with common gains and

among mixed prospects with common losses. This way they identify descriptive

inaccuracies of PT and provide evidence regarding the PSD and MSD principles of

Levy and Levy (2002).

This paper presents new empirical tests of SSD and its restrictions PSD and

MSD taking account of the empirical evidence regarding probability weighting and

loss aversion, and compares the findings with the predictions based on PT. We

present data from a laboratory experiment involving binary choices over small to

moderate scale prospects which involve real stakes. The 90 participants had to

decide between a prospect and an SSD-dominated transformation of that prospect

in 95 binary choices. We consider three broader conditions within which further

refinements are identified: choices among prospects where all outcomes are gains,

choices among prospects that involve only losses, and choices among mixed prospects

that involve both gains and losses of similar size. It is well-known that SSD implies

aversion to mean preserving spreads (MPS), also known as strong risk aversion (the

latter requiring SSD only if the prospects have the same mean). Within a choice

task we present prospects that have the same mean, hence we obtain evidence about

risk behavior in the strong sense, and information about how this behavior may be

affected by the nature of prospects, that is, by gain, loss, or mixed prospects.

Recall, that the afore mentioned classification of choices among gain, loss and

mixed prospects accounts only for the sign of the outcomes in those prospects. It

does not account for potential biases caused by probability weighting, which are

also an important component of risk behavior (see Wakker 2001, 2010) and an es-

sential component of PT. To account for the widely documented sensitivity towards

probabilities, we employ MPSs which use small, medium and large cumulated prob-

abilities. Our analysis, therefore, provides new evidence concerning the SSD criteria

of Levy and Levy (2002) and the extensions developed in Baucells and Heukamp

(2006). However, because in all these criteria the adjusted SSD-principles apply to
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the gain part and separately to the loss part of prospects, those principles implicitly

assume gain-loss separability as is done in PT. Therefore, any violation of gain-

loss separability will put a question mark to both PT and these new SSD criteria.

The choices between mixed prospects in our experiments are therefore designed to

provide evidence on whether the new SSD principles apply to this more realistic do-

main of prospects and indirectly also provide evidence for the gain-loss separability

assumption of prospect theory.

The next section presents notation and is followed by a section with details of

the experiment. The results are presented in Section 4, with a discussion provided

in Section 5. Concluding remarks are presented in Section 6.

2 Notation

A prospect is a simple distribution over monetary outcomes. In general we write

 = (1 1;    ;  ) for the prospect that gives probability  to outcome  ∈ R
for  = 1      where  is a natural number ( ≥ 0

P

=1  = 1). We assume

that in a prospect outcomes are ordered from best to worst, i.e., 1 ≥ · · · ≥  ≥
0  +1 ≥ · · · ≥ . We assume that 0 ∈ R is the reference point, so that positive
outcomes are gains and negative outcomes are losses. Accordingly, if a prospect has

no losses we call it a gain prospect and if it has no gains we call it a loss prospect,

otherwise we call it a mixed prospect.3

A probability weighting function, ( : [0 1] → [0 1], (0) = 0 (1) = 1) is a

strictly increasing function that maps the probability interval into itself, with fixed

points at 0 and at 1.4

A preference relation < is assumed on the set of prospects. As usual we use

3Because degenerate lotteries are identified with the corresponding outcome, the prospect

prospect (0;    ; 0), that has no gains and no losses, is identified with the reference outcome 0.
4Empirically founded probability weighting functions are inverse-S shaped, i.e., concave for

small probabilities and convex for large probabilities and steeper than the 45-degree line at 0 and

at 1. E.g., Tversky and Kahneman 1992, Prelec (1998), Diecidue, Schmidt and Zank (2009) or

Abdellaoui, l’Haridon and Zank (2010). They usually have an additional fixed point in (0 1).
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 <  to indicate weak preference; the symbols Â and ∼ denote strict preference
and indifference, respectively (4 and ≺ are as usual).
Prospect Theory (PT) holds if prospects are ranked using the PT-functional

explained next: There exists a continuous strictly increasing utility function  :

R → R with (0) = 0, and two weighting functions + and − such that the

prospect  = (1 1;      ) is evaluated according to

 ( ) =

X
=1

+ () +

X
=+1

− ()

with decision weights, +  
−
   = 1      determined through

+ = +(

X
=1

)− +(

−1X
=1

)

and − = −(
X
=

)− +(

X
=+1

)

Under PT the weighting functions are uniquely determined and the utility function

is unique up to multiplication by a positive number (i.e., utility is a ratio scale).

Foundations for PT and discussions of the related literature can be found in Wakker

(2010).

Next we recall the proposed variants of second order stochastic dominance and

look at the implications for PT. To simplify the exposition and to relate the im-

plications to the experiment and the testable hypotheses of this paper we restrict

attention to implications for prospects with five equally likely outcomes.5 Hence,

we suppress probabilities from the further notation and write  = (1;    ;5). In

our experiment we consider only binary choices among prospects with the same ex-

pected value in order to restrict attention to mean-preserving spreads (MPS) and

to discuss the implications of the various variants of preference or aversion to MPSs

for PT. For prospect  = (1;    ;5) and  ∈ {1     5} we write () for the

prospect where we have replaced outcome  with . Whenever we use this notation

5In the experiment we use prospects in which each outcome has probability 15; outcomes that

are equal are displayed with the coalesced probabilities, e.g., two 15 chances of obtaining $5 are

presented as a single 25 chance for $5.
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it is implicit that −1 ≥  ≥ +1, that is, the ranking of outcomes from best to

worst is maintained for the new prospect. For   0 we define a mean-preserving

spread (MPS) of  as the prospect (+)(−) for some   ∈ {1     5} with
  .

A preference < satisfies second-order stochastic dominance (SSD) if  < ( +

)( − ) for any MPS ( + )( − ) .
6 Such a preference is exhibiting

aversion to MPSs; a preference for MPSs requires  4 ( + )( − ) for any

MPS; and neutrality or insensitivity means  ∼ ( + )( − ) for all MPSs.

According to Schmidt and Zank (2008), if PT holds and < satisfies SSD, then the

utility function  is concave for gains and concave for losses (but not necessarily

concave at 0). Further, the weighting function for gain probabilities is convex and

the weighting function for losses is concave. Additional implications hold for the

derivatives of utility at 0 and the derivatives of the probability weighting functions

(see Schmidt and Zank 2008, Theorem 1).

Levy and Levy (2002) proposed adjustments to SSD to take into account the

S-shape form of utility as suggested by Kahneman and Tversky (1979) and to take

into account the inverse-S shape form of utility as suggested by Markowitz (1952).

In our setup, a preference < satisfies prospect stochastic dominance (PSD) if  <

( + )( − ) for any MPS ( + )( − ) with  −  ≥ 0 and  4

(+ )( − ) for any MPS (+ )( − ) with +  ≤ 0. In other words,
PSD implies that SSD holds for gain prospects and the opposite of SSD holds for

loss prospects. Using the results of Theorem 1 in Schmidt and Zank (2008) one

obtains, as a corollary, the following implications of PSD for PT: utility is concave

for gains and convex for losses; further, the weighting function for gain probabilities

is convex as is the weighting function for loss probabilities. Note that no implications

for behavior regarding MPSs involving an increment in both gains and losses follow

6Because we restrict attention to prospects that have the same mean this definition makes

sense. It should, however, be noted that SSD is, in general, also defined for prospects without

equal means. That general definition implies our definition used here but the reversed implication

does not hold.
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from PSD. The opposite of PSD is called Markowitz stochastic dominance (MSD)

and requires  4 (+)(−) for any MPS (+)(−) with − ≥ 0
and  < (+)(−) for any MPS (+)(−) with + ≤ 0. It should
be clear what the corresponding implications for utility and weighting functions are

under PT.

The previous SSD-principles have implications for the probability weighting func-

tions that are not in line with the four-fold pattern of risk attitudes under PT

(Tversky and Kahneman 1992). This pattern requires probability weighting func-

tions to be inverse-S shaped (i.e., concave for small probabilities and convex for large

ones). To account for this effect, Baucells and Heukamp (2006) proposed further

adjustments to PSD. They note that most inverse-S shaped probability weighting

functions can be described by two parameters 0 ≤  ≤  ≤ 1 such that concavity of
the weighting function holds on [0 ] and convexity holds on [ 1]. The case  = 

is particularly interesting because then the parameters denote the inflection point

of the weighting function that has a natural interpretation as measure for elevation

as discussed, e.g., in Gonzalez and Wu (1999) and Abdellaoui, et al. (2010).7

Baucells and Heukamp (2006) proposed prospect weighted stochastic dominance

(PWSD), which requires PSD only if the decumulative probability of  is above some

+ ∈ (0 1), the parameter for gain probabilities, if  −  ≥ 0 and the cumulative
probability of  is above some 

− ∈ (0 1), the parameter for loss probabilities, if
 +  ≤ 0, respectively. Under PT the implications are similar to those of PSD,
except that the shape of weighting functions is determined only for probabilities in

the range [+ 1] for gain probabilities, respectively, [− 1] for loss probabilities. The

dual analog principle of Markowitz weighted stochastic dominance (MWSD) requires

MSD only if the decumulative probability of  is below some + ∈ (0 1), the
parameter for gain probabilities, if − ≥ 0 and the cumulative probability of  is
below some − ∈ (0 1), the parameter for loss probabilities, if + ≤ 0, respectively,

7The case  =  occurs naturally in the parametric probability weighting functions of Goldstein

and Einhorn (1987), Tversky and Kahneman (1992), Baker, Lattimore and Witte (1992), Prelec

(1998) and Diecidue et al. (2009).
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with the analogous dual consequences to PWSD for utility and probability weighting

functions under PT.

Thus far we have not discussed preference or aversion to MPSs which involve a

transfer of  from a gain to a loss. Schmidt and Zank (2005) discussed a related

principle of loss aversion. Loss aversion (LA) holds if  < ( + )( − ) for

any MPS ( + )( − ) with   0  . The opposite of LA is called gain

seeking (GS). Schmidt and Zank showed that LA holds if utility for losses is steeper

than the utility for gains adjusted by a ratio of decision weights for gains and losses.

This LA condition was tested in an experiment involving small stakes by Brooks

and Zank (2005) where it was confirmed.

In this study we expand on these earlier works and present an experiment taking

account of all the above mentioned SSD variations.

3 Experiment

The experiment consisted of several binary choices between a prospect and an MPS

of that prospect. Ninety (28 female and 62 male) graduate and undergraduate stu-

dents in economics from the University of Manchester took part in this study. They

were initially sent an e-mail message in which the nature of the experiment was

briefly described. The message contained a link to a web page that presented infor-

mation about the experiment, which were the instructions (see Appendix A). The

students were asked to respond if they intended to participate in this experiment.

This message was sent to all students enrolled in economics or a related subject in

2004 (approximately 1000 students). Those who responded were asked to attend the

experiment, which was held in groups in a computer room during March 2004 (with

sessions varying from 2 to 13 individuals). Participants attended one experimental

session, which took approximately 40 minutes on average to complete.

The majority of prospects in the experiment involved losses, and a difficulty

with real losses concerns their implementation. Benartzi and Thaler (1999) offered

participants the option of earning money (i.e., a job) if losses from the experiment
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would exceed a certain level. A more common practice is to give participants an

initial endowment. This endowment can be a flat payment for participation (Cohen,

Jaffray and Said 1985, Camerer 1989, Battalio, Kagel and Jiranyakul 1990, Harless

1992, Harless and Camerer 1994, Myagkov and Plott 1997, Di Mauro and Mafioletti

2002, Smith, Dickhaut, McCabe and Pardo 2002, Mason, Shogreen, Settle and List

2005, Brooks and Zank 2005) or earned otherwise during the experiment (see Laury

and Holt 2000). It is then assumed that participants (instantly) integrate that

payment into their wealth and that subsequent choices will not be affected by this

income. Typically, the payment and therefore also the stakes in those experiments

range from small to moderate. The design of our study was similar in that the

flat payment plus the outcome of a randomly chosen prospect was promised for

completing the experiment.

The fixed payment in this study was $17 (approximately US$30 at the time of

the experiment) and the stakes in the prospects varied from $−15 to $15. Sim-
ilar stakes have been used, for example, in Camerer (1989), Starmer and Sugden

(1989), Battalio, Kagel and Jiranyakul (1990), Hogarth and Einhorn (1990), Hey

and Orme (1994), Beattie and Loomes (1997) and Brooks and Zank (2005), and

have generated meaningful results. The actual payments at the end of the experi-

ment ranged between $2 and $32 (including the fixed payment), with the average

of actual payments being $1369.

The experiment was held on computers, using an interface supported by a stan-

dard web browser familiar to students. Participants, seated at reasonable distance

between themselves, were directed to a web page containing the instructions which

the experimenter read aloud. Participants were informed that they had to respond

to 105 tasks (the last 10 tasks consisted of repeated randomly chosen tasks, but

this was not mentioned to the participants). It was explained that a task consisted

of choosing between two prospects (called gambles in the instructions), and that

indifference was not allowed.

A prospect was framed as picking a ball from a bag that contains 15 balls num-
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bered consecutively from 1 to 15, each equally likely to be drawn. The bag, contain-

ing the 15 white table-tennis balls, was shown at the beginning of the experiment.

On the computer screen, a prospect was presented as 15 colored balls with amounts

of money underneath those balls. Identical outcomes were coalesced and corre-

sponded to balls of the same color. Participants were informed about the range of

outcomes [−15 15], and that their final payment was made up of a fixed amount
($17) which they would get if they answered all tasks and to which the outcome of a

randomly selected choice would be added. That latter prospect was played for real,

that is, each participant picked a ball from the bag, the obtained outcome was added

to (or, in the case of losses, subtracted from) the fixed payment, and later a cheque

was sent to the participant (see Cubitt, Starmer and Sugden (1998) for a discussion

about the appropriateness of using this random incentive scheme). Details about

the address of the participants and the earnings from the experiment were collected

on a separate form at the end of the experimental session, where each participant

was also asked to state the minimum they were willing to pay from their own money

in order to retake the experiment (see Appendix B).

Recall that each of the 95 tasks in the experiment consisted of choosing between

one prospect and a second one that dominated the first in the SSD-sense. To account

for the distinction into gains and losses, we implemented a gain condition (22 choices

where neither prospect involves losses), a loss condition (22 choices where neither

prospect involves gains), and a mixed condition (51 choices where each prospect

contains both gains and losses). Further, within each condition, we designed different

tasks to account for a possible effect of probability weighting. These are explained

next.

The Gain Prospects Tasks. The tasks in the gain condition are presented

in Table 1. A prospect is displayed as five outcomes of equal likelihood. These

probabilities (15) are not mentioned in the table. Within a task, the left prospect

refers to the more risky one, in the SSD-sense. Outcomes in the table are ranked from

best to worst for each prospect. In the experiment the presentation of prospects and
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tasks was different to the presentation in Table 1. Equal outcomes were coalesced,

the order of outcomes was not ranked in a systematic way and differed between

prospects within and across tasks, and the position of the more risky prospect (left

or right on the computer screen) and the order of appearance of the tasks on screen

were randomized.

Task 
No. Outcomes Riskier Prospect Outcomes Safer Prospect

No of S-
choices

Different 
from 
mean

WR-tasks
52 15 0 0 0 0 3 3 3 3 3 56**
53 10 0 0 0 0 2 2 2 2 2 51
54 5 0 0 0 0 1 1 1 1 1 43 **

SYM-tasks
55 15 10 5 5 0 10 10 5 5 5 48
56 10 10 5 0 0 10 5 5 5 0 58***
57 5 5 3 0 0 5 3 3 2 0 65*** **

STR-tasks
58 15 5 5 0 0 10 5 5 5 0 54**
59 10 5 5 0 0 5 5 5 5 0 41 ***
60 15 15 5 5 0 15 10 5 5 5 65*** **
61 10 10 5 5 0 10 5 5 5 5 59***
62 15 5 0 0 0 10 5 5 0 0 61***
63 10 5 0 0 0 5 5 5 0 0 35 ***
64 15 15 15 5 0 15 15 10 5 5 66*** **
65 10 10 10 5 0 10 10 5 5 5 71*** ***

GER-tasks
66 15 7 2 2 0 10 7 5 2 2 57**
67 10 5 1 1 0 5 5 5 1 1 26 ***
68 15 11 11 6 0 11 11 10 6 5 64*** **
69 10 6 6 5 0 6 6 5 5 5 48
70 15 15 11 2 0 15 11 10 5 2 53**
71 11 10 6 2 0 11 6 5 5 2 54***
72 15 11 4 0 0 11 10 5 4 0 62***
73 10 6 4 0 0 6 5 5 4 0 62***

Note: Significant deviations from 45 according to a one-tailed binomial test
at the 10%, 5% and 1% are designated with *, **, and ***, respectively.

Table 1: Tasks in the Gain Condition

For a prospect with equally likely outcomes, an elementary MPS can be seen

as subtracting   0 from a higher ranked, larger outcome and simultaneously
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adding  to a lower ranked outcome. In Table 1 we highlight, for each prospect, the

affected outcomes where a shift of  occurred, noting that all remaining outcomes

were common. An exception to this were the tasks 52—54, which involve a risky and

a safe prospect, and which provide evidence about the risk behavior in the weak

sense of preference for expected value. This condition is termed weak risk (WR)

condition.

Tasks 55—57 involve symmetric spreads where  is shifted from the (second)

best to the (second) worst outcomes, and is referred to as the symmetric increases

in risk (SYM) condition. Under Tversky and Kahneman’s (1992) prospect theory

with inverse-S shaped weighting functions, decision weights for these outcomes do

not differ much, hence one would expect that utility curvature is mainly influencing

choice behavior. This is different for Tasks 58—65 where this symmetry is deliberately

not respected and shifts occur from best (intermediate) to intermediate (worst)

outcomes. For these tasks, which we refer to as strong risk (STR), decision weighting

may influence preferences.

In contrast to the previously described choices of the gain condition, Tasks 66—73

involve spreads where the shift of the amount  changes the ranking of outcomes

in the safer prospect. This makes the shift less transparent and may potentially

influence preferences. These task are referred to as the general increases in risk

(GER) condition.

The Loss Prospects Tasks. The tasks 74—95 refer to the loss condition and

are presented in Table 2. These tasks result from the gain tasks by multiplying each

outcome in a prospect with −1. Hence, these tasks correspond to the original gain
tasks with prospects reflected around 0.
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Task 
No. Outcomes Riskier Prospect Outcomes Safer Prospect

No of S-
choices

Different 
from 
mean

WR-tasks
74 0 0 0 0 -15 -3 -3 -3 -3 -3 29*** *
75 0 0 0 0 -10 -2 -2 -2 -2 -2 25*** **
76 0 0 0 0 -5 -1 -1 -1 -1 -1 26*** **

SYM-tasks
77 0 -5 -5 -10 -15 -5 -5 -5 -10 -10 38*
78 0 0 -5 -10 -10 0 -5 -5 -5 -10 39
79 0 0 -3 -5 -5 0 -2 -3 -3 -5 24*** ***

STR-tasks
80 0 0 -5 -5 -15 0 -5 -5 -5 -10 39
81 0 0 -5 -5 -10 0 -5 -5 -5 -5 49 ***
82 0 -5 -5 -15 -15 -5 -5 -5 -10 -15 29*** *
83 0 -5 -5 -10 -10 -5 -5 -5 -5 -10 32***
84 0 0 0 -5 -15 0 0 -5 -5 -10 43
85 0 0 0 -5 -10 0 0 -5 -5 -5 58 ***
86 0 -5 -15 -15 -15 -5 -5 -10 -15 -15 33***
87 0 -5 -10 -10 -10 -5 -5 -5 -10 -10 30***

GER-tasks
88 0 -2 -2 -7 -15 -2 -2 -5 -7 -10 47 **
89 0 -1 -1 -5 -10 -1 -1 -5 -5 -5 57 ***
90 0 -6 -11 -11 -15 -5 -6 -10 -11 -11 29*** *
91 0 -5 -6 -6 -10 -5 -5 -5 -6 -6 32***
92 0 -2 -11 -15 -15 -2 -5 -10 -11 -15 33***
93 0 -2 -6 -10 -11 -2 -5 -5 -6 -11 47 **
94 0 0 -4 -11 -15 0 -4 -5 -10 -11 32***
95 0 0 -4 -6 -10 0 -4 -5 -5 -6 37**

Note: Significant deviations from 45 according to a one-tailed binomial test 
at the 10%, 5% and 1% are designated with *, **, and ***, respectively.

Table 2: Tasks in the Loss Condition

The Mixed Prospects Tasks. Table 3 presents Tasks 1—51 which we call the

mixed condition. These tasks are also grouped in WR (Tasks 1—6), SYM (Tasks

7—27), STR (Tasks 28—39), and GER (Tasks 40-51). It should be mentioned that

in this condition the WR-tasks are a special cases of SYM-tasks, which in turn are

special cases of STR-tasks, and the latter are special cases of GER-tasks.
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Task 
No. Outcomes Riskier Prospect Outcomes Safer Prospect

No of S-
choices

Different 
from 
mean

WR-tasks
1 15 15 0 -15 -15 0 0 0 0 0 48
2 10 10 0 -10 -10 0 0 0 0 0 38
3 5 5 0 -5 -5 0 0 0 0 0 47
4 15 0 0 0 -15 0 0 0 0 0 45
5 10 0 0 0 -10 0 0 0 0 0 30 ***
6 5 0 0 0 -5 0 0 0 0 0 40

SYM-tasks
7 15 0 0 0 -15 10 0 0 0 -10 47
8 10 0 0 0 -10 5 0 0 0 -5 42
9 5 0 0 0 -5 2 0 0 0 -2 39

10 15 9 0 -9 -15 10 9 0 -9 -10 51
11 10 3 0 -3 -10 5 3 0 -3 -5 49
12 5 2 0 -2 -5 2 2 0 -2 -2 44
13 15 8 5 0 -15 10 8 5 0 -10 42
14 10 4 2 0 -10 5 4 2 0 -5 47
15 5 2 1 0 -5 2 2 1 0 -2 36 *
16 15 0 -5 -8 -15 10 0 -5 -8 -10 51
17 10 0 -2 -4 -10 5 0 -2 -4 -5 51
18 5 0 -1 -2 -5 2 0 -1 -2 -2 53** *
19 15 15 5 -15 -15 15 10 5 -10 -15 40
20 10 10 3 -10 -10 10 5 3 -5 -10 45
21 5 5 2 -5 -5 5 2 2 -2 -5 34 **
22 15 15 0 -15 -15 15 10 0 -10 -15 57*** **
23 10 10 0 -10 -10 10 5 0 -5 -10 46
24 5 5 0 -5 -5 5 2 0 -2 -5 41
25 15 15 -5 -15 -15 15 10 -5 -10 -15 39
26 10 10 -3 -10 -10 10 5 -3 -5 -10 47
27 5 5 -2 -5 -5 5 2 -2 -2 -5 46

18



Task 
No. Outcomes Riskier Prospect Outcomes Safer Prospect

No of S-
choices

Different 
from 
mean

STR-tasks
28 15 0 0 -15 -15 10 0 0 -10 -15 44
29 10 0 0 -10 -12 5 0 0 -5 -12 50
30 5 0 0 -5 -6 2 0 0 -2 -6 45
31 15 15 0 0 -15 15 10 0 0 -10 50
32 12 10 0 0 -10 12 5 0 0 -5 57*** **
33 6 5 0 0 -5 6 2 0 0 -2 32 ***
34 15 0 -15 -15 -15 10 0 -10 -15 -15 44
35 10 0 -10 -12 -12 5 0 -5 -12 -12 47
36 5 0 -5 -6 -6 2 0 -2 -6 -6 41
37 15 15 15 0 -15 15 15 10 0 -10 48
38 12 12 10 0 -10 12 12 5 0 -5 50
39 6 6 5 0 -5 6 6 2 0 -2 58*** **

GER-tasks
40 15 0 -12 -12 -15 10 0 -10 -12 -12 49
41 10 0 -8 -8 -10 5 0 -5 -8 -8 41
42 5 0 -4 -4 -5 2 0 -2 -4 -4 45
43 15 12 12 0 -15 12 12 10 0 -10 36
44 10 8 8 0 -10 8 8 5 0 -5 59*** ***
45 5 4 4 0 -5 4 4 2 0 -2 31 ***
46 15 15 12 -12 -15 15 12 10 -10 -12 46
47 12 10 8 -8 -10 12 8 5 -5 -8 56** **
48 8 5 4 -4 -5 8 4 2 -2 -4 47
49 15 12 -12 -15 -15 12 10 -10 -12 -15 49
50 10 8 -8 -10 -12 8 5 -5 -8 -12 52*
51 5 4 -4 -5 -8 4 2 -2 -4 -8 24 ***

Note: Significant deviations from 45 according to a one-tailed binomial test 
at the 10%, 5% and 1% are designated with *, **, and ***, respectively.

Table 3: Tasks in the Mixed Condition

4 Results

The results of the experiment are presented at aggregate and individual level. First,

we recall the predictions of the different SSD-variants. SSD predicts a preference for

the safer prospect for each task.8 PSD predicts a preference for the safer prospect

8The descriptions “safer” or “riskier” are short for “safer in the SSD-sense” or “riskier in the

SSD-sense,” respectively.
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for all tasks in the gain condition, and a preference for the riskier prospect for all

tasks in the loss condition. For choices between our mixed prospects, PSD makes

no prediction. MSD makes the opposite predictions to PSD for tasks in the gain

condition and for the tasks in the loss conditions, but no predictions for tasks in

the mixed condition. LA predicts a choice of the safer prospect in all mixed tasks,

while GS predicts a choice for the riskier prospect in all mixed tasks; LA and GS

make no predictions for gain or loss tasks.

The predictions of PWSD (MWSD) require assumptions about the parameters

+ − (+ −). Given the design of our study we set + = − = 02 (+ − = 08).

PWSD predicts a preference for the safer prospect in the gain tasks 56&57, 60&61,

64&65, and 70&71 and a preference for the riskier prospect in the loss tasks 78&79,

82&83, 86&87, and 92&93. MWSD predicts a preference for the riskier prospect in

gain tasks 56&57, 58&59, 62&63, and 72&73 and a preference for the safer prospect

in loss tasks 78&79, 80&81, 84&85, and 94&95.

Inspecting the last column in Tables 1—3, one observes that there is considerable

variation in the number of individuals choosing the safer prospect across tasks in

the gain and the number of individuals choosing the riskier prospect across tasks

in the loss condition, but little variation in the number of choices for the safer

prospect across tasks in the mixed condition. Moreover, according to a one tailed

binomial test at the 5% significance level, in a large number of tasks in the gain

(loss) condition a significant majority chooses the safer (riskier) prospect, while in

nearly all tasks of the mixed condition the number of choices for the safer prospect

deviates insignificantly from 45 (i.e., from 50% of the total number of participants).

Overall, there seems to be some evidence in favor of PSD (and PWSD) rejecting

MSD (and MWSD) but little evidence for LA or GS. A more detailed analysis is

required to address the variation in the number of safe choices in both the gain and

loss tasks. This analysis is presented in the next subsections, where the findings are

also contrasted to predictions of the PT-model of Tversky and Kahneman (1992).
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4.1 Results for the Gain Condition

This subsection presents results for the gain condition, initially at the aggregate

level and then at the level of the individuals.

4.1.1 Aggregate Data for Gain Prospects

First we test whether the observed choices in Table 1 are random (the null hypoth-

esis, 0 :  = 45) or not. The alternative hypothesis is that the safer prospect

is chosen in line with the prediction of SSD and PSD (i.e.,  :   45). The

penultimate column in Table 1 reports significance values for this test at 10% 5%

and 1% indicated by ∗, ∗∗ and ∗∗∗, respectively. For the majority of choices (68%)

the alternative hypothesis is accepted at the 5% level. There is however some vari-

ation in the number of safer prospects chosen across tasks. The last column in

Table 1 reports significant deviations from the overall mean number of safe choices

across all tasks according to a two tailed binomial test (i.e., 0 :  − 545 = 0 vs.
 : − 545 6= 0). In nine tasks we observe significant deviations from the overall

mean number of safer choices at the 5% level.

We observe from Table 1 that in tasks 56&57, 60&61, 64&65, and 70&71 (the

PWSD-gain tasks) a significant majority of subjects chooses the safer prospect, in

line with PWSD. Considering tasks 56&57, 58&59, 62&63, and 72&73 (the MWSD-

gain tasks) we observe that in one task a significant majority of subjects chooses the

riskier prospect but that in six tasks a significant majority prefers the safer prospect,

such that we can conclude that there is no support for MWSD in the gain condition.

4.1.2 Data for Gain Prospects at the Level of Individuals

We are now interested to see whether the findings in the previous subsection are

replicated at the level of individuals. For this we classify individuals as PSD (MSD)

if across all gain tasks they choose the safer (riskier) prospect significantly more

often than the riskier (safer) prospect according to a binomial test at the 5% level.

Similarly, we classify individuals as PWSD (MWSD) if across PWSD-gain tasks
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(MWSD-gain tasks) they choose the safer (riskier) prospect significantly more often

than the riskier (safer) prospect according to a binomial test at the 5% level.

Table 4 presents the results.

Tasks Gain\Choices Majority Safe Majority Risky Unclassified

All tasks 32 6 52

PWSD-tasks 31 1 58

MWSD-tasks 26 6 58

Table 4: PSD and PWSD behavior for gain tasks

Table 4 confirms that the majority of individuals are unclassified, that a large num-

ber of individuals choose significantly more often a safer prospect, and that very few

individuals choose significantly more often the riskier prospect. We can safely reject

MSD or MWSD behavior for the large majority of individuals.

4.2 Results for the Loss Condition

The results of this subsection are also presented at both the aggregate and the

individual level.

4.2.1 Aggregate Data for Loss Prospects

We test whether the observed choices in Table 1 are random (the null hypothesis,

0 :  = 45) or not. The alternative hypothesis is that the riskier prospect is chosen

in line with the prediction of PSD (i.e.,  :   45). The penultimate column in

Table 2 reports significance values for this test at 10% 5% and 1% indicated by ∗, ∗∗

and ∗∗∗, respectively. For the majority of choices (59%) the alternative hypothesis is

accepted at the 5% level. Again we observe some variation in the number of riskier

prospects chosen across loss tasks. The last column in Table 2 reports significant

deviations from the overall mean number of safe choices across all tasks according

to a two tailed binomial test (i.e., 0 :  − 3272 = 0 vs.  :  − 3272 6= 0). In
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eight tasks we observe significant deviations from the overall mean number of safer

choices at the 5% level.

We observe from Table 2 that in tasks 78&79, 82&83, 86&87, and 92&93 (the

PWSD-loss tasks) a significant majority of subjects chooses the riskier prospect in

six tasks, in line with PWSD. Considering tasks 78&79, 80&81, 84&85, and 94&95

(the MWSD-loss tasks) we observe that in one task a significant majority of subjects

chooses the safer prospect and that in three tasks a significant majority prefers the

riskier prospect, such that we can conclude that there is little support for MWSD

in the loss condition.

4.2.2 Data for Loss Prospects at the Level of Individuals

Next we report the results from the loss tasks at the level of individuals. In analogy

to the gain tasks, we classify individuals as PSD (MSD) if across all loss tasks they

choose the riskier (safer) prospect significantly more often than the safer (riskier)

prospect according to a binomial test at the 5% level. Similarly, we classify indi-

viduals as PWSD (MWSD) if across PWSD-gain tasks (MWSD-gain tasks) they

choose the riskier (safer) prospect significantly more often than the safer (riskier)

prospect according to a binomial test at the 5% level.

Table 5 presents the results.

Tasks Loss\Choices Majority Risky Majority Safe Unclassified

All tasks 27 6 57

PWSD-tasks 22 6 62

MWSD-tasks 17 9 64

Table 5: PSD and PWSD behavior for loss tasks

Table 5 confirms that the majority of individuals are unclassified, and that the

number of individuals who choose significantly more often a riskier prospect is sig-

nificantly higher than the number of individuals choosing significantly more often

the safer prospect. We can reject MSD or MWSD behavior for the large majority

of individuals.
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4.3 Results for the Mixed Condition

In this subsection we focus on the mixed condition and report results at the aggregate

and individual level.

4.3.1 Aggregate Data for Mixed Prospects

We test whether the observed choices in Table 3 are random (the null hypothesis,

0 :  = 45) or not. The alternative hypothesis is that the safer prospect is chosen in

line with the prediction of LA (i.e.,  :   45). The penultimate column in Table

3 reports significance values for this test at 10% 5% and 1% indicated by ∗, ∗∗ and

∗∗∗, respectively. For a small minority of choices (12%) the alternative hypothesis

is accepted at the 5% level. We observe some variation in the number of safer

prospects chosen across mixed tasks. The last column in Table 3 reports significant

deviations from the overall mean number of safe choices across all tasks according

to a two tailed binomial test (i.e., 0 :  − 4502 = 0 vs.  :  − 4502 6= 0).

In just ten tasks we observe significant deviations from the overall mean number of

safer choices at the 5% level. The aggregate data does not seem give much support

for either LA or GS.

4.3.2 Data for Mixed Prospects at the Level of Individuals

We classify individuals LA or GS if their choices over all mixed tasks deviates signif-

icantly from 50% in the corresponding direction according to a one tailed binomial

test at the 5%-level. We find that 30 individuals (33%) are LA, 27 (30%) are GS,

and 33 individuals (37%) are unclassified.

4.4 Results for Combined Gain and Loss Conditions

In this subsection we look at data from the gain and loss tasks to obtain further

insights.9 First, we estimate PT parameters and subsequently we look at behavior

9There is little variation in the mixed tasks, which suggests that that data provides little

information about behavior beyond that reported in the previous subsection.
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whengain tasks are reflected into loss tasks. Finally, we look at explanations for the

variation in the number of safe choices across tasks.

4.4.1 A PT-Parameter Estimation.

Recall that the preference axioms needed to derive PT do not, on their own, impose

restrictions on the curvature of utility and of the curvature of the weighting functions

(for a preference foundation of PT under risk, see Chateauneuf and Wakker 1999).

Such restrictions follow from empirical studies (e.g., Tversky and Kahneman 1992,

Abdellaoui 2000) using aggregate data. We have pooled together the data from

the loss tasks and the gain tasks and obtained parameter estimates for utility and

weighting functions as they were specified in Tversky and Kahneman (1992):

() =

⎧⎨⎩   ≥ 0
−||   0

+() =


[ + (1− )]1
 0    1

−() =


[ + (1− )]1
 0    1

Table 6 provides the output of a probit regression using a single agent stochastic

choice model over gain and loss tasks, which finds the combination of parameters

that best explains the variation in the data (see also Wu and Markle (2008) for a

similar model). The parameter estimates found in the gain and loss domains are

comparable to those in previous studies with somewhat lower parameter estimates

for utility but larger parameters for the weighting function.10

10Adding the data for the mixed condition and a parameter, , for loss aversion gives similar

estimates.  = 093 ( = 0059), is found insignificantly different from 1 (i.e., no LA and no GS).
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Parameter Estimates Standard Errors

power gains,  080 0027

power losses,  078 0036

gain probabilities,  083 0024

loss probabilities,  087 0027

Log-Likelihood



−263858
3960

Table 6: PT-parameters

The parameters estimated in Table 6 suggest that probability weighting and utility

curvature are of significant influence for the aggregate choice behavior.

4.4.2 Reflection of Behavior

Looking at Tables 1 and 2 it is apparent that the number of safe choices in a

gain tasks is mirrored into a similar number of risky choices in the reflected loss

task. To obtain statistical evidence for this observation we performed a difference of

proportions test. Denoting  the proportion of safer choices in a gain task and by

 the proportion of safer choices in a mirrored loss task, we conducted the following

test:

0 :  − (1− ) = 0 vs.  :  − (1− ) 6= 0.

Applying this tests only results in two significant differences (53&75 and 54&76).

Similar to Tables 4 and 5 above we classify individuals according to PSD, MSD,

and PWSD behavior11 if in both the gain and loss conditions behavior is in agreement

11Because very few subjects were MWSD for gains and for losses we skip the corresponding

table.
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with the corresponding prediction. We report the results in Table 7 for P/MSD

Tasks Gain\Loss Majority Safer (6) Majority Riskier (27) Unclassified (57)

Majority Safer (32) 2 10 20

Majority Riskier (6) 0 5 1

Unclassified (52) 4 12 36

Table 7: PSD behavior for gain and loss tasks

and Table 8 presents results for PWSD:

PWSD Tasks Gain\Loss Majority Safer (6) Majority Riskier (22) Unclassified (62)

Majority Safer (31) 4 10 17

Majority Riskier (1) 0 1 0

Unclassified (58) 2 11 45

Table 8: PWSD behavior for gain and loss tasks.

4.4.3 Variation in Behavior

The variation can be caused by outlier behavior (e.g., tasks 63 and 67 in the gain

condition, tasks 85 and 89 in the loss condition) or heterogeneous behavior. The

second explanation suggests an analysis of the effect of task type (WR, SYM, STR,

or GER). It appears also that for tasks in which the largest outcome in a prospect

is higher after an MPS, the number of safer choices is greater. In such tasks the

expected value is higher which may have influence on choice behavior. We perform a

regression analysis for potential factors that may have caused the observed variation

in the number of safer choices across the gain and loss tasks. All models tested

included a constant term (), the expected value () of a prospect within a task,

dummy variables indicating the type (,  , or ) with  as baseline,

a dummy variable if a task is from the loss condition (), and interaction

terms for type and condition (e.g.,  ∗). After sequentially removing those

variables that have a -value above 10% we obtain the following model with highly

significant coefficients (-value below 1%), and highest adjusted 2, with standard

27



errors in parenthesis below the corresponding coefficients:

No. safe Choices = 4677 ∗  +159 ∗ −1692 ∗ ( ∗)

̄2 = 0569 (140) (024) (538)

This model suggest that the choice for the safer prospect within a task will increase

with the prospects’ expected value.

5 Discussion

The results presented in the previous section confirm that PT with the specification

of Tversky and Kahneman provides comparable parameter estimates to previous

studies (Abdellaoui 2000, Tversky and Kahneman 1992) for utility, but somewhat

higher parameter estimates for the probability weighting functions. This suggests

that probability weighting may not play a significant role for choice behavior in the

tasks of this experiment. This finding is not surprising as most empirical findings

regarding probability weighting suggest that probabilities in the range (02 08),

as we used in the design of prospects, are treated close to linear as in expected

utility. Indeed if we compare Tables 7 and 8 we observe similar distributions into

the different classes, thus little variation. The only source of variation that we find

in the data is related to the expected value of prospects in a task, which is positively

related to the proportion of subjects preferring the safer prospect within a task.

While a concave/linear utility for gains and a linear/convex utility for losses

seems to be the dominant pattern, a somewhat surprising finding is that we do not

find strong evidence for loss aversion. There is an equal split of subjects into loss

averse, gain seeking and unclassified. In an earlier experiment by Brooks and Zank

(2005) twice as many subjects were loss averse as compared to gain seeking. A dif-

ference to Brooks and Zank is that here the likelihood associated with a reduction in

losses through MPS is smaller (02 compared to 025 and 033). The lower likelihood

may have made increases in losses less prominent and thereby inducing more neutral

or gain seeking behavior.12

12Another explanation could be that the high number tasks involving mixed prospects and
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Overall we find some evidence supporting PSD and PWSD with rejections for

MSD and MWSD. More generally the aggregate data supports prospect theory, in

particular as the latter can also accommodate the unclassified subjects in Tables

4,5,7, and 8.

6 Conclusion

In this paper we took a different approach to testing SSD-principles. Instead of

selecting a single or just a few choice problems to obtain evidence in favor or against

SSD, P/MSD or P/MWSD and LA/GS, we designed several tasks that took ac-

count of key aspects of prospect theory. We were able to provide a detailed analysis

of behavior at the level of individuals in addition to the aggregate data analysis.

We observe that no subject is revealing behavior in agreement with M(W)SD and

that some individuals choose in agreement with PSD. Most notably, PT can accom-

modate a significantly larger number of individual behavior than any of the SSD

variants, a finding that is also supported by the estimated PT-parameters. This

conclusion, however, follows from observed choice behavior for gain prospects com-

bined with the separate choice behavior for loss prospects. For mixed prospects, we

find evidence against SSD, and the few loss averse individuals were matched by a

similar number of gain seeking individuals.

loss prospects may have generated pessimism about gaining any amount of money out of this

experiment. This would explain why most subjects were not willing to pay a large proportion of

their earnings from the experiment to participate again in the same study (a finding which can be

interpretted as a form of loss aversion). 82 subjects provided us with such information: on average,

those who lost from their fixed payment (31 subjects earned $664 on average) were willing to pay

44 66% of their ernings; those who gained (27 subjects earned $2422 on average) were willing to

pay 2385% of their earnings, and those who neither gained nor lost (24 subjects received $17)

were willing to pay 245% of their earnings to repeat the experiment.

Recall that the expected pay from the experiment was $17, while the minimum one can ensure is

$2. Thus, it may well be, that the frequent reoccurence of tasks with potential losses has induced

many subjects to exhibit more risk neutral behavior in the SSD-sense.
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Prospect theory has emerged as a reasonable compromise between empirical va-

lidity and mathematical tractability, and this accounts for much of the popularity

of the model (Starmer 2000, Wakker 2010). We have, once more, confirmed PT’s

superiority over gain prospects and over loss prospects. Our study reinforces a dis-

tinction of behavior over gain, loss, and mixed prospects (see also Shoemaker 1990).

As most real decisions that we face involve gains and losses within one alterna-

tive, the critical test for prospect theory concerns PT’s predictive power for choices

among mixed prospects. In the latter domain we have identified shortcomings of

the theory, for the range of real stakes that we used and possibly because of the

more complex non binary prospects used in this study. Additional studies seem

warranted to evaluate PT’s predictive power for complex multi-outcome prospects

and for drawing comparisons with PT-estimates using binary prospects.
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Experiments on Individual Choice 

(This experiment has been approved by the Senate Committee on the Ethics of Research on Human Beings of the University of 
Manchester)  

Welcome to this session. The aim of this experiment is to investigate how people make decisions. We will ask 
you to make several decisions, and will record your choice. The records will be used for scientific purposes 
only. Our published results will not identify any individuals. Our general interest is to observe and analyse 
how people make decisions. We expect that 100 or more people will participate in this experiment. 

This experiment is not a test. There is no way for us to tell whether your decisions are good or bad. That is for 
you to judge. People are different, and faced with the same situation they will prefer to take different courses 
of action. What you need to consider is the fact that the amount of money that you receive by participating in 
this experiment depends partly on your decisions, and partly on luck. 

We will ask you to perform 105 tasks. Each task consists of choosing one of two gambles. An example of a 
task is described below: 

After deciding which gamble to play by marking "left" or "right" and pressing the "Submit" button the next 
task appears.  

Now we explain what a gamble is and how it is played. A complete gamble is visualised on the screen as 15 
balls numbered consecutively from 1 to 15 with amounts of money underneath balls of the same colour. An 
example is the following gamble: 

This is how a gamble is played: A bag contains all 15 balls. One ball is drawn at random. Each ball in the bag 
is equally likely to be drawn. The outcome of a gamble is the sum of money indicated underneath the drawn 
ball.  

In the example above, the red balls indicate that £15.00 will be gained for a ball with the number 1, 2, 3, 4, 5 
or 6 on it. The green balls indicate that £3.00 will be lost for a ball with the number 7, 8, or 9 on it. The blue 
balls indicate that £5.00 will be lost for a ball with the number 10, 11, or 12 on it. Finally, the orange balls 
indicate that £3.00 will be gained for a ball with the number 13, 14, or 15 on it. 

In this experiment there will be several types of gambles. Three examples of gambles are explained below 

Gamble type 1: A bag contains 15 balls numbered from 1 to 15. One ball is drawn at random. 
Each ball in the bag is equally likely to be drawn. If the ball is numbered 1, 2, 3, 4, 5 or 6 the 
outcome is the amount of money indicated underneath those balls (therefore, there is a 40% 
chance of getting that amount). If the ball is numbered 7, 8, 9, 10, 11, or 12, the outcome is the 
amount of money indicated underneath those balls (therefore, there is a 40% chance of getting 
that amount). If the ball is numbered 13, 14, or 15, the outcome is the amount of money indicated 
underneath those balls (therefore, there is a 20% chance of getting that amount). We represent this 
gamble with balls in the respective colours, as follows: 

Choose  the gamble that you would like to play:  

   

 

     

5 -5 8 8 10 -10

left right 

Submit

15 -3 -5 3
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Gamble type 2: A bag contains 15 balls numbered from 1 to 15. One ball is drawn at random. 
Each ball in the bag is equally likely to be drawn. If the ball is numbered 1, 2, or 3, the outcome is 
the amount of money indicated underneath those balls (therefore, there is a 20% chance of getting 
that amount). If the ball is numbered 4, 5, or 6, the outcome is the amount of money indicated 
underneath those balls (therefore, there is a 20% chance of getting that amount). If the ball is 
numbered 7, 8, or 9, the outcome is the amount of money indicated underneath those balls 
(therefore, there is a 20% chance of getting that amount). If the ball is numbered 10, 11, or 12, the 
outcome is the amount of money indicated underneath those balls (therefore, there is a 20% 
chance of getting that amount). If the ball is numbered 13, 14, or 15, the outcome is the amount of 
money indicated underneath those balls (therefore, there is a 20% chance of getting that amount). 
We represent this gamble with balls in the respective colours, as follows:  

 

Gamble type 3: A bag contains 15 balls numbered from 1 to 15. One ball is drawn at random. 
Each ball in the bag is equally likely to be drawn. If the ball is numbered 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14 or 15 the outcome is the amount of money indicated underneath those balls 
(therefore, there is a 100% chance of getting that amount). We represent this gamble with balls in 
the respective colour, as follows:  

 

  

Most gambles involve negative and positive amounts of money. In such a gamble one may lose some amount 
of money from the fixed payment (£17.00) that you receive if you complete all tasks. For example the gamble 
below indicates that you can either lose £15.00 with 20% chance, or gain £2.00 with 20% chance, or gain 
£10.00 with 40% chance, or gain 15 with a 20% chance. 

If you complete all tasks, then you receive a participation fee of £17.00 plus an additional amount of money 
determined by your decision in one randomly selected task. The computer will select this gamble after all tasks 
have been completed, and we will play that gamble for real. The additional amount of money ranges from £-
15.00 to £15.00. Therefore the final sum of money that you receive will be a positive amount in the range of 
£2.00 and £32.00; it will never be negative.   

There is enough time allocated for completing all tasks. You may withdraw from the experiment at any time. If 
you withdraw from the experiment, we will not be able to compensate you for your effort.  

Take your time to make sure that you have understood everything. The window with these instructions will be 
accessible at all times. You may also ask the experimenters for help. Please do not use the "Back" button of 
your internet browser unless you are asked on the computer screen. Also, please do not distract (or talk to) 
other people taking part in the experiment. If you completed all tasks please remain seated and indicate to the 
experimenter that you have finished.  

When you are ready to start with the tasks, press the "Proceed with the Experiment" link below, and then 
follow the instructions set by the computer. 

Proceed with the experiment

-15 2 10 15
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Experiments on Individual Choice 
 
 

Project: 
British Academy Small Research Grant SG-36804 
Choice under Risk: An Experimental Investigation 

Name/Surname:
 

Student Registration No.
 
 

Address where Cheque should be 
sent:

 
 
 
 
 
 

Date:
 

19 March 2004 

Scope:
 

Prize for Participation in Experiment 

Winning Ball:
 

No. 

Payment:
 
£ 
 

Please indicate if you would like to 
participate again in similar 

experiments

 
Yes   /   No  

Please indicate how much of your 
payment you are willing to give up in 

order to participate again in this 
experiment

 
£ 

Your Signature:
 

Verified / Signed:
 
H. Zank: 

 


