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Abstract

In this paper we extend the large sample results provided for the augmented Dickey-Fuller test by

Said and Dickey (1984) and Chang and Park (2002) to the case of the augmented seasonal unit

root tests of Hylleberg et al. (1990) [HEGY], inter alia. Our analysis is performed under the same

conditions on the innovations as in Chang and Park (2002), thereby allowing for general linear

processes driven by (possibly conditionally heteroskedastic) martingale difference innovations. We

show that the limiting null distributions of the t-statistics for unit roots at the zero and Nyquist

frequencies and joint F -type statistics are pivotal, while those of the t-statistics at the harmonic

seasonal frequencies depend on nuisance parameters which derive from the lag parameters char-

acterising the linear process. Moreover, the rates on the lag truncation required for these results

to hold are shown to coincide with the corresponding rates given in Chang and Park (2002); in

particular, an o(T 1/2) rate is shown to be sufficient.

Keywords: seasonal unit root; HEGY tests; linear process; autoregressive approximation.

JEL code: C22.

1 Introduction

This paper considers testing for seasonal unit roots in a univariate time-series process. In the seminal

paper in the literature, Hylleberg et al. (1990) [HEGY] develop separate regression-based t- and F -

tests for unit roots at the zero, Nyquist and annual (harmonic) frequencies in the context of quarterly

data. Recently, Smith, Taylor and del Bario Castro (2009) have generalised the HEGY approach to

allow for an arbitrary seasonal aspect.
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for their helpful and constructive comments on previous versions of the paper. Tomás del Barrio Castro gratefully

acknowledges financial support from Ministerio de Educación y Ciencia ECO2011-23934.
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In the non-seasonal context, Said and Dickey (1984) establish that the Augmented Dickey-Fuller

[ADF] statistics have (pivotal) Dickey-Fuller limiting null distributions in the presence of ARMA

processes of unknown finite order with independently and identically distributed (iid) zero mean and

constant variance innovations. This result requires that the lag length employed should increase

in proportion with the sample size T at rate o(T 1/3). More recently, Chang and Park (2002) extend

these results to allow the shocks to follow a general linear process driven by potentially heteroskedastic

martingale difference innovations and show, moreover, that a weaker o(T 1/2) rate condition is sufficient

for the result to hold. To the best of our knowledge, however, analogous results have not been

established for the HEGY-type tests. Previous contributions have either assumed that the shocks

are serially uncorrelated (e.g. Smith and Taylor, 1998), or follow a finite-order autoregressive (AR)

process (e.g. Burridge and Taylor, 2001, Rodrigues and Taylor, 2004a, 2004b and Smith et al., 2009)

or a finite-order moving average (MA) process (del Barrio Castro and Osborn, 2011). Therefore, none

allow for either the finite-order ARMA assumption of Said and Dickey (1984) or the more general

linear process assumptions of Chang and Park (2002). As Taylor (2005, p.34) notes “It has been

widely conjectured, but never formally proved, that an approach along the lines of that developed in

regard of the ADF test by Said and Dickey (1984) will purge the effects of ARMA behavior in the

shocks from the limiting null distribution of the augmented HEGY-type statistics.”

It has been known since the seminal work of Box and Jenkins (1976) that seasonally observed

time series can display moving average behaviour, in addition to seasonal (autoregressive) unit roots.

Indeed, Box and Jenkins (1976) developed the well-known seasonal ARIMA factorisations (a prominent

example of which is the so-called airline model) as a parsimonious device for modelling dependence

in seasonal data. Allowing for both autoregressive and moving average behaviour is, therefore, very

important when testing for unit roots in a seasonal context. ARMA behaviour in the shocks can

also be a manifestation of neglected periodic autoregressive (PAR) behaviour, something which has

been largely overlooked in the context of the HEGY tests. A detailed discussion of the PAR class of

processes is given in Ghysels and Osborn (2001, Chapter 6). As an example, the first-order stationary

PAR process for a series observed with period S, denoted PAR(1)S , admits a stationary and invertible

ARMA representation, which combines a seasonal autoregressive term with an MA(S−1) component.
Motivated by these considerations, in this paper we establish that the results given by Said and

Dickey (1984) and Chang and Park (2002) for the ADF statistic do extend, at least in part, to the

case of the augmented HEGY-type tests. Specifically, and complementing the findings of previous

authors for finite order shocks of either AR or MA form, we show that, provided the order of the

lag augmentation polynomial increases in proportion with the sample size at a suitable rate, then

the t-statistics for unit roots at the zero and Nyquist frequencies, together with all the F -type tests

employed in this context, remain pivotal in the presence of general linear processes driven by martingale

difference innovations. However, this is not the case for the t-statistics at the harmonic seasonal

frequencies, where the asymptotic null distributions depend on nuisance parameters which derive

from the coefficients characterising the linear process. Moreover, we show that the rate restriction

required on the order of the lag augmentation polynomial coincides with the rate given in Chang and
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Park (2002).

The remainder of the paper is organised as follows. In section 2 we outline the seasonal model,

define the hypotheses of interest within that model, and briefly review the augmented HEGY-type

seasonal unit root tests. The limiting null distributions of the HEGY statistics when the shocks follow

a general linear process driven by martingale difference innovations is established in section 3, along

with the necessary rate conditions. Section 4 concludes. Proofs of our main results are contained in

a mathematical appendix.

In the following ‘ d→’ denotes weak convergence and ‘ p→’ convergence in probability, in each case as
the sample size diverges to positive infinity; ‘a := b’ (‘a =: b’) indicates that a is defined by b (b is

defined by a); b·c denotes the integer part of its argument, and Ip denotes the p× p identity matrix.

The Euclidean norm of the k × 1 vector, x, is defined as kxk := (x0x)1/2, while for the k × k matrix,

A, we also define kAk := maxx kAxk / kxk. Finally we define i :=
√
(−1).

2 The Seasonal Unit Root Framework

2.1 The Seasonal Model and Assumptions

Consider the univariate seasonal time-series process {xSt+s} which satisfies the following data gener-
ating process (DGP)

α(L)xSt+s = uSt+s, s = 1− S, ..., 0, t = 1, 2, . . . , N (2.1a)

uSt+s = ψ(L)εSt+s (2.1b)

where the positive integer S denotes the number of seasons1, and α(z) := 1−
PS

j=1 α
∗
jz

j , is an AR(S)

polynomial in the conventional lag operator, L. The error process uSt+s in (2.1b) is taken to be a

linear process with ψ(z) := 1 +
P∞

j=1 ψjz
j . Precise conditions on this process are given below. The

initial conditions, x1−S , ..., x0, are taken to be of op(T 1/2). In what follows we define T := SN .

Following Chang and Park (2002), we make the following assumptions on the innovation sequence

{εSt+s} and on the coefficients of the polynomial ψ (L).

Assumption A.1 Let (εSt+s,FSt+s) be a martingale difference sequence, with filtration (FSt+s),
where FSt+s ⊂ FSt+s+1, for all s, t, and such that: (a) E

£
ε2St+s

¤
= σ2, (b) 1/N

PN
t=1 ε

2
St+s

p→ σ2

for each s = 1−S, ..., 0, and (c) E |εSt+s|r < K with r ≥ 4, where K is some constant depending only

upon r.

Assumption A.2 Let the polynomial ψ(z) be such that: (a) ψ (z) 6= 0 for all |z| ≤ 1, and (b)P∞
j=1 |j|

τ
¯̄
ψj

¯̄
<∞ for some τ ≥ 1.

For some of the results in this paper, it will be necessary to substitute Assumption A.1 by the

following somewhat stronger assumption.

1So that, for example, S = 4 yields the case of quarterly data, S = 12 monthly data, and S = 1 non-seasonal data.
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Assumption A.1’ Let (εSt+s,FSt+s) be a martingale difference sequence, with filtration (FSt+s),
where FSt+s ⊂ FSt+s+1, for all s, t, such that: (a) E

¡
ε2St+s|FSt+s−1

¢
= σ2, and (b) E |εSt+s|r < K

with r ≥ 4, where K is some constant depending only upon r.

Remark 1: Assumptions A.1, A.2 and A.1’ correspond to Assumptions 1, 2 and 1’, respectively, in

Chang and Park (2002) - albeit condition (b) of Assumption A.1 is slightly stronger than condition

(b) of Assumption 1 in Chang and Park (2002), reflecting the seasonal aspect of the data - and we

therefore refer the reader to Chang and Park (2002, pp.433-434) for a detailed discussion concerning

these. However, notice, in particular, that a special case of Assumption A.2 is where uSt+s in (2.1b)

admits the causal and invertible ARMA(p, q) representation, φ(L)uSt+s = θ(L)εSt+s, such that all

the roots of φ (z) := 1 −
Pp

i=1 φpz
i and θ (z) := 1 −

Pq
i=1 θiz

i lie strictly outside the unit circle.

Assumption A.1 is also weaker than those previously made about the innovation process, εSt+s, in

the regression-based seasonal unit root literature, where either Assumption A.1’ or the even stronger

assumption that εSt+s is IID(0, σ2) with finite fourth moment has been adopted.

2.2 The Seasonal Unit Root Hypotheses

Our focus is on tests for seasonal unit roots in α(L) of (2.1a); that is, the null hypothesis of interest is

H0 : α(L) = 1− LS =: ∆S . (2.2)

Under H0 of (2.2), the DGP (2.1) of {xSt+s} is a seasonally integrated process. We may factorise the
AR(S) polynomial α(L) as α(L) =

Q bS/2c
j=0 ωj(L), where ω0(L) := (1− α0L) associates the parameter

α0 with the zero frequency ω0 := 0, ωj(L) := [1− 2(αj cosωj −βj sinωj)L +(α
2
j +β2j )L

2] corresponds

to the conjugate (harmonic) seasonal frequencies (ωj , 2π − ωj), ωj := 2πj/S, with associated para-

meters αj and βj , j = 1, ..., S∗, where S∗ := b(S − 1)/2c, and, for S even, ωS/2(L) := (1 + αS/2L),

associates the parameter αS/2 with the Nyquist frequency2 ωS/2 := π. Consequently H0 of (2.2) may

be commensurately partitioned as H0 = ∩bS/2cj=0 H0,j , where

H0,i : αi = 1, i = 0, S/2, and H0,j : αj = 1, βj = 0, j = 1, ..., S∗. (2.3)

The hypothesis H0,0 corresponds to a unit root at the zero frequency while H0,S/2 yields a unit root at

the Nyquist frequency, ωS/2 = π. A pair of complex conjugate unit roots at the jth harmonic seasonal

frequencies is obtained under H0,j , j = 1, ..., S∗.

The alternative hypothesis H1 is of stationarity at one or more of the zero or seasonal frequencies;

that is, H1 = ∪bS/2cj=0 H1,j , where

H1,i : |αi| < 1, i = 0, S/2, and H1,j : α
2
j + β2j < 1, j = 1, ..., S∗. (2.4)

2As a point of notation, throughout the paper where reference is made to the Nyquist frequency this is understood

only to apply where S is even. Where S is odd, elements and discussion pertaining to the Nyquist frequency should

simply be deleted.
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Consequently, the maintained hypothesis H0 ∪H1 excludes all unit roots, except for a possible single

unit root at each of the zero and Nyquist frequencies and a single pair of complex conjugate unit roots

at each of the harmonic seasonal frequencies. Explosive roots in α(L) are also excluded.

2.3 The Augmented HEGY Tests

In order to develop regression-based seasonal unit root tests, note first that under Assumption A.2

ψ(z) is invertible, and let the (unique) inverse of ψ(z) be denoted d(z) := 1 −
P∞

j=1 djz
j . Then, it

follows, using the Proposition in HEGY (1990, pp.221-222) that expanding α(z)d(z) around the zero

and seasonal frequency unit roots, exp(±i2πj/S), j = 0, ..., bS/2c, that the hypotheses in (2.3) may
be re-stated as H0,0 : π0 = 0, H0,S/2 : πS/2 = 0, and H0,j : πj = π∗j = 0, j = 1, ..., S

∗, in the model

d∗(L)∆SxSt+s = π0x0,St+s + πS/2xS/2,St+s +
S∗X
j=1

¡
πjxj,St+s + π∗jx

∗
j,St+s

¢
+ εSt+s (2.5)

omitting the term πS/2xS/2,St+s where S is odd, where d∗(z) := 1−
P∞

j=1 d
∗
jz

j is a causal AR polyno-

mial, and where

x0,St+s :=
S−1X
j=0

xSt+s−j−1, xS/2,St+s :=
S−1X
j=0

cos[(j + 1)π]xSt+s−j−1, (2.6a)

xi,St+s :=
S−1X
j=0

cos[(j + 1)ωi]xSt+s−j−1, x∗i,St+s := −
S−1X
j=0

sin[(j + 1)ωi]xSt+s−j−1, i = 1, ..., S∗.

(2.6b)

As in Chang and Park (2002, p.434), we can approximate uSt+s from (2.1b) in rth mean by the

finite-order AR process

uSt+s = d1uSt+s−1 + · · ·+ dkuSt+s−k + ekSt+s (2.7)

with

ekSt+s = εSt+s +
∞X

j=k+1

djuSt+s−j . (2.8)

Using the fact that under H0 of (2.2), ∆SxSt+s = uSt+s and d∗(L) = d(L), substituting (2.7) into

(2.5) yields the auxiliary regression equation

∆SxSt+s = π0x0,St+s + πS/2xS/2,St+s +
S∗X
j=1

¡
πjxj,St+s + π∗jx

∗
j,St+s

¢
+

kX
j=1

dj∆SxSt+s−j + ekSt+s (2.9)

again omitting the term πS/2xS/2,St+s where S is odd, so that (2.9) may be estimated by OLS over

observations St + s = k + 1, ..., T . Consequently, as discussed for S = 4 in HEGY and for general S

in Smith et al. (2009), tests for the presence (or otherwise) of a unit root at the zero and Nyquist

frequencies may be obtained using conventional lower tailed regression t-tests, denoted t0 and tS/2,

for the exclusion of x0,St+s and xS/2,St+s, respectively, from (2.9). Similarly, the hypothesis of a pair

of complex unit roots at the jth harmonic seasonal frequency may be tested by the lower-tailed tj
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and two-tailed t∗j regression t-tests for the exclusion of xj,St+s and x∗j,St+s, respectively, or by the

(upper-tailed) regression F -test, denoted Fj , for the exclusion of both xj,St+s and x∗j,St+s from (2.9),

j = 1, ..., S∗. Ghysels et al. (1994) for S = 4 and Smith et al. (2009), again for general S, also consider

the joint frequency (upper-tail) regression F -tests from (2.9), namely F1...bS/2c for the exclusion of

xS/2,St+s, together with xj,St+s and x∗j,St+s, j = 1, ..., S∗, and F0...bS/2c for the exclusion of x0,St+s,

xS/2,St+s, and xj,St+s and x∗j,St+s, j = 1, ..., S
∗. The former tests the null hypothesis of unit roots at

all seasonal frequencies, while the latter tests the overall null, H0.

As discussed in Chang and Park (2002, p.434), under Assumption A.2 it holds that
P∞

j=1 |j|
τ |dj | <

∞, and consequently
P∞

j=k+1 |dj | = o (k−τ ). Hence, as in Chang and Park (2002), the existence of

the rth moment of uSt+s, which is implied by Assumptions A.1 and A.2, yields that

E
¯̄̄
ekSt+s − εSt+s

¯̄̄r
≤ E |uSt+s|r

⎛⎝ ∞X
j=k+1

|dj |

⎞⎠r

= o
¡
k−rτ

¢
.

Consequently, the approximation error in (2.7), and hence in (2.9), becomes small as k gets large.

However, as in Chang and Park (2002), an assumption is still required concerning the rate permitted

on the lag truncation parameter, k, as the sample size increases. Depending on the context, three

possible assumptions can be made, as follows:

Assumption A.3 Let k →∞ and k = o
¡
T 1/2

¢
as T →∞.

Assumption A.3’ Let k →∞ and k = o
³
[T/ log T ]1/2

´
as T →∞.

Assumption A.3” Let k →∞ and k = o
¡
T 1/3

¢
as T →∞.

Remark 2: As noted in Chang and Park (2002), Assumptions A.2 and A.3 are considerably weaker

than the corresponding assumptions used in Said and Dickey (1984) which, in particular, rule out the

possibility of a logarithmic rate on k. As for the non-seasonal case considered in Chang and Park

(2002), we will show in the next section that the rate conditions given in either Assumptions A.3’ or

Assumption A.3” are sufficient to guarantee the consistency of the estimators of the coefficients, dj ,

j = 1, ..., k, on the lagged dependent variables in (2.9). The rate imposed by the former is sufficient

for consistency under homogeneous martingale difference innovations, as in Assumption A.1’, while

the rate imposed by the latter is sufficient for possibly heterogenous martingale difference innovations,

as allowed under Assumption A.1.

3 Asymptotic Results

Under H0 of (2.2), {xSt+s} of (2.1) admits the so-called vector of seasons representation

Xt = Xt−1 + Ut, t = 1, 2, ...,N, (3.1)
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where Xt := [xSt−(S−1), xSt−(S−2), ..., xSt]
0, t = 0, ..., N , and Ut := [uSt−(S−1), uSt−(S−2), ..., uSt]

0,

t = 1, ..., N . As shown in Burridge and Taylor (2001), the error process, Ut satisfies the vector

MA(∞) representation

Ut =
∞X
j=0

ΨjEt−j (3.2)

where Et := [εSt−(S−1), εSt−(S−2), ..., εSt]
0 and the S × S matrices:

Ψ0 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

ψ1 1 0 0 · · · 0

ψ2 ψ1 1 0 · · · 0

ψ3 ψ2 ψ1 1 · · · 0
...

...
...

...
. . .

...

ψS−1 ψS−2 ψS−3 ψS−4 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

Ψj :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψjS ψjS−1 ψjS−2 ψjS−3 · · · ψjS−(S−1)

ψjS+1 ψjS ψjS−1 ψjS−2 · · · ψjS−(S−2)

ψjS+2 ψjS+1 ψjS ψjS−1 · · · ψjS−(S−3)

ψjS+3 ψjS+2 ψjS+1 ψjS · · · ψjS−(S−4)
...

...
...

...
. . .

...

ψjS+S−1 ψjS+S−2 ψjS+S−3 ψjS+S−4 · · · ψjS

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, j = 1, 2, . . .

In Lemma 1 we now provide a multivariate invariance principle for Xt of (3.1)-(3.2). This provides

the basic building block for the asymptotic results given in this paper. In Lemma 2 we then establish

the large sample properties of the focal variables xj,St+s, j = 0, . . . , bS/2c, and x∗i,St+s, i = 1, . . . , S
∗,

from (2.9).

Lemma 1 Let Xt be generated by (3.1)-(3.2). Then under Assumptions A.1 and A.2,

N−1/2XbrNc
d→ σΨ (1)W (r) := B (r) , r ∈ [0, 1] (3.3)

where W (r) is a S×1 standard Brownian motion process and Ψ (1) :=
P∞

j=0Ψj. Notice, there-

fore, that B (r) is a S×1 vector Brownian motion process with variance matrix Ω := σ2Ψ (1)Ψ (1)0.

Moreover, the right member of the convergence result in (3.3) can also be written as σ
S

£
ψ(1)C0 + ψ(−1)CS/2

+2
PS∗

i=1 (biCi +aiC
∗
i )]W (r), where C0 := Circ[1, 1, 1, . . . , 1], CS/2 = Circ[1,−1, 1, . . . ,−1], and,

for ωi = 2πi/S, Ci = Circ [cos (0) , cos (ωi) , cos (2ωi) , . . . , cos ((S − 1)ωi)] and C∗i = Circ [sin (0) ,

sin ((S − 1)ωi) , sin ((S − 2)ωi) , . . . , sin (ωi)], i = 1, . . . , S∗, are S × S circulant matrices, and where

ai := Im(ψ[exp(iωi)]) and bi := Re(ψ[exp(iωi)]), i = 1, ..., S∗, Re(·) and Im(·) denoting the real and
imaginary parts of their arguments, respectively.

Remark 3: Of the circulant matrices appearing in Lemma 1, both C0 and CS/2 have rank one, while

Cj and C∗j , j = 1, . . . , S
∗, are all of rank two. For further details on circulant matrices see, for example,

Davis (1979), Osborn and Rodrigues (2002), and Smith et al. (2009).
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Lemma 2 Let the conditions of Lemma 1 hold. Then for Xj,t := [xj,St−(S−1), xj,St−(S−2), . . . , xj,St]
0,

j = 0, . . . , bS/2c, and X∗
i,t := [x

∗
i,St−(S−1), x

∗
i,St−(S−1), . . . , x

∗
i,St]

0, i = 1, . . . , S∗, we have that

N−1/2X0,brNc
d→ σ ψ (1)C0W (r) (3.4)

N−1/2XS/2,brNc
d→ σ ψ (−1)CS/2W (r) (3.5)

N−1/2Xi,brNc
d→ σ (biCi + aiC

∗
i )W (r) , i = 1, ..., S∗ (3.6)

N−1/2X∗
i,brNc

d→ σ (biC
∗
i − aiCi)W (r) , i = 1, ..., S∗ (3.7)

where the vector standard Brownian motion, W(r), the constants ai and bi, i = 1, ..., S∗, and the

circulant matrices, Cj, j = 0, . . . , bS/2c, and C∗i , i = 1, . . . , S
∗, are as defined in Lemma 1.

Remark 4: It can be seen from the results in Lemma 2 that the right members of (3.4)-(3.7) are formed

from linear combinations of the S independent standard Brownian motions which comprise W (r).

Recalling that C0 and CS/2 both have rank one, whereas Cj and C∗j for j = 1, . . . , S
∗, all have rank

two, it is seen that each element of CiW(r), i = 0, S/2, and of CjW(r), C∗jW(r) j = 1, . . . , S∗, is, after

rescaling, a function of a scalar standard Brownian motion and of two standard Brownian motions,

respectively. Moreover, since the products C0CS/2 and CiCj and CiC
∗
j , i = 0, S/2, j = 1, ..., S

∗, are

all zero matrices, it is seen that these Brownian motions arising from the linear combinations which

feature in the right members of (3.4) and (3.5) are independent of one another and of those which arise

in the right members of (3.6) and (3.7). Moreover, by virtue of the fact that the products CiC
∗
j , CiCj

and C∗i C
∗
j , i, j = 1, ..., S

∗, i 6= j, are also all zero matrices, the pairs of Brownian motions featuring in

(3.6) and (3.7) are also seen to be independent across i = 1, ..., S∗.

Drawing on the results in Lemmas 1 and 2 we may now state our main result which details the large

sample behaviour of the unit root statistics from (2.9) under the general linear process assumptions

adopted in this paper.

Proposition 1 Let the conditions of Lemma 1 hold. Moreover, let Assumption A.3 hold in the auxil-

iary HEGY regression (2.9). Then the t0, tS/2 (S even), tj and t∗j , j = 1, . . . , S
∗, statistics from (2.9)

are such that:

ti
d→

R 1
0 WidWiqR 1
0 W

2
i dr

=: ηi, i = 0, S/2 (3.8)

tj
d→

aj

hR 1
0 W

∗
j dWj −

R 1
0 WjdW

∗
j

i
+ bj

hR 1
0 WjdWj +

R 1
0 W

∗
j dW

∗
j

i
r
(a2j + b2j )

hR 1
0 W

2
j dr +

R 1
0 W

∗ 2
j dr

i , j = 1, ..., S∗ (3.9)

t∗j
d→
aj

hR 1
0 W

∗
j dW

∗
j +

R 1
0 WjdWj

i
+ bj

hR 1
0 WjdW

∗
j −

R 1
0 W

∗
j dWj

i
r
(a2j + b2j )

hR 1
0 W

2
j dr +

R 1
0 W

∗ 2
j dr

i , j = 1, ..., S∗ (3.10)

where W0, WS/2, W ∗
j and Wj, j = 1, . . . , S∗, are independent standard (scalar) Brownian motions,

and the constants, aj and bj, j = 1, ..., S∗, are as defined in Lemma 1.
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Remark 5: For the quarterly case, S = 4, the representations given in (3.8)-(3.10) coincide with

the corresponding representations given in, for example, Theorem 2.1 of Burridge and Taylor (2001).

Burridge and Taylor (2001) derive their results under conditions on the innovation process εSt+s

which are analogous to our Assumption A.1’ coupled with the much stronger assumption than our

Assumption A.2 that the inverse of ψ(z) is finite-ordered; that is, they assume that uSt+s in (2.1b)

follows an AR(p) process with p finite. Correspondingly, their results require that the lag truncation

in (2.9) is a fixed number (i.e., not a function of the sample size) no smaller than p. Other authors

have made the same or stronger assumptions than those made in Burridge and Taylor (2001). We

have therefore demonstrated that the limiting distributions obtained by previous authors can be

maintained under much weaker assumptions on both the serial dependence in the shocks, uSt+s, and

on the moments of the innovation process, εSt+s, than in this previous literature. Moreover, our results

highlight the fact that the conjecture made by a number of these authors that the lag length would

need to increase at rate o(T 1/3) when MA behaviour is permitted in uSt+s to obtain this result is in

fact more stringent than is necessary.

Remark 6: In the light of Remark 5 it follows immediately, as in Burridge and Taylor (2001), that

the F -type statistics, Fj , j = 1, ..., S∗, F1...bS/2c and F0...bS/2c from (2.9) have the following limiting

null distributions:

Fj
d→

hR 1
0 WjdWj +

R 1
0 W

∗
j dW

∗
j

i2
+
hR 1
0 WjdW

∗
j −

R 1
0 W

∗
j dWj

i2
2
³R 1
0 W

2
j dr +

R 1
0 W

∗ 2
j dr

´ := ηj , j = 1, ..., S∗(3.11)

F1...bS/2c
d→ 1

S − 1

⎛⎝η22 + 2
S∗X
j=1

ηj

⎞⎠ , F0...bS/2c
d→ 1

S

⎛⎝η20 + η22 + 2
S∗X
j=1

ηj

⎞⎠ (3.12)

omitting η22 from both expressions in (3.12) when S is odd. For S = 4, the representations given

in (3.8), (3.11) and (3.12) coincide with those given for the case where uSt+s is serially uncorrelated

in Smith and Taylor (1998, pp.279-280). The limiting null distributions of the t0, tS/2, Fk, k =

1, ..., S∗, F1...bS/2c and F0...bS/2c statistics from (2.9) are therefore invariant to the serial correlation

nuisance parameters {ψj}∞j=1 which characterise the serial dependence in uSt+s. Previously tabulated
asymptotic critical values for the tests based on these statistics may therefore still be used; for example,

(3.8) is the standard Dickey—Fuller distribution tabulated in Fuller (1996, Table 10.A.2, p.642).

Remark 7: Regardless of the serial dependence in uSt+s, it is seen from the results in Proposition

1 and Remark 6 that the harmonic frequency statistics tj , t∗j and Fj are asymptotically independent

across j = 1, ..., S∗ and are asymptotically independent of the zero and Nyquist frequency statistics,

t0 and tS/2, respectively, under H0 of (2.2) by virtue of the mutual independence of W0,Wj ,W
∗
j ,

j = 1, ..., S∗, and WS/2. Moreover, t0 is asymptotically independent of tS/2 and F1...bS/2c.

Remark 8: The proof of Proposition 1 includes the result that under Assumptions A.1, A.2 and A.3

the usual OLS residual variance estimator from (2.9), σ̂2 say, has the property that σ̂2
p→ σ2. This

result is, of course, required for using information criteria based methods, such as, for example, AIC

and BIC, to determine the lag length k in (2.9).
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Remark 9: Under Assumptions A.1, A.2 and A.3” it can be shown, following the same lines as in

the proof of Lemma 3.4 in Chang and Park (2002), that the OLS estimator of Φ := [d1, . . . , dk]
0 from

(2.9) satisfies kΦ̂− Φk = op
¡
k−1/2

¢
, for N large. Moreover, under Assumptions A.1’, A.2 and A.3’ it

can also be shown that Lemma 3.5 in Chang and Park (2002) carries over to the seasonal case and,

hence, that

Φ̂ = Φ+Op

Ã
k

∙
log T

T

¸1/2!
+ op

¡
k−τ

¢
where τ is defined in Assumption A.2. These results show which assumptions are sufficient to establish

the consistency of the estimators of d1, . . . , dk, as required to make use of sequential algorithms, such

as those of Ng and Perron (1995) and Beaulieu and Miron (1993), to determine the lag length in (2.9).

Remark 10: Thus far we have considered the case where the process {xSt+s} admits no deterministic
component. It is straightforward to extend the foregoing results to the case where the series contains

deterministic elements. To that end, consider the following generalisation of (2.1):

xSt+s = μSt+s + ySt+s, s = 1− S, ..., 0, t = 0, 1, . . . ,N, (3.13a)

α(L)ySt+s = uSt+s, s = 1− S, ..., 0, t = 1, 2, . . . , N, (3.13b)

uSt+s = ψ(L)εSt+s. (3.13c)

In (3.13a), μSt+s := γ0ZSt+s where ZSt+s are purely deterministic. The right member of the auxiliary

regression in (2.9) must now be correspondingly augmented by the addition of the deterministic

component μ∗St+s := γ∗ZSt+s, where μSt+s and μ∗St+s are linear in the mapping γ 7→ γ∗. Smith

et al. (2009) present a typology of six cases of interest for μSt+s, namely: no deterministic component

(as considered above); non-seasonal intercept; non-seasonal intercept and non-seasonal trend; seasonal

intercepts; seasonal intercepts and non-seasonal trend, and seasonal intercepts and seasonal trends.

It is important to notice, as shown in Smith et al. (2009), that the inclusion of seasonal intercepts

in (2.9) renders the resulting unit root tests similar with respect to the initial conditions, y1−S , ..., y0.

Where such deterministic components are included in (2.9), the results given in this section still hold

provided the standard Brownian motions, W0,W1,W
∗
1 , ...,WS∗ ,W

∗
S∗ and (where S is even) WS/2, are

re-defined as appropriate to the deterministic scenario of interest; cf. Sections 4.1-4.5 of Smith and

Taylor (1998) and Smith and Taylor (1999). As an example, if seasonal intercepts are included in

(2.9) then the standard Brownian motions above are all replaced by their demeaned analogues, so

that (for instance) W0 is replaced by the process W0 −
R 1
0 W0(s)ds. The same can also be shown to

hold for the corresponding HEGY-type tests based on local GLS de-trending as outlined in Rodrigues

and Taylor (2007), again provided the standard Brownian motions are replaced by their relevant local

GLS de-trended analogues; see Theorem 5.1 of Rodrgues and Taylor (2007,pp.559-560).

Remark 11: The foregoing results also extend straightforwardly to the near seasonally integrated

case considered in Rodrigues and Taylor (2007,p.551). Here the polynomial α(L) in (2.1a) is written in

local-to-unity form using α0 =
¡
1 + ν0

T

¢
, αS/2 =

³
1 +

νS/2
T

´
(S even), and αk =

¡
1 + νk

T

¢
and βk = 0,

k = 1, ..., S∗, where the non-centrality parameters, ν0, ν1, ..., νbS/2c, are finite constants. Under this
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framework the results given in this section continue to hold but with the standard Brownian mo-

tions, W0,W1,W
∗
1 , ...,WS∗ ,W

∗
S∗ and (where S is even) WS/2 replaced by the corresponding Ornstein-

Uhlenbeck [OU] processes, as detailed in Rodrigues and Taylor (2007), so that for example W0(r)

would be replaced by Jc,0(r) :=
R r
0 exp(ν0(r − λ))dW0(λ).

4 Conclusions

In this paper we have extended the results relating to the asymptotic null distribution for the ADF

unit root tests given in Chang and Park (2002) to the case of augmented HEGY seasonal unit root

tests. Specifically, we have shown that regression t-statistics for unit roots at the zero and Nyquist

frequencies and all F -type statistics have pivotal limiting null distributions in the case where the

shocks follow a general linear process driven by martingale difference innovations, but that this is not

the case for the t-statistics at the harmonic seasonal frequencies whose asymptotic null distributions

depend on serial correlation nuisance parameters. The (deterministic) rate at which the length of the

lag augmentation polynomial used in the test regression is required to increase for these results to

hold was also explored and shown to coincide with the rate derived for the non-seasonal ADF statistic

by Chang and Park (2002).

The focus of this paper has been to establish the theoretical validity of the use of lag augmentation

(of deterministic order) in the HEGY seasonal unit root tests, paralleling the contribution of Chang

and Park (2002) for ADF tests. Empirical practice, however, takes matters a stage further and employs

data-dependent methods to select the lag augmentation polynomial. In the accompanying working

paper, del Barrio Castro, Osborn and Taylor (2011), we use Monte Carlo methods to explore and

compare the performance of a variety of such procedures: the sequential test procedures employed

by Hall (1994) and Ng and Perron (1995), seasonal variants of these as suggested by Rodrigues and

Taylor (2004a) and Beaulieu and Miron (1993), and methods based on information criteria including

AIC, BIC and a seasonal generalisation of the modified information criteria [MAIC, MBIC] of Ng

and Perron (2001). Our findings can be summarised as follows. In general, the procedure of Beaulieu

and Miron (1993) applied using a 10% significance level on the lag specification tests, was shown to

perform well, when taking both size and power considerations into account. This method avoided the

severe size distortions seen in the presence of ARMA shocks by many of the procedures and at the same

time was generally competitive on power with the other procedures. Deleting intermediate lags, in the

spirit of the seasonal factorisations of Box and Jenkins (1976), was shown to be advantageous in terms

of power, but it was also shown that such deletion could lead to increased size distortions, especially

in the presence of MA disturbances. The results showed that information criteria approaches could

have potentially very poor size (for example, AIC/BIC with MAs) or poor power (MAIC/MBIC

for disturbance processes with negative seasonal AR coefficients). However, of all the procedures

considered, the most reliable size properties were demonstrated by the MAIC method of Ng and

Perron (2001) even in cases where a near-cancellation occurs across AR unit roots with corresponding

roots in the MA disturbance process.
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A Appendix

For the purposes of the Appendix, and without loss of generality, we simplify our exposition by setting

the initial vector X0 := (x1−S , ..., x0)0 = 0 throughout.

Proof of Lemma 1: The conditions placed on {Et} through Assumption A.1 imply that it satisfies
a multivariate invariance principle, see for example Phillips and Durlauf (1996) or Davidson (1994,

pp.454-455), such that

N−1/2
brNcX
j=1

Ej
d→ σW(r) (A.14)

whereW(r) is a S × 1 vector standard Brownian motion. Next observe from (3.1) and (3.2), that

N−1/2XbrNc = N−1/2
brNcX
j=1

Uj

= Ψ (1)N−1/2
brNcX
j=1

Ej + op (1)

where the approximation in the second line follows from the same argument as in Boswijk and Franses

(1996, p.238). Using (A.14) and the continuous mapping theorem [CMT] the result in (3.3) then

follows immediately.

To establish the second part of the lemma, observe first that IS = 1
SC0+

1
SCS/2+

2
S

PS∗

j=1Cj . Moreover,

noting that Ψ(1) is also a circulant matrix, then by the properties of products of circulant matrices

it can be shown that C0Ψ (1) = ψ (1)C0, CS/2Ψ (1) = ψ (−1)CS/2, CjΨ (1) = bjCj + ajC
∗
j and

C∗jΨ (1) = −ajCj + bjC
∗
j for j = 1, . . . S

∗; see, inter alia, Theorem 3.2.4 of Davis (1979), Theorem 3.1

of Gray (2006) and Smith et al. (2009) for further details. The stated result then follows immediately.

Proof of Lemma 2: Noting that Xj,t = CjXt, j = 0, . . . , bS/2c, and that X∗
i,t = C∗iXt, i = 1, . . . , S∗,

the stated results follow immediately from Lemma 1, using the following identities: C0C0 = SC0,

CS/2CS/2 = SCS/2, CjCj =
S
2Cj , CjC

∗
j =

S
2C

∗
j and C∗jC

∗
j =

S
2Cj , j = 1, ..., S∗, also recalling from

Remark 4 that the remaining matrix products between C0, CS/2, Cj and C∗j , j = 1, . . . , S
∗ are all zero

matrices, and noting that multiplication between circulant matrices is commutative.

For later reference, noting that C0 = v0v0
0, where v00 = [1, 1, 1, ..., 1], CS/2 = vS/2vS/2

0, where

vS/2
0 = [−1, 1,−1, ..., 1], and that Cj = vjv

0
j and C∗j = vjv

∗0
j , where

v0j =

"
cos (ωj [1− S]) cos (ωj [2− S]) · · · cos (0)

sin (ωj [1− S]) sin (ωj [2− S]) · · · sin (0)

#

and

v∗0j =

"
− sin (ωj [1− S]) − sin (ωj [2− S]) · · · − sin (0)
cos (ωj [1− S]) cos (ωj [2− S]) · · · cos (0)

#
,
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it is straightforwardly seen that

N−1/2x0,SbrNc+s =
ψ (1)√
N

⎛⎝ SX
h=1

⎡⎣brNcX
j=1

εSj−(S−h)

⎤⎦⎞⎠+ op (1) (A.15)

N−1/2xS/2,SbrNc+s =
ψ (−1) (−1)s√

N

⎛⎝ SX
h=1

⎡⎣(−1)h brNcX
j=1

εSj−(S−h)

⎤⎦⎞⎠+ op (1) (A.16)

and that for i = 1, ..., S∗,

N−1/2xi,SbrNc+s =
bi√
N

⎡⎣cos (ωi [s])
⎛⎝ SX

h=1

cos (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠
+sin (ωi [s])

⎛⎝ SX
h=1

sin (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠⎤⎦ (A.17)

+
ai√
N

⎡⎣sin (ωi [s])
⎛⎝ SX

h=1

cos (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠
− cos (ωi [s])

⎛⎝ SX
h=1

sin (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠⎤⎦+ op (1)

and

N−1/2x∗i,SbrNc+s =
bi√
N

⎡⎣sin (ωi [s])
⎛⎝ SX

h=1

cos (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠
− cos (ωi [s])

⎛⎝ SX
h=1

sin (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠⎤⎦ (A.18)

− ai√
N

⎡⎣cos (ωi [s])
⎛⎝ SX

h=1

cos (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠
+sin (ωi [s])

⎛⎝ SX
h=1

sin (ωi [h− S])

⎡⎣brNcX
j=1

εSj−(s−h)

⎤⎦⎞⎠⎤⎦+ op (1) .

Proof of Proposition 1: First re-write (2.9) in vector form, viz,

y =(Y,Zk)β0 + u

where y is a T × 1 vector with generic element ∆SxSt+s; Y :=
£
y0|y1|y∗1|y2|y∗2| . . .yS∗ |y∗S∗ |yS/2

¤
is a T × S matrix where yi, i = 0, ..., bS/2c are T × 1 vectors with generic element xi,St+s, and
y∗i , i = 1, ..., S∗ are T × 1 vectors with generic element x∗i,St+s; Zk := [z1|z2| · · · |zk] is a T × k

matrix with zj being T × 1 vectors with generic element ∆SxSt+s−j for j = 1, . . . , k; β0 = [Π0|Φ0]0

:=
£
π0, π1,π

∗
1, π2,π

∗
2, . . . , πS∗,π

∗
S∗ , πS/2,, d1, . . . , dk

¤0; finally u is a T × 1 vector with generic element
ekSt+s. Commensurate with the partitions of β0, define the (S + k) × (S + k) scaling matrix, M :=
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diag
£
T, . . . , T, T 1/2, . . . , T 1/2

¤
. It is then straightforwardly seen that the OLS estimator, β̂0 say, from

(2.9) is such that

M
³
β̂0 − β0

´
=

"
T−2Y0Y T−3/2Y0Zk

T−3/2Z0kY T−1Z0kZk

#−1
×
"

T−1Y0u

T−1/2Z0ku

#
. (A.19)

Due to the unit root non-stationary of the elements of Y and the stationarity of the elements of Zk, it

follows immediately that T−3/2Y0Zk
p→ 0, so that the inverse matrix in (A.19) is asymptotically block

diagonal. As a consequence, the scaled estimators T
³
Π̂−Π

´
and T 1/2

³
Φ̂− Φ

´
are asymptotically

orthogonal. Moreover, it is straightforward to show that T−2Y0Y weakly converges to a S × S

diagonal matrix. We may therefore consider the large sample behaviour of the OLS estimators of πj ,

j = 0, ..., bS/2c, and π∗i , i = 1, ..., S
∗, separately.

Consequently, defining Q := IT − Zk (Z0kZk)
−1Z0k, we can write the so-called normalized bias

statistics as follows:

Tbπj =
T−1y0jQu

T−2y0jQyj
+ op(1)

=
T−1

³
y0ju− y0jZk (Z0kZk)

−1Z0ku
´

T−2
³
y0jyj−y0jZk

¡
Z0kZk

¢−1
Z0kyj

´ + op(1), j = 0, ..., bS/2c (A.20)

and

Tbπ∗i =
T−1y∗0i Qu

T−2y∗0i Qy
∗
i

+ op(1)

=
T−1

³
y∗0i u− y∗0i Zk (Z0kZk)

−1Z0ku
´

T−2
³
y∗0i y

∗
i−y∗0i Zk

¡
Z0kZk

¢−1
Z0ky

∗
j

´ + op(1), j = 1, ..., S∗. (A.21)

The following lemma will allow us to simplify the expressions given above.

Lemma 1 Under the conditions of Proposition 1 the following results hold: (i)
°°Z0kZ−1k °° = Op

¡
T−1

¢
;

(ii) kZ0kuk = op
¡
Tk−1/2

¢
, and (iii) kZ0kyjk = Op

¡
Tk1/2

¢
, j = 0, ..., bS/2c and kZ0ky∗hk = Op

¡
Tk1/2

¢
,

h = 1, ..., S∗.

Proof : Parts (i) and (ii) follow immediately from parts (a) and (c) respectively of Lemma 3.2 of

Chang and Park (2002) simply by replacing the standard first differences which appear there by the

seasonal differences, ∆SxSt+s. In order to establish the validity of part (iii), first use the fact that for

j = 0, ..., bS/2c, kZ0kyjk
2 =

Pk
i=1 (z

0
iyj)

2, where z0iyj =
PN

t=1

P0
s=1−S∆SxSt+s−ixj,St+s, i = 1, ..., k,

and, for h = 1, ..., S∗, kZ0ky∗hk2 =
Pk

i=1 (z
0
iy
∗
h)
2, where z0iy

∗
h =

PN
t=1

P0
s=1−S∆SxSt+s−ix∗h,St+s i =

1, . . . , k. Next observe that the following equalities hold for each i = 1, ..., k:

NX
t=1

0X
s=1−S

x0,St+s∆SxSt+s−i =
NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

∆SxSt+s−j

⎞⎠∆SxSt+s−i (A.22)

NX
t=1

0X
s=1−S

xS/2,St+s∆SxSt+s−i =
NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

(−1)j ∆SxSt+s−j

⎞⎠∆SxSt+s−i (A.23)
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and, moreover, that for each h = 1, ..., S∗, the following equalities also hold for each i = 1, ..., k:

NX
t=1

0X
s=1−S

xh,St+s∆SxSt+s−i =
NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

cos (jωh)∆SxSt+s−j

⎞⎠∆SxSt+s−i (A.24)

NX
t=1

0X
s=1−S

x∗h,St+s∆SxSt+s−i =
NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

− sin (jωh)∆SxSt+s−j

⎞⎠∆SxSt+s−i.(A.25)

The stated result is then established using (A.22)-(A.25) and following along the lines of the proof of

part (b) of Lemma 3.2 in Chang and Park (2002, pp.443-444). ¤

Applying the results in Lemma A.1 to (A.20) and (A.21), we then have that

Tbπj =
T−1y0ju

T−2y0jyj
+ op (1)

=
T−1

PN
t=1

P0
s=1−S xj,St+se

k
St+s

T−2
PN

t=1

P0
s=1−S x

2
j,St+s

+ op (1) , j = 0, ..., bS/2c (A.26)

and

Tbπ∗h =
T−1y∗0h u

T−2y∗0h y
∗
h

+ op (1)

=
T−1

PN
t=1

P0
s=1−S x

∗
h,St+se

k
St+s

T−2
PN

t=1

P0
s=1−S x

∗2
h,St+s

+ op (1) , h = 1, ..., S∗. (A.27)

For each of j = 0, ..., bS/2c in (A.26) and h = 1, ..., S∗ in (A.27), re-write the numerators of (A.26)

and (A.27), respectively, as

T−1
NX
t=1

0X
s=1−S

xj,St+se
k
St+s = T−1

NX
t=1

0X
s=1−S

xj,St+sεSt+s + T−1
NX
t=1

0X
s=1−S

xj,St+s

³
ekSt+s − εSt+s

´

T−1
NX
t=1

0X
s=1−S

x∗h,St+se
k
St+s = T−1

NX
t=1

0X
s=1−S

x∗h,St+sεSt+s + T−1
NX
t=1

0X
s=1−S

x∗h,St+s

³
ekSt+s − εSt+s

´
.

Substituting into (A.26) and (A.27), respectively, we therefore obtain that for, j = 0, ..., bS/2c,

Tbπj =
T−1

PN
t=1

P0
s=1−S xj,St+sεSt+s + T−1

PN
t=1

P0
s=1−S xj,St+s

¡
ekSt+s − εSt+s

¢
T−2

PN
t=1

P0
s=1−S x

2
j,St+s

+ op(1)

(A.28)

and that, for h = 1, ..., S∗,

Tbπ∗h =
T−1

PN
t=1

P0
s=1−S x

∗
h,St+sεSt+s + T−1

PN
t=1

P0
s=1−S x

∗
h,St+s

¡
ekSt+s − εSt+s

¢
T−2

PN
t=1

P0
s=1−S x

∗2
h,St+s

+ op(1).

(A.29)
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Consider first the denominators of (A.28) and (A.29). Using the resultsΨ (1)0C0Ψ (1) = ψ (1)2C0,

Ψ (1)0CS/2Ψ (1) = ψ (−1)2CS/2 and Ψ (1)
0CjΨ (1) =

³
a2j + b2j

´
Cj , for j = 1, ..., S∗ from the mul-

tivariate invariance principle in (3.3) and the CMT we obtain that

T−2
NX
t=1

0X
s=1−S

x2j,St+s = T−2
NX
t=1

S
¡
X 0
t−1CjXt−1

¢
+ op (1) j = 0, S/2

d→ σ2

S

Z 1

0
W (r)0Ψ (1)0CjΨ (1)W (r) dr (A.30)

=

(
σ2ψ (1)2

R 1
0 W

∗ (r)0C0W∗ (r) dr j = 0

σ2ψ (−1)2
R 1
0 W

∗ (r)0CS/2W
∗ (r) dr j = S/2

whereW∗(r) := 1√
S
W(r) and

T−2
NX
t=1

0X
s=1−S

x2j,St+s = T−2
NX
t=1

µ
S

2

¶¡
X 0
t−1Cj Xt−1

¢
+ op (1) j = 1, . . . , S∗

d→ σ2

S2

µ
S

2

¶Z 1

0
W (r)0Ψ (1)0CjΨ (1)W (r) dr

=
σ2
³
a2j + b2j

´
4

Z 1

0
W† (r)0CjW

† (r) dr (A.31)

whereW†(r) := 1√
S/2
W(r).

Consider next the numerators of (A.28) and (A.29). In each case, for the first term it is straight-

forward to show that

T−1
NX
t=1

0X
s=1−S

xj,St+sεSt+s = T−1
NX
t=1

X 0
t−1CjEt + op (1) , j = 0, . . . , bS/2c

T−1
NX
t=1

0X
s=1−S

x∗h,St+sεSt+s = T−1
NX
t=1

X 0
t−1C

∗
hEt + op (1) h = 1, . . . , S∗.

Again using (3.3), applications of the CMT and the identities: Ψ (1)0C0 = ψ (1)C0, Ψ (1)
0CS/2 =

ψ (−1)CS/2, and, for j = 1, ..., S∗, Ψ (1)
0Cj = bjCj−ajC∗j and Ψ (1)

0C∗j = ajCj+ bjC
∗
j , the following

results then obtain

T−1
NX
t=1

0X
s=1−S

x0,St+sεSt+s
d→ σ2

S

Z 1

0
W (r)0Ψ (1)0C0dW (r)

= σ2ψ (1)

Z 1

0
W∗ (r)0C0dW

∗ (r) (A.32)

T−1
NX
t=1

0X
s=1−S

xS/2,St+sεSt+s
d→ σ2

S

Z 1

0
W (r)0Ψ (1)0CS/2dW (r)

= σ2ψ (−1)
Z 1

0
W∗ (r)0CS/2dW

∗ (r) (A.33)
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and for j = 1, ..., S∗,

T−1
NX
t=1

0X
s=1−S

xj,St+sεSt+s
d→ σ2

S

Z 1

0
W (r)0Ψ (1)0CjdW (r) (A.34)

=
σ2bj
2

Z 1

0
W† (r)0CjdW

† (r)− σ2aj
2

Z 1

0
W† (r)0C∗j dW

† (r)

T−1
NX
t=1

0X
s=1−S

x∗j,St+sεSt+s
d→ σ2

S

Z 1

0
W (r)0Ψ (1)0C∗j dW (r) (A.35)

=
σ2aj
2

Z 1

0
W† (r)0CjdW

† (r) +
σ2bj
2

Z 1

0
W† (r)0C∗j dW

† (r) .

Turning to the second term in the numerators of (A.28) and (A.29), using the results established in

(A.15)-(A.18) we have that

NX
t=1

0X
s=1−S

x0,St+s

³
ekSt+s − εSt+s

´
= ψ (1)

NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

εSt+s−j

⎞⎠ ∞X
i=k+1

πk,iεSt+s−i

and that

NX
t=1

0X
s=1−S

xS/2,St+s

³
ekSt+s − εSt+s

´
= ψ (−1)

NX
t=1

0X
s=1−S

⎛⎝(St+s)−1X
j=1

(−1)j εSt+s−j

⎞⎠ ∞X
i=k+1

πk,iεSt+s−i

and that for j = 1, ..., S∗,

NX
t=1

0X
s=1−S

xj,St+s

³
ekSt+s − εSt+s

´
= bj

NX
t=1

0X
s=1−S

⎡⎣cos (ωj [s])
⎛⎝ SX

h=1

cos (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠
+sin (ωj [s])

⎛⎝ SX
h=1

sin (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠⎤⎦ ∞X
i=k+1

πk,iεSt+s−i

+aj

NX
t=1

0X
s=1−S

⎡⎣sin (ωj [s])
⎛⎝ SX

h=1

cos (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠
− cos (ωj [s])

⎛⎝ SX
h=1

sin (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠⎤⎦ ∞X
i=k+1

πk,iεSt+s−i

NX
t=1

0X
s=1−S

x∗j,St+s

³
ekSt+s − εSt+s

´
= bj

NX
t=1

0X
s=1−S

⎡⎣sin (ωj [s])
⎛⎝ SX

h=1

cos (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠
− cos (ωj [s])

⎛⎝ SX
h=1

sin (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠⎤⎦ ∞X
i=k+1

πk,iεSt+s−i

−aj
NX
t=1

0X
s=1−S

⎡⎣cos (ωj [s])
⎛⎝ SX

h=1

cos (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠
+sin (ωj [s])

⎛⎝ SX
h=1

sin (ωj [h− S])

⎡⎣t−1X
g=1

εSg−(s−h)

⎤⎦⎞⎠⎤⎦ ∞X
i=k+1

πk,iεSt+s−i
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where, in each case, as in Lemma 2 of Berk (1974), we have made use of the substitution ekSt+s−εSt+s =P∞
i=k+1 diuSt+s−i =

P∞
i=k+1 πk,iεSt+s−i, where

P∞
i=k+1 π

2
k,i ≤

P∞
i=k+1 d

2
i = o(k−2τ ), and where τ is

as defined in Assumption A.2. It is then straightforward to establish, paralleling the proof of part (a)

of Lemma 3.1 in Chang and Park (2002, p.441), that
PN

t=1

P0
s=1−S xj,St+s

¡
ekSt+s − εSt+s

¢
= op (T )

for j = 0, ..., bS/2c and that
PN

t=1

P0
s=1−S x

∗
j,St+s

¡
ekSt+s − εSt+s

¢
= op (T ) for j = 1, ..., S∗. As an

immediate consequence of these results, we then obtain, under Assumption A.2,

T−1
NX
t=1

0X
s=1−S

xj,St+se
k
St+s = T−1

NX
t=1

0X
s=1−S

xj,St+sεSt+s + op (1) , j = 0, ..., bS/2c (A.36)

T−1
NX
t=1

0X
s=1−S

x∗j,St+se
k
St+s = T−1

NX
t=1

0X
s=1−S

x∗j,St+sεSt+s + op (1) , j = 1, ..., S∗. (A.37)

Combining the results in (A.31)-(A.36), and using applications of the CMT, we obtain the following:

Tbπ0 d→
R 1
0 W

∗ (r)0C0dW∗ (r)

ψ (1)
R 1
0 W

∗ (r)0C0W∗ (r) dr
(A.38)

TbπS/2 d→
R 1
0 W

∗ (r)0CS/2dW
∗ (r)

ψ (−1)
R 1
0 W

∗ (r)0CS/2W∗ (r) dr
(A.39)

and for j = 1, ..., S∗,

Tbπj d→
bj
R 1
0 W

† (r)0CjdW
† (r)− aj

R 1
0 W

† (r)0C∗j dW
† (r)

(a2j+b2j)
2

R 1
0 W

† (r)0CjW† (r) dr
(A.40)

Tbπ∗j d→
aj
R 1
0 W

† (r)0CjdW
† (r) + bj

R 1
0 W

† (r)0C∗j dW
† (r)

(a2j+b2j)
2

R 1
0 W

† (r)0CjW† (r) dr
. (A.41)

Next observe that the corresponding t-statistics from (2.9) can be written as

tj = σ̂−1Tbπi ×
vuutT−2

NX
t=1

0X
s=1−S

(xj,St+s)
2 + op(1), j = 0, . . . , bS/2c (A.42)

t∗h = σ̂−1Tbπ∗h ×
vuutT−2

NX
t=1

0X
s=1−S

³
x∗h,St+s

´2
+ op(1), h = 1, . . . , S∗ (A.43)

where σ̂2 is the usual OLS variance estimator from (2.9); that is, σ̂2 := T−1
PN

t=1

P0
s=1−S(ê

k
St+s)

2 =

T−1
³
u0u− u0Zk (Z0kZk)

−1Z0ku
´
. It then follows immediately from parts (i) and (ii) of Lemma A.1

that σ̂2 = T−1u0u+ op (1). Then since part (c) of Lemma 3.1 in Chang and Park (2002) also applies

here, we obtain the result that σ̂2
p→ σ2. Substituting this result together with those in (A.38)-(A.41)

into (A.42)-(A.43) and using applications of the CMT we then, after some simple manipulations, finally

obtain the stated results in Proposition 1, where we have defined the independent standard Brownian

motions, Wi(r) := v
0
iW

∗ (r), i = 0, S/2, Wj(r) := c
0
jW

† (r) and W ∗
j (r) := c

∗ 0
j W

† (r)0, where c0j and

c∗ 0j are the first rows of v0j and v
∗ 0
j , respectively for j = 1, . . . , S

∗.
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