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Abstract

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null
hypothesis of zero cross-section (or contemporaneous) correlation in linear panel data
models. The procedure allows for either �xed, strictly exogenous and/or lagged de-
pendent regressor variables, as well as quite general forms of both non-normality and
heteroskedasticity in the error distribution. Whilst the asymptotic validity of the test
procedure, under the null, is predicated on the number of time series observations,
T , being large relative to the number of cross-section units, N , independence of the
cross-sections is not assumed. Across a variety of experimental designs, a Monte Carlo
study suggests that, in general (but not always), the predictions from asymptotic the-
ory provide a good guide to the �nite sample behaviour of the test. In particular,
with skewed errors and/or when N=T is not small, discrepancies can occur. However,
for all the experimental designs, any one of three asymptotically valid wild bootstrap
approximations (that are considered in this paper) gives very close agreement between
the nominal and empirical signi�cance levels of the test. Moreover, in comparison with
wild bootstrap �version�of the original Breusch-Pagan test (Godfrey and Yamagata,
2011) the corresponding version of the heteroskedasticity-robust Breusch-Pagan test is
more reliable. As an illustration, the proposed tests are applied to a dynamic growth
model for a panel of 20 OECD countries.

1 Introduction

In a linear panel data model, with exogenous regressors and Zellner�s (1962) Seemingly
Unrelated Regression Equation (SURE) structure, a Lagrange multiplier (LM) test to
detect cross-sectional dependence was proposed by Breusch and Pagan (1980) and is now
a commonly employed diagnostic tool of applied workers. This test is based on the average
of the squared pair-wise sample correlation coe¢ cients of the residuals and is applicable
when N is �xed and T ! 1; i.e., when N is small relative to a large T: However, as
pointed out in, for example, Pesaran (2004) and Pesaran, Ullah, and Yamagata (2008),
the LM (henceforth, Breusch-Pagan) test based upon asymptotic critical values from the
relevant �2 distribution can su¤er from serious size distortion when N=T is not small.

�Corresponding author. Department of Economics & Related Studies, University of York, Heslington,
York YO10 5DD, United Kingdom. Email: takashi.yamagata@york.ac.uk.
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In view of this, one area of research has focused on cross-section dependence tests for
large T and/or N panels. Frees (1995) has proposed a �distribution free�version of the
Breusch-Pagan test based on squared pair-wise Spearman sample rank correlation coe¢ -
cients of the regression residuals. Pesaran (2004) proposes a, so-called, CD test based on
average pair-wise sample correlations of residuals across the di¤erent cross-section units.
The CD test statistic has very good �nite sample performance under a wide class of panel
data model designs. However, it will lack power when the population average pair-wise
correlations is zero, even though underlying individual population pair-wise correlations
are non-zero. Adopting a di¤erent strategy, Pesaran et al (2008) make use of analytical
adjustments for each squared pair-wise sample correlation in order to correct the bias
of the Breusch-Pagan statistic. These analytical adjustments are derived under the same
assumptions as the original Breusch-Pagan Test; i.e., normality, regressor exogeneity and
homoskedasticity within cross-sections. In a similar vein, Baltagi, Feng, and Kao (2010)
have proposed an (asymptotic) bias-correction of Breusch-Pagan test statistic, based on
the

p
NT consistent Fixed E¤ect estimator and present Monte Carlo results which sug-

gest that their test behaves well even when T is smaller than N ; Juhl (2011) considers
a similar approach. Relaxing normality and regressor exogeneity, Sara�dis, Yamagata,
and Robertson (2009) propose a test for cross-sectional dependence based on Sargan�s
di¤erence test for over-identifying restrictions in a dynamic panel data model, but again
assuming homoskedasticity within each cross section and under a slope homogeneity as-
sumption. However, the slope homogeneity assumption of Sara�dis et al (2009), Baltagi
et al (2010) and Juhl (2011) can be restrictive in empirical work. For example, a growing
body of literature suggests that a slope homogeneity assumption may not be relevant in
macroeconometric applications: see Haque, Pesaran, and Sharma (1999), Bassanini and
Scarpetta (2002), amongst others. Relaxing the within cross-section homoskedasticity
assumption, but still maintaining exogenous regressors, Godfrey and Yamagata (2011)
recently advocated a wild bootstrap1 version of the original Breusch-Pagan test in order
to address the large N=T issue. The Monte Carlo evidence presented by Godfrey and
Yamagata (2011) suggests that such a test can provide quite reliable inferences.

This paper makes two contributions which are distinct from Godfrey and Yamagata
(2011). First, it proposes a new asymptotically pivotal heteroskedasticity robust Breusch-
Pagan test, under the assumption that T ! 1 and N is �xed, that allows for �xed,
strictly exogenous and lagged dependent regressor variables as well as quite general forms
of both non-normality and heteroskedasticity, in the linear model error distribution. The
last point is particularly pertinent because the modern approach in applied research is
to implement inference by employing some heteroskedasticity robust variance-covariance
estimator. It emerges from this analysis that the original Breusch-Pagan test will asymp-
totically over reject, under the null, if and only if the squared errors are (asymptotically)
contemporaneously uncorrelated.

However, as is well known, asymptotic theory can provide a poor approximation to
actual �nite sample behaviour; speci�cally in this case, and as noted previously, when
N=T is not small. Second, this paper describes three asymptotically valid wild bootstrap
procedure schemes, allowing for lagged dependent regressors, which might be employed in
order to provide closer agreement between the desired nominal and the empirical signi�-
cance level of a test procedure when N=T is not small. In particular, the recursive-design
wild bootstrap is asymptotically justi�ed under less restrictive assumptions than those
imposed by Goncalves and Kilian (2004) and Godfrey and Tremayne (2005), which rule

1See, for example, Wu (1986), Liu (1988), Mammen (1993), Davidson and Flachaire (2008), in the
context of the classical linear regression model.
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out certain asymmetric conditional heteroskedastic error processes. In addition, it has
been traditional when developing tests for cross-section dependence that the actual null
hypothesis under test is one of zero contemporaneous correlation among cross sections (i.e.,
individuals, households, �rms, countries, etc.) the failure of which, of course, is consistent
with contemporaneous dependence; see, for example, the survey by Moscone and Tosetti
(2009). However, zero contemporaneous correlation does not, necessarily, imply contem-
poraneous independence. Nonetheless, virtually all previous tests of this null hypothesis
that have been proposed in the literature have maintained the stronger assumption of
independence. In this paper, such independence is not assumed.

The rest of the paper is organised as follows, with all proofs relegated to the Appendix.
Section 2 introduces the notation and assumptions which a¤ord the subsequent asymptotic
analysis. Section 3 establishes the limit distribution of the new test statistic and Section 4
describes the wild bootstrap tests, which are applicable to both the new heteroskedasticity
robust Breusch-Pagan test and the original version. Section 5 reports the results of a small
Monte Carlo study designed to shed light on the �nite sample reliability of the various
test procedures and Section 6 provides a simple empirical application. Finally, Section 7
concludes.

2 The Model, Notation & Assumptions

In this paper, we allow for a Autoregressive Distributed Lag (ADL) heterogeneous panel
data model structure. In particular, if i indexes the cross-section observations and t the
time series observations, then the following model is assumed

�i(L)yit = w
0
it�i + uit; i = 1; :::; N; t = 1; :::; T; (1)

where fyi;�p+1; :::; yi0; yi1; :::; yiT ; wi1; ::::; wiT g ; i = 1; :::; N , are the sample data and
�i(L) = 1 � �i1L � �i2L2 � ::: � �ipLp; �ip 6= 0; has all roots lying outside the unit
circle, for all i; with p; the lag length, known, �nite and common across i, and k�ik <1:
The M regressors, w0it = fwitlg ; l = 1; :::M; are strictly exogenous, with wit1 = 1; for all i
and t; the errors, uit; have zero mean for all i and t; and, fw0it; uitg satisfy the regularity
conditions discussed below.

Stacking the observations, t = 1; :::; T; per cross-section we write (1) as

yi = Xi�i + ui (2)

�0i =
�
�0i; �

0
i

�
; �0i =

�
�i1; :::; �ip

�
; where yi = fyitg ; (T � 1) ; Xi = (Wi; Yi) is (T �M + p)

and has rows x0it, Wi has rows w0it = fwitlg, Yi has rows Y 0i;t�1 = fyi;t�qg ; q = 1; :::; p; and
ui = fuitg ; (T � 1) : The Ordinary Least Squares estimator of �i; in (2), is given by

�̂i =
�
X 0
iXi
��1

X 0
iyi; i = 1; :::; N:

Zero contemporaneous (or cross-section) correlation is equivalent to the null hypothesis
of H0 : E[uiu0j ] = 0; for all i 6= j; or H0 : E[uitujt] = 0 for all t = 1; :::; T and all i 6= j. It is
common practice, in the literature, for tests of H0 : E[uitujt] = 0 to be constructed under
the stronger assumption of contemporaneous independence; see, inter alia, Moscone and
Tosetti (2009) and Pesaran et al (2008). The asymptotic validity of the test procedure
proposed in this paper does not rely on such a strong assumption. Rather, a weaker set
of conditions are invoked which specify various quantities of interest to be martingale
di¤erences.
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The asymptotic analysis keeps N �xed whilst T ! 1: In addition, the following
assumptions are made in which Ft�1 is the sigma �eld generated by: (i) current and
lagged values of yit (i.e., fyi;t�kg ; i = 1; :::; N; k = 1; 2; ::: ); and, (ii) current and lagged
values of any strictly exogenous variables, i = 1; :::; N; including wi;t�k; k = 0; 1; 2; :::; and
possibly other strictly exogenous variables as well; see, for example, White (2001, p.59).

For all i = 1; :::; N; the following hold:

Assumption 1: fw0itg is a mixing sequence, with either � of size ��= (2� � 1) ; � � 1; or
� of size ��= (� � 1) ; � > 1:

Assumption 2:

(i) E [uitwi;t+kjFt�1] = 0; almost surely, for any k > 0 and all t;

(ii) E
�
u2itjFt�1

�
= �2it; almost surely, for all t;

(iii) plimT!1
1
T

PT
t=1

�
�2it � E[u2it]

	
= 0;

(iv) E jwitlj2�+� � � < 1; where � = max [2; �] ; for some � > 0; and all t = 1; :::; T;
l = 1; :::;M ;

(v) E juitj4+� � � <1 for some � > 0; and all t = 1; :::; T:

Assumption 3:

(i) E (W 0
iWi=T ) =

1
T

PT
t=1E[witw

0
it] is uniformly positive de�nite;

(ii) E (u0iui=T ) =
1
T

PT
t=1E[u

2
it] is uniformly positive.

For all 1 � i < j = 2; :::; N the following holds:

Assumption 4:

(i) E [uitujtjFt�1] = 0; almost surely, for all t;

(ii) E[u2itu
2
jtjFt�1] = �2ijt; almost surely, for all t;

(iii) plimT!1
1
T

PT
t=1

n
�2ijt � E[u2itu2jt]

o
= 0;

(iv) !ijT = 1
T

PT
t=1E[u

2
itu

2
jt] is uniformly positive;

(v) E [uitujtuhtuktjFt�1] = 0; almost surely, for j < k, i � h < k, and for all t:

Assumption 1 allows wit to contain �xed or random (but strictly exogenous) regressors.
Assumption 2 is somewhat weaker than allowing the errors to be serially independent
(although they are still uncorrelated). Assumption 2(i) follows from the strict exogeneity
assumption on wit and, together with Assumption 2(v) and the fact that wit1 = 1 for all
t, it implies that fuit;Ftg is a martingale di¤erence sequence (m.d.s).2 Assumptions 2(ii)
and (iii) also allow for general (conditional or unconditional) heteroskedasticity (with �2it
possibly varying across within cross-sections and through time). A wide class of models for
the variance are allowed that include cross-sectional heterogeneity, volatility that evolves
over time such as GARCH type models, trending volatility, break and smooth transition

2This formulation is similar to that employed, for example, by Weiss (1986).
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shifts in variance. Assumptions 1, 2 and 3 also ensure that, for each i; j;
X 0
iujp
T
and

X 0
iXj
T

=

1
T

PT
t=1 xitx

0
jt are both Op(1);

�
1
T

PT
t=1 xitx

0
it

��1
exists, in probability, and is Op(1) and

that, consequently, �̂i��i = Op(T�1=2): Notice, that additional assumptions are required
to establish asymptotic normality for

p
T (�̂i � �i); speci�cally, these will be su¢ cient to

ensure that 1
T

PT
t=1 u

2
itxitx

0
it � 1

T

PT
t=1E

�
u2itxitx

0
it

� p! 0; with 1
T

PT
t=1E

�
u2itxitx

0
it

�
being

uniformly positive de�nite. However, we do not need asymptotic normality of
p
T (�̂i��i)

in order to justify the asymptotic validity of the test procedure in this paper; in contrast to
the assumption of Godfrey and Yamagata (2011). Assumption 4 permits the derivation of
the robust test procedure, for cross-section correlation (Lemma 1 and Theorem 1 below).
Assumption 4(i) states that uit and ujt are uncorrelated, i 6= j; whilst 4(v) requires
that all distinct pairs fuitujtg and fuhtuktg are uncorrelated, i 6= j and h 6= k: These
two assumptions could be replaced by the much stronger assumption that the fuitg are
independent, which we wish to resist.

3 Test Statistics and Limit Distributions

The commonly used Breusch-Pagan test statistic is

BPT =

N�1X
i=1

NX
j=i+1

�̂2ij (3)

where3

�̂ij =

1p
T

PT
t=1 ûitûjtrn

1
T

PT
t=1 û

2
it

on
1
T

PT
t=1 û

2
jt

o :
As noted, for example, by Moscone and Tosetti (2009), under (1), cross-section indepen-

dence, but homoskedasticity across the time dimension, it can be shown that BPT
d! �2�;

for �xed N , as T ! 1; where � = 1
2N(N � 1): Given Theorem 1, below, and under As-

sumption 4(i) and (v), rather than full independence, this remains true. However, this will
not be the case, in general, when there is heteroskedasticity across the time dimension. In
these circumstances, the use of BPT could lead to asymptotically invalid inferences. (This
was also recently pointed out by Godfrey and Yamagata (2011), but in the context of a
static heterogeneous panel.) Therefore the availability of a test procedure that is robust
to more general heteroskedasticity would appear desirable. Such a statistic is de�ned as

RBPT =

N�1X
i=1

NX
j=i+1


̂2ij (4)

where


̂ij =

PT
t=1 ûitûjtqPT
t=1 û

2
itû

2
jt

=

1p
T

PT
t=1 ûitûjtq

1
T

PT
t=1 û

2
itû

2
jt

: (5)

Allowing for heteroskedasticity across both the cross-section and time dimension, we
have the following preliminary Lemma which motivates the construction of RBPT ; given
in (4):

3We have dropped the T subscript on �̂ij for notational simplicity.
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Lemma 1 Under Assumptions 4(i)-(iv) and 2(v), we have, for all i 6= j; and as T !1;
and �xed N;


ij =

1p
T

PT
t=1 uitujtq

1
T

PT
t=1 u

2
itu

2
jt

d! N(0; 1):

We are now in a position to establish the following result, which justi�es the construc-
tion of a robust version of BPT ; as detailed in the subsequent Corollary.

Theorem 1 Under Assumptions 1-4, we have, for all i 6= j; and as T !1; and �xed N


̂ij
d! N(0; 1):

Finally, we have the following Corollary which details the limit distribution of RBPT :

Corollary 1 Under Assumptions 1-4, and as T !1; with N �xed,

RBPT =
N�1X
i=1

NX
j=i+1


̂2ij
d! �2�; � =

1

2
N (N � 1) :

From Theorem 1 the asymptotic behaviour of BPT can be inferred, under certain
forms of heteroskedasticity. In particular, under cross-sectional heteroskedasticity only, it
is easily veri�ed that �̂ij� 
̂ij = op(1); so that BPT remains asymptotically valid, as noted
earlier. However, in general, we have (under our assumptions)

�̂ij =

8<:
vuut 1

T

PT
t=1 û

2
itû

2
jt

1
T

PT
t=1 û

2
it
1
T

PT
t=1 û

2
jt

9=; 
̂ij
=

8<:
vuut 1

T

PT
t=1E[u

2
itu

2
jt]

1
T

PT
t=1E[u

2
it]
1
T

PT
t=1E[u

2
jt]

9=; 
̂ij + op(1);
so that, asymptotically at least, �̂ij � 
̂ij = op(1) if and only if u2it and u

2
jt are (asymp-

totically) contemporaneously uncorrelated. For illustrative purposes, suppose uit = �it"it;
where the "it are zero mean and unit variance, independently and identically distributed
(i.i.d.), random variables. In this context, for example, with a one-break-in-volatility model
which speci�es �2it = �2i1 for t = 1; :::; T1 < T and �2it = �2i2 > �2i1 for t = T1 + 1; :::; T;
u2it and u

2
jt will be (asymptotically), positively contemporaneously correlated, so that

�̂ij > 
̂ij ; in probability. Under the null hypothesis of H0 : E[uitujt] = 0, this will lead
to over-rejection, asymptotically, for a test procedure which employs BPT in conjunction
with �2� critical values. A qualitatively similar conclusion emerges for a trending volatility

model (�Model 2� in Cavaliere and Taylor, 2008), where �it = �i0 � (�i1 � �i0)
�
t�1
T�1

�
,

�i1 > �i0; since, again, u2it and u
2
jt will be (asymptotically), positively contemporaneously

correlated. However, for conditional heteroskedasticity in which �2it = E
�
u2itjFt�1

�
is a

stationary process (for example, a GARCH error process) then, due to the independence
of the "it; u2it and u

2
jt are (asymptotically) contemporaneously uncorrelated so that the

use of BPT with �2� critical values is asymptotically valid.
Thus, there will be situations in which BPT remains asymptotically robust. In general,

though, it seems prudent to use a procedure that is robust under quite general forms of
(unknown) heteroskedasticity. Although, Theorem 1 shows that the statistic RBPT is
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asymptotically robust to general forms of heteroskedasticity, it might be anticipated that
improved sampling behaviour, in �nite samples, will be a¤orded by employing a wild
bootstrap scheme. Indeed, Godfrey and Yamagata (2011) proposed the use of a wild
bootstrap scheme in order to control the signi�cance levels of the BPT test procedure, in
the presence of non-normality and unknown heteroskedasticity, under both large T and
large N asymptotics. Their analysis, however, is limited to the static heterogeneous panel
data model and is not based on an asymptotic pivot. In the next section, the asymptotic
validity (T !1; N �xed) of three wild bootstrap schemes is established when applied to
both RBPT and BPT in a dynamic heterogenous panel data model under non-normality
and unknown heteroskedasticity.

4 Wild Bootstrap Procedures

We consider three wild bootstrap procedures, as follows.

4.1 Wild Bootstrap 1 (WB1)

This is a recursive design wild bootstrap scheme, implemented using the following steps:

1. Estimate the model by OLS to get ûit ; i = 1; :::; N , and construct test statistics
RBPT and BPT :

2. (which is repeated B times)

(a) Generate u�it = "itûit; where the "it are i.i.d., over i and t; with zero mean and
unit variance.

(b) Construct
y�it = �̂

0
ix
�
it + u

�
it: (6)

Here, x�it is generated recursively, from (6), given initial values y�it; t � 0 for
any regressors which are lagged dependent variables (these could be zero or
sample values). Sample values of the regressors are employed in this wild
bootstrap scheme for any strictly exogenous variables. Thus, for example, if
x0it = (w

0
it; yi;t�1) ; where wit is strictly exogenous, then w

�
it = wit; for all i and

t; �0i =
�
�0i; �i

�
and choosing y�i0 = yi0 bootstrap data are generated according

to

y�i1 = �̂
0
iwi1 + �̂iyi0 + u

�
i1

y�it = �̂
0
iwit + �̂iy

�
i;t�1 + u

�
it; t = 2; :::; T:

(c) Construct the bootstrap test statistics

RBP �T =
N�1X
i=1

NX
j=i+1


̂�2ij ; 
̂�ij =

1p
T

PT
t=1 û

�
itû

�
jtq

1
T

PT
t=1 û

�2
it û

�2
jt

(7)

where û�it = y
�
it � x�0it �̂

�
i is the OLS residual from (6), and

BP �T =
N�1X
i=1

NX
j=i+1

�̂�2ij ; �̂�ij =

1p
T

PT
t=1 û

�
itû

�
jtq

1
T

PT
t=1 û

�2
it
1
T

PT
t=1 û

�2
jt

: (8)
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3. Calculate the proportion of bootstrap test statistics, RBP �T (resp., BP
�
T ), from the

B repetitions of Step 2c that are at least as large as the actual value of RBPT
(resp., BPT ). Let this proportion be denoted by p̂ and the desired signi�cance level
be denoted by �. The asymptotically valid rejection rule is that H0 is rejected if
p̂ � �.

4.2 Wild Bootstrap 2 (WB2)

This is a �xed design wild bootstrap scheme which replaces (6) in the recursive design
scheme with

y�it = �̂
0
ixit + u

�
it

at stage 2b.

4.3 Wild Bootstrap 3 (WB3)

Note, from Theorem 1, 
̂ij � 
ij = op(1); i.e., 
̂ij has the same limit distribution as it
would have if �i were known. This suggests that the following wild bootstrap procedure
should work (asymptotically) at least.

1. As for WB1.

2. (which is repeated B times)

(a) Generate u�it = "itûit; as in WB1(but omit step 2b in WB1).

(b) Construct the boostrap test statistics

RBP �T =
N�1X
i=1

NX
j=i+1

~
�2ij ; ~
�ij =

1p
T

PT
t=1 u

�
itu

�
jtq

1
T

PT
t=1 u

�2
it u

�2
jt

;

and

BP �T =
N�1X
i=1

NX
j=i+1

~��2ij ; ~��ij =

1p
T

PT
t=1 u

�
itu

�
jtq

1
T

PT
t=1 û

�2
jt
1
T

PT
t=1 û

�2
jt

:

3. Calculate the proportion of bootstrap test statistics, RBP �T (resp., BP
�
T ), from the

B repetitions of Step 2b that are at least as large as the actual value of RBPT
(resp., BPT ). Let this proportion be denoted by ~p and the desired signi�cance level
be denoted by �. The asymptotically valid rejection rule is that H0 is rejected if
~p � �.

The following Theorem states the asymptotic validity of these wild bootstrap proce-
dures:4

Theorem 2 Under Assumptions 1-4, and for all three wild bootstrap designs, WB1, WB2
and WB3,

sup
x
jP �(RBT �T � x)� P (RBTT � x)j

p! 0

sup
x
jP �(BT �T � x)� P (BTT � x)j

p! 0

4 In the Appendix, we verify this for the recursive wild bootstrap scheme (WB1) only and, following
Davidson and Flachaire (2008), with u�it = "itûit where the "it are independently and identically distributed
for all i and t taking the discrete values �0:5 with an equal probability of 0:5:
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where P � is the probability measure induced by the wild bootstrap conditional on the sample
data.

Note that, even when allowing for conditional heteroskedasticity, we do not require
the restrictive assumptions of Goncalves and Kilian (2004) to justify the resursive-design
WB1, since our test criteria are asymptotically independent of �̂i:

Henceforth, a test procedure which employs RBPT (resp., BPT ) in conjunction with
asymptotic critical values will be called an �asymptotic test�, whilst that employs either
of WB1, WB2 or WB3 will be referred to as a �bootstrap test�. In order to shed light
on the relevance of the preceding asymptotic analysis as an approximation to actual �nite
sample behaviour, the next section describes, and reports the results of, a small Monte
Carlo study which investigates the sampling behaviour of the test statistics considered
above under a variety of heteroskedastic error distributions, and (N;T ) combinations.

5 Monte Carlo Study

Three data generating processes (DGPs) are considered: Panel autoregressive and distrib-
uted lag (ADL) models, with strictly exogenous regressors, and pure panel autoregressive
(AR) models.

5.1 Monte Carlo Design

5.1.1 DGP1

The �rst data generating process considered is a dynamic panel ADL(1; 0) model, which
is speci�ed by

yit = �i1 + �i2zit + �iyi;t�1 + uit

= �0iwit + �iyi;t�1 + uit; i = 1; 2; :::; N and t = �49;�48; :::; T (9)

with �i1 � i.i.d. N(0; 1), �i2 = 1 � �i, �i � i.i.d. Uniform[0:4; 0:6], and the zit are gen-
erated for (N = 5; T = 25) as independent random draws from the standard lognormal
distribution. This block of regressor values is then reused as necessary to build up data
for the other combinations of (N;T ). yi;�50 = 0, and �rst 49 values are discarded. The
error term is generated as

uit = �it"it; i = 1; 2; :::; N and t = �49;�48; :::; T (10)

and
"it =

p
1� �2�it + ��t (11)

where �it � i.i.d. (0; 1) independently of �t � i.i.d. (0; 1). Thus, corr (uit;ujt) = �; a
constant in this case. For estimating signi�cance levels, the value of � is set to zero, whilst
power is investigated using � = 0:2, which provides a useful range of experimental results.
Three distributions are used to obtain the i.i.d. standardized errors for �it and �t: the
standard normal distribution; the t-distribution with �ve degrees of freedom (t5); and the
chi-square distribution with six degrees of freedom (�26). The t5 distribution satis�es the
restrictions placed on the moments of uit (Assumption 2(v)), whilst the �26 distribution is
employed to provide evidence on the e¤ects of skewness. In particular, with a coe¢ cient
of skewness greater than 1, it is heavily skewed, according to the arguments of Ramberg,
Tadikamalla, Dudewicz, and Mykytka (1979).
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Five models for �it are considered, all of which satisfy, in particular, Assumption
2(v). First, there is homoskedasticity, denoted HET0, with �it = 1 for all t. Second,
a one-break-in-volatility model, henceforth HET1, is employed with �it = 0:8 for t =
1; 2; :::;m = bT=2c and �it = 1:2 for t = m;m + 1; :::; T , where bAc is the largest integer
part of A. Third, HET2 is a trending volatility model, with �it = �0 � (�1 � �0)

�
t�1
T�1

�
;

see �Model 2� in Cavaliere and Taylor (2008), where �0 = 0:8 and �1 = 1:2. Fourth,
HET3 is a conditional heteroskedasticity scheme, with �it =

p
exp(czit), t = 1; :::; T ;

this sort of skedastic function is discussed in Lima, Souza, Cribari-Neto, and Fernandes
(2009). The value of c in HET3 is chosen to be 0:4; so that max(�2it)=min(�

2
it), which

is a well-known measure of the strength of heteroskedasticity, is 7:9. For HET0-HET3,
�it = 1 for t = �49; :::; 0. Finally, we consider a generalized autoregressive conditional
heteroskedasticity, GARCH(1,1) model, denoted HET4, where

�2it = � + �1u
2
i;t�1 + �2�

2
i;t�1, t = �49;�48; :::; T . (12)

Following Godfrey and Tremayne (2005), the value of parameters are chosen to be � = 1,
�1 = 0:1 and �2 = 0:8.

5.1.2 DGP2

The second data generating process considered is a model with strictly exogenous regres-
sors, speci�ed by

yit = �i1 + �i2zit + uit (13)

= �0iwit + uit; i = 1; 2; :::; N and t = 1; 2; :::; T; (14)

where �i1 � i.i.d. N(0; 1), �i2 � i.i.d. Uniform[0:9; 1:1] and the zit are generated for
(N = 5; T = 25) as independent random draws from the standard lognormal distribution.
Again, this block of regressor values is then reused as necessary to build up data for the
other combinations (N;T ).

The error term in (13) is written as

uit = �it"it; i = 1; 2; :::; N and t = 1; 2; :::; T: (15)

The three distributions of "it and the �ve models for �it are considered as before.

5.1.3 DGP3

The third data generating process considered is a dynamic panel AR(1) model, which is
speci�ed by

yit = �i (1� �i) + �iyit�1 + uit; i = 1; 2; :::; N and t = �49;�48; :::; T: (16)

with �i � i.i.d. N(0; 1), �i � i.i.d. Uniform[0:4; 0:6], yi;�49 = 0, and �rst 49 values are
discarded. The error term is written as

uit =

q
1� �2i�it"it; i = 1; 2; :::; N and t = �49;�48; :::; T: (17)

The three distributions of "it and the �ve models for �it are considered as before.
All combinations of N = 5; 10; 25 and T = 50; 100; 200 are considered. The sampling

behaviour of the tests are investigated using 2000 replications of sample data and 200
bootstrap samples, employing a nominal 5% signi�cance level.
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5.2 Monte Carlo Results

Before looking at the results from the Monte Carlo study, it is important to de�ne criteria
to evaluate the performance of the di¤erent tests considered. Given the large number
of replications performed, the standard asymptotic test for proportions can be used to
test the null hypotheses that the true signi�cance level is equal to its nominal value. In
these experiments, this null hypothesis is accepted (at the 5% level) for estimated rejection
frequencies in the range 4% to 6%. In practice, however, what is important is not that the
signi�cance level of the test is identical to the chosen nominal level, but rather that the
true and nominal rejection frequencies stay reasonably close, even when the test is only
approximately valid. Following Cochran�s (1952) suggestion, we shall regard a test as being
robust, relative to a nominal value of 5%; if its actual signi�cance level is between 4:5%
and 5:5%. Considering the number of replications used in these experiments, estimated
rejection frequencies within the range 3:6% to 6:5% are viewed as providing evidence
consistent with the robustness of the test, according to this de�nition.

To economize on space, and as the results for three DGPs are qualitatively similar, the
discussion below focuses on the results in the case of dynamic ADL(1; 0) model (DGP1),
since this nests the other two models and can thus be regarded as the most general one.
The experimental results, in this case, under the various heteroskedastic schemes and
error distributions are reported in Tables 1 to 5. We summarise, �rst, the �nite sample
behaviour of the asymptotic tests before reporting that of the bootstrap tests.5

[INSERT Table 1 HERE]

Under the null, with homoskedastic errors (reported in Table 1, H0 : E [uitujt] = 0),
the rejection frequencies of both the asymptotic, RBPT and BPT , tests are in the main
close to the nominal signi�cance level of 5%, although there is slight distortion in both
when N = 25, and smaller values of T , with BPT being the more sensitive across all error
distributions. For example, with normal errors and N = 25; BPT rejection rates are 9:1%
and 7:5%; respectively, for T = 50 and T = 100; but acceptable at 5:3% when T = 200:
The possibility of such size distortion, when N=T is not �small�, has been pointed out
Pesaran et al (2008). The results indicate that RBPT also su¤ers in these circumstances,
as might be expected, but the results suggest that this is to a lesser degree. Bearing
in mind the general close agreement between nominal and actual signi�cance levels of
the asymptotic RBPT and BPT tests, a comparison of their rejection frequencies under
HA : E [uitujt] = 0:2; reveals similar power properties under homoskedastic normal and
t5 errors. However, the power of the asymptotic RBPT test is noticeably lower than that
of the asymptotic BPT test under �26 errors. For example, with N = 5 (resp., N = 10)
and T = 100; the empirical power of RBPT is 16% (resp., 32%) compared with 24%
(resp., 43%) for BPT : This feature is also a characteristic of the bootstrap tests under all
heteroskedasticity schemes considered.

[INSERT Tables 2 - 5 ABOUT HERE]

The results obtained when the errors are heteroskedastic (Tables 2 - 5), show that the
asymptotic RBPT test again exhibits close agreement, in general, between nominal and
empirical signi�cance levels across all error distributions. In fact, the results are qualita-
tively similar to those obtained with homoskedastic errors, with slight distortions apparent
when N = 25, and for smaller values of T ; although, as before, these disappear at T = 200:

5A full set of results can, of course, be obtained from the authors upon request.
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By contrast, and consistent with the analysis at the end of Section 3, the asymptotic BPT
test tends to overreject the null hypothesis signi�cantly, except for GARCH errors (Table
5). For example, when T = 200, and under the one-break-in-volatility heteroskedastic
scheme (HET1, reported in Table 2) the rejection frequencies for the asymptotic BPT
test, across the three error distributions, range from 8:9% � 11:7%, 17:2% � 18:2% and
51:0% � 54:9%; for N = 5; 10 and 25, respectively. For the trending volatility model,
Table 3, and the HET3 scheme (Table 4) the corresponding ranges are: 6:0% � 7:6%;
8:4%� 9:5%; 16:0%� 17:9% and 4:9%� 6:0%; 7:0%� 7:3%; 12:2%� 14:5%; respectively.
There is signi�cantly less over-rejection in the latter, where �2it = exp(czit); since the zit
are generated as i.i.d. random variables but held �xed in repeated samples, yielding a low
(but positive) contemporaneous correlation measure between the squared errors. Under
GARCH(1,1) errors, where �2it is a stationary process, BPT remains asymptotically justi-
�ed and exhibits close agreement , in general, between nominal and empirical signi�cance
levels across all error distributions, although with more pronounced distortions, than that
of RBPT ; when N = 25 and for smaller values of T:

Turning our attention to the wild bootstrap tests, both procedures, employing RBP �T
and BP �T , control the signi�cance levels much better than their asymptotic counterparts,
across models and wild bootstrap schemes. Indeed, under H0 : E[uitujt] = 0 and over
the 135 di¤erent models investigated, for each wild bootstrap scheme, there is hardly any
evidence of distortion in the empirical signi�cance level for RBP �T : Only once, for WB1,
and twice, for WB3, do the empirical rejection rate fall outside the acceptable interval of
[3:6%; 6:5%]; and these all occur under �26 errors with N = 25 and T = 100 : under HET2
and WB3,and under HET4, WB1 and WB3. In contrast, the empirical rejection rate for
BP �T falls outside of this interval four times, for WB1, and �ve times for each of WB2 and
WB3. All of these occur only when N = 25 and T � 100; but with the majority being
under the HET3 scheme. Such results for BP �T are consistent with those found by Godfrey
and Yamagata (2011), although their experiments only considered a static (not dynamic)
heterogeneous panel data mode. Thus, both bootstrap tests, RBP �T and BP

�
T ; exhibit good

agreement between nominal and empirical signi�cance levels, although the former appears
more reliable than the latter, especially when N = 25. With regard to power comparisons,
between RBP �T and BP

�
T ; there is little di¤erence except (as noted under homoskedastic

errors) that BP �T appears consistently more powerful under �
2
6 errors. Qualitatively, the

results are similar across all schemes but, as an illustration, under GARCH(1,1) correlated
errors (Table 5), and for N = 10; the rejection rates for BP �T are approximately 19%; 39%
and 74%; respectively for T = 50; 100 and 200; for all wild bootstrap schemes, whilst those
of RBP �T are 17%; 33% and 69%:

Finally, there appears little to choose between the di¤ering wild bootstrap schemes:
WB1, WB2 and WB3. However, the direct resampling wild bootstrap (WB3) has clear
advantage of being less computationally costly over other schemes, since it does not require
to estimate the model using bootstrap sample.

6 An empirical application

In this section we examine error cross section correlation in a dynamic growth equation
following Bond et al. (2010). Two variables, real GDP per worker and the share of
total gross investment in GDP are obtained from Penn World Table Version 7.0 (PWT
7.0). Our sample consists of 20 OECD countries (N = 20) with annual data covering the
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period 1955-2004 (50 data points).6 In order to factor out common trending components,
we transformed the log of output per worker (lgdpwit) and the log of the investment

share (lkit) to the deviations from the cross section mean: namely, l̂gdpwit = lgdpwit �
N�1PN

i=1 lgdpwit and elkit = lkit � N�1PN
i=1 lkit. We statistically checked the order of

integration of these variables, and the evidence suggests that l̂gdpwit lgdpwit are I(1) butelkit are I(0), which is consistent with the results given by Bond et al (2010, Table I(b)).7
Allowing the slope coe¢ cients to di¤er across countries, the dynamic speci�cation of

the growth equation is adopted from Bond et al. (equation 10):

�l̂gdpwit = �1i + �2i
elkit + �3i�elkit + �4i�elkit�1 + �1i�l̂gdpwi;t�1 + �2i�l̂gdpwi;t�2 + uit;

(18)
i = 1; 2; :::; N = 20 and t = 1; 2; :::; T = 47. In line with our notation, this model
can be written as yit = x0it�i + uit, where yit = �l̂gdpwit, x

0
it = (yit�1; yit�2; w0it) with

w0it = (1;
elkit;�elkit;�elkit�1), and �i = (�1i; �2i; �3i; �4i; �1i; �2i)0.

Firstly, we applied a (time-varying) heteroskedasticity-robust version of Lagrange mul-
tiplier (LM) test for error serial correlation for each country regression, as discussed in
Godfrey and Tremayne (2005). The test statistic for mth-order serial correlation is de�ned
by

RLMT;i = û
0
iÛi

�
Û 0iMxi�̂iMixÛi

��1
Û 0i ûi (19)

where ûi = (ûi1; ûi2; :::; ûiT )
0 is a (T � 1) residual vector, Ûi = (ûi;�1; ûi;�2; :::; ûi;�m)

which is a (T �m) matrix with ûi;�` = (ûi;1�`; ûi;2�`; :::; ûi;T�`)
0 being a (T � 1) vector

but ûi;t�` � 0 for t � ` < 1, ` = 1; 2; :::;m, Mix = IT � Xi (X 0
iXi)

�1X 0
i with t

th row
vector of Xi being x0it, and �̂i = diag(û2it). Under the null hypothesis of no error serial
correlation, RLMT;i is asymptotically distributed as �2m. The �nite sample experimental
results in Godfrey and Tremayne (2005) show that the use of asymptotic critical value can
be unreliable but that recursive resampling wild bootstrap (our WB1) approach is reliable
with good control over �nite sample signi�cance levels.8

We have applied the WB1 bootstrap RLMT;i test for second-order serial correlation
(m = 2) to the model (18) and the results show that the null hypothesis of no error serial
correlation cannot be rejected at the 5% signi�cance level for all 20 OECD countries.
Therefore, there is no strong evidence against a claim of no error serial correlation for all
20 OECD countries.9

6These OECD countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece,
Iceland, Ireland, Italy, Japan, Luxembourg, Netherland, Norway, Spain, Sweden, Switzerland, United
Kingdom and United States.

7The values of t-bar statistics, which are the cross-sectional averages of country ADF(2) statistics with

a linear trend for l̂gdpwit is -1.55, and the exact 5% critical values reported Im et al. (2003; table 2) for

N = 20 and T = 50 is -2.47. The values of similar t-bar statistics but with an intercept only for �l̂gdpwit,elk and �elk are -3.45, -2.00 and -4.71, respectively, and the exact 5% critical value is -1.85.
8They considered a Hausman-type test and a modi�ed version of the LM test, but based on the �nite

sample results the bootstrap RLMT;i test or a bootstrap modi�ed LM test is recommended. We consider
the WB1 bootstrap RLMT;i test only, since the reported performance of these two tests by Godfrey and
Tremayne (2005) was very similar and the former is computationally simpler. Note, however, that these
procedures require more restrictive assumptions than those imposed in this paper.

9Full test results are available upon request. Only the p-value of Norway was on the borderline, being
5:1%. However, assuming all country speci�c errors are cross-sectionally independent, then the serial
correlation test statistics are also independent over countries. Thus, the result that the proportion of the
rejections, at (about) the 5% signi�cance level and over 20 countries, is 5% is consistent with the hypothesis
of no error serial correlation.
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[INSERT Table 6 HERE]

Now let us turn our attention to error cross section correlation tests. Table 6 reports
the asymptotic and various bootstrap p-values of the tests. As can be seen, the asymptotic
BPT test rejects the null hypothesis at the 5% level, but our asymptotic RBPT test does
not. When the bootstrap methods are applied to these tests, both have similar p-values,
ranging between 10.7% to 12.8%. Therefore, based on our proposed testing approach,
there is no strong evidence of contemporaneous error cross section correlation.

7 Conclusion

The paper has developed a heteroskedasticity robust Breusch-Pagan test for the null hy-
pothesis of zero-cross section correlation in dynamic panel data models under the assump-
tion that the number of time series observations, T , is large relative to the number of
cross sections, N ; but not on the independence of the cross sections. The procedure can
be employed with �xed, strictly exogenous and/or lagged dependent regressors and is (as-
ymptotically) robust to quite general forms of non-normality and heteroskedasticity, in
the error distribution, across both time and cross-section. One of three wild bootstrap
schemes can be used to improve the �nite sample behaviour of the test. By allowing
conditional heteroskedasticity with asymmetric errors, these wild bootstrap schemes are
all asymptotically valid under less restrictive assumptions than those imposed by, say,
Goncalves and Kilian (2004). A Monte Carlo study examines the performance of the new
test procedure and its wild bootstrap version in relation to the original Breusch-Pagan test
and its wild bootstrap version. Across all combinations of error distributions and types
of heteroskedasticity, considered, the wild bootstrap version of the new robust Breusch-
Pagan test (RBP �T ) provided quite reliable �nite sample inferences; especially when N=T
is not small, as hoped would be the case. Furthermore, the RBP �T seems to be as pow-
erful as its asymptotic counterpart, RBPT ; under homoskedasticity and therefore there
is no penalty attached to using these wild bootstrap schemes even if the errors are ho-
moskedastic. Surprisingly, perhaps, the Breusch-Pagan wild bootstrap tests also provides
signi�cant improvements over �rst-order asymptotic theory but proved less reliable that
RBP �T . Thus RBP

�
T recommends itself as an additional useful test procedure for applied

workers. Additionally, there is little to be chosen between the di¤erent bootstrap schemes
presented but direct resampling wild bootstrap scheme is computationally less costly than
the other schemes.
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Appendix

In what follows kAk =
qP

i

P
j a

2
ij denotes the Euclidean norm of a matrix A = faijg and N the set of

positive integers.

Asymptotic Validity of RBPT
Proof of Lemma 1

By Assumptions 2(v) and 4(i), fuitujt;Ftg is a m.d.s., with E juitujtj2+� <1 and, by Assumptions 4 (ii)
and (iii)

plim
T!1

1

T

TX
t=1

�
u2itu

2
jt � E[u2itu

2
jt]
	
= 0: (20)

To verify (20) note that, with �2ijt = E[u2itu
2
jtjFt�1];

1

T

TX
t=1

�
u2itu

2
jt � E[u2itu

2
jt]
	
=
1

T

TX
t=1

�
u2itu

2
jt � �2ijt

	
+
1

T

TX
t=1

�
�2ijt � E[u2itu

2
jt]
	

and the second term is op(1) by Assumption 4(iii). The �rst term is op(1) by a Law of Large Numbers for
the heterogeneous m.d.s.,

�
u2itu

2
jt � �2ijt;Ft

	
; since E

��u2itu2jt��1+� <1.
Then Assumption 4(iv) and a straightforward application of White (2001, Corollary 5.26, p.135), yields

1p
T

PT
t=1 uitujtq

1
T

PT
t=1 E[u

2
itu

2
jt]

d! N(0; 1):

The result then follows by (20). �
We �rst present some preliminary results which are employed in the Proof of Theorem 1. The proofs

of these intermediate results exploit the fact that, following Kuersteiner (2001) and Goncalves and Kilian
(2004), (1) can be written as yit =

P1
k=0  ikri;t�k, rit = w0it�i + uit where  ik is a function of the true

parameter vector �i; satisfying the recursion  is � �i1 i;s�1 � ::: � �ip i;s�p = 0; for all s > 0; with
 i0 = 1 and  ik = 0; k < 0; for all i; implying that

P1
k=1 k j ikj < 1 for all i (see Bühlmann, 1995).

Furthermore, we can write Yi;t�1 =
P1

k=1 cikri;t�k where cik =
�
 i;k�1; :::;  i;k�p

�0
and

P1
k=1 kcikk <1,

for all i = 1; :::; N:

Proposition 1 Under Assumption 2(i),(iv),(v), and for all i; j = 1; :::; N :

(a) E kxitk4+� � � <1 for some � > 0 and all t;

(b) fxitujt;Ftg is a vector m.d.s.

Lemma 2 Consider a sequence of scalar random variables denoted �ZT;k, indexed by k 2 N, such that: (i)
E
�� �ZT;k�� � � < 1 uniformly in k and T ; and, (ii) �ZT;k

p! 0; as T ! 1; for each �xed k 2 N. De�ne
�ST =

P1
k=1 �k

�ZT;k; where
P1

k=1 j�kj <1: Then, �ST
p! 0:

The following Lemma exploits Lemma 2 and is central to the proof of Theorem 1.

Lemma 3 Under Assumptions 1, 2, 3 and 4(i), and for all i; j = 1; :::; N :

(a) 1
T

PT
t=1

�
xitx

0
jt � E[xitx

0
jt]
�
= op(1), where E[xitx0jt] � � <1 uniformly in i; j and t;

(b) 1
T

PT
t=1 E[xitx

0
it] is uniformly positive de�nite;

(c) 1p
T

PT
t=1 xitujt = Op(1):
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Proof of Theorem 1

It is shown that 
̂ij � 
ij = op(1) and the result follows.

1. First, de�ne Mi = IN �Hi; Hi = Xi (X
0
iXi)

�1
X 0
i: Then,

TX
t=1

ûitûjt = û0iûj

= u0iMiMjuj

= u0iuj � u0iHiuj � u0iHjuj + u0iHiHjuj

=

TX
t=1

uitujt � u0iHiuj � u0iHjuj + u0iHiHjuj

It follows from Lemma 3 that u0iHiuj ; u
0
iHjuj and u0iHiHjuj are all Op(1) with T�1X 0

iXi, in
particular, being uniformly positive de�nite with probability one.

Thus T�1=2
PT

t=1 ûitûjt = T�1=2
PT

t=1 uitujt +Op(T
�1=2) and so, by Lemma 1,

1p
T

PT
t=1 ûitûjtq

1
T

PT
t=1 u

2
itu

2
jt

d!

N(0; 1):

2. We now show that 1
T

PT
t=1 û

2
itû

2
jt � 1

T

PT
t=1 u

2
itu

2
jt = op(1); and the result follows. Making the

substitution ûit = uit � x0it(�̂i � �i) we get

û2it = u2it � 2uitx0it(�̂i � �i) + (�̂i � �i)
0xitx

0
it(�̂i � �i);

so that, writing �i = �̂i � �i = Op(T
�1=2);

1

T

TX
t=1

û2itû
2
jt �

1

T

TX
t=1

u2itu
2
jt = 4�0i

 
1

T

TX
t=1

uitujtxitx
0
jt

!
�j

�2�0i
1

T

TX
t=1

u2jtuitxit � 2�0j
1

T

TX
t=1

u2itujtxjt

+�0i

 
1

T

TX
t=1

u2jtxitx
0
it

!
�i + �0j

 
1

T

TX
t=1

u2itxjtx
0
jt

!
�j

+�0i

 
1

T

TX
t=1

xitx
0
it�i�

0
jxjtx

0
jt

!
�j

�2�0i

 
1

T

TX
t=1

ujtx
0
jt�jxitx

0
it

!
�i

�2�0j

 
1

T

TX
t=1

uitx
0
it�ixjtx

0
jt

!
�j

=

8X
q=1

RqT ; say.

By Markov�s inequality, Assumption 2(v), Proposition 1(a) and repeated application of Cauchy-
Schwartz, it can be shown that RqT = op(1); q = 1; :::; 8; and the result follows.

For example, consider R1T = 4�0i
�
1
T

PT
t=1 uitujtxitx

0
jt

�
�j . By Cauchy-Schwartz

E juitujtxitlxjtmj �
q
E juitxitlj2 E jujtxjtmj2 � � <1;

and E juitxitlj2 � E juitj4 E jxitlj4 � � < 1; by Assumption 2(v) and Proposition 1(a). Thus,
by Markov�s equality, R1T = Op(T

�1): Similarly, reasoning gives RqT = Op(T
�1=2); q = 2; 3; and

RqT = Op(T
�1); for q = 4; 5.

For R6T = �0i

�
1
T

PT
t=1 xitx

0
it�i�

0
jxjtx

0
jt

�
�j ; note that vec(ABC) = (C0 
A) vec (B) ; yielding

vec

 
1

T

TX
t=1

xitx
0
it�i�

0
jxjtx

0
jt

!
=
1

T

TX
t=1

�
xjtx

0
jt 
 xitx

0
it

�
vec

�
�i�

0
j

�
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where elements of
�
xjtx

0
jt 
 xitx

0
it

�
are xjthxjtlxitmxitn; with

E jxjthxjtlxitmxitnj �
q
E jxjthxjtlj2 E jxitmxitnj2 � �2 <1;

implying that R6T = Op(T
�2): Again, similar reasoning gives RqT = Op(T

�3=2); q = 7; 8; and this
completes the proof. �

Proof of Corollary 1

Since 
̂ij�
ij = op(1) and 
ij
d! N(0; 1); 
̂2ij

d! �21: Furthermore, by asymptotic normality of 
ij ; verifying
that E [uitujtuksums] = 0; for pairs (i; j) 6= (p; q) and all t; s establishes the asymptotic independence of
the 
̂ij and the result follows. Firstly, note by Assumption 4(i), E [uitujtjFt�1] = 0 so we need only
consider t = s: Now, without loss of generality, we can assume i < j and k < m, with i � k < m so that
E [uitujtuktumt] gives the covariance between all possible distinct products fuitujtg ; i < j; and fuktumtg ;
k < m: But this is zero by Assumption 4(v) and we are done. �

Proof of Proposition 1

(a) Since x0it = (w0it; Y
0
i;t�1) we only need to show that E kYi;t�1k4+� � � < 1; given Assumption

2(iv). Applying Minkowski�s inequality, with q = 4 + �; we can write

E kYi;t�1kq �
 1X
k=1

kcikk (E jri;t�kjq)
1
q

!q

and by another application of Minkowski�s inequality

E jritjq �
�
k�ik (E kwitkq)

1
q + (E juitjq)

1
q

�q
<1 (21)

by Assumption 2(iv) and (v). This latter bound, (21), will also be exploited in subsequent proofs.

(b) We verify that E j�0xitujtj < 1 and E [�0xitujtjFt�1] = 0, for all � 2 Rp+M such that �0� = 1:
First, by the triangle inequality and Cauchy-Schwartz

E
���0xitujt�� �

q
E kxitk2 E jujtj2

< 1

from (a) and Assumption 2(v). Second, since fuit;Ftg is a m.d.s., E [witujtjFt�1] = witE [ujtjFt�1] =
0; almost surely, for all t and E [Yi;t�1ujtjFt�1] =

P1
k=1 cikE [ri;t�kujtjFt�1] = 0; for i; j = 1; :::; N .

Thus, E [�0xitujtjFt�1] = 0: �

Proof of Lemma 2

Let �SnT =
Pn

k=1 �k
�ZT;k; for �xed n: Firstly, it is clear that �SnT

p! 0; as T ! 1 for �xed n: Secondly, by
Markov�s inequality, for any � > 0;

lim
n!1

lim sup
T!1

Pr
��� �ST � �SnT

�� > �
�

< lim
n!1

lim sup
T!1

1

�
E

���� 1P
k>n

�k
�ZT;k

����
< lim

n!1
lim sup

T!1

1

�

1P
k>n

j�kjE
�� �ZT;k��

� �

�
lim
n!1

1P
k>n

j�kj = 0

since
P1

k=1 j�kj <1: Thus �ST
p! 0: �
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Proof of Lemma 3

(a) Consider the corresponding conformable partitions of 1
T

PT
t=1 xitx

0
jt, where x

0
it = (w

0
it; Y

0
i;t�1):

First, by Assumption 1, witwjt is mixing and Assumption 2(iv) implies that E kwitwjtk�+� �
� < 1; by an application of the Cauchy-Schwartz inequality. Thus, 1

T

PT
t=1 wi;t�hw

0
j;t�k �

1
T

PT
t=1 E[wi;t�hw

0
j;t�k] = op(1); by a Law of Large Numbers (e.g., White (2001, Corollary 4.48)),

so that 1
T

PT
t=1 wi;t�hw

0
j;t�k = Op(1); for all �xed h; k 2 N. In particular, these results hold for

h = k = 0 and i = j:
Second, for any � 2 RM and any � 2 Rp such that k�k = k�k = 1

�0
 
1

T

TX
t=1

witY
0
j;t�1

!
� =

1

T

TX
t=1

1X
k=1

�jkvitrj;t�k

where �jk = c0jk�; vit = �0wit. Since E kvitrj;t�kk � E kwitrj;t�kk � � <1; by Assumption 2(iv),
(21) and Cauchy-Schwartz, we can write

�0
1

T

TX
t=1

�
witY

0
j;t�1 � E[witY

0
j;t�1]

�
� =

1X
k=1

�jk
�Z
(i;j)
T;k

where

�Z
(i;j)
T;k =

1

T

TX
t=1

(vitrj;t�k � E [vitrj;t�k])

= �0
(
1

T

TX
t=1

�
witw

0
j;t�k � E[witw

0
j;t�k]

�)
�j

+�0
1

T

TX
t=1

wituj;t�k;

and satis�es E
��� �Z(i;j)T;k

��� � � <1:Moreover, Assumptions 2(i),(iv) and (v) imply that fwituj;t�k;Ft�kg
is a vector m.d.s. satisfying 1

T

PT
t=1 wituj;t�k = op(1) for all �xed k 2 N. As noted above,

1
T

PT
t=1

�
witw

0
j;t�k � E[witw

0
j;t�k]

�
= op(1); so that �Z

(i;j)
T;k

p! 0 for all � 2 RM , k�k = 1: SinceP1
k=1

���jk�� <1; for all j = 1; :::; N; Lemma 2 gives 1
T

PT
t=1

�
witY

0
j;t�1 � E[witY

0
j;t�1]

�
= op(1):

Finally, for any � 2 Rp and again writing �jk = c0jk�;

�0
(
1

T

TX
t=1

�
Yi:t�1Y

0
j;t�1 � E[Yi;t�1Y

0
j;t�1]

�)
� =

1

T

TX
t=1

1X
k=1

1X
h=1

�ik�jh (ri;t�krj;t�h � E[ri;t�krj;t�h]) :

In order to show that �0
n
1
T

PT
t=1

�
Yi;t�1Y

0
j;t�1 � E[Yi;t�1Y

0
j;t�1]

�o
� = op (1) ; we apply Lemma 2

repeatedly. Thus, we can write

�0
(
1

T

TX
t=1

�
Yi;t�1Y

0
j;t�1 � E[Yi;t�1Y

0
j;t�1]

�)
� =

1X
k=1

�ik
�Z
(i;j)
T;k

where �Z(i;j)T;k =
P1

h=1 �jh
�Z
(i;j)
T;k;h and

�Z
(i;j)
T;k;h =

1

T

TX
t=1

(ri;t�krj;t�h � E[ri;t�krj;t�h])

= �0i

(
1

T

TX
t=1

�
wi;t�kw

0
j;t�h � E[wi;t�kwj;t�h]

�)
�j

+�0i
1

T

TX
t=1

wi;t�kuj;t�h + �0j
1

T

TX
t=1

wj;t�hui;t�k

+
1

T

TX
t=1

(ui;t�kuj;t�h � E [ui;t�kuj;t�h]) ;
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satisfying E
��� �Z(i;j)T;k;h

��� � � < 1; since E jri;t�krj;t�hj � � < 1 by Cauchy-Schwartz and (21),

which in turn implies E
��� �Z(i;j)T;k

��� � � < 1: Similar to before, and for all �xed h; k 2 N; the

�rst three terms in the expression for �Z(i;j)T;k;h are all op(1): For the �nal term, consider �rst k 6=
h; so that fui;t�kuj;t�h;Ft�gg ; g = min(k; h); is a m.d.s. and Assumption 2(v) ensures that
1
T

P
t=1 ui;t�kuj;t�h = op(1); for all �xed h; k 2 N: Now, for k = h; and i 6= j, fui;t�kuj;t�k;Ft�kg

is a m.d.s. by Assumption 4(i) and 1
T

PT
t=1 ui;t�kuj;t�k

p! 0; for �xed k 2 N: For k = h and i = j;
we have, by Assumption 2(ii)

1

T

TX
t=1

�
u2i;t�k � E[u2i;t�k]

�
=

1

T

TX
t=1

�
u2i;t�k � �2i;t�k

�
+
1

T

TX
t=1

�
�2i;t�k � E

�
u2i;t�k

��
=

1

T

TX
t=1

�
u2i;t�k � �2i;t�k

�
+ op(1)

by Assumptions 2(ii) and (iii). By Assumption 2(v),
�
u2i;t�k � �2i;t�k;Ft�k

	
is a m.d.s., and

1
T

PT
t=1

�
u2i;t�k � �2i;t�k

� p! 0; also. Thus for �xed h 2 N and k 2 N; �Z(i;j)T;k;h = op(1): An ap-

plication of Lemma 2 establishes �rst that �Z(i;j)T;k =
P1

h=1 �jh
�Z
(i;j)
T;k;h = op(1); for �xed k 2 N: A

second application yields
P1

k=1 �ik
�Z
(i;j)
T;k = op(1); the desired result.

(b) By part (a), for i = j; 1
T

PT
t=1 xitx

0
it � QiT = op(1); where QiT = 1

T

PT
t=1 E[xitx

0
it]: Writing

zit =
P1

k=1 cik
�
w0i;t�k�i

�
; (p� 1) ; QiT can be expressed as

QiT =
1

T

TX
t=1

24 E[witw
0
it] E[witz

0
it]

E[zitw
0
it] E [zitz

0
it] +

P1
k=1 cikc

0
ikE

�
u2i;t�k

�
35 :

Now, by Assumption 3(i), 1
T

PT
t=1 E [witw

0
it] is uniformly positive de�nite so that its inverse exists

for large enough T: Then, exploiting, for example, Magnus and Neudecker (1999, Theorem 27, p.23),
QiT is uniformly positive de�nite if and only if

AT =
1

T

TX
t=1

E
�
~zit~z

0
it

�
+

1X
k=1

cikc
0
ik
1

T

TX
t=1

E
�
u2i;t�k

�
is uniformly positive de�nite where

~zit = zit �
1

T

TX
t=1

E
�
zitw

0
it

�( 1
T

TX
t=1

E
�
witw

0
it

�)�1
wit:

Now, for all non-zero � 2 Rp

�0AT� =
1

T

TX
t=1

E
���0~zit��2 + 1X

k=1

���0cik��2( 1
T

T�kX
t=1�k

E
�
u2it
�)

�
pX

k=1

���0cik��2( 1
T

T�kX
t=1

E
�
u2it
�)

and the right hand side is uniformly positive, because 1
T

PT�k
t=1 E

�
u2it
�
is uniformly positive by

Assumption 3(ii), for any k � p; and
Pp

k=1 j�
0cikj2 > 0; for all non-zero � 2 Rp: Therefore AT > 0

for su¢ ciently large T (uniformly positive) and the result follows.

(c) It su¢ ces to show that var
h

1p
T

PT
t=1 xitujt

i
= O(1): By Proposition 1(b), f�0xitujt;Ftg is a m.d.s.

for any � 2 Rp+M , such that k�k = 1, so

var

"
1p
T

TX
t=1

�0xitujt

#
= �0

 
1

T

TX
t=1

E[u2jtxitx
0
it]

!
�:

By Assumption 2(v) and Proposition 1(a), and a repeated application of Cauchy-Schwartz, it can
be shown that E



u2itxitx0it

 = O(1); uniformly in t; and the result follows.

This completes the proof. �
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Asymptotic Validity of the Wild Bootstrap
We verify this for the recursive wild bootstrap scheme (WB1) only and, following Davidson and Flachaire
(2008), with u�it = "itûit where the "it are i.i.d for all i and t taking the discrete values �0:5 with an equal
probability of 0:5: With slight amendments, the proofs remain valid for any "it which are i.i.d mean zero
and unit variance and the derivations for the other two bootstrap schemes are straightforward. Finally,
and for simplicity, y�is = 0, for all s � 0; although the proofs can be adapted for the case of y�is = yis; for
all s = �p+ 1; :::; 0; so that from (6),

y�it =
t�1P
k=0

 ̂ikr
�
i;t�k

where r�it = �̂
0
iwit + u�it: Furthermore, for t = 1; :::; T; Y

�
i;t�1 can be expressed as

Y �
i;t�1 =

t�1P
k=1

ĉikr
�
i;t�k

=
T�1P
k=1

ĉikb
�
i;t�k

where b�it = 1 (t > 0) r
�
it; where 1 (:) is the usual binary indicator function since r

�
it = 0 for all t � 0.

We exploit the following de�nitions (as in Goncalves and Kilian, 2004). For any bootstrap statistic, S�T ;
we write S�T = op�(1); in probability, if for any � > 0; P � (kS�T k > �) = op(1); where P � is the probability
measure induced by the wild bootstrap conditional on the sample data. Similarly, S�T = Op�(1), in
probability, if for some r > 0 and all � > 0; P � (kS�T k > �) � MT =�

r; and MT = E� [kS�T kr] = Op(1);
at most, where E� [:] denotes expectations induced by the wild bootstrap conditional on the sample data.

Finally, S�T
d�! D; in probability, for any distribution D; when weak convergence under the boostrap

probability measure occurs in a set with probability converging to one; i.e., if the proposed limit distribution
is D(x) then, supx2R jP �(S�T � x)�D(x)j = op(1):

Furthermore, in what follows, let F�
t be the sigma �eld generated by current and lagged values of "it

in the bootstrap sample (i.e., f"i;t�pg ; i = 1; :::; N; p = 0; 1; 2; :::; t� 1 ).
The following preliminary Lemmas informs the proof of Theorem 2 and are the bootstrap counterparts

of Lemmas 2 and 3:

Lemma 4 Consider a sequence of scalar bootstrap random variables denoted �Z�T;k and a sequence of
scalars, ��T;k, indexed by k 2 N, such that: (i) E� �� �Z�T;k�� � MT = Op(1) uniformly in k; as T ! 1;
(ii) �Z�T;k � ��T;k = op�(1); in probability, as T ! 1, for each �xed k 2 N; and, (iii)

����T;k�� � � < 1;

uniformly in k and T: De�ne �S�T =
PT�1

k=1 �̂k
�Z�T;k �

P1
k=1 �k��T;k; where the �̂k are scalar functions of the

parameter estimators, such that, for each k 2 N; �̂k� �k = op(1); and
P1

k=1 j�kj <1. Then, �S
�
T = op�(1);

in probability.

Lemma 5 Under Assumptions 1,2 and 4(i),(ii) and (iii), and for all i; j = 1; :::; N :

(a) T�1
PT

t=1

�
x�itx

�0
jt � E[xitx

0
jt]
�
= op�(1); in probability;

(b) T�1=2
PT

t=1 x
�
itu

�
jt = Op�(1); in probability;

(c) 1
T

PT
t=1

�
û�2it � E[u2it]

�
= op�(1); in probability;

(d) 1
T

PT
t=1

�
û�2it û

�2
jt � E[u2itu

2
jt]
�
= op�(1); in probability.

Proof of Theorem 2

Consider �rst RBP �
T : For 
̂

�
ij de�ned at (7), we �rst show that


̂�ij = 
�ij + op�(1); (22)

in probability; and, second, that


�ij �
1p
T

PT
t=1 u

�
itu

�
jtq

1
T

PT
t=1 û

2
itû

2
jt

d�! N(0; 1); (23)
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in probability. In particular, the variance estimator employed in the construction of 
̂�ij is asymptotically
equivalent to the variance estimator employed in the construction of 
̂ij ; c.f., Goncalves and Killian (2004,

Corollary 3.1). It follows immediately that 
̂�ij
d�! N(0; 1); in probability. Thus, by Theorem 1 and

continuity of the normal distribution,

sup
x

��P �(
̂�ij � x)� P
�

̂ij � x

��� p! 0

as T !1 and for �xed N; and the result follows since E� �u�itu�jtu�hsu�ks� = 0; for distinct pairs (i; j) and
(h; k) : (Note, in passing, that the asymptotic validity of WB3 follows immediately from (22).)

Step 1: First, de�ne H�
i = X�

i (X
�0
i X

�
i )
�1
X�0
i ; where X

�
i has rows x

�
it; with u

�
i = (u�i1; :::; u

�
iT ) : Note

that Lemma 5 and Assumption 3(i), ensures that (X�0
i X

�
i =T )

�1 exists for su¢ ciently large T and is Op�(1);
in probability. Then,

T�1=2
TX
t=1

û�itû
�
jt = T�1=2

TX
t=1

u�itu
�
jt � T�1=2

�
u�0i H

�
i u

�
j � u�0i H

�
j u

�
j + u�0i H

�
i H

�
j u

�
j

	
:

It is immediate from Lemma 5 (a) and (b), and Lemma 3(b), that the terms u�0i H
�
i u

�
j ; u

�0
i H

�
j u

�
j and

u�0i H
�
i H

�
j u

�
j are all Op�(1); in probability. Furthermore, since

1
T

PT
t=1

�
û2itû

2
jt � E[u2itu

2
jt]
�
= op(1); Lemma

5 (d) and the triangle inequality gives 1
T

PT
t=1 û

�2
it û

�2
jt � 1

T

PT
t=1 û

2
itû

2
jt = op�(1); in probability. The result

in (22) follows immediately.

Step 2: Write


�ij =

1p
T

PT
t=1 "it"jtûitûjtq

1
T

PT
t=1 û

2
itû

2
jt

=
1p
T

TX
t=1

��ijt;T ;

where ��ijt;T =
"it"jtûitûjtq
1
T

PT
t=1 û

2
itû

2
jt

: Now, E�[��ijt;T ] = 0 and, due to (conditional) independence,

var�
"
1p
T

TX
t=1

��ijt;T

#
� 1

T

TX
t=1

��2ijt;T = 1:

To apply a (triangular array) Central Limit Theorem for (conditionally) independent, but heterogeneous
data, it su¢ ces to check that the Liapounov condition10

T�(1+�)
TX
t=1

E� ����ijt;T ��2(1+�) = op(1):

But this is true because

1

T

TX
t=1

E� ����ijt;T ��2(1+�) =
(
1

T

TX
t=1

û2itû
2
jt

)�(1+�)
1

T

TX
t=1

jûitûjtj2(1+�) = Op(1)

since, by Cauchy-Schwartz inequality,

1

T

TX
t=1

jûitûjtj2(1+�) �

vuut 1

T

TX
t=1

jûitj4(1+�)
1

T

TX
t=1

jûjtj4(1+�)

and T�1
PT

t=1 jûitj
4(1+�) = Op(1); under our assumptions, since ûit = uit � x0it(�̂i � �i): To see the latter,

write q = 4(1 + �) and apply Minkowski�s inequality, which yields

1

T

TX
t=1

jûjtjq �

0@( 1
T

TX
t=1

jujtjq
)1=q

+

(
1

T

TX
t=1

���x0jt�̂j���q
)1=q1Aq

�

0@( 1
T

TX
t=1

jujtjq
)1=q

+



�̂j




(
1

T

TX
t=1

kxjtkq
)1=q1Aq

:

10Here the stronger Liapounov condition replaces the Lindeberg condition of, for example, White (2001,
p.117).
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Since �̂j = Op(1); the right hand side is Op(1) by Markov�s inequality applied to 1
T

PT
t=1 jujtj

q and
1
T

PT
t=1 kxjtk

q ; exploiting Assumptions 2(iv) and (v).

Thus, 
�ij = T�1=2
PT

t=1 �
�
ijt;T

d�! N(0; 1); in probability, and this completes the proof for RBP �
T :

Now consider BP �
T : Firstly, since our assumptions ensure that

1
T

PT
t=1(û

2
it � E[u2it]) = op(1) and

1
T

PT
t=1(û

2
itû

2
jt � E[u2itu

2
jt]) = op(1), �̂ij =

q
vijT 
̂ij + op(1) where (the scalar)

vijT =
1
T

PT
t=1 E[u

2
itu

2
jt]

1
T

PT
t=1 E[u

2
it]

1
T

PT
t=1 E[u

2
jt]
= O(1)

and is strictly positive for T su¢ ciently large, by Assumptions 3(ii) and 4(iv). Furthermore, for �̂�ij de�ned

at (8), and by Lemma 5 (c) it is also true that �̂�ij =
q
vijT 


�
ij+op�(1); in probability, since by the Davidson

and Flachaire (2008) wild bootstrap scheme, u�2it = û2it: Therefore, we can write

sup
x

��P �(�̂�ij � x)� P
�
�̂ij � x

��� = sup
x

����P �(
�ij � x=

q
vijT )� P (
̂ij � x=

q
vijT )

����+ op�(1);

in probability, as T !1 and for �xed N: The result then follows from the analysis for RBP �
T ; above. �

Proof of Lemma 4

Write
�S�T = �S�nT +R�T ;

where �S�nT =
Pn�1

k=1 �̂k
�Z�T;k �

Pn�1
k=1 �k��T;k; for any �xed n < T; and R�T =

PT�1
k=n �̂k

�Z�T;k �
P1

k=n �k��T;k:
Consider �S�nT ; which can be expressed

�S�nT =

n�1X
k=1

�k(
�Z�T;k � ��T;k) +

n�1X
k=1

(�̂k � �k)
�Z�T;k

= S�n1T + S�n2T :

First, since, �Z�T;k � ��T;k = op�(1); in probability, for each k 2 N; S�n1T = op�(1); in probability. Sec-

ond, E� jS�n2T j � MT

Pn�1
k=1 (�̂k � �k) = op(1); so by Markov�s Inequality S�n2T = op�(1); in probability.

It then su¢ ces to show that for any � > 0; limn!1 lim supT!1 P � (jR�T j > �) = 0; in probability, or
limn!1 lim supT!1 E� (jRT j) = 0; in probability. To show this, note that

E� (jRT j) �
T�1X
k=n

����̂k���E� �� �Z�T;k��+ 1X
k=n

j�kj
����T;k��

� MT

1X
k=n

����̂k���+� 1X
k=n

j�kj

where MT = Op(1) and � = O(1): Since �̂k � �k = op(1); and
P1

k=1 j�kj < 1; there exists a T1

such that supT�T1
P1

k=1

����̂k��� < 1, in probability (c.f. Bühlmann, 1995, Lemma 2.2) which implies that

supT�T1
P1

k=n

����̂k��� = op(1) as n!1: Thus

lim
n!1

lim sup
T!1

E� (jRT j) = op(1)

which completes the proof. �

Proof of Lemma 5

(a) Consider the corresponding conformable partitions of 1
T

PT
t=1 x

�
itx

�0
jt: Since we already have that

T�1
PT

t=1

�
witw

0
jt � E[witw

0
jt]
�
= op(1); it su¢ ces to show that:

(i) T�1
PT

t=1

�
witY

�0
j;t�1 � E[witY

0
j;t�1]

�
= op�(1); in probability; and,

(ii) T�1
PT

t=1

�
Y �
i;t�1Y

0�
j;t�1 � E[Yi;t�1Y

0
j;t�1]

�
= op�(1); in probability.
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For (i), exploiting b�it = 1 (t > 0) (�̂
0
iwit + u�it), we can write for any � 2 RM and any � 2 Rp such

that k�k = k�k = 1;

�

(
1

T

TX
t=1

�
witY

0�
j;t�1 � E[witY

0
j;t�1]

�)
� =

1

T

TX
t=1

 
T�1X
k=1

�̂jkvitb
�
j;t�k �

1X
k=1

�jkE[vitrj;t�k]

!

where vit = �0wit and �̂jk = ĉ0jk�, �jk = c0jk�, such that �̂k� �k = op(1); and
P1

k=1 j�kj <1. Thus,

�0
(
1

T

TX
t=1

�
witY

0�
j;t�1 � E[witY

0
j;t�1]

�)
� =

T�1X
k=1

�̂jk
�Z
�(i;j)
T;k �

1X
k=1

�jk��
(i;j)
T;k

= �S
�(i;j)
T ; say;

where

�Z
�(i;j)
T;k = �0

1

T

TX
t=1

witb
�
j;t�k

= �0
(
1

T

TX
t=k+1

�
witw

0
j;t�k

�)
�̂j + �0

1

T

TX
t=k+1

witu
�
j;t�k

and

��
(i;j)
T;k = �0

1

T

TX
t=1

E[witrj;t�k]

= �0
(
1

T

TX
t=1

E[witw
0
j;t�k]

)
�j :

Now apply Lemma 4 to �S�(i;j)T : First, by the triangle inequality and noting that j"j;t�kj = 1;

E�
��� �Z�(i;j)T;k

��� �



�̂j


 




 1T

TX
t=k+1

witwj;t�k






+ E�






 1T
TX

t=k+1
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�
j;t�k







� 1

T

TX
t=k+1

kwitûj;t�kk+Op(1);

and,

T�1
TX

t=k+1

kwitûj;t�kk �
( 

T�1
TX
t=1



w2it


! 

T�1
TX
t=1

jûjtj2
!)1=2

;

which is also Op(1). Thus E�
��� �Z�(i;j)T;k

��� �MT = Op(1) uniformly in k:

Second,
�����(i;j)T;k

��� � k�jk 1
T

PT
t=1 E kwitk

2 � � < 1, by the triangle inequality, Assumption 2(iv),
and Cauchy-Schwartz.
Third, to establish that �Z�(i;j)T;k � ��(i;j)T;k = op�(1); in probability; note that for any �xed k 2 N;

�Z
�(i;j)
T;k � ��(i;j)T;k = �0

(
1

T

TX
t=k+1

�
witw

0
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0
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1
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+�0
(
1

T
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0
j;t�k]

)
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so that

�Z
�(i;j)
T;k � ��(i;j)T;k = �0

1

T

TX
t=k+1

witu
�
j;t�k + op�(1)

= �0
1

T
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�
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It follows that, conditional on the original sample,

E� ��0wi;t+ku�jtjF�
t�1
�

= �0wi;t+kE
� ["jtûjtjF�

t�1]

= �0wi;t+kûjtE
� ["jtjF�

t�1]

= 0

so that
�
�0wi;t+ku

�
jt;F�

t

	
is a m.d.s. and, by Cauchy-Schwartz,
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T
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T
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T
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�1)

because both 1
T
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t=1 û

2
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1
T
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2 are Op(1). Therefore, by Chebyshev�s inequality
�Z
�(i;j)
T;k � ��(i;j)T;k = op�(1) and we are done.
For (ii), we can write, for any � 2 Rp such that k�k = 1;
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1

T
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t=1

�
Y �
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0
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0
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Again, we apply Lemma 4 (twice), to �S�(i;j)T : First, and by arguments similar to those used above,

E�
��� �Z�(i;j)T;k;h

��� �MT = Op(1); uniformly in k and h; noting that
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Second
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��� � k�ik k�jk
1
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Finally, we can write
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T

PT
t=max(k;h)+1

�
wi;t�kw

0
j;t�h � E

�
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0
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j;t�h] = O(T�1); and similar argu-

ments to before show that, for example, 1
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j;t�h = op�(1); for all �xed k; h 2 N:

For the remaining term, consider �rst i 6= j: Then for all �xed k; h 2 N, E [ui;t�kuj;t�h] = 0
by Assumption 4(i),

�
u�i;t�ku

�
j;t�h;F�
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; g = min(k; h); is a m.d.s. and it can be shown that

1
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�
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from Chebyshev�s inequality.
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and it su¢ ces to show that this is Op(1). By the triangle inequality and Cauchy-Schwartz we can
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write
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û4it
1

T

TX
t=1

jr�itj
4;

since

1

T

TX
t=1

��b�i;t�kb�i;t�h��2 �
vuut 1

T

TX
t=1

���b�i;t�k���4 1

T

TX
t=1

���b�i;t�h���4 � 1

T

TX
t=1

jr�itj4 :

Now, we have previously shown that 1
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it = Op(1). Using this, and noting that jr�itj �
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to show that d�(i;j)2T = Op�(1); in probability.
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Table 1: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and
BP tests in panel ADL(1,0) models under homoskedastic errors (HET0).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0:2

SN t5 �26 SN t5 �26

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
50 5:1 5:8 7:7 4:5 3:5 6:4 3:7 3:9 7:0 9:6 17:2 53:3 9:8 20:2 55:2 8:2 16:1 42:9
100 4:3 5:7 6:8 4:0 5:1 5:6 4:6 3:9 7:0 18:0 40:0 89:0 17:7 42:1 87:0 15:6 31:7 80:3
200 4:6 5:0 5:5 4:6 5:1 4:8 4:4 5:4 5:9 35:1 75:6 99:9 37:4 77:5 99:6 30:1 69:1 99:0

BPT BPT
50 5:1 5:6 9:1 5:4 5:5 8:4 4:9 5:2 8:4 10:5 20:0 59:9 11:7 24:5 59:5 12:1 24:3 57:9
100 5:1 6:3 7:5 5:2 6:8 7:1 4:9 4:9 7:1 19:2 41:5 89:9 19:8 44:0 87:0 21:1 42:9 88:7
200 4:8 5:2 5:3 6:0 5:9 5:6 4:2 5:8 5:4 36:2 76:0 99:9 37:9 77:2 99:3 35:8 74:9 99:5

WB 1: Recursive resampling WB 1: Recursive resampling
T RBP �

T RBP �
T

50 5:8 5:7 4:7 5:3 4:6 5:0 4:7 4:1 4:5 10:3 17:3 48:0 11:3 20:9 51:4 9:4 16:1 37:7
100 4:5 5:4 5:6 4:8 5:7 5:0 5:2 4:9 6:3 18:5 39:3 87:2 19:6 43:2 86:3 17:1 32:7 79:1
200 4:8 4:7 4:9 4:8 5:7 4:9 4:9 5:8 5:2 34:8 74:6 99:9 38:8 77:4 99:6 31:6 69:5 98:9

BP �
T BP �

T

50 5:2 4:9 4:0 5:2 4:4 4:6 4:8 3:9 4:3 10:5 16:7 48:8 10:7 20:8 49:7 11:4 19:9 48:2
100 4:6 5:7 5:7 4:7 5:9 5:1 4:6 4:6 5:5 18:7 40:1 87:5 18:3 42:0 84:5 19:8 39:5 86:6
200 4:5 4:8 4:5 5:3 5:5 5:1 4:3 5:3 4:8 35:2 74:9 99:9 36:4 75:8 99:3 34:3 74:1 99:6

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP �

T RBP �
T

50 5:6 5:7 5:2 5:6 4:3 5:2 4:7 4:1 4:9 10:7 17:2 47:6 11:7 20:8 51:6 10:1 15:7 38:2
100 4:6 5:5 5:9 5:0 5:5 5:0 5:3 4:8 6:1 18:1 39:1 86:9 20:0 43:6 86:3 17:7 32:8 79:4
200 4:8 4:8 4:9 5:0 5:9 4:8 4:9 5:6 5:1 34:6 74:5 99:9 38:5 77:7 99:6 31:7 69:2 99:0

BP �
T BP �

T

50 5:7 5:4 4:7 5:3 4:7 5:1 4:9 4:1 4:2 10:2 16:9 48:8 10:8 20:9 50:0 11:1 19:6 49:1
100 4:8 5:5 5:9 4:7 5:9 5:2 5:0 4:2 5:3 18:8 40:0 87:5 18:4 41:8 84:8 19:2 39:2 86:9
200 4:6 5:1 5:0 5:1 5:5 4:8 4:2 5:7 4:7 34:8 74:8 99:9 36:6 75:6 99:3 34:7 74:0 99:6

WB 3: Direct error resampling WB 3: Direct error resampling
T RBP �

T RBP �
T

50 5:8 5:9 5:3 5:4 4:9 5:1 4:8 3:9 5:1 10:3 17:5 48:6 12:2 21:8 52:9 10:0 16:7 39:5
100 4:3 5:5 6:3 4:9 5:9 5:2 5:4 4:7 6:5 18:3 39:8 87:3 19:5 43:3 86:8 17:2 32:8 79:6
200 4:8 4:8 5:1 4:7 5:3 5:0 4:4 5:7 5:1 34:5 74:7 99:9 38:7 77:8 99:5 31:4 69:5 99:0

BP �
T BP �

T

50 5:5 5:2 5:1 5:2 4:6 5:6 4:9 4:2 4:5 10:5 17:4 50:4 11:3 21:8 51:1 11:2 20:2 50:1
100 4:5 5:7 5:9 4:7 5:9 5:2 4:7 4:4 6:0 18:5 40:2 88:0 18:4 42:1 84:5 19:5 39:8 87:3
200 4:9 4:9 4:5 5:1 5:7 5:0 4:0 5:3 4:7 34:9 75:0 99:9 36:7 75:6 99:3 34:3 74:1 99:6

Notes: The �rst data generating process considered is yit = �i1 + �i2zit + �iyi;t�1 + uit; i = 1; 2; :::; N and
t = �49;�48; :::; T:with �i1 � i.i.d. N(0; 1), �i2 = 1� �i, �i � i.i.d. Uniform[0:4; 0:6], and the zit are generated for
(N = 5; T = 25) as independent random draws from the standard lognormal distribution. This block of regressor
values is then reused as necessary to build up data for the other combinations (N;T ). yi;�49 = 0, and �rst 49 values
are discarded. The error term is written as uit = �it"it; i = 1; 2; :::; N and t = 1; 2; :::; T . There is homoskedasticity
under scheme HET0, with �it = 1 for all t. The term "it is generated as "it =

p
1� �2�it + ��twhere �it � i.i.d.

(0; 1) and �t � i.i.d. (0; 1), which are independent of each other. For estimating signi�cance levels, � = 0:0. Power
is investigated using � = 0:2. The i.i.d. standardized errors for �it and �t are drawn from: the standard normal
distribution (SN); the t-distribution with �ve degrees of freedom (t5); and the chi-square distribution with six
degrees of freedom (�26). The RBPT test signi�es the proposed robust cross sectional correlation test, and the BPT
test is the LM test of Breusch and Pagan (1980). Three wild bootstrap procedures are explained in the earlier
section in details. The sampling behaviour of the tests are investigated using 2000 replications of sample data and
200 bootstrap samples, employing a nominal 5% signi�cance level.
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Table 2: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under one-break-in-volatility heteroskedastic scheme
(HET1).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0:2

SN t5 �26 SN t5 �26

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
50 4:7 4:5 7:2 3:7 4:1 6:4 3:9 4:0 7:1 8:6 16:1 49:1 8:6 18:3 52:6 7:6 14:0 40:6
100 4:2 5:5 6:7 4:0 4:4 5:8 4:4 4:0 6:4 14:8 34:3 84:8 15:2 39:2 82:5 14:0 28:7 75:0
200 4:7 5:1 5:0 4:2 5:0 4:9 4:1 5:5 5:5 29:7 67:8 99:9 33:7 72:4 99:3 26:7 62:1 97:8

BPT BPT
50 9:5 17:4 56:2 9:4 16:3 52:8 10:1 15:7 53:2 16:2 35:7 89:8 17:5 37:7 87:0 18:4 37:4 88:8
100 8:5 16:9 52:9 9:7 17:4 50:2 9:8 16:7 52:9 25:4 57:4 98:4 25:2 59:8 97:8 27:4 56:4 98:5
200 9:3 17:2 54:9 11:7 18:2 51:8 8:9 18:1 51:0 43:2 84:4 100:0 44:4 85:2 99:9 42:5 84:1 100:0

WB 1: Recursive resampling WB 1: Recursive resampling
T RBP �

T RBP �
T

50 5:2 4:6 4:3 4:6 4:5 4:7 4:5 4:2 5:0 9:7 15:9 42:3 9:7 19:8 49:1 8:7 14:6 35:8
100 4:5 5:8 5:8 5:0 5:1 5:0 5:5 4:4 5:6 16:1 34:3 82:1 17:0 40:3 81:5 15:9 30:0 73:4
200 5:1 5:4 5:1 5:5 5:4 4:9 4:3 5:9 5:0 29:7 67:2 99:8 34:8 72:1 99:3 28:0 63:0 97:7

BP �
T BP �

T

50 4:7 5:1 6:3 5:3 5:0 6:1 5:6 4:3 5:5 10:0 16:1 47:3 9:5 20:0 49:5 10:7 18:8 47:8
100 4:4 5:9 6:7 4:7 5:9 5:7 5:2 4:4 5:9 16:3 35:5 83:3 15:8 39:4 80:6 17:7 36:5 83:7
200 5:1 5:5 5:6 5:3 6:3 5:9 4:7 5:3 5:2 30:8 67:9 99:8 33:5 69:5 98:9 31:4 68:6 99:0

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP �

T RBP �
T

50 5:3 4:3 4:4 4:8 4:8 5:0 4:6 4:2 4:9 9:8 16:0 43:4 10:4 19:8 49:5 9:4 14:7 35:8
100 4:4 5:8 5:8 4:8 5:1 5:3 5:1 4:3 5:7 15:9 34:3 82:4 16:7 40:6 81:7 16:0 29:8 73:5
200 4:9 5:1 4:7 5:5 5:5 4:9 4:5 5:9 4:9 29:8 67:3 99:7 34:8 72:2 99:2 27:9 63:0 97:6

BP �
T BP �

T

50 4:8 5:3 6:3 5:3 5:3 7:1 6:1 4:6 5:9 9:8 16:2 47:5 10:2 20:2 49:6 10:3 19:0 49:1
100 4:4 6:1 6:7 4:4 5:9 6:1 4:7 4:4 6:0 16:5 35:7 83:3 16:2 39:2 81:0 17:4 35:9 83:8
200 4:9 5:5 5:4 5:5 6:0 5:8 4:4 5:4 5:3 30:9 67:7 99:9 34:1 69:3 98:9 31:4 68:9 99:0

WB 3: Direct error resampling WB 3: Direct error resampling
T RBP �

T RBP �
T

50 5:5 4:9 4:8 5:0 5:1 5:8 4:6 4:0 5:4 9:6 16:1 44:2 10:3 19:9 49:8 9:4 14:7 37:2
100 4:2 5:9 5:7 4:9 5:1 5:6 5:3 4:5 5:9 16:4 34:0 82:3 17:4 40:8 82:3 15:9 30:3 73:8
200 5:1 5:5 4:9 5:2 5:2 4:9 4:3 6:1 5:1 29:9 67:6 99:8 35:0 72:7 99:3 28:3 62:9 97:7

BP �
T BP �

T

50 4:7 4:7 5:5 5:1 5:0 6:1 5:2 4:4 5:9 9:8 15:5 46:9 10:0 19:5 49:5 10:1 18:6 47:7
100 4:3 6:1 6:1 4:4 5:8 5:5 4:7 4:3 5:9 16:0 35:1 82:9 15:9 38:8 80:1 17:4 35:4 83:4
200 4:6 5:5 5:2 5:2 6:0 5:5 4:5 5:3 5:1 30:5 67:4 99:8 33:9 69:7 98:9 31:1 68:1 99:0

Notes: The data generating process is identical to those used for Table 1 except that �it = 0:8 for t = 1; 2; :::;m =
bT=2c and �it = 1:2 for t = m;m+ 1; :::; T , where bAc is the largest integer part of A.
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Table 3: Rejection frequencies of the asymptotic and various wild-bootstrap RBP and BP
tests in panel ADL(1,0) models under trending volatility heteroskedastic scheme (HET2).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0:2

SN t5 �26 SN t5 �26

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
50 5:2 4:9 7:4 4:0 3:9 6:4 4:1 3:8 7:3 8:8 16:6 51:4 9:1 19:6 55:1 8:2 14:9 41:6
100 4:0 5:4 6:4 4:0 4:4 5:2 4:5 3:4 6:9 16:8 38:8 87:4 17:0 40:8 85:7 14:4 30:5 78:9
200 4:7 4:8 5:2 4:2 5:2 5:1 4:2 5:2 5:5 32:9 72:5 99:9 37:1 75:5 99:5 29:0 66:8 98:5

BPT BPT
50 6:8 9:5 21:3 6:3 8:2 21:1 6:4 8:5 20:0 12:4 24:2 72:3 13:3 29:6 71:3 14:1 28:9 71:0
100 5:5 9:4 19:5 6:1 9:0 18:4 6:0 8:1 19:5 21:4 47:5 94:5 21:0 49:2 91:7 23:4 47:9 93:6
200 6:3 8:4 17:9 7:6 9:5 17:2 6:0 9:1 16:0 38:6 79:2 100:0 39:8 80:3 99:7 39:0 79:2 99:9

WB 1: Recursive resampling WB 1: Recursive resampling
T RBP �

T RBP �
T

50 5:9 5:1 4:5 5:3 4:3 4:7 5:0 4:2 4:9 10:0 16:6 45:9 11:0 20:3 50:2 9:2 15:2 37:6
100 4:1 5:6 5:4 4:7 5:1 5:0 5:2 3:9 6:4 17:3 38:2 85:5 18:3 42:8 84:9 16:3 32:1 77:1
200 5:1 4:8 4:8 4:8 5:7 5:6 4:7 5:8 5:1 32:5 71:1 99:9 37:8 75:6 99:5 30:6 67:0 98:6

BP �
T BP �

T

50 5:2 5:1 5:0 5:1 5:1 5:3 5:0 4:1 4:7 9:9 17:2 48:0 10:2 20:3 50:4 11:2 19:5 48:5
100 4:4 5:9 6:2 4:5 5:8 4:9 4:8 3:6 6:1 17:5 38:6 86:2 17:7 40:2 83:1 18:3 38:7 86:1
200 4:8 5:3 5:0 5:2 5:8 5:6 4:3 5:6 4:8 32:7 71:8 99:9 35:9 73:1 99:3 33:1 71:9 99:3

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP �

T RBP �
T

50 5:7 4:8 4:8 5:0 4:3 4:9 5:0 4:3 5:4 10:1 16:8 45:7 11:0 20:8 51:2 9:7 15:9 37:9
100 4:1 5:1 5:4 4:4 5:1 4:9 5:1 4:0 6:1 17:5 38:6 85:4 18:5 42:5 85:0 16:7 32:3 77:4
200 5:4 4:9 4:7 4:9 5:9 5:3 4:8 6:1 5:1 32:9 71:0 99:9 38:0 75:9 99:5 30:3 67:3 98:5

BP �
T BP �

T

50 5:5 5:1 5:3 5:0 4:9 5:9 5:1 4:1 4:9 10:1 17:2 47:8 10:6 20:4 51:1 11:4 19:4 49:1
100 4:2 5:7 6:3 4:3 5:8 5:1 4:8 3:9 6:0 17:6 38:7 86:2 17:7 40:6 83:0 18:0 38:7 86:2
200 5:0 5:0 4:8 5:2 5:7 5:3 4:3 5:5 5:1 32:9 71:6 100:0 36:1 72:9 99:3 33:8 71:9 99:1

WB 3: Direct error resampling WB 3: Direct error resampling
T RBP �

T RBP �
T

50 5:7 5:1 4:9 4:8 5:0 5:1 5:1 4:3 5:9 10:5 17:0 46:7 10:9 21:0 52:1 9:7 15:6 39:0
100 4:3 5:4 5:6 4:4 5:7 4:9 5:0 4:2 6:7 18:0 38:5 85:9 18:8 42:2 85:2 16:6 32:0 77:0
200 4:9 5:1 4:9 5:1 5:9 5:6 4:7 6:2 5:1 32:7 71:4 99:9 37:9 76:0 99:5 30:1 66:9 98:5

BP �
T BP �

T

50 5:2 5:0 5:1 5:5 5:3 5:9 5:2 4:3 5:0 10:1 16:9 48:6 10:2 20:4 51:2 11:0 19:2 49:3
100 4:7 5:8 6:1 4:6 5:7 5:3 5:0 3:9 5:8 17:7 38:5 86:0 18:0 40:2 82:9 18:3 38:4 86:0
200 4:9 5:0 4:9 5:3 5:9 5:6 4:3 5:4 5:1 32:9 71:5 99:9 35:8 72:9 99:3 33:3 71:8 99:3

Notes: The data generating process is identical to those used for Table 1 except that �it = �0 � (�1 � �0)
�
t�1
T�1

�
with �0 = 0:8 and �1 = 1:2.
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Table 4: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and
BP tests in panel ADL(1,0) models under conditional heteroskedasticity depending on a
regressor (HET3).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0:2

SN t5 �26 SN t5 �26

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
50 4:9 5:1 8:3 4:1 4:3 6:5 3:5 4:5 7:0 8:7 16:8 53:4 9:4 19:5 54:0 7:8 16:0 43:8
100 4:4 5:5 7:6 4:3 4:5 5:7 3:8 5:3 6:7 15:7 37:1 87:2 16:7 40:9 85:5 15:2 31:1 78:5
200 4:6 4:8 5:5 4:5 5:1 4:9 4:1 5:6 5:5 32:6 71:2 99:8 35:9 74:1 99:5 28:3 65:8 98:7

BPT BPT
50 5:5 7:4 15:0 5:4 6:7 14:6 5:2 6:8 14:5 10:7 20:5 63:9 11:0 24:3 62:4 12:0 25:3 63:0
100 4:9 7:9 14:2 5:6 8:6 13:9 5:4 7:3 13:8 18:3 41:9 92:2 19:0 45:4 88:9 20:2 43:2 90:8
200 4:9 7:0 14:5 6:0 7:1 13:6 4:9 7:3 12:2 34:3 75:4 100:0 36:6 76:9 99:6 33:8 75:1 99:9

WB 1: Recursive resampling WB 1: Recursive resampling
T RBP �

T RBP �
T

50 5:3 5:0 5:3 5:1 4:3 4:5 4:2 4:3 4:8 9:3 15:7 46:0 11:2 20:1 49:8 9:0 16:5 38:7
100 4:8 5:9 6:1 5:0 5:1 4:9 4:9 5:9 5:6 16:0 36:9 85:1 18:3 41:6 84:3 16:4 31:8 75:8
200 4:8 4:5 4:9 5:1 5:4 4:7 4:4 5:9 5:0 32:3 71:0 99:8 36:3 74:6 99:5 29:3 66:7 98:4

BP �
T BP �

T

50 5:8 5:1 6:7 5:0 4:7 6:1 4:3 4:7 5:8 10:0 16:7 49:4 10:0 19:7 50:0 10:2 19:7 50:1
100 4:7 6:0 7:5 5:2 6:0 5:9 4:5 5:7 6:6 17:2 37:6 86:5 17:8 41:0 83:1 18:3 37:9 85:9
200 5:0 5:1 5:7 5:0 5:7 5:9 4:2 5:5 5:2 32:7 70:8 99:8 34:3 72:6 99:1 31:6 71:4 99:7

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP �

T RBP �
T

50 5:8 4:9 5:4 5:2 4:3 4:8 4:0 4:5 5:1 10:0 15:9 46:5 10:5 20:0 50:4 9:0 16:5 38:9
100 4:7 5:8 6:3 5:2 4:8 5:2 4:5 5:9 5:7 16:6 36:8 85:1 18:3 41:8 83:9 16:1 31:8 75:7
200 4:8 4:8 4:6 5:3 5:5 4:7 4:3 6:1 4:9 32:6 70:6 99:8 36:4 74:9 99:4 29:5 66:9 98:5

BP �
T BP �

T

50 5:8 5:3 6:6 5:1 5:1 6:5 4:7 5:0 6:3 10:2 17:0 50:3 10:1 19:2 50:7 10:4 19:8 50:8
100 4:7 6:0 7:6 5:3 6:2 5:8 4:8 5:7 6:8 16:9 37:9 86:0 17:4 41:0 83:4 18:0 38:1 86:0
200 4:9 5:0 5:5 5:2 5:6 5:4 4:3 5:5 5:6 33:4 70:5 99:8 34:1 72:7 99:2 32:0 71:6 99:6

WB 3: Direct error resampling WB 3: Direct error resampling
T RBP �

T RBP �
T

50 5:4 5:2 6:4 5:2 5:2 5:6 4:5 5:0 5:9 9:7 16:8 48:5 11:0 20:9 51:8 9:2 16:5 40:9
100 4:9 5:8 6:8 5:3 5:1 5:6 4:9 6:0 6:1 16:3 36:8 86:1 19:0 42:5 84:6 16:7 32:4 77:2
200 4:8 4:8 5:1 5:2 5:7 5:1 4:4 6:2 5:7 32:5 70:9 99:8 36:7 75:3 99:5 29:4 66:8 98:5

BP �
T BP �

T

50 6:0 5:3 6:8 5:0 4:8 6:6 4:9 5:1 6:8 10:0 17:3 50:3 10:0 19:8 51:4 10:2 20:7 50:8
100 4:7 5:9 7:1 5:0 6:3 6:0 4:4 5:5 6:8 16:9 36:8 86:1 18:1 41:1 83:6 18:4 38:2 85:9
200 4:7 5:1 5:1 5:2 5:2 5:4 4:3 5:2 5:4 32:5 70:7 99:8 34:0 72:0 99:2 31:7 71:1 99:4

Notes: The data generating process is identical to those used for Table 1 except that �it =
p
exp fczitg, t = 1; :::; T .
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Table 5: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under conditional heteroskedasticity, GARCH(1,1)
(HET4).

H0 : E [uitujt] = 0 HA : E [uitujt] = 0:2

SN t5 �26 SN t5 �26

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25

Asymptotic critical values Asymptotic critical values
T RBPT RBPT
50 4:9 5:5 7:5 4:3 3:8 6:5 3:7 4:0 6:8 9:6 16:9 53:3 10:2 20:5 55:6 8:3 16:6 43:6
100 4:6 5:5 6:7 3:9 4:5 5:1 4:2 4:0 7:1 17:8 38:8 88:5 18:3 41:7 87:0 15:3 32:6 80:8
200 4:6 5:1 5:2 4:6 4:9 4:9 4:5 5:3 5:9 34:5 74:0 100:0 37:5 76:6 99:6 30:1 68:0 98:9

BPT BPT
50 5:2 6:4 9:6 5:5 5:8 8:4 5:0 5:2 8:6 10:9 19:3 58:8 11:8 25:0 59:3 12:1 23:4 58:2
100 5:0 6:2 7:5 5:1 5:9 7:0 4:8 5:1 7:5 19:1 40:9 89:2 19:7 44:5 86:8 20:5 41:9 88:7
200 5:0 5:2 5:5 6:3 5:9 5:9 4:4 5:5 5:7 36:1 75:2 99:9 37:6 76:7 99:4 34:5 73:9 99:5

WB 1: Recursive resampling WB 1: Recursive resampling
T RBP �

T RBP �
T

50 5:1 5:2 5:1 5:5 4:7 4:8 4:2 4:2 4:5 10:3 16:2 47:6 11:3 20:9 51:2 9:5 16:6 39:4
100 4:8 5:6 5:8 4:3 5:0 4:9 5:0 4:4 6:6 18:1 38:7 87:0 19:8 43:3 86:2 16:8 33:3 79:4
200 4:9 4:7 4:9 5:1 5:8 4:9 4:8 5:6 5:5 33:6 73:5 99:9 38:0 77:2 99:6 31:0 68:9 98:9

BP �
T BP �

T

50 5:1 5:5 4:8 5:0 4:5 4:8 4:5 4:3 4:0 10:5 16:0 48:2 11:3 21:1 49:6 10:8 19:3 48:2
100 4:5 5:6 5:1 5:0 5:7 5:0 4:8 4:4 5:8 18:5 38:9 86:8 18:5 41:4 84:2 19:4 38:8 86:0
200 4:7 5:0 5:1 4:9 5:7 4:7 4:1 5:1 4:8 34:6 73:9 99:9 36:8 74:6 99:2 33:5 73:7 99:5

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP �

T RBP �
T

50 5:3 5:6 5:6 5:2 4:5 5:5 4:4 4:7 5:0 10:3 16:6 47:7 11:8 21:2 51:8 9:7 16:7 39:2
100 4:7 5:5 5:5 4:8 5:2 4:8 5:1 4:5 6:3 18:4 38:7 87:1 19:5 43:1 86:1 17:1 32:5 79:2
200 4:8 4:7 4:5 4:9 5:7 5:0 5:0 5:4 5:3 34:4 73:3 100:0 38:0 77:2 99:6 31:0 69:1 98:9

BP �
T BP �

T

50 5:4 5:7 5:0 5:3 4:3 5:1 4:4 4:4 4:7 9:9 16:3 49:3 11:0 21:0 50:3 10:8 19:2 49:3
100 4:5 5:5 5:5 4:8 5:2 5:0 4:9 4:7 5:9 18:6 38:7 87:0 18:3 41:8 84:2 18:8 39:3 86:4
200 4:5 5:0 5:1 5:2 5:3 4:6 4:1 5:0 4:8 34:3 73:9 99:9 37:0 74:7 99:3 33:6 73:8 99:5

WB 3: Direct error resampling WB 3: Direct error resampling
T RBP �

T RBP �
T

50 5:6 5:8 5:5 5:2 4:7 5:6 4:5 4:5 5:1 10:2 16:6 48:8 11:9 21:7 53:0 9:7 17:1 39:9
100 4:5 5:8 5:7 4:9 5:2 5:0 5:0 4:5 6:7 18:4 38:9 87:4 20:0 43:5 86:3 17:2 33:4 79:4
200 5:0 4:6 4:7 5:4 5:8 4:9 5:0 5:7 5:7 34:0 73:4 99:9 38:0 77:5 99:5 31:1 68:8 98:9

BP �
T BP �

T

50 4:8 5:3 5:6 5:3 4:5 5:8 4:9 4:5 4:9 10:0 16:6 50:0 11:4 21:6 51:5 10:8 20:1 50:5
100 4:6 5:6 5:4 4:9 5:3 5:1 4:6 4:6 6:2 18:7 39:1 87:5 18:9 41:6 84:6 19:6 39:4 86:5
200 4:9 5:0 5:0 5:1 5:7 4:9 4:0 5:1 5:1 34:6 74:1 99:9 37:2 75:0 99:3 34:0 73:7 99:5

Notes: The data generating process is identical to those used for Table 1 except that �2it = �+�1u
2
i;t�1+�2�

2
i;t�1,

t = �49;�48; :::; T . The value of parameters are chosen to be � = 1, �1 = 0:1 and �2 = 0:8.
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Table 6: p-values of cross section correlation tests in dynamic empirical growth models,
20 OECD countries, annual data 1955-2004

p-values RBPT BPT
asymptotic 0.092 0.022*
wild bootstrap 1 0.118 0.115
wild bootstrap 2 0.112 0.107
wild bootstrap 3 0.108 0.128

Note: The dynamic model estimated is �l̂gdpwit = �1i + �2i elkit + �3i�elkit + �4i�elkit�1 + �1i�l̂gdpwi;t�1 +

�2i�l̂gdpwi;t�2 + uit; ; i = 1; 2; :::; 20 and t = 1; 2; :::; 47, where l̂gdpwit is cross section demeaned log of output

per worker and elkit is cross section demeaned log of the investment share. "*" signi�es the null hypothesis being
rejected at the 5% level. asymptotic p-values are obtained referring the value of the statistics to �2190 distribution.
Bootstrap p-values are based on 5000 bootstrap resampling. Three wild bootstrap schemes are explained in the
previous section. For the wild bootstrap scheme 1, elkit, �elkit and �elkit�1 are treated as �xed.
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