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Abstract

This paper proposes a heteroskedasticity-robust Breusch-Pagan test of the null
hypothesis of zero cross-section (or contemporaneous) correlation in linear panel data
models. The procedure allows for either fixed, strictly exogenous and/or lagged de-
pendent regressor variables, as well as quite general forms of both non-normality and
heteroskedasticity in the error distribution. Whilst the asymptotic validity of the test
procedure, under the null, is predicated on the number of time series observations,
T, being large relative to the number of cross-section units, N, independence of the
cross-sections is not assumed. Across a variety of experimental designs, a Monte Carlo
study suggests that, in general (but not always), the predictions from asymptotic the-
ory provide a good guide to the finite sample behaviour of the test. In particular,
with skewed errors and/or when N/T is not small, discrepancies can occur. However,
for all the experimental designs, any one of three asymptotically valid wild bootstrap
approximations (that are considered in this paper) gives very close agreement between
the nominal and empirical significance levels of the test. Moreover, in comparison with
wild bootstrap “version” of the original Breusch-Pagan test (Godfrey and Yamagata,
2011) the corresponding version of the heteroskedasticity-robust Breusch-Pagan test is
more reliable. As an illustration, the proposed tests are applied to a dynamic growth
model for a panel of 20 OECD countries.

1 Introduction

In a linear panel data model, with exogenous regressors and Zellner’s (1962) Seemingly
Unrelated Regression Equation (SURE) structure, a Lagrange multiplier (LM) test to
detect cross-sectional dependence was proposed by Breusch and Pagan (1980) and is now
a commonly employed diagnostic tool of applied workers. This test is based on the average
of the squared pair-wise sample correlation coefficients of the residuals and is applicable
when N is fixed and T — oo; i.e., when N is small relative to a large 7. However, as
pointed out in, for example, Pesaran (2004) and Pesaran, Ullah, and Yamagata (2008),
the LM (henceforth, Breusch-Pagan) test based upon asymptotic critical values from the
relevant x? distribution can suffer from serious size distortion when N/T is not small.

*Corresponding author. Department of Economics & Related Studies, University of York, Heslington,
York YO10 5DD, United Kingdom. Email: takashi.yamagata@york.ac.uk.



In view of this, one area of research has focused on cross-section dependence tests for
large T' and/or N panels. Frees (1995) has proposed a “distribution free” version of the
Breusch-Pagan test based on squared pair-wise Spearman sample rank correlation coeffi-
cients of the regression residuals. Pesaran (2004) proposes a, so-called, CD test based on
average pair-wise sample correlations of residuals across the different cross-section units.
The CD test statistic has very good finite sample performance under a wide class of panel
data model designs. However, it will lack power when the population average pair-wise
correlations is zero, even though underlying individual population pair-wise correlations
are non-zero. Adopting a different strategy, Pesaran et al (2008) make use of analytical
adjustments for each squared pair-wise sample correlation in order to correct the bias
of the Breusch-Pagan statistic. These analytical adjustments are derived under the same
assumptions as the original Breusch-Pagan Test; i.e., normality, regressor exogeneity and
homoskedasticity within cross-sections. In a similar vein, Baltagi, Feng, and Kao (2010)
have proposed an (asymptotic) bias-correction of Breusch-Pagan test statistic, based on
the V/NT consistent Fixed Effect estimator and present Monte Carlo results which sug-
gest that their test behaves well even when 7T is smaller than N; Juhl (2011) considers
a similar approach. Relaxing normality and regressor exogeneity, Sarafidis, Yamagata,
and Robertson (2009) propose a test for cross-sectional dependence based on Sargan’s
difference test for over-identifying restrictions in a dynamic panel data model, but again
assuming homoskedasticity within each cross section and under a slope homogeneity as-
sumption. However, the slope homogeneity assumption of Sarafidis et al (2009), Baltagi
et al (2010) and Juhl (2011) can be restrictive in empirical work. For example, a growing
body of literature suggests that a slope homogeneity assumption may not be relevant in
macroeconometric applications: see Haque, Pesaran, and Sharma (1999), Bassanini and
Scarpetta (2002), amongst others. Relaxing the within cross-section homoskedasticity
assumption, but still maintaining exogenous regressors, Godfrey and Yamagata (2011)
recently advocated a wild bootstrap!' version of the original Breusch-Pagan test in order
to address the large N/T issue. The Monte Carlo evidence presented by Godfrey and
Yamagata (2011) suggests that such a test can provide quite reliable inferences.

This paper makes two contributions which are distinct from Godfrey and Yamagata
(2011). First, it proposes a new asymptotically pivotal heteroskedasticity robust Breusch-
Pagan test, under the assumption that T — oo and N is fixed, that allows for fixed,
strictly exogenous and lagged dependent regressor variables as well as quite general forms
of both non-normality and heteroskedasticity, in the linear model error distribution. The
last point is particularly pertinent because the modern approach in applied research is
to implement inference by employing some heteroskedasticity robust variance-covariance
estimator. It emerges from this analysis that the original Breusch-Pagan test will asymp-
totically over reject, under the null, if and only if the squared errors are (asymptotically)
contemporaneously uncorrelated.

However, as is well known, asymptotic theory can provide a poor approximation to
actual finite sample behaviour; specifically in this case, and as noted previously, when
N/T is not small. Second, this paper describes three asymptotically valid wild bootstrap
procedure schemes, allowing for lagged dependent regressors, which might be employed in
order to provide closer agreement between the desired nominal and the empirical signifi-
cance level of a test procedure when N/T' is not small. In particular, the recursive-design
wild bootstrap is asymptotically justified under less restrictive assumptions than those
imposed by Goncalves and Kilian (2004) and Godfrey and Tremayne (2005), which rule

'See, for example, Wu (1986), Liu (1988), Mammen (1993), Davidson and Flachaire (2008), in the
context of the classical linear regression model.



out certain asymmetric conditional heteroskedastic error processes. In addition, it has
been traditional when developing tests for cross-section dependence that the actual null
hypothesis under test is one of zero contemporaneous correlation among cross sections (i.e.,
individuals, households, firms, countries, etc.) the failure of which, of course, is consistent
with contemporaneous dependence; see, for example, the survey by Moscone and Tosetti
(2009). However, zero contemporaneous correlation does not, necessarily, imply contem-
poraneous independence. Nonetheless, virtually all previous tests of this null hypothesis
that have been proposed in the literature have maintained the stronger assumption of
independence. In this paper, such independence is not assumed.

The rest of the paper is organised as follows, with all proofs relegated to the Appendix.
Section 2 introduces the notation and assumptions which afford the subsequent asymptotic
analysis. Section 3 establishes the limit distribution of the new test statistic and Section 4
describes the wild bootstrap tests, which are applicable to both the new heteroskedasticity
robust Breusch-Pagan test and the original version. Section 5 reports the results of a small
Monte Carlo study designed to shed light on the finite sample reliability of the various
test procedures and Section 6 provides a simple empirical application. Finally, Section 7
concludes.

2 The Model, Notation & Assumptions

In this paper, we allow for a Autoregressive Distributed Lag (ADL) heterogeneous panel
data model structure. In particular, if ¢ indexes the cross-section observations and t the
time series observations, then the following model is assumed

é;(L)ysr = wiybi +uig, i=1,..,N, t=1,..,T, (1)
where {¥i—pt+1s s Yi0s Yils oo YiT Wil oo, WiT }, & = 1,..., N, are the sample data and
¢;(L) = 1 —¢yL — ¢l — ... — ¢, LP, ¢, # 0, has all roots lying outside the unit

circle, for all 4, with p, the lag length, known, finite and common across 4, and ||6;|| < oc.
The M regressors, wl, = {wiy}, ! =1,...M, are strictly exogenous, with wj; = 1, for all 4
and ¢; the errors, u;, have zero mean for all ¢ and ¢; and, {w},,u;} satisfy the regularity
conditions discussed below.

Stacking the observations, ¢t = 1,..., T, per cross-section we write (1) as
yi = XiBi +wi (2)

6; = (0;7¢;) ; Qb; = (¢i1a cey ¢zp) ) where Yi = {yit}7 (T X 1) ) X’L = (WHYVZ) is (T X M +p)
and has rows z,, W; has rows wj, = {wu}, ¥; has rows Y/, ; = {yit—¢},¢=1,..,p, and
u; = {uit}, (T' x 1). The Ordinary Least Squares estimator of /3;, in (2), is given by

B; = (XIX)) "' Xlyi, i=1,..,N.

Zero contemporaneous (or cross-section) correlation is equivalent to the null hypothesis
of Hy: E[u,u;] =0, forall ¢ # j, or Hy : Eujsuj] = 0forallt =1,...,T and all ¢ # j. It is
common practice, in the literature, for tests of Hy : Efusuj¢] = 0 to be constructed under
the stronger assumption of contemporaneous independence; see, inter alia, Moscone and
Tosetti (2009) and Pesaran et al (2008). The asymptotic validity of the test procedure
proposed in this paper does not rely on such a strong assumption. Rather, a weaker set
of conditions are invoked which specify various quantities of interest to be martingale
differences.



The asymptotic analysis keeps N fixed whilst 77 — oo. In addition, the following
assumptions are made in which F;_; is the sigma field generated by: (i) current and
lagged values of y;; (i.e., {yit—x},i=1,..,N, k=1,2,...); and, (ii) current and lagged
values of any strictly exogenous variables, i =1, ..., N, including w; —, kK = 0,1,2, ..., and
possibly other strictly exogenous variables as well; see, for example, White (2001, p.59).

For all ¢ = 1,..., N, the following hold:

Assumption 1: {w},} is a mixing sequence, with either ¢ of size —n/(2n—1), 7> 1, or
a of size —m/(n—1),n> 1.

Assumption 2:

(i) E [uitw; ¢4k|Fi—1] = 0, almost surely, for any k£ > 0 and all ¢;
(if) E [u%|Fi—1] = 0%, almost surely, for all ¢;

(i) plimy o 7 30y {0F — Eluf]} = 0;

(iv) E|wiu|* ™ < A < oo, where k£ = max [2,7)], for some § > 0, and all t = 1,..., T,
l=1,.., M;

(v) E \uit|4+5 <A <ooforsomed>0,andallt=1,....7T.
Assumption 3:

(i) E(WW;/T) = % Zt 1 E[wiyw!,] is uniformly positive definite;
(ii) E (wju;/T) = # LS T | E[u?] is uniformly positive.

Forall 1 <4< j=2,...,N the following holds:

Assumption 4:
(i) E [uiuji|Fi—1] = 0, almost surely, for all ¢;

(ii) £ [u?tu?tu-},l] zyt’ almost surely, for all ¢;

. T

(iii) plimgp o 7> 4 {T?jt - E[uftu?t]} =0;

(iv) wiyr = 7 ST E[uftu?t} is uniformly positive;

(V) E[ujujiupsuge| Fe—1]) = 0, almost surely, for j < k, ¢ < h < k, and for all .

Assumption 1 allows wj; to contain fixed or random (but strictly exogenous) regressors.
Assumption 2 is somewhat weaker than allowing the errors to be serially independent
(although they are still uncorrelated). Assumption 2(i) follows from the strict exogeneity
assumption on wj; and, together with Assumption 2(v) and the fact that wy; = 1 for all
t, it implies that {u;, 5} is a martingale difference sequence (m.d.s).? Assumptions 2(ii)
and (iii) also allow for general (conditional or unconditional) heteroskedasticity (with o2
possibly varying across within cross-sections and through time). A wide class of models for
the variance are allowed that include cross-sectional heterogeneity, volatility that evolves
over time such as GARCH type models, trending volatility, break and smooth transition

2This formulation is similar to that employed, for example, by Weiss (1986).



Xiwj 4 XiXi _
VT T

-1
%Zthl z;taly, are both Op(1), (% ST mitx;t> exists, in probability, and is Op(1) and
that, consequently, /@’Z —B; = O0,(T -1/ 2). Notice, that additional assumptions are required

shifts in variance. Assumptions 1, 2 and 3 also ensure that, for each , j,

to establish asymptotic normality for v/T' ([3 - B,); speciﬁcally, these will be sufficient to
ensure that 5 37,y ufzal, — 75 B [ufwial] 5 0, with 3,0, E [u}aaa),] being
uniformly positive definite. However, we do not need asymptotic normality of v/T (Bl —B;)
in order to justify the asymptotic validity of the test procedure in this paper; in contrast to
the assumption of Godfrey and Yamagata (2011). Assumption 4 permits the derivation of
the robust test procedure, for cross-section correlation (Lemma 1 and Theorem 1 below).
Assumption 4(i) states that u; and wuj; are uncorrelated, ¢ # j, whilst 4(v) requires
that all distinct pairs {usu;:} and {upsure} are uncorrelated, i # j and h # k. These
two assumptions could be replaced by the much stronger assumption that the {u;} are
independent, which we wish to resist.

3 Test Statistics and Limit Distributions

The commonly used Breusch-Pagan test statistic is
Y (3)
=1 j=i+1

where3 . .
T Zt:1 Uit Ujt

Jsna) (Frna)

As noted, for example, by Moscone and Tosetti (2009), under (1), cross-section indepen-

Pij =

dence, but homoskedasticity across the time dimension, it can be shown that BPp <, X2,
for fixed N, as T — oo, where v = %N(N —1). Given Theorem 1, below, and under As-
sumption 4(i) and (v), rather than full independence, this remains true. However, this will
not be the case, in general, when there is heteroskedasticity across the time dimension. In
these circumstances, the use of BPr could lead to asymptotically invalid inferences. (This
was also recently pointed out by Godfrey and Yamagata (2011), but in the context of a
static heterogeneous panel.) Therefore the availability of a test procedure that is robust
to more general heteroskedasticity would appear desirable. Such a statistic is defined as

RBPr = Z Z o (4)

=1 j=i+1
where ) T
50 = Zt VUil T > i1 Uitlige '
\/Zt 17112tu2 \/ Zt 171121‘,“2
Allowing for heteroskedasticity across both the cross-section and time dimension, we

have the following preliminary Lemma which motivates the construction of RBPr, given
in (4):

()

3We have dropped the T subscript on p;; for notational simplicity.



Lemma 1 Under Assumptions 4(i)-(iv) and 2(v), we have, for all i # j, and as T — oo,
and fixed N,

1 ZT s
t—1 WitUjt
= VT - 4 N(0,1).
1
T Dot=1 uzztujzt

We are now in a position to establish the following result, which justifies the construc-
tion of a robust version of BPr, as detailed in the subsequent Corollary.

Theorem 1 Under Assumptions 1-4, we have, for all i # j, and as T — oo, and fized N
A 5 N(0,1).
Finally, we have the following Corollary which details the limit distribution of RBPr.
Corollary 1 Under Assumptions 1-4, and as T — oo, with N fized,

1
RBPT_Z Z 32 432, v=oN(N-1).
=1 j=i+1

From Theorem 1 the asymptotic behaviour of BPr can be inferred, under certain
forms of heteroskedasticity. In particular, under cross-sectional heteroskedasticity only, it
is easily verified that p;; —%,;; = 0p(1), so that BPr remains asymptotically valid, as noted
earlier. However, in general, we have (under our assumptions)

)

. th luztu .

Pij — Z 421 2 Yij
T 2t=1 YT t 1u

TZt 1 Eluj Ui U ] R
= ij T Op 1),
% thl Elu it]T thl [“?t] Vi @

so that, asymptotically at least, p;; — %;; = 0p(1) if and only if uZ, and u?t are (asymp-
totically) contemporaneously uncorrelated. For illustrative purposes, suppose u;; = 0ji€;t,
where the ¢;; are zero mean and unit variance, independently and identically distributed
(ii.d.), random variables In this context, for example, With a one- break—in—volatility model
which specifies azzt = O'Zl fort =1,...,77 < T and alt = 012 > 0 fort =11+ 1,...,T,
“121; and u?t will be (asymptotlcally), positively contemporaneously correlated, so that
Pij > %ij» in probability. Under the null hypothesis of Ho : Elujujt] = 0, this will lead
to over-rejection, asymptotically, for a test procedure which employs BPr in conjunction
with x? critical values. A qualitatively similar conclusion emerges for a trending volatility
model (“Model 2” in Cavaliere and Taylor, 2008), where o;; = 040 — (0i1 — 040) (%),
01 > 040, since, again, uzt and u will be (asymptotically), positively contemporaneously
correlated. However, for condltlonal heteroskedasticity in which 0% = E [u}]|F—] is a
stationary process (for example, a GARCH error process) then, due to the independence
of the g4, u?t and u?t are (asymptotically) contemporaneously uncorrelated so that the
use of BPp with x2 critical values is asymptotically valid.

Thus, there will be situations in which B Pr remains asymptotically robust. In general,
though, it seems prudent to use a procedure that is robust under quite general forms of
(unknown) heteroskedasticity. Although, Theorem 1 shows that the statistic RBPr is



asymptotically robust to general forms of heteroskedasticity, it might be anticipated that
improved sampling behaviour, in finite samples, will be afforded by employing a wild
bootstrap scheme. Indeed, Godfrey and Yamagata (2011) proposed the use of a wild
bootstrap scheme in order to control the significance levels of the BPr test procedure, in
the presence of non-normality and unknown heteroskedasticity, under both large 1" and
large N asymptotics. Their analysis, however, is limited to the static heterogeneous panel
data model and is not based on an asymptotic pivot. In the next section, the asymptotic
validity (T" — oo, N fixed) of three wild bootstrap schemes is established when applied to
both RBPr and BPr in a dynamic heterogenous panel data model under non-normality
and unknown heteroskedasticity.

4 Wild Bootstrap Procedures

We consider three wild bootstrap procedures, as follows.

4.1 Wild Bootstrap 1 (WB1)

This is a recursive design wild bootstrap scheme, implemented using the following steps:

1. Estimate the model by OLS to get u;: , ¢ = 1,..., N, and construct test statistics
RBPT and BPT.

2. (which is repeated B times)

(a) Generate u}, = ;;U;t, where the ¢;; are i.i.d., over ¢ and ¢, with zero mean and
unit variance.
(b) Construct
N
= By + uip- (6)
Here, 7, is generated recursively, from (6), given initial values v, ¢ < 0 for
any regressors which are lagged dependent variables (these could be zero or
sample values). Sample values of the regressors are employed in this wild
bootstrap scheme for any strictly exogenous variables. Thus, for example, if
xl, = (W, yi+—1), where wy is strictly exogenous, then w, = wy, for all ¢ and
t, B = (0;, gbi) and choosing vy, = y;0 bootstrap data are generated according
to

N N
yii = O;wia + dyi0 +uj
N A
v = Owi+ ol +ug, t=2,..T.

(c) Construct the bootstrap test statistics

2 e th 1 Uyt
RBPT - Z Z zg ’ ij = 12 a2 (7)
=1 j=itl T it Ui g
where 4, =y, — x} ; is the OLS residual from (6), and
b2 o th Ut
BPT - Z Z pz327 zg = 2 1 N 2 (8)
=1 j=i+1 \/Ztlth tl*



3. Calculate the proportion of bootstrap test statistics, RBP;. (resp., BP}), from the
B repetitions of Step 2c¢ that are at least as large as the actual value of RBPr
(resp., BPr). Let this proportion be denoted by p and the desired significance level
be denoted by «. The asymptotically valid rejection rule is that Hy is rejected if
p<a.

4.2 Wild Bootstrap 2 (WB2)

This is a fixed design wild bootstrap scheme which replaces (6) in the recursive design
scheme with .
it = Bimie +

at stage 2b.

4.3 Wild Bootstrap 3 (WB3)

Note, from Theorem 1, 4;; — 7,;; = 0p(1); i.e., ¥;; has the same limit distribution as it
would have if 3; were known. This suggests that the following wild bootstrap procedure
should work (asymptotically) at least.

1. As for WBI1.

2. (which is repeated B times)

(a) Generate uj, = ;U as in WB1(but omit step 2b in WB1).
(b) Construct the boostrap test statistics

LZT wru*
* ~x ~* t=1 it “jt
REP =Y > Ry L

Vij =
=1 j—itl /th 1u*2 *2

1 T * ) ¥
BP* ~ %2 ~* . VT t=1 "t “jt
T — ng zg 21 2
- o
i=1 j=i+l \/ Ztl ]tTZtl

3. Calculate the proportion of bootstrap test statistics, RBPj (resp., BP}), from the
B repetitions of Step 2b that are at least as large as the actual value of RBPr
(resp., BPr). Let this proportion be denoted by p and the desired significance level
be denoted by a. The asymptotically valid rejection rule is that Hg is rejected if

and

p<a.

The following Theorem states the asymptotic validity of these wild bootstrap proce-

dures:*

Theorem 2 Under Assumptions 1-4, and for all three wild bootstrap designs, WB1, WB2
and WBS,

sup |P*(RBT} < x) — P(RBTr < z)| 2 0

sup |P*(BT) < x) — P(BTr < z)| %0
x

*In the Appendix, we verify this for the recursive wild bootstrap scheme (WB1) only and, following
Davidson and Flachaire (2008), with uj; = e;+1;: where the £;; are independently and identically distributed
for all 7 and ¢ taking the discrete values +0.5 with an equal probability of 0.5.



where P* is the probability measure induced by the wild bootstrap conditional on the sample
data.

Note that, even when allowing for conditional heteroskedasticity, we do not require
the restrictive assumptions of Goncalves and Kilian (2004) to justify the resursive-design
WBI, since our test criteria are asymptotically independent of Bl

Henceforth, a test procedure which employs RBPr (resp., BPr) in conjunction with
asymptotic critical values will be called an “asymptotic test”, whilst that employs either
of WB1, WB2 or WB3 will be referred to as a “bootstrap test”. In order to shed light
on the relevance of the preceding asymptotic analysis as an approximation to actual finite
sample behaviour, the next section describes, and reports the results of, a small Monte
Carlo study which investigates the sampling behaviour of the test statistics considered
above under a variety of heteroskedastic error distributions, and (N,7T) combinations.

5 Monte Carlo Study

Three data generating processes (DGPs) are considered: Panel autoregressive and distrib-
uted lag (ADL) models, with strictly exogenous regressors, and pure panel autoregressive

(AR) models.

5.1 Monte Carlo Design
5.1.1 DGP1

The first data generating process considered is a dynamic panel ADL(1,0) model, which
is specified by

it = 01+ izt + &;Yi1—1 + ui
= ngit + QiYit—1 + uir, t=1,2,..., N and t = —49,-48,...,T (9)

with 0;; ~ iid. N(0,1), Oi2 = 1 — ¢;, ¢; ~ i.i.d. Uniform[0.4,0.6], and the z; are gen-
erated for (N = 5,7 = 25) as independent random draws from the standard lognormal
distribution. This block of regressor values is then reused as necessary to build up data
for the other combinations of (N,T). y; 50 = 0, and first 49 values are discarded. The
error term is generated as

Uit = 0p€it, 1 =1,2,..., N and t = —49,—48,....T (10)

and
€t =V 1— szz’t + pCy (11)

where &; ~ iid. (0,1) independently of ¢, ~ iid. (0,1). Thus, corr (uy,ujt) = p, a
constant in this case. For estimating significance levels, the value of p is set to zero, whilst
power is investigated using p = 0.2, which provides a useful range of experimental results.
Three distributions are used to obtain the i.i.d. standardized errors for ¢, and (;: the
standard normal distribution; the ¢-distribution with five degrees of freedom (¢5); and the
chi-square distribution with six degrees of freedom (x2). The t5 distribution satisfies the
restrictions placed on the moments of u;; (Assumption 2(v)), whilst the x2 distribution is
employed to provide evidence on the effects of skewness. In particular, with a coefficient
of skewness greater than 1, it is heavily skewed, according to the arguments of Ramberg,
Tadikamalla, Dudewicz, and Mykytka (1979).



Five models for o; are considered, all of which satisfy, in particular, Assumption
2(v). First, there is homoskedasticity, denoted HETO, with o;; = 1 for all ¢. Second,
a one-break-in-volatility model, henceforth HET1, is employed with o = 0.8 for t =
1,2,..,m=|T/2] and 0;y = 1.2 for t = m,m + 1,...,T, where | A]| is the largest integer
part of A. Third, HET2 is a trending volatility model, with o;; = 09 — (61 — 00) (%),
see “Model 2” in Cavaliere and Taylor (2008), where o9 = 0.8 and o1 = 1.2. Fourth,
HET3 is a conditional heteroskedasticity scheme, with o = \/exp(czi), t = 1,...,T;
this sort of skedastic function is discussed in Lima, Souza, Cribari-Neto, and Fernandes
(2009). The value of ¢ in HET3 is chosen to be 0.4; so that max(c?)/min(c0?), which
is a well-known measure of the strength of heteroskedasticity, is 7.9. For HET0-HET3,
o = 1 for t = —49,...,0. Finally, we consider a generalized autoregressive conditional
heteroskedasticity, GARCH(1,1) model, denoted HET4, where

0% =0+ aquy, |+ ooy, g, t=—49,-48, . T. (12)
Following Godfrey and Tremayne (2005), the value of parameters are chosen to be § = 1,
a1 = 0.1 and as = 0.8.
5.1.2 DGP2

The second data generating process considered is a model with strictly exogenous regres-
sors, specified by

Yit = B+ Bigzit + uit (13)
= Blwi+ui, i=1,2,..,Nand t =1,2,...,T, (14)

where 5;; ~ iid. N(0,1), B;5 ~ iid. Uniform[0.9,1.1] and the z; are generated for
(N =5,T = 25) as independent random draws from the standard lognormal distribution.
Again, this block of regressor values is then reused as necessary to build up data for the
other combinations (N, T).

The error term in (13) is written as

Uit = O4tEit, 1= 1,2, ,N and t = 1,2, ,T (15)

The three distributions of ¢;; and the five models for ¢;; are considered as before.

5.1.3 DGP3

The third data generating process considered is a dynamic panel AR(1) model, which is
specified by

Yit = 0; (1 — (;51) + ¢iyit—l +uy,t=1,2,...,. N and t = —49, —48, ..., T. (16)

with 0; ~ iid. N(0,1), ¢; ~ ii.d. Uniform[0.4,0.6], y; —49 = 0, and first 49 values are
discarded. The error term is written as

wig = /1 — ¢Zouey, i =1,2,..., N and t = —49, 48, ..., T. (17)

The three distributions of ; and the five models for o;; are considered as before.

All combinations of N = 5,10,25 and T" = 50, 100, 200 are considered. The sampling
behaviour of the tests are investigated using 2000 replications of sample data and 200
bootstrap samples, employing a nominal 5% significance level.
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5.2 Monte Carlo Results

Before looking at the results from the Monte Carlo study, it is important to define criteria
to evaluate the performance of the different tests considered. Given the large number
of replications performed, the standard asymptotic test for proportions can be used to
test the null hypotheses that the true significance level is equal to its nominal value. In
these experiments, this null hypothesis is accepted (at the 5% level) for estimated rejection
frequencies in the range 4% to 6%. In practice, however, what is important is not that the
significance level of the test is identical to the chosen nominal level, but rather that the
true and nominal rejection frequencies stay reasonably close, even when the test is only
approximately valid. Following Cochran’s (1952) suggestion, we shall regard a test as being
robust, relative to a nominal value of 5%, if its actual significance level is between 4.5%
and 5.5%. Considering the number of replications used in these experiments, estimated
rejection frequencies within the range 3.6% to 6.5% are viewed as providing evidence
consistent with the robustness of the test, according to this definition.

To economize on space, and as the results for three DGPs are qualitatively similar, the
discussion below focuses on the results in the case of dynamic ADL(1,0) model (DGP1),
since this nests the other two models and can thus be regarded as the most general one.
The experimental results, in this case, under the various heteroskedastic schemes and
error distributions are reported in Tables 1 to 5. We summarise, first, the finite sample
behaviour of the asymptotic tests before reporting that of the bootstrap tests.’

[INSERT Table 1 HERE]

Under the null, with homoskedastic errors (reported in Table 1, Hy : E [uiujt] = 0),
the rejection frequencies of both the asymptotic, RBPr and BPyr, tests are in the main
close to the nominal significance level of 5%, although there is slight distortion in both
when N = 25, and smaller values of T', with B Pr being the more sensitive across all error
distributions. For example, with normal errors and N = 25, BPr rejection rates are 9.1%
and 7.5%, respectively, for T'= 50 and T" = 100, but acceptable at 5.3% when T = 200.
The possibility of such size distortion, when N/T is not “small”, has been pointed out
Pesaran et al (2008). The results indicate that RBPr also suffers in these circumstances,
as might be expected, but the results suggest that this is to a lesser degree. Bearing
in mind the general close agreement between nominal and actual significance levels of
the asymptotic RBPr and BPp tests, a comparison of their rejection frequencies under
Hy ¢ E lujuj] = 0.2, reveals similar power properties under homoskedastic normal and
t5 errors. However, the power of the asymptotic RBPr test is noticeably lower than that
of the asymptotic BPr test under x2 errors. For example, with N = 5 (resp., N = 10)
and T' = 100, the empirical power of RBPr is 16% (resp., 32%) compared with 24%
(resp., 43%) for BPr. This feature is also a characteristic of the bootstrap tests under all
heteroskedasticity schemes considered.

[INSERT Tables 2 - 5 ABOUT HERE]

The results obtained when the errors are heteroskedastic (Tables 2 - 5), show that the
asymptotic RBPr test again exhibits close agreement, in general, between nominal and
empirical significance levels across all error distributions. In fact, the results are qualita-
tively similar to those obtained with homoskedastic errors, with slight distortions apparent
when N = 25, and for smaller values of T'; although, as before, these disappear at T' = 200.

5 A full set of results can, of course, be obtained from the authors upon request.
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By contrast, and consistent with the analysis at the end of Section 3, the asymptotic B Py
test tends to overreject the null hypothesis significantly, except for GARCH errors (Table
5). For example, when 7' = 200, and under the one-break-in-volatility heteroskedastic
scheme (HET1, reported in Table 2) the rejection frequencies for the asymptotic BPrp
test, across the three error distributions, range from 8.9% — 11.7%, 17.2% — 18.2% and
51.0% — 54.9%, for N = 5,10 and 25, respectively. For the trending volatility model,
Table 3, and the HET3 scheme (Table 4) the corresponding ranges are: 6.0% — 7.6%,
8.4% — 9.5%, 16.0% — 17.9% and 4.9% — 6.0%, 7.0% — 7.3%, 12.2% — 14.5%, respectively.
There is significantly less over-rejection in the latter, where a%t = exp(cz;t), since the z;
are generated as i.i.d. random variables but held fixed in repeated samples, yielding a low
(but positive) contemporaneous correlation measure between the squared errors. Under
GARCH(1,1) errors, where J?t is a stationary process, BPr remains asymptotically justi-
fied and exhibits close agreement , in general, between nominal and empirical significance
levels across all error distributions, although with more pronounced distortions, than that
of RBPr, when N = 25 and for smaller values of T.

Turning our attention to the wild bootstrap tests, both procedures, employing RB Py
and BPr., control the significance levels much better than their asymptotic counterparts,
across models and wild bootstrap schemes. Indeed, under Hy : Eluiuj] = 0 and over
the 135 different models investigated, for each wild bootstrap scheme, there is hardly any
evidence of distortion in the empirical significance level for RBPy.. Only once, for WB1,
and twice, for WB3, do the empirical rejection rate fall outside the acceptable interval of
[3.6%, 6.5%)], and these all occur under x2 errors with N = 25 and T = 100 : under HET?2
and WB3,and under HET4, WB1 and WB3. In contrast, the empirical rejection rate for
BPy falls outside of this interval four times, for WB1, and five times for each of WB2 and
WB3. All of these occur only when N = 25 and T' < 100, but with the majority being
under the HET3 scheme. Such results for BPy. are consistent with those found by Godfrey
and Yamagata (2011), although their experiments only considered a static (not dynamic)
heterogeneous panel data mode. Thus, both bootstrap tests, RBPy. and B Py, exhibit good
agreement between nominal and empirical significance levels, although the former appears
more reliable than the latter, especially when N = 25. With regard to power comparisons,
between RBP;. and BPj, there is little difference except (as noted under homoskedastic
errors) that BPj appears consistently more powerful under x% errors. Qualitatively, the
results are similar across all schemes but, as an illustration, under GARCH(1,1) correlated
errors (Table 5), and for N = 10, the rejection rates for BP} are approximately 19%, 39%
and 74%, respectively for T' = 50, 100 and 200, for all wild bootstrap schemes, whilst those
of RBP}. are 17%, 33% and 69%.

Finally, there appears little to choose between the differing wild bootstrap schemes:
WB1, WB2 and WB3. However, the direct resampling wild bootstrap (WB3) has clear
advantage of being less computationally costly over other schemes, since it does not require
to estimate the model using bootstrap sample.

6 An empirical application

In this section we examine error cross section correlation in a dynamic growth equation
following Bond et al. (2010). Two variables, real GDP per worker and the share of
total gross investment in GDP are obtained from Penn World Table Version 7.0 (PWT
7.0). Our sample consists of 20 OECD countries (N = 20) with annual data covering the
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period 1955-2004 (50 data points).5 In order to factor out common trending components,
we transformed the log of output per worker (lgdpw;;) and the log of the investment

share (lk;;) to the deviations from the cross section mean: namely, lgdpw;, = lgdpw; —
NN lgdpwy and lky = ki — N~V SN | lki. We statistically checked the order of

—_——

integration of these variables, and the evidence suggests that lgdpw,, lgdpw;; are I(1) but
lk;; are 1(0), which is consistent with the results given by Bond et al (2010, Table I(b)).”

Allowing the slope coefficients to differ across countries, the dynamic specification of
the growth equation is adopted from Bond et al. (equation 10):

Algdpw,, = 01; + Ozl + 033 Alkiy + 043 Alkiy 1 + ¢y, Algdpw, , y + by Algdpw; ;5 + ust,
(18)
it =1,2,.., N = 20 and t = 1,2,...,7 = 47. In line with our notation, this model

P

can be written as y; = z},B; + uit, where y; = Algdpwy, ©h, = (Yit—1, Yir—2, wl;) with
why = (1, ki, Alkiy, Alkjy—1), and B8; = (014, 02, 03, 04i, 15, b9;)'

Firstly, we applied a (time-varying) heteroskedasticity-robust version of Lagrange mul-
tiplier (LM) test for error serial correlation for each country regression, as discussed in

Godfrey and Tremayne (2005). The test statistic for m'"-order serial correlation is defined
by

N N o A\ —1 .
RLMyz,; = ,U; (U{MxiAiMmUi) Ol (19)
where @; = (t;1, U2, ..., %) is a (T x 1) residual vector, U, = (Wi, —1, Wi,—2, ooy Ui —ym)

which is a (T x m) matrix with 4; ¢ = (i;1-¢, Wi 2—¢, .., Ui7—¢) being a (T x 1) vector
but @i, ¢ = 0 for t — £ < 1, £ = 1,2,....m, My, = Iy — X; (X!X;)"' X/ with ¢t row
vector of X; being x7,, and A; = diag(4%). Under the null hypothesis of no error serial
correlation, RLMr; is asymptotically distributed as x2,. The finite sample experimental
results in Godfrey and Tremayne (2005) show that the use of asymptotic critical value can
be unreliable but that recursive resampling wild bootstrap (our WB1) approach is reliable
with good control over finite sample significance levels.?

We have applied the WB1 bootstrap RLMr; test for second-order serial correlation
(m = 2) to the model (18) and the results show that the null hypothesis of no error serial
correlation cannot be rejected at the 5% significance level for all 20 OECD countries.
Therefore, there is no strong evidence against a claim of no error serial correlation for all
20 OECD countries.”

®These OECD countries are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Greece,
Iceland, Ireland, Italy, Japan, Luxembourg, Netherland, Norway, Spain, Sweden, Switzerland, United
Kingdom and United States.

"The values of t-bar statistics, which are the cross-sectional averages of country ADF(2) statistics with

a linear trend for l;tiz_;u,-t is -1.55, and the exact 5% critical values reported Im et al. (2003; table 2) for

—~

N =20 and T = 50 is -2.47. The values of similar ¢-bar statistics but with an intercept only for Algdpw,,,
Ik and Alk are -3.45, -2.00 and -4.71, respectively, and the exact 5% critical value is -1.85.

8They considered a Hausman-type test and a modified version of the LM test, but based on the finite
sample results the bootstrap RLMr ; test or a bootstrap modified LM test is recommended. We consider
the WB1 bootstrap RLMr; test only, since the reported performance of these two tests by Godfrey and
Tremayne (2005) was very similar and the former is computationally simpler. Note, however, that these
procedures require more restrictive assumptions than those imposed in this paper.

9Full test results are available upon request. Only the p-value of Norway was on the borderline, being
5.1%. However, assuming all country specific errors are cross-sectionally independent, then the serial
correlation test statistics are also independent over countries. Thus, the result that the proportion of the
rejections, at (about) the 5% significance level and over 20 countries, is 5% is consistent with the hypothesis
of no error serial correlation.
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[INSERT Table 6 HERE]

Now let us turn our attention to error cross section correlation tests. Table 6 reports
the asymptotic and various bootstrap p-values of the tests. As can be seen, the asymptotic
BPr test rejects the null hypothesis at the 5% level, but our asymptotic RBPr test does
not. When the bootstrap methods are applied to these tests, both have similar p-values,
ranging between 10.7% to 12.8%. Therefore, based on our proposed testing approach,
there is no strong evidence of contemporaneous error cross section correlation.

7 Conclusion

The paper has developed a heteroskedasticity robust Breusch-Pagan test for the null hy-
pothesis of zero-cross section correlation in dynamic panel data models under the assump-
tion that the number of time series observations, T, is large relative to the number of
cross sections, IN; but not on the independence of the cross sections. The procedure can
be employed with fixed, strictly exogenous and/or lagged dependent regressors and is (as-
ymptotically) robust to quite general forms of non-normality and heteroskedasticity, in
the error distribution, across both time and cross-section. One of three wild bootstrap
schemes can be used to improve the finite sample behaviour of the test. By allowing
conditional heteroskedasticity with asymmetric errors, these wild bootstrap schemes are
all asymptotically valid under less restrictive assumptions than those imposed by, say,
Goncalves and Kilian (2004). A Monte Carlo study examines the performance of the new
test procedure and its wild bootstrap version in relation to the original Breusch-Pagan test
and its wild bootstrap version. Across all combinations of error distributions and types
of heteroskedasticity, considered, the wild bootstrap version of the new robust Breusch-
Pagan test (RBP;.) provided quite reliable finite sample inferences; especially when N/T
is not small, as hoped would be the case. Furthermore, the RBPr. seems to be as pow-
erful as its asymptotic counterpart, RBPr, under homoskedasticity and therefore there
is no penalty attached to using these wild bootstrap schemes even if the errors are ho-
moskedastic. Surprisingly, perhaps, the Breusch-Pagan wild bootstrap tests also provides
significant improvements over first-order asymptotic theory but proved less reliable that
RBPy. Thus RBP; recommends itself as an additional useful test procedure for applied
workers. Additionally, there is little to be chosen between the different bootstrap schemes
presented but direct resampling wild bootstrap scheme is computationally less costly than
the other schemes.
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Appendix

In what follows [|Al| = /37, 3=, af; denotes the Euclidean norm of a matrix A = {a;;} and N the set of

positive integers.

Asymptotic Validity of RBPr

Proof of Lemma 1
By Assumptions 2(v) and 4(i), {uiwje, Fi} is a m.d.s., with E |uiuje|*™° < oo and, by Assumptions 4 (ii)
and (iii)

T
.1 2 2 2 2
plim T E {uiuj, — Elujuj,]} = 0. (20)

T — o0 =1

To verify (20) note that, with 73, = Eluju},|Fi—1],

T T T

1 1 1

T g {u?tu?z - E[u?tu?t]} = T § :{u?tu?t - T?jt} + T § : {T?ﬁ - E[uiu?t]}
t=1 t=1 t=1

and the second term is op(1) by Assumption 4(iii). The first term is op(1) by a Law of Large Numbers for
the heterogeneous m.d.s., {uftu?t — T?jt,]‘—t} , since F |uftu§t|1+5 < 00

Then Assumption 4(iv) and a straightforward application of White (2001, Corollary 5.26, p.135), yields

1T
T D1 Uit

% ZtT:1 E[u?tugzt]

<4 N(0,1).

The result then follows by (20). W

We first present some preliminary results which are employed in the Proof of Theorem 1. The proofs
of these intermediate results exploit the fact that, following Kuersteiner (2001) and Goncalves and Kilian
(2004), (1) can be written as yi = > po o VirTi,t—k, Tit = wi0; + uit where 1, is a function of the true
parameter vector ¢,, satisfying the recursion ¥,, — ¢ ¢; oy — ... — ¢, ., = 0, for all s > 0, with
;o =1 and ¥, =0, k <0, for all ¢, implying that > ;2 k|1;,| < oo for all ¢ (see Bithlmann, 1995).
Furthermore, we can write Yi ;1 = 3% ¢iri,c—k where cix = (¥, 51, «-»71/)1,167,7)/ and 3707 [leir || < oo,
foralli=1,...,N.

Proposition 1 Under Assumption 2(i),(iv),(v), and for alli,j =1,..,N :

(a) E||lzi|*T° < A < oo for some § > 0 and all t;

(b) {xiuje, Fi} is a vector m.d.s.

Lemma 2 Consider a sequence of scalar random variables denoted Zr j, indexed by k € N, such that: (i)
E !ZT,;C} < A < oo uniformly in k and T; and, (i) Zr 2.0, as T — oo, for each fized k € N. Define
Sr =30 & 27k, where 352 €] < 0. Then, St = 0.

The following Lemma exploits Lemma 2 and is central to the proof of Theorem 1.
Lemma 3 Under Assumptions 1, 2, 8 and 4(i), and for alli,j =1,...,N :
(a) % ZtT:1 (mitl’;t - E[izﬂ;t]) = 0p(1), where Elzax}] < A < oo uniformly in i,j and t;
(b) % ZtT:1 Elzitxi4] is uniformly positive definite;

(¢) Sy wivuje = Op(1).

17



Proof of Theorem 1
It is shown that 4,; —v,; = 0p(1) and the result follows.

1. First, define M; = Iy — H;, H; = X; (X/X;)”" X{. Then,

T
~ A Al ~
Ut Ujt = U; Uy
t=1
’
= ’LLiMiMjUj

’ ! ! !/
= wiu; —u; Hyuy; —u; Hjuy +u; Hi Hju;

’ ’ ’
= E witje — wHyu; — w, Hyjuy + w, HiHju;

t=1

It follows from Lemma 3 that u)Hu;, ujH;u; and ujH;H;u; are all Op(1) with T7'X/X;, in
particular, being uniformly positive definite with probability one.

Thus T~ /? ZtT:1 Uit lje = T-1/2 Zthl Uit Ujt + Op(Tfl/z) and so, by Lemma 1, M A

\/th 1 UG s jt
N(0,1).

2. We now show that = Zt lﬁftuz — % 23:1 uftujzt = o0p(1), and the result follows. Making the
substitution w;; = wit — x,t(ﬁ B;) we get

a5y = ufy — 2uiexly (B, — B,) + (B, — B,) waie(B, — By),
so that, writing 6; = 3, — 8, = O,(T~/?),

T T
1 2 . 1 1
T Zu?tu?t -7 Zu?tu?t = 452 (T Zuitujtmitx;'t> d;
—25 — Zu Uit Tit — 25 — Zu UGt Tt
T
(T ; Jtmltmzt> 8i + 65 <T Euzt%t%z) d;
+0; < Zwit$;z5i5}$1t$;t> d;
t=1
T
—25§< Z thjt(ijltmzt) 8i
T
_26; (T Z thétéi:cjtx;-t) 0
8
= ZRQT, say.
q=1

By Markov’s inequality, Assumption 2(v), Proposition 1(a) and repeated application of Cauchy-
Schwartz, it can be shown that Rqgr = 0p(1), ¢ = 1,...,8, and the result follows.

~

Nl

'ﬂ \

For example, consider Rir = 46, (% Zthl 'U/it'l,bjtl'itl';‘t) 6. By Cauchy-Schwartz

E |uitujizinTiom| < \/E \Uitwitl|2 E |ujt1'jtm‘2 <A < oo,

and E |uiwin)® < E|uie|* E |lzia|* < A < oo, by Assumption 2(v) and Proposition 1(a). Thus,
by Markov’s equality, Rir = Op(T~1). Similarly, reasoning gives Ryr = O,(T /), ¢ = 2,3, and
Ryr = O,(T™1), for ¢ = 4,5.

For Rer = 6} (% > xit.f;t(;ié;‘xjt.f;‘t) J;, note that vec(ABC) = (C' @ A)vec(B), yielding

t=1

T T
1 1
c (T E a:itx;t&é;-:cjtx;-t) =7 ;:1 ((I'jt:r;‘t ® xitxét) vec (51-6;-)
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where elements of (x]-tx;»t ® :ritxét) are TjthTjt1TitmTitn, With

E|2ZjthZjuTitmTitn| < \/E |zjentjul? E|@imin|® < A% < oo,

implying that Rer = O,(T~2). Again, similar reasoning gives R,r = O,(T~3/?), ¢ = 7,8, and this
completes the proof. B

Proof of Corollary 1

Since 4;; —7;; = 0p(1) and KR N(0,1), ”yfj < x2. Furthermore, by asymptotic normality of 7.5, verifying
that E [uitujiursums] = 0, for pairs (i,7) # (p,q) and all ¢, s establishes the asymptotic independence of
the 4,; and the result follows. Firstly, note by Assumption 4(i), E[u;zuji|Fi—1] = 0 so we need only
consider t = s. Now, without loss of generality, we can assume i < j and k < m, with ¢ < k < m so that
E [uitujiukiume] gives the covariance between all possible distinct products {usuji}, @ < j, and {ukitme },
k < m. But this is zero by Assumption 4(v) and we are done. W

Proof of Proposition 1

(a) Since zj; = (wi;,Y;;_1) we only need to show that E [Vieo1]*™ < A < oo, given Assumption
2(iv). Applying Minkowski’s inequality, with ¢ =4 + §, we can write

[} q
1
EYi -] < <Z llearll (B In-,t_qu)q>

k=1

and by another application of Minkowski’s inequality
1 1\¢
Elricl” < (10:)) (B llwiel )7 + (Bluiel) 1) < o0 (21)

by Assumption 2(iv) and (v). This latter bound, (21), will also be exploited in subsequent proofs.

(b) We verify that E |Nzzuj:| < oo and E [Nzpuse|Fe—1] = 0, for all A € RPTM such that A'A = 1.
First, by the triangle inequality and Cauchy-Schwartz

ENziuse| < A Ellzal® Eug?
<

oo

from (a) and Assumption 2(v). Second, since {ui, Fi} is am.d.s., E [wirwje|[Fi—1] = wie E [uje|Fr—1] =
0, almost surely, for all t and E [Y; —1uji|Fi—1] = > ey ik B [ri,e—ruje| Fe—1] = 0, for 4,5 = 1,..., N.
Thus, E [N x| F—1] = 0. B

Proof of Lemma 2

Let S = > h &, 21, for fixed n. Firstly, it is clear that S 2,0, as T — oo for fixed n. Secondly, by
Markov’s inequality, for any A > 0,

Z §kZT,k

lim lim sup Pr (ISVT - 5';5| > /\) < lim lim sup lE
n—oo T—o0 k>n

n—oo T—oco >\

1 & 5
< lim lim sup ~ > [&,] E | Zrk|
T—o0 A k>n

n— o0

< Sam S jel=0

N0 p>n

since 35, |€,,] < co. Thus Sy 2 0. W
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Proof of Lemma 3

(a) Consider the corresponding conformable partitions of % ZLI zitxy,, where xj;, = (Wi, Yi 1 1).
First, by Assumption 1, wi;w;; is mixing and Assumption 2(iv) implies that E |jwiw;.||"T° <
A < oo, by an application of the Cauchy-Schwartz inequality. Thus, %Zle Wit W)y p —
T Zthl Elw; —nwj;_y) = 0p(1), by a Law of Large Numbers (e.g., White (2001, Corollary 4.48)),
so that + ZLI Wi t—nwj,_p, = Op(1), for all fixed h,k € N. In particular, these results hold for
h=k=0andi=j.
Second, for any p € R and any A € RP such that ||u|| = |\ =1

T oo
1 1
Ml <T E witY{,t—l) A= T E E gjkvit'rj,tfk
t=1 t=1k=1

where £, = ¢\, vie = p'wir. Since E |Jvigrj k|l < E|lwierje—x|l < A < oo, by Assumption 2(iv),
(21) and Cauchy-Schwartz, we can write

T (e o)
1 o
W D (Wi = Blw¥ ) A= 306,287
= k=1
where
- 1 T
Z%’,g) = T Z (Uitrj,t—k — F [’Uit'f'j,t_k])

(witw;,tfk - E[witw;,tfk]) } 9j

I
t\
—N
M=

M~

1
+u T Zwituj,t—m
and satisfies £ ’27(},? < A < co. Moreover, Assumptions 2(i),(iv) and (v) imply that {wiw;,¢—k, Fi—r}
is a vector m.d.s. satisfying %23:1 wituji—r = op(1l) for all fixed k& € N. As noted above,
230 (wiw),y — Blwaw),_]) = op(1), so that Z(TZ”,? L0 for all p € RM ||u|| = 1. Since

o2 |€5k] < oo forall j=1,..,N, Lemma 2 gives & > (witY],—1 — ElwitY},_1]) = 0p(1).
Finally, for any A\ € R” and again writing £;;, = cj\,

T oo 0o
1 1
/\/ {T Z (Y;‘.t—ly'j”t—l - E[Yri,t—lyrjl,t—lD} A= T Z Z Zgzké-]h (Ti,t—krj,t—h, - E[Ti,t—krj,t—h]) .
t=1

t=1 k=1 h=1

In order to show that )\’ {% ZtT:1 (Y,-,tlej’yt_l — E[Yi,t,le”t_l])} A =0, (1), we apply Lemma 2

repeatedly. Thus, we can write

T oo
1 o
by {T S (Yier Y por — E[Yii1 Yy 1)) } A=Y€, 280

t=1 k=1

where Z%’,f) =3 gjhzj(j,ylg,)h and

(Tist—kTje—h — E[rii—k7j,e—n])

N =
NE

7(4,7)
Zrn =
t

T
1
i { Z (wi,tfkw;,t—h - E[wi,tkwj,th])} 0;
=1
T

T
1 1
+92? Z Wi, t—kUj t—h + G;f Z Wy t—hUit—k
t=1

= t=1

1

Il
S
el

1

T
+ Z (wi,t—kUjt—n — E [Wit—xuje—n]),

t=1

el
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satisfying F ’ Z(Tl,g)h

< A < oo, since E|ri—krji—n| < A < oo by Cauchy-Schwartz and (21),

which in turn implies E‘Z(i’j) < A < oo. Similar to before, and for all fixed h,k € N, the

first three terms in the expression for Z(le ., are all op(1). For the final term, consider first k #
h, so that {wit—xuji—n,Fi—g}t, g = mln(k h), is a m.d.s. and Assumption 2(v) ensures that
% D i Wit—kUje—n = 0p(1), for all fixed h,k € N. Now, for k = h, and @ # j, {wit—ruji—r, Fi—r}
is a m.d.s. by Assumption 4(i) and + S Ui—kuj -k 2 0, for fixed k € N. For k = h and i = j,
we have, by Assumption 2(ii)

1 T
T (e~ Bl ) =
t=1

Nl

M~ HMH

T
1 Z 2
uzt k_o-zt k + = Uzt k_ uz,t—k])
t:l

1
T (u?,t—k - U?,tfk) +0p(1)

t=1

by Assumptions 2(ii) and (iii). By Assumption 2(v {ult & —alt s Ft— k} is a m.d.s., and
A (Wl ok — 0% k) 2 0, also. Thus for fixed h € N and k € N, Z\), = 0,(1). An ap-
plication of Lemma 2 establishes first that Z(”) P Dpedt 1§JhZ(TZ,g n = op(1), for fixed k € N. A
second application yields Y 7o ; & Z(Tz”,g) =0p(1 ), the desired result.

(b) By part (a), for i = j, %ZtT:I ziuxy — Qir = o0p(1), where Qir = %Zthl E[z;tzi;]. Writing
Zit = D gy Cik (w;t_kei) , (p x 1), Qir can be expressed as

T [ Elwiwi] Elwi i)

1
QiT:TZ

t=1 E[thwit] E [z’btzzt] + Zk 1 ClkczkE [ Uj t— k]

Now, by Assumption 3(i), % Zthl E [w;;w};] is uniformly positive definite so that its inverse exists
for large enough 7' Then, exploiting, for example, Magnus and Neudecker (1999, Theorem 27, p.23),
Qir is uniformly positive definite if and only if

T
TZE zltzzt +Zczkcm Z uzt k

is uniformly positive definite where

1 — 1 — B
Zit = Zit — T ;E [zirwi, ] {T ZE [witw;t]} Wit

Now, for all non-zero A € RP

T oo T—k
1 ~ 1
Narn = TZnyzMazwcikf{T 5 E[uft]}
t=1 k=1 t=1—k
. ) lek )
> Y e 1S Bl
t=1

k=1

bS]

and the right hand side is uniformly positive, because % ZtT;lk E [uft] is uniformly positive by
Assumption 3(ii), for any k < p, and Y 5 _,; |Neir|? > 0, for all non-zero A € RP. Therefore Ar > 0
for sufficiently large T' (uniformly positive) and the result follows.

—
o
-~

It suffices to show that var [% SE :citujt] = O(1). By Proposition 1(b), {\ zitu;:, F:} is a m.d.s.
for any X € RPT™ such that ||| = 1, so

T T
r L/IT 3 xwﬁ} — < > Bl ) 3y
t=1

By Assumption 2(v) and Proposition 1(a), and a repeated application of Cauchy-Schwartz, it can
be shown that E Hu?t:citacétn = O(1), uniformly in ¢, and the result follows.

This completes the proof. B
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Asymptotic Validity of the Wild Bootstrap

We verify this for the recursive wild bootstrap scheme (WB1) only and, following Davidson and Flachaire
(2008), with uj; = €4+t;+ where the ;¢ are i.i.d for all ¢ and ¢ taking the discrete values £0.5 with an equal
probability of 0.5. With slight amendments, the proofs remain valid for any e;; which are i.i.d mean zero
and unit variance and the derivations for the other two bootstrap schemes are straightforward. Finally,
and for simplicity, vy, = 0, for all s < 0, although the proofs can be adapted for the case of y; = ys, for
all s=—p+1,...,0, so that from (6),

t—1
* *
Yit = Z YipTit—k
k=0
N
where 77; = 0wt + ujy. Furthermore, for t = 1,...,T, Y;%,_; can be expressed as
t—1
* ~ *
Yz‘,z71 = Z CikTit—k
k=1
T-1
A~ *
= > kbl
k=1

where bj; = 1 (¢t > 0) rj;, where 1(.) is the usual binary indicator function since rj; = 0 for all ¢ < 0.

We exploit the following definitions (as in Goncalves and Kilian, 2004). For any bootstrap statistic, S7,
we write ST = 0p+ (1), in probability, if for any § > 0, P* (||ST|| > 6) = 0,(1), where P* is the probability
measure induced by the wild bootstrap conditional on the sample data. Similarly, ST = Op=(1), in
probability, if for some r > 0 and all A > 0, P* (||St|| > A) < Mp /X", and My = E* [||S7]|"] = Op(1),
at most, where E* [.] denotes expectations induced by the wild bootstrap conditional on the sample data.
Finally, ST L D, in probability, for any distribution D, when weak convergence under the boostrap
probability measure occurs in a set with probability converging to one; i.e., if the proposed limit distribution
is D(x) then, sup,cp |[P* (ST < z) — D(x)| = 0p(1).

Furthermore, in what follows, let ;" be the sigma field generated by current and lagged values of &;;
in the bootstrap sample (i.e., {eit—p},7=1,..., N, p=0,1,2,...,t —1).

The following preliminary Lemmas informs the proof of Theorem 2 and are the bootstrap counterparts
of Lemmas 2 and 3:

Lemma 4 Consider a sequence of scalar bootstrap random wvariables denoted Z:’,‘w’k and a sequence of
scalars, fup ., indexed by k € N, such that: (i) E*|Zy,| < Mr = Op(1) uniformly in k, as T — oo;
(i) Zi. — firy, = op= (1), in probability, as T — oo, for each fized k € N; and, (iii) ‘ﬂT’IJ <A< o,
uniformly in k and T. Define S5 = ngll ékZ}k — > peq iy g, where the &, are scalar functions of the
parameter estimators, such that, for each k € N, &, — &, = 0,(1), and S22 1€kl < 0o. Then, S7 = op- (1),
in probability.

Lemma 5 Under Assumptions 1,2 and 4(i),(ii) and (iii), and for all i,5 =1,...,N :
(a) TP 30 (aha)i — Elzaal])) = 0p= (1), in probability;
(b) T2 Zthl xhujy = Op= (1), in probability;
(c) % Zz;l (ﬁff — E[uft]) = 0p+ (1), in probability;
(d) % 23:1 (aﬁﬁ;f - E[ugtu?t]) = 0p* (1), in probability.

Proof of Theorem 2
Consider first RBPy. For 4;; defined at (7), we first show that

;Y:j = ’Y:j + Op*(l)» (22)
in probability; and, second, that
L ST wut, .
= A= SN, (23)

Tij LT o202
T D=1 U Uy
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in probability. In particular, the variance estimator employed in the construction of 47, is asymptotically
equivalent to the variance estimator employed in the construction of 4,;; c.f., Goncalves and Killian (2004,

Corollary 3.1). Tt follows immediately that 47 N N(0,1), in probability. Thus, by Theorem 1 and
continuity of the normal distribution,

sup |[P*(4;; < @) — P (§;; <x)| &0

as T — oo and for fixed N, and the result follows since E* [uj;ujyuj uj,] = 0, for distinct pairs (4, j) and
(h,k). (Note, in passing, that the asymptotic validity of WB3 follows immediately from (22).)

Step 1: First, define H} = X} (X}'X})” " X', where X} has rows zf,, with u} = (u}, ..., uls). Note
that Lemma 5 and Assumption 3(i), ensures that (X' X} /T) " exists for sufficiently large T and is Op« (1),
in probability. Then,

T
—-1/2 Ak Ak —1/2 * K —1/2 */ pr¥  * *! Tr¥  * *! pr¥ Tr¥
T E utut— E uitujt—T {ul Hiuj—ui H]u] +ul H,LHJU,]}

It is immediate from Lemma 5 (a) and (b), and Lemma 3(b), that the terms w}'H;u}, u;'H u} and

ui'HY Hiuj are all O+ (1), in probability Furthermore, since % ZtT X (43,43, — Elufu3;]) = op(1), Lemma
A *2 A *2

5 (d) and the triangle inequality gives 7 Zt 1 Ui

in (22) follows immediately.

-5 Zt 1 ultuﬂ = 0p+ (1), in probability. The result

Step 2: Write
R D T T T i ¢
Vij = -~ T 2 ijt, T

A2 '*2
TZt 1 zt ]t

. Now, E*[¢};;r] = 0 and, due to (conditional) independence,

€it€ it Uit gy
T a2 a2

* j—
where (7, 7+ = -
t=1 Uit U5t

T

= Z Chor=1

1 T
—=> Ciur| =
\/T t=1 !

To apply a (triangular array) Central Limit Theorem for (conditionally) independent, but heterogeneous
data, it suffices to check that the Liapounov condition'’

T
T Z E !Gjt,T|2(1+6) = op(1).

t=1

But this is true because
1 T T —(1+9) 1 T
* | mk 2(1+49) A2 A2 A~ 12(140
T ZE |Cz‘jt,T| = { Z tujt} T Z Qi Qe | () = 0,(1)
t=1 t=1 t=1
since, by Cauchy-Schwartz inequality,
T T
Z it 2(1+6) < Z it ‘4(1+5 o Z 4(146)

and 771307, i) "+ = 0, (1), under our assumptions, since @ir = wir — 24, (3; — B;). To sce the latter,
write ¢ = 4(1 + §) and apply Minkowski’s inequality, which yields

1 T 1 T 1/q 1 T . 1/q
it < ({3} i ylsal
t=1 t=1 t=1
1 T 1/q 1 T 1/q
< ({Fxwr} {5 ]
t=1 t=1

0Here the stronger Liapounov condition replaces the Lindeberg condition of, for example, White (2001,
p.117).

q

IA

q
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Since B]- = Op(1), the right hand side is Op(1) by Markov’s inequality applied to + Z;‘rzl |uje|? and
+ Zle ||z;¢]|?, exploiting Assumptions 2(iv) and (v).
Thus, v;; = T2 Zthl Chitr LN N(0,1), in probability, and this completes the proof for RBPy.

Now consider BPy. Firstly, since our assumptions ensure that ST (@2, — E[ud]) = op(1) and
% 23:1(711215@]21 - E[u?tu?t]) = o0p(1), pi; = /v ¥i; + op(1) where (the scalar)
T
ij % Zt:1 E[U?ﬂ?t]

=0()

vy = =
% 23:1 Bluz, % 25:1 E[“?’t}

and is strictly positive for T sufficiently large, by Assumptions 3(ii) and 4(iv). Furthermore, for pj; defined
at (8), and by Lemma 5 (c) it is also true that p;; = v?wz’-‘j + o0p+ (1), in probability, since by the Davidson

and Flachaire (2008) wild bootstrap scheme, ui? = 4% Therefore, we can write

sup!P*([)Zj < w) _P(bij < ﬂ?)’ :SUP’P*(’Y;‘ < x/ ”?) _P(%‘j <z/ U%) +0P*(1)»

in probability, as T' — oo and for fixed N. The result then follows from the analysis for RBPr, above. B

Proof of Lemma 4
Write ~ ~
St =S1" + Ry,

a* n—13% Zx% n—1 — * T—1¢ % oo —
where ST" = Y071 £, 275 — D opey EnBiry, for any fixed n < T, and Ry = 3,2 & 27 — D o, Sulir ke
Consider S7", which can be expressed

n—1 n—1
S;n = ka(Z;‘k - p‘T,k) + Z(gk - fk)Z;"k
k=1 k=1

= Sit+S37.
First, since, Z:’,‘w’k — fip, = op=(1), in probability, for each k € N, S{} = op«(1), in probability. Sec-
ond, E*[S37| < Mr 721 (€, — &) = op(1), so by Markov’s Inequality S3% = o0,+(1), in probability.

It then suffices to show that for any § > 0, lim,— oo limsup,_, . P* (JRT| > §) = 0, in probability, or
limp oo limsup,_, o E* (|Rr|) = 0, in probability. To show this, note that

T—-1 o
B (Rel) < 0 [&| B* 1204l + D Il [irl
k=n k=n
< My fi]+adlel
k=n k=n

where My = Op(1) and A = O(1). Since &, — &, = op(1), and Yoreq €kl < oo, there exists a Ty
such that suppso, D opey ‘ék‘ < 00, in probability (c.f. Bithlmann, 1995, Lemma 2.2) which implies that

SUPT>T, D pen ék‘ = 0p(1) as n — oo. Thus

lim lim sup E* (|Rr|) = 0p(1)

n— oo T—o00

which completes the proof. B

Proof of Lemma 5
(a) Consider the corresponding conformable partitions of % Zthl xj,x};. Since we already have that
T, (wiw), — Elwigwl,]) = op(1), it suffices to show that:
(i) T, (waY] )y — ElwiY/,_1]) = 0p= (1), in probability; and,
(i) 7' o0, (Yi1Y)io1 — E[Yie-1Y], 1]) = 0p= (1), in probability.
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For (i), exploiting b, = 1 (¢t > 0) (éiwzt +u},), we can write for any p € RM and any A € R? such
that [[u] = [|All =1,

T T T-1
{ Z wirY]s_1 — ElwinY, 1] },\ Z (Z &ipvit] sk — ZgjkE VieTj - k}>
1 k=1

where v;+ = p'w; and %jk = &\, &), = CjiA, such that £, — &, = 0p(1), and 327°, [€,] < co. Thus,

~
|

1

T
]. * 7, —(z,
' {T Z (withl,t—1 - E[wityjl,t—l])} A j) ijk#(T ;]C)

= k=1
= ;“( ])7 say,
where
o 1 E
Z;EZ]) = Hlf t_zlwitb;,t—k
T T
AR IR DRV Rt
t=k+1 t=k+1

and

Il

t\
Nl =
[~

IS .

g

&

i

Rl
——

ch

Now apply Lemma 4 to S’;(i’j). First, by the triangle inequality and noting that |e;;—x| = 1,

T T
* | 7*(1,7 2 1 * *
FE ZTfk’]) < 0 T Z Wi Wj—k|| + £ || = Z WitUj ¢
t=kt1 t=k+1
| &
< T D Mwivde—kll + Op(1),
t=k+1
and,
T T T 1/2
TS iy el < {(ley\wzu) (leaﬁf)} |
t=k+1 =1 =1

which is also Op(1). Thus E*
(i,5)

Z;Sz’j)‘ < My = Op(1) uniformly in k.

Second, .,u < 11651 % Zthl E |wit|> < A < oo, by the triangle inequality, Assumption 2(iv),

and Cauchy-Schwartz. N
Third, to establish that Z;«EZ]) - ﬁ(Tl:i) = 0p+(1), in probability, note that for any fixed k € N,

T T
Sk(ind)  —(irj 1 1 *
50 - e = W {T Y (wiew)e—k — Elwiwf;—y]) } 05+ 05 D waia

t=k+1 t=k+1

k
1 R
+u {T E E[witw},t_k]} (0; —0;),
t=1

so that
. y 1 &
Z;f:]) _ ﬁ(lez) — “,f Z wist) g, + 0p= (1)
t=k+1
' 1
= Z Wi kUje + 0p* (1).
t=1
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It follows that, conditional on the original sample,

E" [Wwipprnuie| Fio] = plwie kBT [gjetye| Fia]
= pwierie BT 5] ]
0

so that {p'wieyxuly, Fi'} is a m.d.s. and, by Cauchy-Schwartz,

*
var

T—k 1 T—k
WY wiertfe| < o Yt wiekl?
T ik T2 2t I
t=1 t=1

T—k T—k
1 1 | 2
S a7 2o e 2 Iwierell
t=1 t=1
T T
11,1
S 7 TE ujtTE [[wit ]
t=1 t=1
= OP(Til)

because both %23:1 @3, and %ZtT:I |lwit||® are O,(1). Therefore, by Chebyshev’s inequality
Z;E;’]) - ;](Tli) = 0p+(1) and we are done.
For (ii), we can write, for any A € R? such that ||A]| =1,

T T—1T-1 [SSENeS)
1 * * ~ ~ S (i, _(i,j
N5 DD (Vi - ElYaaYja) A = EalinZrin = D D EulpnBrih,
t=1 k=1 h=1 =1h=1
— *;(i,1)7 say,
where
o 1 T
Z;(ijf = fzb;tfkb;,ifh
t=1
1 d
. , .
= 91 T Z wi,t—k’wj,tfh Gj
t=max(k,h)+1
1 T 1 T
+9if Z Wit kWi s p + QjT Z Wy i—h UG 4
t=max(k,h)+1 t=max(k,h)+1
T

1 * *
+? E Uit kWj t—h,
t=max(k,h)+1

and
. 1 &
Aeln = g 2 Bl
t=1
1 T
= 0 {T ZE[wi’tk“’;ath]} &
t=1

+ E (i —rpuji—n] -

Nl
B

1

-
Il

Again, we apply Lemma 4 (twice), to S’}(i’j). First, and by arguments similar to those used above,

E* Z;(ij}z < M7 = Op(1), uniformly in k and h, noting that

* 1 o * * 1 d ~2
E"| % E Uit—klje-n| S E Uiy -
t=1

t=max(k,h)+1
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Second

1 — 1 —
7, 2 2
A2 < 1001050 5 S Bl + > Bl
=1 —

< A< co.
Finally, we can write

1 T

Z*(Z ]) ﬂ¥ ;]C)h = T Z (U:,t—kuj,t—h -F [Ui,t—kuj,t—h]) +op(1),
t=max(k,h)+1

where the op,(1) term incorporates: % EtT max(k,h)+1 (wi,t,kwéyt_h - F [wm,kw;,t_h}) = op(1),

L ZmaX(k ) Elwio ) ,_p] = O(T~ )7 L Zmax(k k) Elui -y, 5] = O(T™"), and similar argu-
ments to before show that, for example, T Zt:max(k’h)H Wit kU —p = 0p= (1), for all fixed k, h € N.
For the remaining term consider first ¢ # j. Then for all fixed k,h € N, E[ujt—ruji—n] = 0
by Assumption 4(i {ult WU n Fig}, g = min(k, h), is a m.d.s. and it can be shown that
T Et:max(k’h)ﬂ u; U}, = 0p=(1). In a similar fashion, for ¢ = j and k # h, E [wit—ruit—n] =0
by Assumption 2(i) and %Zz max(k k)1 Wi t—kUit—n = 0p+(1). Now, for i = j and k = h, we have
ui_, = 47, , and we have previously argued that = Et k1 (67— — Eluf;_4]) = op(1). Thus,
Z;(Z]h) ;L(T’i)h = 0p+ (1), and we are done.

(b) First consider d}{\7) = 71/ o1, wiru,. Now, for any p € RM such that [|ul| = 1, {p/wieu,, F7}
is a m.d.s, and sumlar arguments to before show that var* [u d*(“)] = 0, (1) and the result follows

from Chebyshev’s inequality.
Second, for any A € R? such ||| = 1, consider

T
1 ogx(i,g) —1/2 Iy * *
A dQT = T A Yvi’t_l’ll/jt
t=1
T t—1
Ak *
= E E §1kri,t—kujt
t=1 k=1
T T-1
_ —-1/2 ~ * *
= T E gikbi,tfkujt-
t=1 k=1

where Elk = Néw, by = 1(t > 0) 7}, and it suffices to show that T71/2 23:1 52—11 gm e kUfy =
Op=(1), in probability. We have

T T-1 T

—-1/2 - * * _ m—1/2 *  x

T E E §¢kbi,t—kujt—T E Ujt Rt
t=1 k=1 t=1

T-13 t—1
where kj = >, 77 Eabiir = D 1fzkr” s> is simply a function of 0, Wis + Uiy, s = 1,...,6 — 1.
Therefore, {u},x};, F;'} is a m.d.s and, since |ei| = 1,

T T-1 1 T

* —1/2 o~ * * _ *r k2 %2

ar” |T E E &b t— kUt = TE E [ujt/‘iit}
t=1 k=1 t=1

[
Nl =
N

T-1 2
g B {Z aikb;itk}
k=1

1

-
Il

and it suffices to show that this is Op(1). By the triangle inequality and Cauchy-Schwartz we can
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IN

Nl

HMH \\Mq an

1 T-1 2 T—1T-1
T Z ’l’)/?tE* { £ikb:,t7k } Z Z zk&zh

k=1 k=1 h=1

* *
‘bi,tkbi,th|}

g
$

T
S Z Z t - Z i,t—k lt—h’
k=1 h=1 t=1
oo 2 T
< {3k } L WERSWETY
k=1 t:l

since

T T
* 41 * 4 1 * 14
bi,t—k‘ T Z bi,t—h‘ < T Z it

t=1 t=1

1 I . , L X
f;wi,t—kbi,t—h < T;

Nonv7 we have previously shown that + Zthl G5z = Op(1). Using this, and noting that |rj|
[|0:]| llwst]| + |@i¢|, it can similarly be shown by Minkpwski’s inequality that - S < Mr =

IN

Oyp(1). Finally, there exists a Ty such that suppsp D52 £
to show that d;(Ti’j) = O+ (1), in probability.

x| = Op (1). These results are sufficient

Write 4], = uLt —
ity, so that = Zf 1(

TZt 1( Uiz —

( 3,). From (a) and (b) above, 3; — B, = O,=(T""), in probabil-
2 a0 ) = 0,+(1), since €% = 1. Moreover, our assumptions ensure that
L 0, and the result follows by the triangle inequality.

Since Br — B, = op (1), in probability, it is sufficient to show that = Ly 1yzt n = Op=(1), in
probability, since then 2 T thl (ﬁffﬁf unu]t) = 0p (1), in probability, given €2, = 1. The result

follows by the triangle inequality and % S (a%,43, — Elufu3,]) 2 0. Briefly, let ej, be the (p x 1)

unit vector with 1 at position h and zeros elsewhere and let %m = ¢} en. Then

T T —1 4
Zyzt n =< TZ(Z Slkbz,tk‘>
t=1 t=1 k=1
T-1T-1T-1T— .
= Z Z 1k3£zk4
k1=1ko=1ks=1ks=1
1 I
X T Z !b;'k,t—kl b:,tka b:.‘ﬁ,tfkgbz,tfk4|
t=1
<

(Elf {rer}

But, 7' "7 |75]* < Mr = 0,(1), so T >, yrt_n = Op=(1), in probability. B

28



Table 1: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and
BP tests in panel ADL(1,0) models under homoskedastic errors (HETO).

Ho : E [tiruge] = 0 Ha : Euiru;e] = 0.2
SN t5 X(zs SN t5 Xg
N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
Asymptotic critical values Asymptotic critical values
T RBPr RBPr

50 5.1 58 7.7 45 35 64 37 39 70 9.6 17.2 53.3 9.8 20.2 55.2 8.2 16.1 42.9
100 4.3 5.7 6.8 40 5.1 56 46 39 7.0 18.0 40.0 89.0 17.7 42.1 87.0 15.6 31.7 80.3
200 4.6 5.0 55 4.6 5.1 48 44 54 59 35.1 75.6 99.9 374 775 99.6 30.1 69.1 99.0
BPr BPr
50 5.1 56 9.1 54 55 84 49 52 84 10.5 20.0 59.9 11.7 24.5 59.5 12.1 24.3 57.9
100 5.1 63 7.5 5268 71 49 49 7.1 19.2 41.5 89.9 19.8 44.0 87.0 21.1 42.9 88.7
200 4.8 52 53 6.0 59 56 4.2 58 54 36.2 76.0 99.9 379 77.2 99.3 35.8 749 99.5
WB 1: Recursive resampling WB 1: Recursive resampling
T RBP; RBPy
50 5.8 5.7 47 53 46 50 4.7 4.1 45 10.3 17.3 48.0 11.3 20.9 514 9.4 16.1 37.7
100 45 54 56 48 57 50 52 49 6.3 18.5 39.3 87.2 19.6 43.2 86.3 17.1 32.7 79.1
200 4.8 47 49 48 57 49 49 58 5.2 34.8 746 999 388 774 99.6 31.6 69.5 98.9
BP; BP;
50 5.2 49 40 52 44 46 48 3.9 4.3 10.5 16.7 48.8 10.7 20.8 49.7 11.4 19.9 48.2
100 4.6 5.7 57 47 59 51 4.6 4.6 55 18.7 40.1 87.5 18.3 42.0 84.5 19.8 39.5 86.6
200 45 48 45 53 55 51 43 53 4.8 35.2 749 999 36.4 758 99.3 34.3 74.1 99.6
WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP; RBP;
50 5.6 5.7 52 56 43 52 4.7 4.1 49 10.7 17.2 47.6 11.7 20.8 51.6 10.1 15.7 38.2
100 4.6 55 59 50 55 50 5.3 4.8 6.1 18.1 39.1 86.9 20.0 43.6 86.3 17.7 32.8 79.4
200 4.8 4.8 49 5.0 59 48 49 56 5.1 34.6 745 99.9 38.5 77.7 99.6 31.7 69.2 99.0
BPr. BPy
50 5.7 54 47 53 47 51 49 4.1 4.2 10.2 16.9 48.8 10.8 20.9 50.0 11.1 19.6 49.1
100 4.8 55 59 4.7 59 52 5.0 4.2 5.3 18.8 40.0 87.5 184 41.8 84.8 19.2 39.2 86.9
200 4.6 5.1 5.0 5.1 5.5 4.8 4.2 5.7 4.7 34.8 74.8 999 36.6 75.6 99.3 34.7 74.0 99.6
WB 3: Direct error resampling WB 3: Direct error resampling
T RBP; RBP7
50 58 59 53 54 49 51 48 39 5.1 10.3 17.5 48.6 12.2 21.8 529 10.0 16.7 39.5
100 4.3 55 6.3 49 59 52 54 4.7 6.5 18.3 39.8 87.3 19.5 43.3 86.8 17.2 32.8 79.6
200 4.8 48 5.1 4.7 53 5.0 44 5.7 5.1 34.5 747 999 38.7 778 99.5 314 69.5 99.0
BP; BP;
50 55 52 51 52 46 56 49 4.2 45 10.5 17.4 504 11.3 21.8 51.1 11.2 20.2 50.1
100 4.5 5.7 59 47 59 52 47 44 6.0 18.5 40.2 88.0 18.4 42.1 84.5 19.5 39.8 87.3
200 49 49 45 51 5.7 50 4.0 53 4.7 349 75.0 999 36.7 75.6 99.3 34.3 74.1 99.6

Notes: The first data generating process considered is y;z = 031 + 6i22it + d;¥i6—1 + uie, 4 = 1,2,...,N and
t = —49,—-48, ..., T.with 0;; ~ i.id. N(0,1), ;2 =1—¢;, ¢; ~ i.i.d. Uniform[0.4,0.6], and the z;; are generated for
(N =5,T = 25) as independent random draws from the standard lognormal distribution. This block of regressor
values is then reused as necessary to build up data for the other combinations (N, T). y; —49 = 0, and first 49 values
are discarded. The error term is written as w;; = 04¢€4¢, ¢ = 1,2,..., N and t = 1,2,...,T. There is homoskedasticity
under scheme HETO, with o;+ = 1 for all t. The term ;¢ is generated as ;1 = /1 — p2&,;, + pl,where &;; ~ i.i.d.
(0,1) and ¢; ~ i.i.d. (0,1), which are independent of each other. For estimating significance levels, p = 0.0. Power
is investigated using p = 0.2. The i.i.d. standardized errors for &, and ¢, are drawn from: the standard normal
distribution (SN); the t-distribution with five degrees of freedom (¢5); and the chi-square distribution with six
degrees of freedom (X(za) The RBPr test signifies the proposed robust cross sectional correlation test, and the BPr
test is the LM test of Breusch and Pagan (1980). Three wild bootstrap procedures are explained in the earlier
section in details. The sampling behaviour of the tests are investigated using 2000 replications of sample data and
200 bootstrap samples, employing a nominal 5% significance level.
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Table 2: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under one-break-in-volatility heteroskedastic scheme

(HET1).
Hy : E [ujtuje) =0 Hy : Elujruj] = 0.2
SN ts Xz SN ts Xz
N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
Asymptotic critical values Asymptotic critical values
T RBPr RBPr
50 4.7 45 7.2 3.7 41 64 39 40 7.1 8.6 16.1 49.1 8.6 183 52.6 7.6 14.0 40.6
100 4.2 55 6.7 40 4.4 538 44 4.0 64 14.8 34.3 84.8 15.2 39.2 82,5 14.0 28.7 75.0
200 4.7 51 5.0 42 5.0 49 41 55 5.5 29.7 67.8 99.9 33.7 724 99.3 26.7 62.1 97.8
BPr BPr
50 9.5 174 56.2 9.4 16.3 52.8 10.1 15.7 53.2 16.2 35.7 89.8 17.5 37.7 87.0 184 37.4 88.8
100 8.5 169 529 9.7 174 50.2 9.8 16.7 52.9 254 57.4 984  25.2 59.8 97.8 27.4 56.4 98.5
200 9.3 17.2 549 11.7 18.2 51.8 8.9 18.1 51.0 43.2 84.4 100.0 44.4 85.2 99.9 42.5 84.1 100.0
WB 1: Recursive resampling WB 1: Recursive resampling
T RBP; RBPr
50 5.2 4.6 4.3 4.6 4.5 4.7 45 4.2 5.0 9.7 159 423 9.7 19.8 49.1 8.7 146 35.8
100 4.5 58 5.8 5.0 5.1 5.0 55 44 5.6 16.1 34.3 82.1 17.0 40.3 81.5 15.9 30.0 734
200 5.1 54 5.1 5.5 54 49 43 59 5.0 29.7 67.2 99.8 34.8 72.1 99.3 28.0 63.0 97.7
BP; BP;
50 4.7 51 6.3 53 5.0 6.1 5.6 4.3 5.5 10.0 16.1 47.3 9.5 20.0 49.5 10.7 18.8 47.8
100 44 59 6.7 4.7 59 5.7 52 44 59 16.3 35.5 83.3 15.8 39.4 80.6 17.7 36.5 83.7
200 5.1 5.5 5.6 53 6.3 59 47 53 5.2 30.8 679 99.8 33.5 69.5 989 314 68.6 99.0
WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP; RBPy
50 5.3 4.3 44 4.8 48 5.0 46 42 49 9.8 16.0 43.4 104 19.8 49.5 9.4 14.7 358
100 44 58 5.8 4.8 5.1 5.3 51 4.3 5.7 159 34.3 824 16.7 40.6 81.7 16.0 29.8 73.5
200 49 5.1 4.7 55 5.5 49 45 59 49 29.8 67.3 99.7 348 722 99.2 279 63.0 97.6
BPy. BPr.
50 4.8 53 6.3 53 53 7.1 6.1 46 5.9 9.8 16.2 47.5 10.2 20.2 496 10.3 19.0 49.1
100 44 6.1 6.7 44 59 6.1 47 44 6.0 16.5 35.7 83.3 16.2 39.2 81.0 174 359 83.8
200 4.9 55 5.4 55 6.0 5.8 44 54 53 30.9 67.7 99.9 34.1 69.3 989 314 68.9 99.0
WB 3: Direct error resampling WB 3: Direct error resampling
T RBP; RBPr
50 5.5 49 438 5.0 5.1 5.8 46 4.0 54 9.6 16.1 44.2 10.3 19.9 498 94 14.7 37.2
100 4.2 59 5.7 49 51 56 53 4.5 5.9 16.4 34.0 82.3 17.4 40.8 82.3 15.9 30.3 73.8
200 5.1 55 4.9 5.2 52 49 43 6.1 5.1 29.9 67.6 99.8 35.0 72.7 99.3 283 629 97.7
BPy BP;
50 4.7 4.7 55 51 5.0 6.1 52 44 5.9 9.8 155 46.9 10.0 19.5 49.5 10.1 18.6 47.7
100 4.3 6.1 6.1 44 5.8 5.5 4.7 43 59 16.0 35.1 829 159 38.8 80.1 17.4 35.4 834
200 4.6 55 5.2 52 6.0 5.5 45 53 5.1 30.5 674 99.8 339 69.7 989 31.1 68.1 99.0

Notes: The data generating process is identical to those used for Table 1 except that oy =0.8 for t =1,2,....,m =
|T/2] and o4+ = 1.2 for t = m,m + 1,...,T, where |A] is the largest integer part of A.
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Table 3: Rejection frequencies of the asymptotic and various wild-bootstrap RBP and BP
tests in panel ADL(1,0) models under trending volatility heteroskedastic scheme (HET2).

Ho: FE [uitujt] =0 Ha:E [Uitujt} =0.2
SN ts Xa SN ts Xe
N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
Asymptotic critical values Asymptotic critical values
T RBPr RBPr

50 52 49 74 40 39 64 41 38 7.3 8.8 16.6 51.4 9.1 19.6 55.1 8.2 149 41.6

100 4.0 54 64 40 44 52 45 34 6.9 16.8 38.8 87.4 17.0 40.8 85.7 14.4 30.5 78.9

200 4.7 48 52 42 52 51 42 52 55 329 725 99.9 371 755 99.5 29.0 66.8 98.5
BPr BPr

50 6.8 9.5 21.3 6.3 82 21.1 6.4 85 20.0 124 242 723 133 29.6 71.3 14.1 28.9 71.0

100 5.5 94 195 6.1 9.0 184 6.0 81 19.5 214 475 945 21.0 49.2 91.7 23.4 479 93.6

200 6.3 84 179 76 9.5 172 6.0 9.1 16.0 38.6 79.2 100.0 39.8 80.3 99.7 39.0 79.2 99.9

WB 1: Recursive resampling WB 1: Recursive resampling

T RBP; RBP;
50 59 51 45 53 43 47 5.0 42 49 10.0 16.6 459 11.0 20.3 50.2 9.2 15.2 37.6
100 4.1 56 54 4.7 51 50 52 39 64 17.3 38.2 85.5 18.3 42.8 849 16.3 32.1 77.1
200 5.1 48 48 48 57 56 4.7 58 5.1 325 71.1 999 37.8 75.6 99.5 30.6 67.0 98.6

BPr. BPr
50 5.2 51 50 51 51 53 5.0 41 4.7 9.9 172 48.0 10.2 20.3 50.4 11.2 19.5 48.5
100 44 59 6.2 45 58 49 48 36 6.1 175 38.6 86.2 17.7 40.2 83.1 18.3 38.7 86.1
200 4.8 53 50 52 58 56 43 5.6 438 32.7 71.8 999 359 73.1 99.3 33.1 71.9 99.3

WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBPr RBPr
50 5.7 4.8 48 50 43 49 50 43 54 10.1 16.8 45.7 11.0 20.8 51.2 9.7 15.9 37.9
100 4.1 51 54 44 51 49 5.1 40 6.1 17.5 38.6 85.4 18.5 42.5 85.0 16.7 32.3 77.4
200 54 49 4.7 49 59 53 4.8 6.1 5.1 329 71.0 99.9 38.0 759 99.5 30.3 67.3 98.5
BP;. BPr
50 55 51 53 5049 59 51 41 49 10.1 17.2 478 10.6 20.4 51.1 11.4 19.4 49.1
100 4.2 57 63 43 58 51 48 39 6.0 17.6 38.7 86.2 17.7 40.6 83.0 18.0 38.7 86.2
200 5.0 5.0 48 52 57 53 43 55 5.1 329 71.6 100.0 36.1 729 99.3 33.8 719 99.1

WB 3: Direct error resampling WB 3: Direct error resampling
T RBPy RBPy
50 5.7 5.1 49 48 50 51 51 43 5.9 10.5 17.0 46.7 109 21.0 52.1 9.7 15.6 39.0
100 43 54 56 44 57 49 50 42 6.7 18.0 38.5 85.9 18.8 42.2 85.2 16.6 32.0 77.0
200 49 51 49 5159 56 4.7 6.2 5.1 327 714 999 379 76.0 99.5 30.1 66.9 98.5
BPr. BP;
50 5.2 50 51 55 53 59 52 43 5.0 10.1 16.9 48.6 10.2 204 51.2 11.0 19.2 49.3
100 4.7 58 6.1 46 57 53 50 39 538 17.7 385 86.0 18.0 40.2 829 18.3 38.4 86.0
200 49 50 49 5359 56 43 54 5.1 329 71.5 99.9 358 729 99.3 33.3 71.8 99.3

Notes: The data generating process is identical to those used for Table 1 except that o+ = 09 — (01 — 00) (g)

T—1
with o9 = 0.8 and o1 = 1.2.
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Table 4: Rejection frequencies of the asymptotic and various Wild Bootstrap RBP and

BP tests

regressor

in panel ADL(1,0) models under conditional heteroskedasticity depending on a

(HET3).

Ho ) [uitujt] =0

Hy : Euiruje] = 0.2

SN ts Xe

SN ts Xe

N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
Asymptotic critical values Asymptotic critical values
T RBPr RBPr
50 49 51 83 41 43 65 35 45 7.0 8.7 16.8 53.4 9.4 19.5 540 7.8 16.0 43.8
100 44 55 76 43 45 57 38 53 6.7 15.7 37.1 872 16.7 40.9 855 15.2 31.1 78.5
200 4.6 48 55 45 51 49 41 56 5.5 32.6 71.2 99.8 359 74.1 99.5 28.3 65.8 98.7
BPT BPT
50 5.5 74 150 54 6.7 146 5.2 6.8 14.5 10.7 20.5 63.9 11.0 24.3 624 12.0 25.3 63.0
100 49 79 142 56 86 139 54 7.3 138 18.3 419 92.2 19.0 45.4 88.9 20.2 43.2 90.8
200 49 7.0 145 6.0 7.1 13.6 49 7.3 122 34.3 75.4 100.0 36.6 76.9 99.6 33.8 75.1 99.9
WB 1: Recursive resampling WB 1: Recursive resampling
T RBPy RBPy
50 53 50 53 51 43 45 42 43 438 9.3 15.7 46.0 11.2 20.1 49.8 9.0 16.5 38.7
100 48 59 6.1 50 51 49 49 59 5.6 16.0 36.9 85.1 18.3 41.6 84.3 16.4 31.8 75.8
200 4.8 45 49 51 54 47 44 59 5.0 32.3 71.0 99.8 36.3 74.6 99.5 29.3 66.7 98.4
BP; BP;
50 5.8 5.1 6.7 5.0 47 6.1 43 4.7 538 10.0 16.7 49.4 10.0 19.7 50.0 10.2 19.7 50.1
100 4.7 60 75 52 60 59 45 57 6.6 17.2 376 86.5 17.8 41.0 83.1 18.3 37.9 85.9
200 5.0 51 5.7 5.0 57 59 42 55 5.2 32.7 70.8 99.8 343 726 99.1 31.6 71.4 99.7
WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP; RBP;
50 58 49 54 52 43 48 4.0 45 5.1 10.0 159 46.5 10.5 20.0 50.4 9.0 16.5 38.9
100 4.7 58 63 52 48 52 45 59 5.7 16.6 36.8 85.1 18.3 41.8 839 16.1 31.8 75.7
200 4.8 48 46 53 55 47 43 6.1 4.9 326 70.6 99.8 36.4 749 994 29.5 66.9 98.5
BPr BPr
50 58 53 6.6 51 51 6.5 47 5.0 6.3 10.2 17.0 50.3 10.1 19.2 50.7 10.4 19.8 50.8
100 47 60 76 53 6.2 58 4.8 57 6.8 16.9 379 86.0 17.4 41.0 83.4 18.0 38.1 86.0
200 49 50 55 52 56 54 43 55 5.6 33.4 70.5 99.8 34.1 72.7 99.2 32.0 71.6 99.6
WB 3: Direct error resampling WB 3: Direct error resampling
T RBPy RBPy
50 54 52 64 5252 56 45 50 59 9.7 16.8 485 11.0 209 51.8 9.2 16.5 40.9
100 49 58 6.8 53 51 56 49 6.0 6.1 16.3 36.8 86.1 19.0 42.5 84.6 16.7 32.4 77.2
200 4.8 48 51 52 57 51 44 6.2 57 32,5 709 99.8 36.7 75.3 99.5 29.4 66.8 98.5
BP; BP;
50 6.0 53 6.8 5.0 48 66 49 51 6.8 10.0 17.3 50.3 10.0 19.8 51.4 10.2 20.7 50.8
100 4.7 59 71 5063 60 44 55 6.8 16.9 36.8 86.1 18.1 41.1 83.6 18.4 38.2 85.9
200 4.7 51 51 52 52 54 43 52 54 325 70.7 99.8 34.0 72.0 99.2 31.7 71.1 994

Notes: The data generating process is identical to those used for Table 1 except that o;; =
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Table 5: Rejection frequencies of the asymptotic and various Wild-Bootstrap RBP and
BP tests in panel ADL(1,0) models under conditional heteroskedasticity, GARCH(1,1)

(HETA4).
H()  F [uitujt] =0 HA  F [uitujt] =0.2
SN ts Xa SN ts X
N 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25 5 10 25
Asymptotic critical values Asymptotic critical values
T RBPr RBPr
50 49 55 7.5 43 3.8 65 3.7 4.0 6.8 9.6 169 53.3 10.2 20.5 55.6 8.3 16.6 43.6
100 4.6 55 6.7 39 45 51 42 40 7.1 17.8 38.8 88.5 183 41.7 87.0 15.3 32.6 80.8
200 4.6 51 52 46 49 49 45 53 5.9 34.5 74.0 100.0 37.5 76.6 99.6 30.1 68.0 98.9
BPr BPr
50 5.2 64 96 55 58 84 5.0 52 86 10.9 19.3 588 11.8 25.0 59.3 12.1 23.4 58.2
100 50 6.2 75 51 59 70 48 51 75 19.1 40.9 89.2 19.7 44.5 86.8 20.5 41.9 88.7
200 5.0 52 55 6.3 5959 44 55 57 36.1 75.2 99.9 37.6 76.7 99.4 34.5 73.9 99.5
WB 1: Recursive resampling WB 1: Recursive resampling
T RBP; RBP}
50 5.1 5.2 5.1 5.5 4.7 48 42 42 45 10.3 16.2 476 11.3 20.9 51.2 9.5 16.6 39.4
100 4.8 56 58 43 5.0 49 5.0 44 6.6 18.1 38.7 87.0 19.8 43.3 86.2 16.8 33.3 79.4
200 49 47 49 51 58 49 48 56 5.5 33.6 73.5 99.9 38.0 772 99.6 31.0 68.9 98.9
BP; BP;
50 5.1 55 48 50 45 48 45 43 4.0 10.5 16.0 48.2 11.3 21.1 49.6 10.8 19.3 48.2
100 4.5 56 51 5.0 5.7 50 4.8 4.4 5.8 18.5 38.9 86.8 18.5 41.4 84.2 19.4 38.8 86.0
200 4.7 5.0 5.1 4.9 57 47 41 51 4.8 346 739 99.9 36.8 74.6 99.2 33.5 73.7 99.5
WB 2: Fixed design resampling WB 2: Fixed design resampling
T RBP; RBPy
50 5.3 56 56 52 45 55 44 4.7 50 10.3 16.6 47.7 11.8 21.2 51.8 9.7 16.7 39.2
100 4.7 55 55 48 52 48 5.1 45 6.3 18.4 38.7 871 19.5 43.1 86.1 17.1 32.5 79.2
200 4.8 4.7 45 49 57 5.0 50 54 53 34.4 73.3 100.0 38.0 77.2 99.6 31.0 69.1 98.9
BPr BPr
50 54 5.7 50 53 43 51 44 44 47 9.9 16.3 493 11.0 21.0 50.3 10.8 19.2 49.3
100 4.5 55 55 48 52 50 49 4.7 59 18.6 38.7 87.0 18.3 41.8 84.2 18.8 39.3 86.4
200 4.5 5.0 5.1 52 53 46 4.1 5.0 4.8 34.3 739 99.9 37.0 74.7 99.3 33.6 73.8 99.5
WB 3: Direct error resampling WB 3: Direct error resampling
T RBP} RBP;
50 5.6 58 55 52 47 56 4.5 45 5.1 10.2 16.6 488 11.9 21.7 53.0 9.7 17.1 39.9
100 4.5 5.8 57 49 52 50 5.0 4.5 6.7 18.4 38.9 874 20.0 43.5 86.3 17.2 334 794
200 5.0 46 4.7 54 58 49 50 5.7 57 34.0 73.4 999 38.0 775 99.5 31.1 68.8 98.9
BP; BP;
50 4.8 53 5.6 53 45 58 49 45 49 10.0 16.6 50.0 11.4 21.6 51.5 10.8 20.1 50.5
100 46 56 54 49 53 51 4.6 4.6 6.2 18.7 39.1 875 189 41.6 84.6 19.6 39.4 86.5
200 49 5.0 50 51 57 49 40 51 5.1 34.6 741 99.9 372 75.0 99.3 34.0 73.7 99.5

Notes: The data generating process is identical to those used for Table 1 except that U?t = 6+a1u22t_1 + ago
t = —49,—48,...,T. The value of parameters are chosen to be § =1, a3 = 0.1 and as = 0.8.
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Table 6: p-values of cross section correlation tests in dynamic empirical growth models,
20 OECD countries, annual data 1955-2004

p-values RBPr BPr
asymptotic 0.092 0.022*
wild bootstrap 1 0.118 0.115
wild bootstrap 2 0.112 0.107
wild bootstrap 3 0.108 0.128

Note: The dynamic model estimated is Amit = 01 + O2ilkis + 03:Alksy + 04iAlks_1 + d’liAl/g—d\p@i,t—l +
¢>2iAl/gdprui7t72 + wit,,t = 1,2,...,20 and t = 1,2,...,47, where mit is cross section demeaned log of output

per worker and lk;; is cross section demeaned log of the investment share. "*" signifies the null hypothesis being
rejected at the 5% level. asymptotic p-values are obtained referring the value of the statistics to x%% distribution.
Bootstrap p-values are based on 5000 bootstrap resampling. Three wild bootstrap schemes are explained in the
previous section. For the wild bootstrap scheme 1, lk;¢, Alk;: and Alk;:—1 are treated as fixed.
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