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Abstract

An asymptotically valid Conditional Moment (CM) testing procedure
of the CCC assumption of the MGARCH model is proposed considering
both full QMLE (FQMLE) and partial or two-stage QMLE (PQMLE)
framework. A "new" and easily programmable expression for the expected
Hessian is provided for FQMLE. The OPG and robust to non-normality
versions of the test statistics are derived. The Tse (2000) OPG-type LM
test of the CCC assumption is analyzed within our CM framework and
a new robust version of this test is proposed. An extensive Monte Carlo
investigation demonstrates good size and power properties. The OPG
versions suffer from size distortion under non-normality whereas robust
versions perform better.

JEL classification: C12, C32
Keywords: Multivariate GARCH models; Constant Conditional Correlation;
Conditional Moment tests, Monte Carlo experiment

1 Introduction

Applied researchers have increasingly been using the conditional correlation ap-
proach to model multivariate volatility through a multivariate GARCH (MGARCH)
model. Although the Dynamic Conditional Correlation (DCC) model is by far
the most popular specification among applied researchers, a good number of em-
pirical research applies the Constant Conditional Correlation (CCC) model; see
for example, Bollerslev (1990), Kroner and Claessens (1991), Kroner and Sultan
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(1991), Kroner and Sultan (1993), Park and Switzer(1995) and Lien and Tse
(1998). Due to the simplicity and computational advantages of the (CCC) model
compared to that of the DCC model, on the one hand, but the restrictiveness of
the CCC assumption on the other, testing the adequacy of the CCC-GARCH
model is very important both from practical and theoretical point of view. The
validity of the CCC assumption remains an empirical question. However, only
a few tests of this assumption have been proposed in the literature.

To test the CCC assumption, Bollerslev (1990) suggested some diagnostics
applying Ljung-Box portmanteau test statistics based on the cross-products of
the standardized residuals obtained from the CCC-GARCH model. The idea is
that if the CCC assumption is valid, then these crossproducts should also be
serially uncorrelated. He found that the standardized residuals are uncorrelated
in case of five European countries’ monthly exchange rate and suggested that
this provided evidence of constancy of the correlations. However, serially uncor-
related standardized residuals implies they are linearly independent over time
and does not guarantee that the conditional correlations are constant over time.
Further, critical values for this test procedure were based on a y? distribution
whereas Li and Mak (1994) pointed out that the portmanteau statistic is not as-
ymptotically x? and the use of a 2 approximation is inappropriate. Bollerslev
(1990) used another diagnostic based on an artificial regression involving the
products of the standardized residuals. In this case, however, there are usually
no sufficient guidelines as to the choice of regressors in the artificial regression.
Furthermore, the optimality of portmanteau and residual based tests is not es-
tablished. Therefore, there remains the question of how powerful these tests are
against dynamic conditional correlation.

Longin and Solnik (1995) suggested another test by taking pairs of vari-
ables at a time; explicitly specifying the conditional correlation as a function of
potential sources of deviation from constant correlation and then testing the sig-
nificance of the associated parameters.! However, their alternative correlation
specification is not guaranteed to be bounded by —1 and 1 (i.e. |p| < 1). This
would appear to be a crucial defect. In their empirical application with monthly
excess returns of stock markets of seven major countries from 1960 to 1990, they
considered three sources of deviation: a time trend, the presence of threshold
and influence of related economic variables (dividend yields and interest rates)
and found that the correlation was increased over time and related to dividend
yields and interest rates implying the rejection of the CCC hypothesis.

Bera and Kim (2002) developed a test of a bivariate CCC-GARCH model
against the alternative that the correlation coefficient is random (over time).
This test is an Information Matrix (IM) test (White, 1982) in the form of an
LM or score test of random variation in correlation parameter p; see Chesher
(1984) and Cox (1983). The null hypothesis of this score test is that the variance

1For example, they specify the conditional covariance between two assets as follows:

hi2t = (pg + p1x1t + -+ + prxre) V hi1ehoot

where hjg¢ is the conditional variance of it asset i = 1,2, z;4’s are possible sources of deviation.

The CCC assumption corresponds to the null Hp : p; =--- = p, = 0.



of the parameter of interest is zero and the test checks the local behavior of
the log-likelihood function close to the null of no parameter variation. It does
not check the CCC assumption directly. Secondly, this test is not robust to
non-normality. Thirdly, this test is derived for bivariate case only, limiting its
applicability in high dimensional cases. Finally, the IM test assesses several
features of the model. Bera and Kim (2002, p.182) also recognize the fact that
"ability of the IM test principle to check various feature of the underlying model
might be viewed as a drawback rather than an advantage".

However, all the above-mentioned tests are not specifically designed for test-
ing CCC assumption and in practice they may not be very helpful to address
this issue. Tse (2000) proposed a LM test of the CCC assumption. This is a
multivariate test in a true sense and, among applied workers, the most widely
used test of CCC assumption until now (see, for example,Tse (2000), Lien, Tse
and Tsui (2002), Andreou and Ghysels (2003), Lee (2006), Aslanidis, Osborn
and Sensier (2008) among others). This test involves the Full QMLE (FQMLE)
approach i.e. simultaneous estimation of the volatility and correlation parame-
ters under the null of CCC. Therefore it might not be robust to GARCH mis-
specifications in individual volatility equations. Moreover, Tse uses the OPG
version of the LM test which is based on the normality assumption; therefore
it may demonstrate relatively poor finite sample properties and may not be ro-
bust under non-normality (see, for example, Davidson and MacKinnon, 1983;
Bera and McKenzie, 1986; Chesher and Spady, 1991). Finally the time varying
alternative specification of correlation matrix as presented by Tse is not nec-
essarily a positive definite matrix for all ¢. For this reason Silvennoinen and
Terdsvirta (2008) interpreted this test as a general misspecification test. In a
recent paper, Nakatani and Teréisvirta (2009) proposed a LM test for volatility
interaction where the null model is CCC GARCH model against the alternative
of Extended CCC (ECCC) Garch model.

Nevertheless it is evident that the field of testing CCC assumption is rela-
tively under-developed compared to other aspects of the MGARCH literature.
The aim of this study is to put forward some alternative asymptotically valid
testing strategies of the CCC assumption. Firstly, we present and review a con-
ditional moment (CM) testing framework based on the FQMLE of null CCC
model. However, in practice while estimating a MGARCH model adopting the
conditional correlation approach (both constant and dynamic, but particularly
for the dynamic one) researchers use a two-step or Partial QMLE (PQMLE)
approach; where in the first stage the volatility parameters are estimated using
univariate GARCH specification for individual variables and the correlation pa-
rameters are estimated using the volatility parameter estimates obtained in the
first stage (see, Engle and Sheppard, 2008; Hafner, Dijk and Franses, 2005; Bil-
lio, Caporin and Gobbo, 2006; among others). There appears to be no testing
approach of CCC assumption available in the literature which allows partial es-
timation. The implication of this is one has to first estimate FQMLE of the null
CCC model in order to test the null CCC assumption; and if the null is rejected
the researcher needs to use DCC specification which generally use two-step esti-
mation procedure. Again, there is a well-developed literature which deals with



the specification testing for UGARCH models and their asymptotic properties.?
These two facts motivate us to develop asymptotically valid CM tests of the
CCC assumption based on two-step estimation and utilizing UGARCH results.
The second contribution of this research is to devise a simple test after PQML
estimation. Thirdly, both the OPG and robust versions of the tests are devel-
oped. The proposed tests (both FQMLE and PQMLE) are easy to implement
and demonstrate satisfactory size and good power properties in the simulation
experiments. Fourthly, we derive a "new" expression for the average Hessian
of the CCC GARCH regression model which is easy to programme. Finally,
we have analyzed Tse’s LM test within our CM testing framework and sug-
gested a robust version of this which demonstrate superior size properties under
non-normality.

The rest of this paper is organized in the following way. The conditional cor-
relation approach for MGARCH model specification with the estimation frame-
work is presented in Section 2. In Section 3, a class of parametric tests with
their asymptotic properties is described. An analysis of Tse’s LM test is pre-
sented in the next Section. Section 5 provides some Monte Carlo evidence and
Section 6 concludes. The proof of lemmas, propositions and theorems are rele-
gated to Appendix. Throughout we make use of the following notations: Eq (.)
and E;_1 (.) denote the expectation with respect to true parameter value and
conditional on previous history up to t — 1 respectively; ® and ® denote the
Kronecker and Hadamard product respectively; vech (.) and vecl (.) denote the
operator that stacks the lower triangular portion of a (N x N) matrix as a

(w X 1) vector and the strictly lower triangular portion of a (N x N)

N(N-—1)
2
trix of order N where d; is the kronecker delta; % = (1,1,...,1), is (1 x K)

vector of ones and Jx = txtl, is the (K x K) matrix of ones.

matrix as a ( X 1) vector respectively; Iy = {d;x}, is the identity ma-

2 The Null Constant Conditional Correlation
Model

Suppose we are interested in the (N x 1) time-series vector {y:} = (y1s, - , ynt)’
and F;_y = o (W{,W/_,---) is the c—field generated by the past information

2For example, Lundbergh and Terasvirta (2002) proposed a parametric Lagrange multiplier
(LM) type tests of no ARCH effect in standardized errors, linearity, and parameter constancy.
Testing for leverage effect developed by Engle and Ng (1993) is widely used in empirical finance.
Bollerslev (1986) presented another LM-type test for testing a GARCH model against a higher
order GARCH model. One important work in this field is of Halunga and Orme’s (2009)
unifying parametric testing framework based on the CM principal which takes into account
the asymptotically non-negligible estimation effect from the conditional mean parameters.
This is the major point of departure of the Halunga and Orme’s (2009) test with that of the
abovementioned tests. They demonstrated that these tests are asymptotically invalid in the
regression context and may have low power. A Monte Carlo study also showed better empirical
power properties of their proposed test than those of Engle and Ng (1993) and Lundbergh
and Terdsvirta (2002).



up to and including time ¢ — 1. We consider the following CCC-GARCH speci-
fication to model this series:

Yt = m(Wt,SD) +€t t= ]‘7""T
e = H (@),
Ht = DtFDt
. 1/2 1/2
D, = dzag(hléﬂ ----- »hN/Nt) (1)

where ¢’ = (@}, o) ¢, € ¥ C RE is a (NK x 1) vector of conditional
mean parameters and W/ is the (N x NK) data matrix of the ¢-th observation;
Htl/2 (w) is a (N x N) positive definite matrix such that H; = Var (e¢|Fi_1)
and w is the vector of unknown parameters which includes conditional mean
parameter ¢ as well (for notational convenience, we drop w in H; /2 (w)), Dy
is a (IV x N) diagonal matrix of conditional standard deviation, I' = [p;;] is a
time invariant symmetric positive definite conditional correlation matrix with
Py = 1,4 =1,..., N.m (W;; ¢) can possibly be nonlinear and W; contains current
and lagged exogenous variables, and lagged dependent variables. However, for
simplicity of exposition, we assume a linear specification for the conditional
mean function i.e. m (Wyp) = W/p so that the conditional mean function
becomes y; = W/p +¢e; ¢t = 1,...,T.The stochastic sequence {¢,} is an i.i.d.
process with E(§,) = 0 and Var(§,) = E(£,£) = In. We further assume that
given the o—field generated by the past information up to and including time
t—1, Foor =0 (W{,W/_q,---), the error {e;, F¢_1} is a MDS.
With these assumptions,

h; i=]

BledFiol =0 and Bl =Hi= { a0

hi hjt Pij i

b = Dt

Y Vhi/hy

E[e¢|Fi-1]e;_; = 0, almost surely, for all j > 1. The CCC models uses the

following classical decomposition of H; to achieve a parsimonious way to model
H; (compared to direct modelling approach):

Also note that corr [es,ej¢|Fi—1] = and E [Etaé_j|ft,1] =

H, = D,T'D, (2)

where h;, i@ = 1,..., N can be defined by any univariate GARCH model and
[y = [p;;¢) is a symmetric positive definite matrix with p;;, = 1,4 = 1,..., N.
(2) implies that the diagonal elements of the conditional covariance matrix
are simply the conditional variances while the off-diagonal elements are h;j; =
ml*hi ey, A5 1<05 < N.

Here we assume that each h;, ¢ = 1,..., N has a GARCH (p, q) specification

q P
/ 2
hit =1isie1 = io+ Y ikEry p+ By his; (3)
k=1 =1



Denoting hy = (hy¢, - 7hNt)l, we can write

q P
ht = Qo + ZAk?tfk + Ztht,j
k=1 j=1

where Ay and.B; are both (N x N) diagonal matrix and ag and &, = (g3, ,s?\,t)/
are (N x 1) vector.

In conditional correlation MGARCH models, standardized errors, play a
crucial role. We shall term the three types of standardized errors that will
appear in subsequent analysis as standardized errors, fully standardized errors
and Tse’s modified errors and defined as:

¢; = D;'ey; BIG|Fi-1] =0,E [(,i|Femn] =T. (4)
& = H; e BIEIF] =0 E[&&EI1F1] = In. (5)
ef = T, =T7"'D ey; Elef|Fii] =0, Elefel|Fiq] =T"1  (6)

2.1 Full QMLE (FQMLE) Estimation Framework

We will start by defining and introducing some notations which will be use-
ful when deriving the expressions for scores and expected Hessian. With-
out loss of generality we assume that each variable correspond to a para-
meter vector of same dimension, i.e. for the i—th variable, ¢ = 1,---, N,
define 6; = (¢}, 1) C RETE with ¢, ¢ RE (corresponding to conditional
mean function) and 7; ¢ RX" (corresponding to volatility function). Hence,

0= (0/1, - QIN)/ c RV(EHE) ig the parameter vector consisting of conditional
N(N-—1)

mean and volatility parameters for IV variables and p C R is the vector
of distinct correlation parameters. Then define the collection of all parameters

w=(0,0) €6 RV where N' = N (K + K') + YE-1) 3

!
For the " variable, define F; , C; and X; with rows fh = Wit ;
(TxK) (TxK) (TxK") Vhit
1 0h; 1 0Oh; .
¢y = hTt Z(p; and zf, = h—” 8877; respectively. Then define
F = di Fi )
(NTxNK) iag (F:)
F} = diag(f},) fort=1,---,T.
(NxNK)

In a similar way, define C, X, C] and X, matrices. It will be useful to define
By =diag(¢y);Ta=1Iy+ (I ®T) and I'"* has a typical element p*/.

(NXN)

Finally, let p* be the k" column of I'"!; define I'* = I'"!diag (1), where

T = {0}, (Nx1),i=1,...,N ; ie. I'* be the (N x N) matrix of zeros,

3For example, AR(1)-Bivariate CCC specification with GARCH (1,1) model for individual
volatility have we have N =2, K =2, K’ =3 and N’ = 11.



except for column k which is p¥. Define the following two (N x N) symmetric
matrices:

Py

k4 (%)’
P (™) + o ()

ka

2.1.1 The Score, Hessian and limit distribution of the FQMLE

Under the assumption of conditional normality, define the average log-likelihood
1

function as Lk (w) = T >215(0, p), where If = [f(0, p) is the quasi-conditional

log-likelihood per observation, ¢, (ignoring any constant terms) which can be

written as,

1 1 1
lj =~z W|P| - 3 > Inhj - iggrflgt (7)
j=1

where, H; = H; (w), D; = D; () .* The parameter estimates can be obtained
by quasi maximum likelihood (QML) method:

T
A *
w:argmaxg Iy
S

Assuming Lk (w) = T~} Zthl 15(0,p) is at least twice continuously differ-

entiable, define the average score for CCC model G% (w) = T—* ZtT:1 g5 (w)

. orr o\’ oLy oy ol

where g; (w) = (39” 8p/) - 84,0/’ 8’17" op’

trix with rows g¢;’ (w).Using the similar notation, define the Hessian of the

2 7% *

log-likelihood function for observation ¢t as Hj (w) = agal;' = 8%‘5,7 . The

expression for g; (w) is provided in Lemma 1.

/!
) and S* as a (T'x N') ma-

* * /

Lemma 1 The score vector for observation t of (7), g5 (w) = (g(lgt,, glt/> =
0

(81: oy oly

de'’ o'’ dp’

I
) s given by

olf _ 1 _ w1 *

a; = Ftr 1Ct+§ct {EtF lct_LN} :FtEt +§Ct {Etgt —LN}

oIy 1 _ 1 *

a;; = §Xt {BL7¢ — v} = §Xt {Eiel — 1}

olr
3 L= wec (My) =mijg, j<i=2,...,N (with p; =1) (8)
Pij

where , By, Fy, Cy and X, defined earlier and My = {m;;} =T~} (CtCQ - F) r-t.

4Note that we make use of asterisk (*) to differentiate joint log-likelihood from the uni-
variate GARCH log-likelihood.



N

The FQMLE &' = (9 ,f)/> satisfies G (w) = 0. Bollerslev and Wooldridge

(1992) showed that under regularity conditions the conditional heteroskedastic-
ity FQML estimators are consistent and asymptotically normal. However, they
did not verify whether the regularity conditions hold for specific MGARCH
model. Jeantheau (1998) gave conditions for strong consistency of FQMLE for
MGARCH and verified the conditions for extended CCC (ECCC) model. Comte
and Lieberman (2003) proved the strong consistency and asymptotic normal-
ity of QMLE (both when initial state is stationary or fixed) for the BEKK
MGARCH specification which requires the finiteness of the moments of the non-
Gaussian process €; up to order 8 i.e. E [ait] <oo,t=1,---,,N. Ling and
McAleer (2003) presented a theoretical framework for a class of vector ARMA-
GARCH models with ECCC specification for the conditional heteroskedasticity
and their conditions require E [sﬁt] <o00,i=1,---,,N. Since the CCC model
is nested within this class, we can make use of the following results. Following
Ling and McAleer (2003) and Nakatani and Terdsvirta (2009), to ensure the
asymptotic normality of QMLE @ we assume that the followings to hold:

Assumption 2.1 The elements (y;+, W},) are strictly stationary and ergodic
foralli=1,---  N; and m (Wy; ;) is continuous and F;_1-measurable for all
0, €V C RE.

Assumption 2.2 The spectral radius ¢ (I') has a positive lower bound over the
parameter space © which is a compact subset of the Euclidean space such that
wq lie in the interior of ©. In addition each element of ag has a positive lower
and upper bounds over ©.

Assumption 2.3 All the roots of det (IN — 0 Apah — PRy ijj> lie out-
side the unit circle.

Assumption 2.4 The identifiability conditioned presented in Jeantheau (1998)
are satisfied.

Assumption 2.5 E [5?,75] <oo,i=1,---,N.

Assumption 2.6 plim;_, + ZtT:1 H; (w) exists and finite for allw € © such
that the N x N nonrandom matrix

T— o0

T
wa =—FEo [Ht (wo)] = phm _T ;Ht (WO) .

. . )
Theorem 1 Given these assumptions, w — wq and

VT (& = w0) = N (0,750 ST 5)
where J% = —Eo [H; (wo)] and B&o = Eo [96,96:] are both finite and positive

definite and Eo [.] denotes expectation evaluated at the true parameter values w
I



The matrix JZ_ is the negative of the expected Hessian while XF . is
the expectation of the outer product of the score vector both evaluated at
wp and the later is often called the population information matrix. More-
over, if £ ~ N(0,In), then X¥, = JI_ and the asymptotic covariance
matrix reaches to the Cramer-Rao lower bound i.e. X7 . Note that by the

consistency of the QMLE w, J5 can be consistently estlmated by waT =

—% ZtT VHi (@) = —% tT 1 832;/ . Note that by definition Hy (wg) =
o=t

Eo (€t€t|.7-"t 1) which implies that it would be computationally easier to work
with H} (wo) = Eo [Hf (wo)| Fi—1] (say); as under conditional expectation op-
erator a number of terms in % cancel when evaluated at wg. Further by the
law of iterated expectation we have J% _ = — Eg [Eo [H* (@o)| Fi-1]] and a sim-
pler estimate of JX __ is obtained as waT = —T Zf 1 'Ht (&).> The Hessian
can be derived with reference to Nakatani and Terdsvirta (2009, 2008) who
provide the general expression of 7-7;* (w) for ECCC-GARCH model. However
these authors derive the expression assuming a known or zero conditional mean.
Besides, they did not specify any particular D;. _

The following Lemma 2 provides a new expression for Hy (wy) in the regres-
sion context, which considers the conditional mean function and GARCH (p, q)
specification for individual conditional variances in D;.While Lemma 3 provides
the expression for j;wT which will be required in our tests discussed in the next
section.

Lemma 2 H; (wo) = Eo [H] (wo)| Fi_1] where

Hop oy M

(=)= |12, T T,
"L R T,

and the typical (i,7)-th block of HW,, H:;n, H;‘,p, H;n, Hy, and pr, ,J
1,---, N are given as, respectively:
vip; P JitJ 5t Z ij T P 7 Pi5) CitCig;
~ 1 g
Howm, = 4 (05 + P pij) ciralys
~ 1 ) 1 ; . .
Hop,, = —§5jkplkckt - §5ikpjkckt; P>
~, 1 iy
H’Iﬂlj = _E (6ij +pl]pij) ltxjt
~ 1 - 1 ; L
Hoipss = _§5jkPZk1'kt - §5ikpjk$kt; i>]
) * _ ik, dm _ im  jk.
Hpijpkm - pp p p] pr>
5 Although both J* .. = — L S°T My (&) and J*_, = —L 5L | Hi (&) are asymp-

totically equivalent; in finite sample their performance may vary (see Hafner and Herwartz,
2008).



Lemma 3 For QMLE &, J&—J% r =0, (1); and J% _p = — = S M ()
has the form

o 0% O

Jror T o i dpdy’ 0o’ dp0p!
e | g | O 0
S OV | ooy ooy ooy |

Joo  Topr Jppr B o2y o°ly 02ly

pdy’  0pdn’  Opdp’

where

o = w|E(f o) P (Paoln) | —

eT ~ T ® I +1 AQ Iy T Yy

* 1 4 - % *

enT = EOI (FA © IT) X = Jon

1 - ~

eoT = ﬁcl (In@up) P — Jo

Tk 1 5 - % *

wr = X (FA ® IT) X —

~ 1 - A

ot = ﬁxl Iy @up) P — Jp,

por = P—JZ,
where P has rows p) = vecl(Py), k = 1,..,N and P has

Ny NN=1) N(N-1)  N(N-1)
2 2 2

columns Prm = vecd Tgm), m=1,..,N—1, k=m+1,... N (k changes more
quickly than m) while F', C', X', T4, Py and Ty, are defined at the onset of
this section.

2.2 Partial (or Two-step) QMLE (PQMLE) Estimation

Because of the structure of log-likelihood of the conditional correlation model,
a simplified two step estimation procedure can be implemented as suggested by
Engle (2002), which involves (at the first step) separate estimation of the N
univariate GARCH models to get the volatility estimates, and then using these
obtain the correlation parameter estimates. Such a procedure is consistent, but
asymptotically inefficient when compared with the FQMLE procedure. This
partial estimation technique is mostly useful for the DCC models due to the
complexity of the estimation procedure, but can be used for the CCC model.

Note that (7) can be expressed as the sum of two components; I} (6, p) =

N N 1 N _
> i=1 1Y (0;)+1€ (0, p) where > e Y (6;) = 3 > e {Inhj + hjtlzs?t} repre-
sents conditional log-likelihood contributions for N separate GARCH(p, ¢) mod-

els which is functionally independent of p, and I (8, p) = —5 In|T| — 3¢,

+ £(;(, contains the correlation structure. Two step estimation is then pursued
as follows:

10



1. Obtain 9j = argmaxy, Zthl 1(0;), j=1,...,N by QML applying to
univariate GARCH(p, q) specification for individual variables.® Then con-

R ol N 1
struct standardized residuals as (;, = hjtl/zéjt, and I€ (0, p) = —3 In|T|—

1oy 1n 1o 1 | PV .
§§tf G+ §Ct§t =k — 3 In|T|— QCtF ¢, where k; is a constant as far

as p is concerned.

2. obtain p = argmax, Zthl ltc(é,p), which satisfies the score equations
T Ak AK ~1] . . . Ak Ak N1
Sy (EREs —p7) =04 <i, with &7 = {&},} =T,
~ / N N !

Hence the PQMLE @ = (9/,,5/> = (0/1, e H/N,b') can be obtained from
the above two steps. Note that to avoid notational complexity we use "hat" to
denote both FQMLE and PQMLE; this should not make any confusion as later,
while deriving the test statistics, notational differences will clearly distinguish
the estimation procedure employed. Hafner and Herwartz (2008) provides an
analytical expression for the variance of the two-step QMLE for both the CCC
and DCC models.

As noted by Engle (2002), the correlation matrix I'; is also the conditional
covariance matrix of standardized errors i.e. E [Ct§;|Ft_1] = I'. Although, the

scores for p obtained in second step is not equal to 23:1 (&itéjt — ﬁi]) =0,5<

i, Bollerslev’s (1990) pointed out that a suitable reparameterization ensures that

52
- T € T (> » N T (a% ~ij
T3 <]§Lt - 1) = 0 so that 32, , (Cz‘tgjt - pij) =2 (5;5; -pY) =
t
0, j < i. Therefore, we can use p;; = %Zthl CitCje» J < © as a consistent

estimator for p,;. However, noting that in finite sample sample covariance matrix
of standardized residuals will never be a correlation matrix, as the diagonal will
not be exactly equal (though very close) to 1, another option is to use the usual
correlation estimator i.e.

= EtT:1 &it&jt
(%) N N
Nty

727]:17aN

which is a linear (one-to-one) transformation of p,; = - Zthl @tgjt, Jj < i
In the literature both versions are used to estimate the correlation parameters.
For testing of the CCC assumption we only need p;; i # j; and score tests are
invariant to linear transformation of parameter space (see Dagenais and Dufour,
1991). Hence in this paper when developing the asymptotic theory we will use

p= %étd as the PQML estimator of p.

6For the scores, see e.g. Halunga and Orme (2009).

11



3 A Class of Asymptotically Valid CM Test Pro-
cedures

In this section, we develop a class of asymptotically valid parametric testing
procedures, along with the first order asymptotic distribution results, of the
CCC assumption that are derived from the conditional moment (CM) princi-
ple. If both individual GARCH specifications and CCC assumption is correct,
then the definition of standardized residuals, given in (4), provides the moment
condition corresponding to CCC assumption i.e. E [(,(; —T'|F—1] = 0. Note
that, the diagonal elements of (( <= F) correspond to the individual GARCH
(or volatility) specifications whereas the off-diagonal elements correspond to the
CCC assumption. Also due to the symmetry of (Ct(; — F) , there are M
independent restrictions in this moment condition; hence we can write these
distinct moment restrictions as:

E [vech (¢,{; — T[Fi-1)] = 0. )

If we are interested in testing simply the CCC assumption leaving the individ-
ual GARCH specifications aside, then we need to consider the strictly lower
triangular portion of (Ct(f5 — F) , Le.

E [vecl (Ctgi — F|}"t_1)] =0. (10)
The parametric misspecification tests of the conditional correlation models can
be constructed by considering either (9) or (10). If the test is based on (9),
which will be referred as Full CM (FCM) test, it can be treated as a joint
misspecification test of the complete MGARCH specification as this would also
pick any misspecification in individual volatility specifications with that of the
correlation specification. On the other hand if the underlying moment restriction
of the test is (10), we will refer the test as CCC CM (CCM) test.

Therefore, a joint parametric misspecification test of the CCC and individual
volatility assumptions might be constructed as test of the following null moment
restriction :

E [vech (¢,¢) — T') @ r¢ (0)] = 0 (11)
where r; (wg) be a F;_; measurable test variables. To test this null, the generic
CM test indicator is constructed as

o B VS R

MT:TZ(W@rt):Tth (12)

t=1 t=1
where the superscript j denote joint testing of CCC and individual volatil-
ity specifications and ©¥; = vech (&t&; — f) where "hats" denote that every-

thing is evaluated at the consistent null parameter estimator (either FQMLE or

. /
PQMLE), @& = (0/, f)’) . Similarly, a misspecification test of the CCC assump-

tion, only, can be conducted by testing the moment restriction:

B [veel (¢ = T) & 7 (0)] = 0 (13)

12



The corresponding CM test indicator would have the following form:
1 1
M%:TZ({):@ft):Tme (14)
t=1 t=1
where 0} = vecl (&td — f‘) and superscript ¢ denote testing of only CCC as-
sumption. It is to be noted here that (14) is simply a subset of (12).

Example 1 For example, in the bivariate case,
2
E [Ct(é - F|~7:t—1] =E {< e C1t2<2t> - <1 p) ‘ ft—1:| =0.
CreGar G
Then (9) becomes

E [(C%t — 1, Cuelor — Py (o — 1)/‘ -7'—15—1] =0.

The first and third components refer to individual GARCH equations while sec-
ond one corresponds to the CCC assumption. Therefore, in this case (10) is
simply E [C1:Cor — p|Ft—1] = 0. Subsequently for a Fy_; measurable test variable
ri (o) (11) becomes:

¢Gi—1
E |(1¢Cos — p| ®@ 7t (wo) = 0. (15)
(5 —1

and (13) becomes: E[((1;Co — p) ® 11 (w00)] = 0.

To develop asymptotically valid tests of CCC hypothesis we need to establish
the limit distributions of the test indicator vector\/T]\ZfT. Both FQMLE and
PQMLE approaches are considered while deriving the test statistics and their
asymptotic distributions. We illustrate the procedure of constructing the test
statistics considering both Gaussian and non-Gaussion distribution of the fully
standardized error process, &;. In case of non-normally distributed &, we develop
a non-normality robust procedure in the similar spirit of Wooldridge (1990).7
When &, follows a normal distribution the generalized IM inequality holds (see,
e.g. Newey 1985) and the outer product of gradient (OPG) covariance matrix
estimator can be employed in deriving the test statistics.

3.1 Case 1: Tests based on FQMLE

The test indicator under consideration is Mpp = Mpr(&) = T7! Z?:l Mg,
where subscript F represent FQMLE case; with Eg [mp:] = 0. Define the (7" x r)
matrix R with rows m/y,. Hereafter we will use the notation G = G4 (wy) ,
Mopr = Mpr(wg), etc. where wg denotes the true parameter values and M T,
J5 L ete. to denote evaluation at . We assume sufficient regularity to satisfy
the following central limit theorem :

"Similar approach was employed by Halunga and Orme (2009).
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Proposition 1 \/T{ AéO*FT } =7-1/2
0T

T
gt MOF | 4, N (0,5,
2t=190t

where ¥* = [ ETM ZZ/IG ] ,

Yom  Yae
Yyy = plimg T ZtT:1 MOFtMg g
See = plimp_o T71 Y, gi.954; and
Z>}K\/IG = phmT—>oo T_l Zle mOthE)Ké'

Remark 1 Assuming a suitable ULLN, ¥ might be consistently estimated,
for example, by T—" Z?:l Mg, but see also Halunga and Orme (2009).

We then have the following result.

Theorem 2 Given &0 —— wy, the CLT stated in Proposition 1 and a suitable
ULLN,

VT Mpr -5 N (0,V)
where
V = A5 A",
S _ [ Ymm o X
Yom Yoo
A* = [I s —J Ji2t] , with %, = — plim L [ZL M (wo)} i =

T—s00

] , (see Proposition 1) and

OM,
— plim [ 3 Oft] , and I, is the identity matriz of rank r = rank (Xprar) -
T—o0 w

Remark 2 Note that the variance-covariance matriz V can be written as

_ * x—1 7%’ * x—1 vk * *—1 ik x—1 7%’
V= ZM]\/I - ZMGwa JMw - JMwaw ZGM + JMwaw ZGGwa JMw‘

From the preceding result, the general form of the CCC misspecification test
statistic based on FQMLE is the quadratic form

Tr = TM}:TV£1MFT (16)

under the null which has a x? limiting distribution, where Vr is any consistent
estimator for V ie. Vp =V 40, (1).

3.1.1 Case 1la: Robust FQMLE test

To construct a robust (to non-normality) test statistics we need a consistent
estimator Vj = A*¥*A* where the superscript r signifies the robust estimator;
8mFt

construct j]’(/IwT using the results provided in Proposition 2.

for which we require J3; o = —T'> JX o and X*. For @, we can

14



Proposition 2 It can be shown that fori=1,---N.

d(¢ -1 o1

and fori#j,j <i=2,---,N.

8(</‘t<‘t _P“) 1 . 1 *

Eo [Wﬁ] = ~3P0 TPIIHSOT {R(0,---,Zs,--- , Zj,---0)}
(CieCit — Pij) .1 «

EO |:§p/]’rt:| = —Tphnio T(O,...,ll’-.. 7O)R .

. ;. ;. ! / !/ * . !
where Z; is (T X k;) matriz having rows zi, = (cy,x}) and R* having rows ry,
if v+ is a vector of test variables, or R* is a vector with typical element ry if r¢
is a scalar.

Example 2 Again consider N = 2 Then the full moment condition given in
(15); so we have:

A ) R*(Z4,0,0)
']Xle = T %pRi,(Zh?Q%LéFR*
R*(0, Z2,0)

Clearly, for only CCC moment condition Ji;_p = {%ﬁR*'(ZAl, Z5), L/TR*} .

Now using the next lemma a robust and consistent estimator VTT can be
obtained.

Lemma 4 Under suitable assumptions, 3% —¥* = 0, (1) and A* — A* = o, (1)
where

S = [ Zww Die |_L[RR SR
r Sty Sha T |RS* S8
A = s =T ]

where R and S* are matrices with rows m'p, and g;' (w) respectively; J: _r

and jj\‘/le are constructed using Lemma 8 and Proposition 2 respectively; all
evaluated at <. Therefore we have,

T % Chsk 7x—1 7’ T Fx—1 vk - Fx—1 vk Fx—1 7%
Vr = Yum—Yyc) gorI Mot = InerdsorEon t IMer T oer Y6 mwr IMwT

Tests that are based on this estimator ‘A/f will be referred as robust FQMLE
test and will be denoted as TI(,T).
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3.1.2 Case 1(b) OPG FQMLE test

However, if &, ~ N (0,Iy), then X¢, = JX_ and V reduces to V = Xy —
Y4 oS e i The following lemma provides an expression for the consistent

estimator of V' when the normality assumption holds.

Lemma 5 Under suitable assumptions and & ~ N (0,In), V can be consis-
tently estimated by

¥ S ok Cvk— 1k JI *I TR *
Ve =Yum — ShiaSes Sen = TW "W

where

T
Suy = T70Y tppity, = T'R'R,

t=1

T
XADZ‘G _ Tfl Zg;g:/ _ Tflsv*/g*,
t=1
T
Swe = T pgl =T 'SYR,
t=1
W* — B*A*I
A = {Ir : fi&cf)g_cl] , and
B = [R §

where R and S* are matrices with rows m'y, and g;’ (w) respectively evaluated
at @.
In this case, the test statistic (16) has a convenient OPG (Outer Product of
Gradient) form. To see this, note that
. —1

W= B AT = k-5 (5787) SR

Exploiting the FOC that S¥p =0 = Wi = R’LT, hence an alternative
form of the test statistic under normality is give by:

To =R (W*’Vv*)_l Rlup = v (W*’W*)_l Wy (17)

where vp is the (T x 1) column vector of ones. (17) can be interpreted as
T — RSS where RSS is the residual sum of squares from the regression of ¢p

on W. Note that, this test can be constructed easily by defining U* = (R, 5’*),
then .
Tp = L0 (U*’U*) 0" (18)

and can be obtained as T'— RSS from a regression of ¢ on U*.
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3.1.3 Summary: FQMLE

From the above results, for each of the FCM and CCM test statistics, based on
the FQMLE @, we have two versions namely, robust and OPG i.e.

1. Robust (to non-normality) FCM test:

3(r) it (v T
Ty =TMpp (VT ) My (19)
2. OPG FCM test .
7~ Titl, (V) ity (20)

3. Robust (to non-normality) CCM test
70 = g (VEO) T e 21
F rr\Vr FT (21)

4. OPG CCM test .
Tp =Ty (VE) My (22)

where the robust variance estimator VTj(T) and VTC(T) can be obtained using
lemma (4) while OPG test statistics are constructed using the artificial regres-
sion as given in (18) with appropriate test indicators.

3.2 Case 2: Tests based on PQMLE

Define the test indicator under investigation as:
MPTfMpTQ ZmPte

with Eg [mp] = 0; where subscript P represents the PQMLE case i.e. the
correlation parameters are estimated by p;; = % Zthl @itijt, J < i. We will
establish the results considering the bivariate case for the ease of exposition so
that 8’ = (9’1, 9/2); the results can be generalized to higher dimensional cases in
an obvious way.

Let L;r(0;) = Zt 1 lit(0;) be the average log-likelihood of univariate
2
GARCH models for the i-th variable where l;;(6;) = —1 [ln(hit) + ;’t} (ig-
it
: I B T 8l2t( i)
noring constants). Define G;(6;) = T Do 9it(0;) = Z , and

L) 0
Joo = g JQ(QQ)]
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2
— _ Pl (0:) | _ . 1 r 0 lzt(ez)
where J'L (61) = Jz == 7E0 [ 89“‘99; :| = *phmT_N)o ? Zt:l W
diagonal structure of Jyg follows from the fact that in PQMLE framework,
the univariate GARCH estimating equations are functionally independent i.e.
G;(0;), i = 1,2 are functionally independent. Also define @ = (Q1,Q2) and
S = (51, 52) where @; and S; are both (T x k;) matrix, k; = K + K1, with rows
Ol (0;) . al; (0, p)
9:(0:) = o0 and g;’(0;) = t@T’
R be the (T x r) matrix but now with rows m/,.
The separate limit distributions of v/T' (91 — 92»0) = Ji(050) " "VTG;(0:0) +
op(1), for true parameter values 0,0, (k; x 1), i = 1,2, are essentially given in

Halunga and Orme (1990, Theorem 1). We have, vTG(6)) <, N (0,X¢q) ,
Where, GOT = (G1(910)’, GQ(@Q())/)/, and

The block

i = 1,2 respectively.® Also, as before,

Yaa = plim Q Q = plim —
T—o0 T THoo

[Q’Q1 Qin]
2Q1 @3Q2 |

Now to test the significance of the test indicator, M pr, the limit joint dis-
tribution needs to take account of the estimation effect from correlation para-
meter. We can ignore this estimation effect from p, which will eventually lead
to relatively simple to construct asymptotically valid tests, if we can impose the
following condition:

Condition 1 VT Mz (6, p) = VT Mz (0, py) + op(1).

This implies that the effect of estimating p using the first step estimator 0 =
Al At
(6’1, 92> can be ignored (asymptotically). Although it seems a very restricted

condition, in our case this condition can easily be met by using a centered (i.e.
demeaned) test variable (ft 75"_\) and thereby transforming the test indicator

Mpr functionally independent of p.

Example 3 For example, in the bivariate context consider the only correlation
test indicator which is given by

!

MJCDT = lzj[CuCzt ]t

N

!
!

el

= - Z&lt&?t Tt — 7’ = Z <€1t62t - /3) (ft *ﬂ (23)
=1

~ 1 T ~ ~ 1 T x> =
where 7 = T Di—1 Tt and p= T >i=1 SuCar-

8That is, Q; is the matrix having rows univariate GARCH scores 954 (0;) while the rows of
S; contains the FQMLE scores g;’(6;), given in Lemma 1, corresponding to the conditional
mean and volatility parameters 6; barring correlation parameter p.
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This simple demeaning trick produce algebraically equivalent test indicators,
but will not involve p. In other words, Mpr is simply a function of (9/1, 9;) and

does not involve p and hence allow us to deduce the limit distribution with
Condition 1.

Remark 3 Note that since + Zle (6; - 1) #0;

T
1 42 . 1 A2 A
TZ(C#_OW# TZCit (Tt—r)-
t=1 t=1
Pllowever, Condition 1 does apply to the full CM test indicator MIjDT since
A2
T ZtTZI <Cit — 1) 7t, © = 1,2 does mot involve p. Hence, it is mot necessary

to demean the test variable for the elements of test indicator M, which do
not involve p. Howewver, hereafter for simplicity we will consider demeaned test
variables for all elements of Mpp; i.e.

o fEegeen Y
Wy =72 (CuGar =) (71 =7) O MCEICEUINCD
7 [ -1 -

To derive the asymptotic distribution, we assume the following central limit
theorem to hold:

fr—T)

Proposition 3 Under suitable reqularity conditions,

-5

T
B | o
t=1

| Vv Bwme -
where ¥ = [ Serr Soo ] with

T
1
Yupm = plim 771 ZmopthPt = plim = R'R,
T—o0 =1 T—o00 T
T
Yge = plim7T7! Zgo,gggt, and
T—o0 =1
d 1
Yyue = plim 77! ZmOtgét = plim —R'Q.
T—o0 =1 T—o00 T

The above arguments enable us to construct asymptotically valid test from
the first stage estimates of 6 only. The following theorem gives the limit distri-
bution of VT Mpr under condition (1).
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Theorem 3 Given & —— wy, the CLT stated in proposition (3) and a suitable
ULLN; VT Mpr % N (0, V3) where
Vi = A XA,
5 [ Yum Xme
Yam  Yce
Ay = [I, —Jue x Jog'| with
J1(010) 0

Joo = T = — pli
oo { 0 J2(620) } Mo Proo
matriz of rank r = rank (Zprar) -

] see Proposition (3),

M,
{8800,”} and I, is the identity

From this result, the general form of the CCC misspecification test using
PQMLE has the quadratic form

Tp = TMI'DT‘A/l_TlMPT (25)

under the null which has a x? limiting distribution, where Vir is any consistent
estimator for Vi ie. Vir = Vi + 0,(1). We want to stress here that to get
asymptotically valid test statistic, one has to use ¥; ® (ft — 77) (for FCM) and

(éltﬁgt - [)) (7y — 7) (for CCM) rather than (;,(y, (r+ — 7) when constructing

the test indicator Mpr. This has no effect on the numerator of the test statistic,
as 23:1 |:C1t<2t - ﬁ} Ty = 23:1 (CltCQt - f)) (ft _%) = Zthl C11Cor (f‘t _%) )
but gives us the right expression for the asymptotic variance estimate.

To construct asymptotically valid test statistics we need a consistent expres-
sion of V. Similar to FQMLE case, we will consider both the robust and OPG
version in the following.

3.2.1 Case 2a: Robust PQMLE test

To construct a robust (to non-normality) test of (25), first note that Jyzer can
be obtained using the results of Proposition 2, but corresponding to 6 only and
replacing r; by (ft f%) , the demeaned test variables. Let us define R asa
matrix having rows (r; — Ft)/ if r; is a vector of test variables, or as a vector
with typical element (r; — 7;) in case of scalar ry.

Example 4 In bivariate case with full moment condition, we have:

=*

: | B[40

JX4WT = T %ﬁﬁ/ Al, ZQ) (26)
E (Oa 22)

okl

and for only correlation moment condition it becomes jj{/[wT = %[)R (Z4, Zg)

Besides, from Halunga and Orme (1990, Lemma 1), for i** variable we have:
- 1 C’{C’z C’{XZ 1 FZIE 0
X!C; X!X; 0 o’

LT oor

- (21)
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- ; 1 Oh;
where F;, C; and X; have rows f/, = , Chp = — and 2}, = — —2%;
i j hiv On;

Al Al

~l
all evaluated at PQMLE 6, = (¢},7)) .
Combining the above two results, the next lemma provides an expression
for the robust consistent variance estimator V}7. for bivariate case which can be

generalized in an obvious way.

Lemma 6 Suppose M{;T is the joint CM test indicator (partial QMLE case)
for N =2, a robust (to non-normality) consistent estimator of Vi is given by

Orr 1. TIYIT 1 AT DI AT
‘/IT = TW /W = TAIB,BAll
where . o .

W= BAY, B =R, @i, Qs ic. B has rows (ivp,, 3t 9h)
Ji 0
0 Jy
Tt is given in (26) and I, is the identity matriz of rank r = rank (Sarar) -

A{ = [Ir : —j&wTj;el] . with Jgg = [ } . J; is obtained from (27),

Remark 4 For N =2, we can write /1{ and W' as

R (41,0 )
Ar _ I.: l AQ*/(Al A) Jfl 0
1= ri T i*/(le 2) 0yt
L R (03Z2)
r fat AUNIN
R ZyJ;t 0
] 1 N P
= Ir . _T pR ZlJl ,DAR*/ ZQJ2
i 0 R ZyJyt
and
A A 1 PSR L T T 2 NN A a1 A\ ¥ A g oA, ¥
W= R <Q1 TR 5 (Q1J1 L7 4+ 0. J; 125) R .QxJ7' 2R )
respectively.

Tests that are based on this estimator V{T will be referred as robust PQMLE
test and will be denoted as TI(DT). Note that exploiting the FOC Q;LT =0 for 6,
1= 1,2, we have Wi = R’LT, where ¢7 is the (T x 1) column vector of ones

implying
~ A ~ 2 z I -
T = TNy Vi Npr = W (W) Wy (28)

which can be obtained as T'— RSS from a regression of 7 on wr.
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3.2.2 Case 2(b): OPG PQMLE test

The following lemma provides an expression for a consistent estimator of the
variance-covariance matrix Vi under normality.

Lemma 7 Assuming that the specification of the log-likelihood for the joint es-
timation of parameters in section 3.1 is correct (i.e. & ~ N (0,1In)); A13X A} —
Vi = 0p(1) where

A vof (@) o

Al = Ir N —%R/S AL A 1 ’
0 (%%52)

= %B’B and

B = {A, 01, QQ} i.e. B has rows (M'pe, 9110 Go:)

Hence, Vi can be consistently estimated by Vir = %W’W where
W= BA = R (S101) S ($100) S
Again, the FOC Q;LT = 0 implies W/vr = R'up so that
T, = Ty Vi N = e (W) Wiy (29)
which can be obtained as T'— RSS from a regression of 7 on w.

3.2.3 Summary: PQMLE

Hence, in case of PQMLE, we again consider the following four test statistics:

5. Robust (to non-normality) FCM test:

. ~ - -1 ..
T =T (V) Ay (30)

6. OPG FCM test

. N U
ng = TM;Z’;" (VIJT) M;T (31)
7. Robust (to non-normality) CCM test
Sre(r Cre(r - c(r
T30 = Targ (Vi) (32)
8. OPG CCM test .
T =T (Vi) Mg (33)

where the robust variance estimator (Vf}r) and VICT(T)) and OPG variance
estimator (Vi and V{%) can be obtained using Lemma 6 and Lemma 7 respec-
tively.
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4 Analysis of Tse’s LM test

Tse (2000) proposed a LM test for the multivariate CCC-GARCH model against
the alternative that the correlation are changing as functions of the previous
standardized residuals, having the form

Pije = Pij + Tij¥it—1Yje—1 or Ty =T+ A Oy 1y;_4 (34)

where A is a symmetric parameter matrix with the leading diagonal elements
equal to zero. Note that (34) does not define a particular alternative to CCC as
I'; is not necessarily a positive definite matrix for all t. Therefore, Silvennoinen
and Teréisvirta (2008) interpreted this as a general misspecification test. And the
null hypothesis is Hy : A = 0 or Hy : vecl(A) = 0. Note that 755, 1 <i<j < N
are W additional parameters in the extended model. Under this setting
Tse proposed the following statistic:

v (22 e
i = ¥ (35) % (35)
N N PSR
= L}S(SS) S i (36)

where 3 is the ( (N’ + w x 1) score vector, S is (T x N’ + w>
matrix, with rows of partial derivatives of the log likelihood function and v is
the (T' x 1) column vector of ones. ? Note that (36) can be interpreted as T
times R?, where R? is the uncentered coefficient of determination of the regres-

sion of v on S. Under the usual regularity conditions LMy is asymptotically
distributed as X2N(N—1) .

It is informati\?e to note that this LMy can be interpreted as a test of
moment condition E [vecl (eje;’ — T 7!|F;_1)| = 0 where ¢} is the transformed
standardized errors as given in (6). This test is based on the FQMLE approach
and can not be implemented directly within the PQMLE framework. We can,
however, modify the test indicator in such a way so that the testing procedure
based on PQMLE developed in previous section can be employed. Again the
procedure will be demonstrated in the bivariate context.

- _ 1 Cie — S
In the bivariate case, ef = (e%,,¢5,) =T"1¢, = —— { 1t 2|5 and
7= (el €5 ¢ 1—p2 | Cor — pCr

9For the full expressions of the first partial derivatives of the likelihood function I; with
respect to the model parameters, readers are referred to Tse (2000).
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the implicit null of CCC is E |e},e3, + ———|Fi_1| = 0.Note that
p

1-—

1
€145 + 1 _pp2 = (1- p2)2 [{Clt = PCar} {Cor — pCr} +p (1 - PZ)]

= 7 [=p (¢ = 1) + (14 9) (Cuar — p) — p (¢35, —

!
T VUt

(1—p2)°
where 7'(p) = 7' = (—p, (L+ %), =p) . v} = (T = 1, (14Cor — ps (50— 1)

4.1 FQMLE case

Assuming that r; is a scalar and ignoring the irrelevant factor of proportionality,
1/(1- p2)2 , define Tse’s “modified” indicator as

T T
M, == Zmpt Z "hyfy = Z 1%, (%) (37)

’ﬂ \

where the superscript t represents Tse’s indicator and m{w (w) is the contribu-

tion of t" observation to the test indicator for FCM test M- IJ;T, all evaluated at
FQMLE .

Corollary 1 From Theorem (2), \/TM%T AN (0,V-7) ; hence \/TM},T 4,
N (0,V?) where Vt = 7'Vir.

Then, an equivalent procedure to Tse’s LM test, LMy can be obtained
applying the CM testing framework developed in section 3.1 by using M}, and
constructing the OPG version of the test as:

~ ~ N1 . N ~ N1
Th = TNy (Vi) Nipp = TNy (#V9%) Ny (38)
where V7 = Sy — 33,0550 35, comes from OPG FCM test given in (20).
As noted earlier that Tse assumes the generalized IM equality to hold while
developing his OPG version of LM test which may not be robust under non-

normality. Using the robust variance estimator as given in Lemma (4), we can
now robustify this LM test i.e.

) R o1 A . -1
70 = Tty (V) ity Ty (1010%) iy (39)

where V;(T) = ﬁVTZ(T)fr' and VTj(r) is the variance-covariance matrix defined in
(19).
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4.2 PQMLE case

For PQMLE, to obtain asymptotically valid test statistic of the CCC assump-
tion, we apply the demeaning technique so that the estimation effect from p
asymptotically negligible (i.e. condition (1) holds) in the following way:

T T ~
Y ]' - N~ 1 Ak Ak ~ e
he = 33 (09) = £ 3 (5 1) 6

t=1 t=1
T T
1 AN ]. - A
= 7 3 w0, (7~ 7) = = 3 # i, (9, p) (40)
t=1 t=1

where the last equality follows from (24).
1 R
Also note that since T 23:1 (éftégt + 1—pr2) # 0 unless FQMLE is em-

~ 1 h
ployed, Mb, # T EtT:1 (é“{té;t + lpAz) 7. Now using the following corol-
- p

lary and the results of preceding section, we can construct asymptotically valid
tests of the CCC assumption employing Tse’s modified indicator Mb, based on
PQMLE.

Corollary 2 From theorem (3), VT M, 4N (0, Vlj) ; hence VT Mb, -
N (0, V}) where Vit = x'Vir.

In particular, the OPG and robust test statistics with ]\;[}T can be con-
structed easily by:

N . 1 R N
TJtD = TM};’T (VltT> MItDT =TMpr (ﬁ-/Vleﬁ-) Mpy (41)

and

T = Tty (VWA0) by = Thty (VD7) Nihy  (42)
where Vf}r) and V7, are given in (30) and (31) respectively.

Alternatively, Vi can be constructed as Vi, = ~W"W*! where W* = BA 7,
and B and A; are defined as before. Similarly, Vltq(f) = %Wt(r)’ W) where
WHr) = BAY'x. And then the test statistics are obtained as T'— RSS from a
regression of tp on W* or W),

Remark 5 Notice that if we demean test indicator M{DT only for the compo-
nents which involve p then, as noted before, OPG-FCM and robust FCM proce-
dure will be asymptotically valid but (41) or (42) can not be employed. In other
words, it is necessary to demean all elements of the moment condition to obtain
valid test statistics based on Mbp.
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Test indicator Tests

M, T3, T3, Th and 7))
M Te, TE, T and T
MY T, TH Tt and T3

Table 1: Various test indicatots and tests considered in the simulation

5 Monte Carlo Evidence

In this section, we present Monte Carlo evidence on finite sample size and
power performance of the 12 tests defined in (19)-(22), (30)-(33), (38), (39),

(41) and (42). To recapitulate, we consider three test indicators FCM (]\Zf%) )

CCM (M;) and Tse’s "modified" indicator (M}) ; each having four versions

(FQMLE OPG, FQMLE robust, PQMLE OPG and PQMLE robust). Table 1
displays various test indicators and associated test statistics under considera-
tion.

The parameter values for the null and alternative DGPs are taken from
the existing literature (e.g. Engle and Ng, 1993; Tse, 2000; Lundbergh and
Tersisvirta, 2002; Halunga and Orme, 2009). For each experiment, three series
of 1200, 900 and 700 data realizations were generated with the first 200 ob-
servations being discarded to avoid initialization effects, yielding sample sizes
of T' = 1000, 700 and 300 respectively. Each model is replicated and esti-
mated, 10,000 times (for size experiments) and 2000 times (for robustness to
non-normality and power experiments), both by FQMLE and PQMLE. Next,
the above mentioned 12 test statistics are calculated. For this simulation study,
we consider the product of the 1-period lagged standardized residuals as the
scalar test variable, i.e. 7t = (4 1(s, 1 to calculate all 12 test statistics.

5.1 Size

To assess the size properties of the tests we consider a bivariate AR(1)-CCC-
GARCH (1,1) data generating process (DGP) as our null model i.e.°

Yit = @0t Pulit-1te€i, =12
Var (e)|Fi-1) = Hy = E[e;|Fi1] = hiig, &0 = H? (w)¢,; € ~N(0,1)
hii,t = ai+ 041'1512,15_1 + /Bﬂhi,t—l
_ o [VRie 0 1o
Hy, = DDy Dy = [ 0 Vi MdT=1, ] (43)

Four experiments are considered and the corresponding true parameter vec-
tors are presented in Table (2). E1 and E2 represent models with relatively

10We also consider CCC-GARCH (1,1) DGP (i.e. assuming zero or known conditional
mean) to evaluate size property. However, to save space and due to the qualitative similarity
we will discuss only AR(1)-CCC GARCH (1,1) results.
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high persistence (a+ 3 =0.95 for E1 and o + 8 = 0.90 for E2) while E3 and
E4 correspond to relatively low persistence model (« + 8 = 0.70 for both E3
and E4). On the other hand, E1 and E3 represent high correlation models and
E2 and E4 represent low correlation models. Hence E1, E2, E3 and E4 represent
high-persistent-high-correlation, high-persistent-low-correlation, low-persistent-
high-correlation and low-persistent-low-correlation specification respectively.

Table (3) reports the actual rejection frequencies when the null of CCC is
true and &, ~ N(0, I). The results are reported for a nominal size of 5%. It can
be seen that for low correlation DGPs (E2 and E4), the empirical sizes for all
test statistics, except OPG FCM (T% and T%), are very close to the nominal size
of 5%. Although the OPG version based on FQMLE of other two tests (T} and
T%) slightly overrejects when T = 500, size property improves as T' increases.
Interestingly, PQMLE and robust version of all these tests demonstrate better
performance even in small sample. In case of experiments with high correla-
tion, particularly with high persistence volatility (E1), all FQMLE-OPG tests
(TE, T and T} ) are slightly oversized; robust version of these statistics, how-
ever, corrects this size distortion. Tests based on ]\Zf% perform comparatively
better for high correlation case.

Our finding that size performance depends on correlation but volatility per-
sistence does not have much impact on rejection frequencies, are in line with that
of Tse (2000). He reports "correlations seem to play a role in determining the
rate of convergence to the nominal size. Models with low correlations are less
subject to over-rejection in small samples....the persistence of the conditional
variance does not have much effect.. " (Tse, 2000 pp:115).

In summary, tests with Tse’s modified indicator based on PQMLE (i.e. T}
and Tltj(r)) provide the most reliable size property; robust versions, in general,
perform better than OPG; OPG-FCM tests are slightly oversized and all test
statistics perform better in low correlation experiments.

5.2 Effect of Non-normality

Table (4) presents the actual rejection frequencies when the null of CCC is true
and &, ~ t(6), &, ~ t(8) and &, ~ ¢(10). The inclusion of ¢(6) offers some evidence
on the robustness of the procedure to violations of the underlying moment as-
sumptions (cf. Assumption 2.5). First thing to observe that all OPG-FQMLE
tests (Tf, T5 and T%) overrejects the null for both high and low correlation
models, but more severe in high correlation models. Particularly, note that
Tse’s LM test (7)) is sensitive to the departure from normality assumption.
Interestingly, the OPG-PQMLE tests 7% and T demonstrate robust size per-
formance under non-normality. The robust version of FQMLE tests reduce the
overrejection rate considerably and in fact T ;(T) and T;(T) are slightly under-
sized for low persistent-low correlation model with #(8) and #(10) errors. The
empirical size of robust tests based on Tse’s indicator (particularly Tltj(r)) and
CCM tests, in general, are close to nominal level of 5% while all versions of the
FCM tests show unreliable size property (in general, they are oversized).
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5.3 Impact of univariate volatility misspecification

We consider four experiments (M1, M2, M3 and M4) in the regression context
to investigate the effect of misspecification in the univariate GARCH model
when the true correlation structure is constant. M1 and M3 has low correlation
(p = 0.20) and M2 and M4 follow high correlation (p = 0.80) structure. The
conditional mean parameters are the same as in the size experiments. For both
M1 and M2, the univariate volatility specification for first variable is given by
high persistence GARCH (1,1) model i.e. hy1; = 0.01 4 0.15¢% ,_; + 0.80hq 11
while the second variable follows the EGARCH(1,1) model of Nelson (1991)
with parameter values considered by Engle and Ng (1993) and Halunga and
Orme (2009) in their simulation study: log (hag;) = —0.23 4+ 0.91og (ha,—1) +
0.25 Hgt_l\ — 0.3§t_1] . On the other hand, in experiment M3 and M4, we as-
sume that both variables are subject to volatility spillover (i.e. ECCC model)
in the following way:

hii,t = oo + 041'1512,75_1 + Biihi,t—l + Bijhj,t—ﬁ t=1,2and i #j
with

(a10, 011,811, 81) = (0.01,0.15,0.80,0.02) and
(20, @21, Bag, Bay) (0.05,0.20,0.70,0.03) .

Table(5) reports the results of the simulation study based on 2000 repli-
cations where the data is generated with normal errors and the nominal level
of significance is set to 5%. It can be observed that the tests are robust to
volatility spillover case (i.e. M3 and M4). On the other hand these tests seem
to be non-robust with GARCH-EGARCH-High correlation specification (M2),
all tests overreject the null of CCC. It is to be noted here that due to the fact
that FCM test indicator involve the volatility moment condition, these tests
expectedly display the power to pick the misspecification. For M3 (GARCH-
EGARCH-low correlation), the tests, except FCM, are not that much sensitive
to univariate conditional variance misspecification.
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P1 P2 P3 P4 P5
0.05 0.10 0.15 - -

&
B 090 0.85 0.80 - -
Q

1.00 0.60

{0.60 1.00} ) )
4 ] ] ] 0.30 0.10 0.40 0.20
B 0.10 0.30 0.20 0.40
B [0.60 0.20] [0.40 0.20]
BT ) ) 0.20 0.60 0.20 0.40
o 0.20 0.10] [0.20 0.04]
BT ) ) 0.10 0.20 0.04 0.20

Table 6: True parameter values for power simulation

5.4 Power Simulation

To examine the power of these tests we consider two types MGARCH mod-
els with time varying correlations again in the regression context. The AR(1)
specification for the conditional mean function introduced for size simulation is
retained. First we assume that the true DGP for conditional variance matrix
H, follows Engle’s (2002) DCC-GARCH(1,1) model as follows:

Yie = @it Palit—1te€ir, 1=1,2
Var (e)|Foo1) = Hy = E[eh|Fi1] = hiig,
hii,t = i+ ailgit_l + B hi,t—l

vh 0
Hy = DiIyDy; Dt:|: Ollt M}

rv = (o Qt)_l/Q Q:(I® Qt)_1/2 = diag(Qt)71/2Qtdiag(Qt)*1/2

Q = 1-a—pB)Q+a¢, 1C_y +BQu; (44)

Secondly, we consider BEKK model of Engle and Kroner (1995) as the true
DGP for conditional variance matrix H;

Yie = Yo+ PaYir-1te€u, t=1,2
Var (e¢|Fi—1) = H:
Ht = CB + AIB (€t_1€;_1) AB + B/BHt—lBB (45)

Five experiments are considered; P1, P2 and P3 with DCC DGP and remain-
ing two (P4 and P5) with BEKK DGP. The true parameter values for con-
ditional mean functions of size simulation experiment are maintained for all
DGPs. Also for DCC DGPs, high persistence individual volatility specification
for both variables, as given in E1 and E2, is retained (i.e. 7} = (0.01,0.15,0.80)
and n5 = (0.05,0.20,0.70)). The remaining true parameter vectors are given in
Table (6). The parameter values for BEKK models are taken from Tse (2000).
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Table (7) and Table (8) presents the power results with 2000 replications for
DCC and BEKK DGPs respectively where the nominal size is again 5%. The
data is generated assuming normality. The average of the estimated correlation
parameter and true range of correlations in the simulated sample (as a measure
of time variability) are presented in the last panels.

It can be seen when the true DGP is DCC, P3 has the largest variability in
correlations followed by P2 and P1 i.e. variability increases as & increases and 3
decreases. In general, the tests based on Tse’s indicator is found to have higher
power in all three DCC experiments. However, as the variability in correlation
decreases power decreases. The FCM tests also show nice power property. It is
to be noted that even with T' = 500, both Tse and FCM tests show high power
especially in P2 and P3. But CCM tests lack power considerably, particularly
for P1. The OPG-FQMLE tests show greater power; however using robust and
PQMLE versions do not cost much power. In case of BEKK DGP the conclusion
is quite similar to DCC models. P5 has larger variability in correlation than P4
and the tests also oblige the fact. All tests show excellent power for P5; CCM
tests, however, lacks power for P3.
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6 Concluding Remarks

In this paper, we propose a set of asymptotically valid CM tests of testing
the CCC hypothesis for MGARCH model. We consider tests considering both
FQMLE and particularly PQMLE framework for CCC models and tests with the
latter is nonexistent in the literature. Moreover, the robust and OPG versions
of these tests are developed. These tests are very easy to implement. We also
analyze and accommodate Tse’s (2000) LM test, which is a OPG type test, and
consider a robust version of it. We examine the finite sample performance of
these asymptotically valid tests.

Monte Carlo experiments indicate that in general all tests have desirable
size property and robust version perform better than OPG version. It is found
that the correlation parameter has a significant impact on empirical size of
these tests (low correlation is associated with better size property); the size is,
however, not affected by the degree of univariate volatility persistence. The
robust versions demonstrate better size than OPG tests in case of the departure
from normality assumption of true error; particularly all OPG-FQMLE tests are
oversized. Interestingly, PQMLE based tests exhibit more robustness compared
to FQMLE tests. Besides, when the assumption of the null model is violated
by assuming misspecified univariate volatility structure but maintaining CCC
assumption, the size of these tests are not affected by volatility spillover effect;
however when one equation is misspecified and true correlation is high all tests
overreject the null of the CCC assumption. The rejection rate is higher in case
of FCM tests expectedly; as by construction these tests consider the individual
volatility moment conditions as well.

The power of these tests depends on the variability of the true correlation
parameter and it is found that tests based on Tse’s modified indicator and FCM
show excellent power, even in models with less dispersed correlations. The CCM
tests, in general, show lower power and particularly in models with less dispersed
correlations have limited power. In terms of power there is very little to choose
between OPG and robust; and between FQMLE and PQMLE.

To sum up, testing correlation constancy depends on the true correlation
parameter and no significant difference is observed whether one use FQMLE
and PQMLE approach. The robust versions manifest better size under non-
normality. The FCM tests check the individual volatility along with CCC as-
sumption; hence can be treated as a general diagnostic test. The CCM test
has desirable size properties, but lacks power under certain DGPs. Tse’s LM
test, which is a OPG-FQMLE type, has good size and power properties but
is sensitive to the departure from normality while its OPG-PQMLE display
impressive robustness maintaining the high power performance. The robust
version of Tse-FQMLE, however, has empirical size close to the nominal level
under non-normality.

The tests here is derived for to check CCC assumption which in many situ-
ations is not a realistic or reasonable one. It is therefore is of interest to devise
test of time varying correlation. In practice, two-stage estimation approach is
almost always applied to estimate time varying correlation model indicating to
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develop a testing framework based on PQMLE approach. However,in this case
correlation is not a scalar and the simple demeaning technique, that we have
used to derive the PQMLE tests in this paper, is not possible and we need to
consider the estimation effect emerging from correlation parameter to derive the
limit distribution of the test statistics. Such extensions, however, left for future
research.

39



Appendices

A Proofs
For the CCC we have,

EitEjt

ity it| Fr— =E
corr (g4, €5¢| Fi—1] l\/hizt\/higt

ft_1‘| = pij'

We have the following definitions:

L Cip = €it/Vhit is iid (0,1), for t = 1,..., T, with E [¢;,;¢|Fi—1] = pyj; or
E [thgft—l] =TI = {pz’j}v (N x N), where ¢, = {(;}, (N x 1), and
p;; =1, T'=T" is symmetric and positive definite.

2. Let T=1 = {p¥}, so that 3N _| PPy = dij, the Kronecker Delta, i.e.
0;s =1, 0;5 =0, 1 # j.

3. &5 = ZZ:l P C ey 50 that ef = {ef,} =T71¢,.

1 Ohy 1 Ohy

4. fi = wir/Vhi, it = — 55—, Tip = — .
ft wt/ ty Cit hit890i Tt Bt 87%‘

Then, in addition to the properties of {;, listed in (1), we have the following;:
ElilFia] = 0
Elerey’|Fe1] I ={p"} = {E [efie}e Fin]}
E[ef¢i|Fim1] = In={E [E:tgjtl}—tfl]}

so that, in particular, E [E?tht‘ftfl] = 045-

A.1 Proof of Lemma 1

To construct the expected Hessian matrix conditional on F;_1, we first obtain
the second partial derivatives given F;_;. Since ¢/ H, 'e; = ({T71¢, = (jef we
can write the likelihood function (7) as:

1 1 1
o= _§1n|r\_§;1nhﬁ—§<;p—1gt

1 1 1
_§IH|F‘ — 5 Zlnhﬂ — § chjt‘g;t'
j=1 j=1

Using the results of Lemma 1, and noting that ¢, = Z;\Ll pijCjt and p¥ = pit;

Oc3, g 1 Oc3, 1 .
we have B =—p" | fir + §<itcit , and n = —gp”gita:it. Then we have:
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N
ol; 11 1 L1 e,
o= —scirt s <fit + 2Citcit> Cit T 5 ;:1 Cjtaigoji

0p; 2 2
* 1 *
fires + 5 Cit (Cacir — 1) (46)
Similarly,
arr 1 .
5‘772— =9 (Ciegie — 1) mie- (47)
Finally, as in Tse (2000, p.113) we have:
olf . i
30; =ceng —pY, P> (48)

To see how (48) is derived, note from Magnus & Neudecker (p. 178) we have:

dln|T| = |T|7'a[0] =t (T714T)
N N N N N y
= D> A dp) =D P (dpy)
k=1m=1 k=1m=1
N N 3 N k-1 y
= D> A (dpy) =2 > p (dpy)
k=1m#1 k=2m=1

where T' = {p;;}, T~" = {p*}, and where (in line 2) we have used the fact
that p,,, = 1 and that p,,, = p,,,- Thus
dln|T|
apij

20", i > .

. N k :
* m
Furthermore, since €5, = >, 4 p*"™(,,; We can write

Oy _ al dpkm

apij - oo apij

Cmt .

Note from Magnus & Neudecker (1999, pp. 183) we have (the differential)
dD~' = —I"! (dT) L' Then looking at the elements we see (with T' = {p;; },
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“1={p"})
N N
ap™ = =YD P (dp)p

r;l s;l
= —ZZPIW (dprs)p

r=1 s#r

N r—1 N s—1
S W S A g o

r=2 s=1 s=2r=1

N27"—1 N2 s—1
TR o) I PR

r=2s=1 r=2s=1

where (in line 2) we have used the fact that p,,, = 1 and (in line 4) that p,.,
Thus,

5 _ _pk:Lp]m _ pkjpzm
Pij
_ _pkzpm] o pkjpmz
Then,
6521‘/ i km
apij m=1 apl]
N
= = (PP P ™) G
m=1

_ ki _x kj x
= TP g TP E

Now we have,

N
oly o1 O},
—pil — = § ¢

apij 2 1 M 8Pz‘j

N
]- 1 % * ij
§ZCM (" fgt"‘PkJEz‘t)_Pj
1
SE{CONCINEN WA RV
k=1

1 3
L x = x ok \ _ ij
= 3 (5jt5it + gitsjt) P

R S T
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A.2 Proof of Lemma 2

Recall that E [e};|Fi—1] = 0, E[(pe5| Fi1] = 1and E [e,¢5,|Fi—1] = p', so that
each of the above scores has zero mean. Note that 0f;:/9¢;, 0 fit/On;, Ocit/Op;,
0cit/On;, Oz /Op;, and Oz /On,; are all F;_1 measurable. Also, I' = {pij} and

Ir=! = {p¥}, so that Zm L PP = Oij,where 0 = 1, 8;; = 0, # j. And
N im
ef ={ei} =T7"¢; hence e, = 37,1 P Cpne

L. Differentiating (46) with respect to ¢;, we obtain

o21* Ofit o 851 1 Ocit .
8%820; = Oij5 o), €t T fzt ! 51'3'? (Cuer — 1)
¢, Oe},
+*51j6it€zta /t ltCzta !
e, 0
fzt zt —|— 261_70115 ztagz,t 1tCzta / + 2014

afzt * 1 8C’Lt

where s01; = 035 57— 5‘ at= 5zg 9o / (Ciers — 1) so that Eg [%tlj:tfl]w:wo =
0.Hence,
({92[: i ! 1 / 15 * ’ 1 ’
&pi@(p;_ = —p7fu fjt + icj‘tcjt - 5 ijCit€ ¢ fjt + icjtcjt

1 . 1
—§P”Cz‘tCit (f;'t + 2Cjtc;t> + s

1 .. .
P”Pijcitcg‘t + 51, (say)

P
P fltfjt 6zjcztcjt 4

where Eo [>;|Ft-1] 45—, = 0. Thus we can write

* ij 1 i
H%% —p fuufje = 1 (0ij + p" pij) citCly- (49)
~ 621*
such that Eo |H* . (@o)| = Eo | ——| Fi_1 )
[Foe, 0] =0 | i 7|

2. Differentiating (47) with respect to 7;, we obtain

o02ly Afu e’ t 1 ocit
= dy £, i v 517 7 ;k -1
X Ja, +ft ]8779(Ct5t )
1 o, Oc;
+*5ij0it€n Bn ,t ZtCzt an (t
oei, 1 a¢; Oe;
= f’Lt zt Qéijcitgit aC/t lt(zt 8 /t + o
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afi 1. Oc
where ot — 51] af ¢ x +§5”§ (Cits;kt — 1) so that EO [%2t|ft—1] =
J

W=w(Q
0. Therefore we have
021y 1. 1 " 1 ..
W = —§P inthtiﬂ;-t - Z(Sijcitgitcj'tx;'t - ZP jCitCithtx;'t + s
i

1

1 ..
= 51361tmﬂ 4pljpijcitm;’t + %;t (SaY)

where Eg [5¢5,| Fi—1] = 0. Thus, similarly

w=wg
ﬁ:vmj = _i (0ij + P pyij) canyy. (50)
3. Differentiating (48) with respect to ¢, yields
ﬂ - Oegy L e,
Ip;;0), gy, o,

1 ) 1
—p'ker, (fkt + 2th6kt> - p'tel, <fkt + Qthth)

1 - 1 .
—=3peny — =0ip Fery + e (51)
2 2

where Eo [53¢|Ft—1]_o,, = 0 and we have

_ 1. 1.
Hoipy = _§5jkPZkat - §5ikpjkckt
Note that ¢ > j, here, so that

1 1. o
Pt =—gpc, k=i>]

2
PiPij = —*pijcj't, k=j<1
0, k#i,k#j
4. Differentiating (47) with respect to 7;, we obtain
0%x 1 zzt 1 a¢; Oe}
amatn;_ = 2 (Czt g — 1)+ 5zszt5ma /t 1t<1t6 :
1
= 613331155175 acz/t 1t<lt a / + A4t
1 * / 1 17 /
= _Z(Sijxitgitgjtxjt - zp xitCithtxjt + 4t
1 y
= _Zéijxitx;t - Zp”pijxit-r;‘t + sy
where s = 3 ”W (e, — 1) so that Eo [%4t|ft—1]w=w0 = 0. Thus
J
)% 1 iJ /
Hm-nj = ((51-]- + p* pij) TitTy (52)
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5. Differentiating (48) with respect to 7, yields

0%l , Ot N Oc}y
PR A— = E 5
apwan;c jt 87]/ it (9 /
_ _1 ik _*x _1 Jk
= 5P €51CktTht 9P €5tCheTht
1 ) 1 .
= _§6jkplk$k-t - §5ikﬂ]k$kt (53)

Note that ¢ > j, here, so that

1 1 .
——pllay = —§p”x¢t7 k=1>j;

2
MiPi; —=pizy, k=j<i
0, k#i,k#j.
. . . al: * *
6. Differentiating (48), 5y~ Citcit — p¥, i > j,with respect to py,, yields
Pij
o2y e’ 0ej dp'
it L
apijapk'm apk‘m apkm 8pk‘m

_ 1k _* im _* ok ik _* * im k%
= *P 5mt5]t p 5kt5jt*/77 Emt€ir — P ERiEi

. ap' . L
where we have used the previous results: 3 P _ —ptkpIm — pimpik and
Plm
Oe* .
87” = —piker  — ,o”"s}zt We thus obtain, using symmetry,
Pkm
ﬁ:ijpkm — plkpmj zm k‘j p]k mi

pjm k2+pzkp]m+pzmpj
jk mi pjm ki

Op¥
apkm

— _pikpjm _ zmpjk (54)

A.3 Proof of Lemma 3

First we deﬁne the following:
p = vecl(T) = {pu} j=1,..N—1,i=354+1,..,N (ie., the i subscript
changes more qulckly than the j subscript);

!
For the i*" variable, define F; , C; and X; with rows fh= Wit ;
(TxK) (TxK) (TxK") Vhit
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1 0h; 1 Oh; .
¢y = hn?ﬁp; and zf, = h—% ; respectively. Then define
F = di FZ ’
(NTxNK) iag (F)
F = [F, Fy, ..., Fy]
(TXxNK)
F) = diag (f},) fort=1,---,T.
(NxNK)
In a similar way, define C, X, C, X. C; and X|. Also, define E; = diag((;);

(NXxN)
and the (N x T) matrices E = {(;;} and E* = {¢},} = ['"'E having columns
¢, and €} respectively. It will be useful to define I'y = Iy + (I‘*l ® I‘) .
Let p* be the k¥ column of I'~'; define I'* = I'"'diag (74), where 7, =
{8ik}, (N x1),i=1,..,N ;ie. I'* bethe (N x N) matrix of zeros, except for
column k which is p*. Define the following two (N x N) symmetric matrices:

P, = TrF4 (¥
/
Tk P (™) + o™ (")
Note that F' = (iy @ It) F,so that, F'F = F' iy @ It) (y @ Ir) F = F' (In @ I7) F.
Now

1.

T
]:t1‘| = _p” Z fztfjt 6lj + p p7,7 Z Cztcjt
W=wQ

t=1

—pEF; = (0 + P pi;) CiC;

_ .1 o
‘7:75_1‘| = —(F_1®JK)®F/F—E(FA(@J)@C/C

- (M eJg) 0 F' (In®Ir) F
1
~1 Ta®JIk)©C' (Jy ®Ir)C
1
= —FFIT'elr)F- 1C’ Ta®Ir)C

2. Similarly,
T

0%l
Z dpdn’

1 .
1 —1Ca@J) o C'X
w=wo

1
= —Z(FA®JK) OC (In®Ir) X

1
= —0'(CaelnX

46



Eo ZT:% fH] = —7(A®JK) ©X'X
— oo’ o
= —%X’ (A Ir) X
4. For i > j,
T
o [Z apfg A ] o —3 (™ + 80™)
= % (6:6p™ + p™*01;) UpCh

Then, the matrix with typical element p?*8y; is p*r}, where 7, = {d;1},
i=1,..,N. (NxN), p* is the k" column of '™, and e is the k*"
column of Iy, k = 1,..., N. Similarly, (pke%) = {5ik.pkj}. Alternatively,
let I'* be the (N x N) matrix of zeros, except for column k which is p*,
the k' column of I'~ 1, i.e., I'* = I'"'diag (13). Define the symmetric
matrix P, = T'F + (Fk) pr = vecl(Py), and Ry, = trp).. Then, since i > j,

1
FYCH ftl] = -3 vecl (Py) tC,
W=w(Q

1
= - ipk vpCh

Collecting the k blocks together we get
(£
0pdy’

where P has rows pj, = vecl(Py)’, k=1, ..., N.

inN(]\;*l)

1
ft_1] = —§P/ (IN ®L/T)C
W=w(

5. In a similar way to the previous result,

ET: 021,
0pd'n

1
1 = 5P (In@i) X
W=TwW(0

6. Finally, P has columns gy, = veel Tgm), m = 1,..,N — 1,
N(Z\;—l) « N(J\;—l)

k=m+1,...,.N

e [ 01,
0| =————
apij apk‘m

ik i . "
ft1:| _ _pz pjm o pzmp]
W=w(
_ ik _mj _pim. kj
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Now, the (N x N) matrix with typical (z’,j)th element equal to p™*p™7 is
p* (p™) and that with typical (i,j)th element equal to p'™pkJ is p™ (pk)/ .
Let Ty, = p* (pm)' +p™ (pk)/, and let pg,, = vecl (T, ) . Then

021,
|:6p8pkm ‘ ft_l} oy DR
or
0%, ~
Zt iR - _p
Eo [apap’ t 1} o
T
021, ~
— | Fie = -TP
1 0p0p' . 1]
W=

where P = [D21, P31, - DN, N—1] , @ matrix with columns Py, m = 1, ..., N—
1, k=m+1,....N (k changes more quickly than m).

A.4 Proof of Theorem 2

Proof. The test indicator under consideration is MFT =71 ZZ;I mpt. By the
consistency of & we have, VT (& — wo) = J;;fGOT + op( ) where J¥ __ =

o [ (0)] = plimg_.o, T ZL 24 Y
(by a ULLN) where J5;_p, = -T"' S, amOFt . Taking a mean value expan-
sion of MFT about wy = (96,/)0) ,

VEer = NTMypr — Toyon VT (& — w0)

VT Mopr — T3y d i VT Gip + 0p(1)

()

T amFt

%k —_— . .
where Jy,op = —T7 15, and @ is the usual "mean value" satisfying
w

T =wo+0,(1) = Tyror = JMw + o0, (1) and A* = [I, : =J;;J5}] . Now
using Proposition 1, we conclude that

VT Mpr -4 N (0,V)

where V = A*Y* A* with ©* = [ EIYM 2146‘ ] . m
ZGM EGG

A.5 Proof of Proposition 2
N 1
Proof. The test indicator under consideration is Mpp = T Zle (D @T) =

1 NV
= S ey where &, = vech (€% = T). Define Ji;,, = plim Jf o where

T— 00
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om 1 ompy 1 om
Tntwr = ZtTl awFt:_ T thlﬁTf’t’T tT—lapl/?t:|’ZZ(le"'7ZN)
where Z; is (T x k;) matrix having rows z}, = (cj;,z},) for i = 1,---N. Also
define R* having rows r}, if 7, is a vector of test variables, or R* is a vector with
typical element 74 if r; is a scalar.
Note that vy = {¢}, =1} if i = j and vy = {(;C; —piy } if i # 4, j <i=
, IV. Since (; are functionally independent of both ¢, and 7, i # j, and p

, 1 ,
does not enter in 0; Now, we have iy = —fit— §Citcit’ % = —igitmit; hence
d(¢% -1 1 d(¢Z -1 Z .
(%zpi) = —2Cy <.fit + QCitCit) and @atz) = —2(},xy and for i # j,
. . (CitCje — Pij) 1 (Gt — pij)
J<i=2--,N; # = =Gt (fit+2<itcit)a # =
1 9(CitCie — Pij)
—Cjt (2Citxit) ) —ta];ij 1~ = —1. Hence,
d (¢ —1 1
(6;9'-) = (_QCz‘t (fz/t + 2Citc;'t) a_QC?tx;t> )
0(CitCje — Pij) 1 1
% = —Gjt (filt + §Citcgta 2@#%) .

Now, note that E [C?J]—'t,l] =1,E [fitg“jt|_7:t,1] = E [fitC;|Fi—1] = 0, since
fit is Fi—1 measurable and Eg [(1,(s;|Fi—1] = pgy. Therefore

Eo o0’ T oo 1

(¢34 -1 1
MTA]'} 1] = phm 7R*,(07"'7Z’L'a"' 70) (55)
and, fori #j,j<i=2,---,N

T
NCiuCje — Pij 1 v
Eo lzwm}—t—llg Ophmf{R O\ Ziyeoe  Zs,-0)}

=1 89 T*>oo
(56)
Finally,
(¢ -1
EO l%rtlftll = 0 (57)
. 0GuCse — i)
itGjt — Pij IR ;o N
Eo |: ap/ Tt|Ft1:| - Tplnio T(0771 ) aO)R (58)
]

A.6 Proof of Lemma 5

Proof. Under normality, from the generalized IM inequality (e.g. Newey, 1985),
we have Ji;_ = X%, and JE_ = X%, and the result follows. Further (by
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ULLN) the consistent estimator of ¥3},+, Xfq.and ¥}, are given by

T
e = T7'Y npgy =T7'SYR,
t=1

T
EZ‘G 71 Zg:g:/ :T_IS*/S*,
t=1

T
Suy = T gy, =T'R'R.
t=1

Hence, A* = |, : ff]}‘MGXA]E_Gl] . Now Define B* = {R, S’*] ,and W* = B*A*
~ l*

where R and S*are (T x r) and (T' x N') matrices having rows m/, and %;
w

N 1.4 o
evaluated at @w.Then V can be consistently estimated by Vp = TW*/ W* =

< sk vk — 1k
Yum — EXyeXce Xam- ™

A.7 Proof of Theorem 3

Proof. Define Mpr = M, J.(0y) = — plimy.__ % [ T fgjgyggph VM, =
oo,
OMopr

09;

VMpri(61,02) = plimg_,
sion of \/TM about 0 = N

, 1+ =1,2. Now taking a mean value expan-

\/TM = \/TM(GQ) + VM, (910, 920) X J1(910)_1\/TG1(610)
+V M3 (610, 020) X J2(920)71\/TG2(920) +0,(1)
= VTM(0o) — Jarg X Jpg VTG (89) + 0,(1)

_ VT M (6y)
= A { \/TG(og) }Jrop(l) (59)

A S R ot R R T

and Ay = [I., —Jpe X Jpg] . Thus, when the proposition (3) holds we can write
that oy
VT My 2 N(0,V7)

where V; = 41X A, =

A.8 Proof of Lemma 7

Proof. Assuming that the specification of the log-likelihood for the FQML
estimation of parameters is correct, we can use a generalized (conditional) IM
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equality which says that

0 8lit(9i)
0 [892- ( o0 ) 17 “]

] () () .

omy(0) oLz (0, p)
Eo { 8;; 'ftl] = —Eo |:mt(9) 20 Fi1|,
where 8( ,’ P) is the score for 6;, ¢ = 1,2. from the FQMLE log-likelihood.
' (6, 1
Then J; = —plimp_o 4 [0, G| = plimy_ Q1S and Jyro =

—plimp_, TR/Si' Substituting these into (59) yields

-1

. s 0
VTM = VTM (90)—fR’S TQl ' 1 VTG (6) + 0,(1)
0 TQ/QSQ

= Vs [ oo

-1
where A; = [I,,: R’S< (Qllil) (Q'QgQ)_l )} and S = [S1, Sq]. Now
defining B = [R, Q1, Q2], ¥ = plim,_,  B'B. Hence, the variance-covariance
matrix V4 can be written as Vi = plimy_, %AlB’BA'1 = plimp_, %W’W
where W = BA, = R — Q1 (5/Q1) " S{R — Q2 (S,Q2) ' S4R.

Now Vi can be consistently estimated by Vir = %W’ W, where hats denote
0o replaced by the individual GARCH estimators, 6, and p, replaced by the

. L s
estimator p = T D i—1C1¢Co ™
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