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Abstract

An asymptotically valid Conditional Moment (CM) testing procedure
of the CCC assumption of the MGARCH model is proposed considering
both full QMLE (FQMLE) and partial or two-stage QMLE (PQMLE)
framework. A "new" and easily programmable expression for the expected
Hessian is provided for FQMLE. The OPG and robust to non-normality
versions of the test statistics are derived. The Tse (2000) OPG-type LM
test of the CCC assumption is analyzed within our CM framework and
a new robust version of this test is proposed. An extensive Monte Carlo
investigation demonstrates good size and power properties. The OPG
versions su¤er from size distortion under non-normality whereas robust
versions perform better.

JEL classi�cation: C12, C32
Keywords: Multivariate GARCH models; Constant Conditional Correlation;

Conditional Moment tests, Monte Carlo experiment

1 Introduction

Applied researchers have increasingly been using the conditional correlation ap-
proach to model multivariate volatility through a multivariate GARCH (MGARCH)
model. Although the Dynamic Conditional Correlation (DCC) model is by far
the most popular speci�cation among applied researchers, a good number of em-
pirical research applies the Constant Conditional Correlation (CCC) model; see
for example, Bollerslev (1990), Kroner and Claessens (1991), Kroner and Sultan
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(1991), Kroner and Sultan (1993), Park and Switzer(1995) and Lien and Tse
(1998). Due to the simplicity and computational advantages of the (CCC) model
compared to that of the DCC model, on the one hand, but the restrictiveness of
the CCC assumption on the other, testing the adequacy of the CCC-GARCH
model is very important both from practical and theoretical point of view. The
validity of the CCC assumption remains an empirical question. However, only
a few tests of this assumption have been proposed in the literature.
To test the CCC assumption, Bollerslev (1990) suggested some diagnostics

applying Ljung-Box portmanteau test statistics based on the cross-products of
the standardized residuals obtained from the CCC-GARCH model. The idea is
that if the CCC assumption is valid, then these crossproducts should also be
serially uncorrelated. He found that the standardized residuals are uncorrelated
in case of �ve European countries�monthly exchange rate and suggested that
this provided evidence of constancy of the correlations. However, serially uncor-
related standardized residuals implies they are linearly independent over time
and does not guarantee that the conditional correlations are constant over time.
Further, critical values for this test procedure were based on a �2 distribution
whereas Li and Mak (1994) pointed out that the portmanteau statistic is not as-
ymptotically �2 and the use of a �2 approximation is inappropriate. Bollerslev
(1990) used another diagnostic based on an arti�cial regression involving the
products of the standardized residuals. In this case, however, there are usually
no su¢ cient guidelines as to the choice of regressors in the arti�cial regression.
Furthermore, the optimality of portmanteau and residual based tests is not es-
tablished. Therefore, there remains the question of how powerful these tests are
against dynamic conditional correlation.
Longin and Solnik (1995) suggested another test by taking pairs of vari-

ables at a time; explicitly specifying the conditional correlation as a function of
potential sources of deviation from constant correlation and then testing the sig-
ni�cance of the associated parameters.1 However, their alternative correlation
speci�cation is not guaranteed to be bounded by �1 and 1 (i.e. j�j � 1): This
would appear to be a crucial defect. In their empirical application with monthly
excess returns of stock markets of seven major countries from 1960 to 1990, they
considered three sources of deviation: a time trend, the presence of threshold
and in�uence of related economic variables (dividend yields and interest rates)
and found that the correlation was increased over time and related to dividend
yields and interest rates implying the rejection of the CCC hypothesis.
Bera and Kim (2002) developed a test of a bivariate CCC-GARCH model

against the alternative that the correlation coe¢ cient is random (over time).
This test is an Information Matrix (IM) test (White, 1982) in the form of an
LM or score test of random variation in correlation parameter �; see Chesher
(1984) and Cox (1983). The null hypothesis of this score test is that the variance

1For example, they specify the conditional covariance between two assets as follows:

h12t = (�0 + �1x1t + � � �+ �rxrt)
p
h11th22t

where hiit is the conditional variance of ith asset i = 1; 2, xit�s are possible sources of deviation.
The CCC assumption corresponds to the null H0 : �1 = � � � = �r = 0.
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of the parameter of interest is zero and the test checks the local behavior of
the log-likelihood function close to the null of no parameter variation. It does
not check the CCC assumption directly. Secondly, this test is not robust to
non-normality. Thirdly, this test is derived for bivariate case only, limiting its
applicability in high dimensional cases. Finally, the IM test assesses several
features of the model. Bera and Kim (2002, p.182) also recognize the fact that
"ability of the IM test principle to check various feature of the underlying model
might be viewed as a drawback rather than an advantage".
However, all the above-mentioned tests are not speci�cally designed for test-

ing CCC assumption and in practice they may not be very helpful to address
this issue. Tse (2000) proposed a LM test of the CCC assumption. This is a
multivariate test in a true sense and, among applied workers, the most widely
used test of CCC assumption until now (see, for example,Tse (2000), Lien, Tse
and Tsui (2002), Andreou and Ghysels (2003), Lee (2006), Aslanidis, Osborn
and Sensier (2008) among others). This test involves the Full QMLE (FQMLE)
approach i.e. simultaneous estimation of the volatility and correlation parame-
ters under the null of CCC. Therefore it might not be robust to GARCH mis-
speci�cations in individual volatility equations. Moreover, Tse uses the OPG
version of the LM test which is based on the normality assumption; therefore
it may demonstrate relatively poor �nite sample properties and may not be ro-
bust under non-normality (see, for example, Davidson and MacKinnon, 1983;
Bera and McKenzie, 1986; Chesher and Spady, 1991). Finally the time varying
alternative speci�cation of correlation matrix as presented by Tse is not nec-
essarily a positive de�nite matrix for all t. For this reason Silvennoinen and
Teräsvirta (2008) interpreted this test as a general misspeci�cation test. In a
recent paper, Nakatani and Teräsvirta (2009) proposed a LM test for volatility
interaction where the null model is CCC GARCH model against the alternative
of Extended CCC (ECCC) Garch model.
Nevertheless it is evident that the �eld of testing CCC assumption is rela-

tively under-developed compared to other aspects of the MGARCH literature.
The aim of this study is to put forward some alternative asymptotically valid
testing strategies of the CCC assumption. Firstly, we present and review a con-
ditional moment (CM) testing framework based on the FQMLE of null CCC
model. However, in practice while estimating a MGARCH model adopting the
conditional correlation approach (both constant and dynamic, but particularly
for the dynamic one) researchers use a two-step or Partial QMLE (PQMLE)
approach; where in the �rst stage the volatility parameters are estimated using
univariate GARCH speci�cation for individual variables and the correlation pa-
rameters are estimated using the volatility parameter estimates obtained in the
�rst stage (see, Engle and Sheppard, 2008; Hafner, Dijk and Franses, 2005; Bil-
lio, Caporin and Gobbo, 2006; among others). There appears to be no testing
approach of CCC assumption available in the literature which allows partial es-
timation. The implication of this is one has to �rst estimate FQMLE of the null
CCC model in order to test the null CCC assumption; and if the null is rejected
the researcher needs to use DCC speci�cation which generally use two-step esti-
mation procedure. Again, there is a well-developed literature which deals with
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the speci�cation testing for UGARCH models and their asymptotic properties.2

These two facts motivate us to develop asymptotically valid CM tests of the
CCC assumption based on two-step estimation and utilizing UGARCH results.
The second contribution of this research is to devise a simple test after PQML
estimation. Thirdly, both the OPG and robust versions of the tests are devel-
oped. The proposed tests (both FQMLE and PQMLE) are easy to implement
and demonstrate satisfactory size and good power properties in the simulation
experiments. Fourthly, we derive a "new" expression for the average Hessian
of the CCC GARCH regression model which is easy to programme. Finally,
we have analyzed Tse�s LM test within our CM testing framework and sug-
gested a robust version of this which demonstrate superior size properties under
non-normality.
The rest of this paper is organized in the following way. The conditional cor-

relation approach for MGARCH model speci�cation with the estimation frame-
work is presented in Section 2. In Section 3, a class of parametric tests with
their asymptotic properties is described. An analysis of Tse�s LM test is pre-
sented in the next Section. Section 5 provides some Monte Carlo evidence and
Section 6 concludes. The proof of lemmas, propositions and theorems are rele-
gated to Appendix. Throughout we make use of the following notations: E0 (:)
and Et�1 (:) denote the expectation with respect to true parameter value and
conditional on previous history up to t � 1 respectively; 
 and � denote the
Kronecker and Hadamard product respectively; vech (:) and vecl (:) denote the
operator that stacks the lower triangular portion of a (N �N) matrix as a�
N(N+1)

2 � 1
�
vector and the strictly lower triangular portion of a (N �N)

matrix as a
�
N(N�1)

2 � 1
�
vector respectively; IN = f�ikg ; is the identity ma-

trix of order N where �ik is the kronecker delta; �0K = (1; 1; :::; 1) ; is (1�K)
vector of ones and JK = �K�0K , is the (K �K) matrix of ones.

2 The Null Constant Conditional Correlation
Model

Suppose we are interested in the (N � 1) time-series vector fytg = (y1t; � � � ; yNt)0
and Ft�1 = �

�
W 0
t ;W

0
t�1; � � �

�
is the ���eld generated by the past information

2For example, Lundbergh and Terasvirta (2002) proposed a parametric Lagrange multiplier
(LM) type tests of no ARCH e¤ect in standardized errors, linearity, and parameter constancy.
Testing for leverage e¤ect developed by Engle and Ng (1993) is widely used in empirical �nance.
Bollerslev (1986) presented another LM-type test for testing a GARCH model against a higher
order GARCH model. One important work in this �eld is of Halunga and Orme�s (2009)
unifying parametric testing framework based on the CM principal which takes into account
the asymptotically non-negligible estimation e¤ect from the conditional mean parameters.
This is the major point of departure of the Halunga and Orme�s (2009) test with that of the
abovementioned tests. They demonstrated that these tests are asymptotically invalid in the
regression context and may have low power. A Monte Carlo study also showed better empirical
power properties of their proposed test than those of Engle and Ng (1993) and Lundbergh
and Teräsvirta (2002).

4



up to and including time t� 1: We consider the following CCC-GARCH speci-
�cation to model this series:

yt = m (Wt;')+"t t = 1; :::; T

"t = H
1=2
t ($) �t

Ht = Dt�Dt

Dt = diag(h
1=2
11t ; :::::; h

1=2
NNt) (1)

where '0 = ('01; � � � ; '0N ) ; 'i 2 	 � <K is a (NK � 1) vector of conditional
mean parameters and W 0

t is the (N �NK) data matrix of the t-th observation;
H
1=2
t ($) is a (N �N) positive de�nite matrix such that Ht = V ar ("tjFt�1)

and $ is the vector of unknown parameters which includes conditional mean
parameter ' as well (for notational convenience, we drop $ in H1=2

t ($)), Dt
is a (N �N) diagonal matrix of conditional standard deviation, � = [�ij ] is a
time invariant symmetric positive de�nite conditional correlation matrix with
�ii = 1; i = 1; :::; N: m (Wt;') can possibly be nonlinear andWt contains current
and lagged exogenous variables, and lagged dependent variables. However, for
simplicity of exposition, we assume a linear speci�cation for the conditional
mean function i.e. m (Wt;') = W 0

t' so that the conditional mean function
becomes yt = W 0

t' + "t t = 1; :::; T:The stochastic sequence f�tg is an i.i.d.
process with E(�t) = 0 and V ar(�t) = E(�t�

0
t) = IN :We further assume that

given the ���eld generated by the past information up to and including time
t� 1; Ft�1 = �

�
W 0
t ;W

0
t�1; � � �

�
; the error f"t;Ft�1g is a MDS.

With these assumptions,

E ["tjFt�1] = 0; and E ["t"0tjFt�1] = Ht =
�
hit i = j

h
1=2
it h

1=2
jt �ij i 6= j

;

Also note that corr ["it; "jtjFt�1] = �ij =
hij;tp
hit
p
hjt

and E
�
"t"

0
t�j jFt�1

�
=

E ["tjFt�1] "0t�j = 0; almost surely, for all j � 1: The CCC models uses the
following classical decomposition of Ht to achieve a parsimonious way to model
Ht (compared to direct modelling approach):

Ht = Dt�Dt (2)

where hit; i = 1; :::; N can be de�ned by any univariate GARCH model and
�t = [�ijt] is a symmetric positive de�nite matrix with �iit = 1; i = 1; :::; N:
(2) implies that the diagonal elements of the conditional covariance matrix
are simply the conditional variances while the o¤-diagonal elements are hijt =
h
1=2
it h

1=2
jt �ij ; i 6= j; 1 � i; j � N:

Here we assume that each hit; i = 1; :::; N has a GARCH (p; q) speci�cation

hit = �
0
isi;t�1 = �i0 +

qX
k=1

�ik"
2
i;t�k +

pX
j=1

�i;jhi;t�j (3)
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Denoting ht = (h1t; � � � ; hNt)0 ; we can write

ht = a0 +

qX
k=1

eAk�!" t�k + pX
j=1

eBjht�j
where eAk and. eBj are both (N �N) diagonal matrix and a0 and�!" t =

�
"21t; � � � ; "2Nt

�0
are (N � 1) vector.
In conditional correlation MGARCH models, standardized errors, play a

crucial role. We shall term the three types of standardized errors that will
appear in subsequent analysis as standardized errors, fully standardized errors
and Tse�s modi�ed errors and de�ned as:

�t = D�1
t "t; E [�tjFt�1] = 0;E

�
�t�

0
tjFt�1

�
= �: (4)

�t = H
�1=2
t "t; E [�tjFt�1] = 0; E

�
�t�

0
tjFt�1

�
= IN : (5)

"�t = ��1�t = �
�1D�1

t "t; E ["
�
t jFt�1] = 0;E ["�t "�0t jFt�1] = ��1: (6)

2.1 Full QMLE (FQMLE) Estimation Framework

We will start by de�ning and introducing some notations which will be use-
ful when deriving the expressions for scores and expected Hessian. With-
out loss of generality we assume that each variable correspond to a para-
meter vector of same dimension, i.e. for the i�th variable, i = 1; � � � ; N ,
de�ne �i = ('0i; �

0
i)
0 � <K+K0

with 'i � <K (corresponding to conditional
mean function) and �i � <K0

(corresponding to volatility function). Hence,

� =
�
�01; :::; �

0
N

�0 � <N(K+K0) is the parameter vector consisting of conditional

mean and volatility parameters for N variables and � � <
N(N�1)

2 is the vector
of distinct correlation parameters. Then de�ne the collection of all parameters
$ =

�
�0; �0

�0 2 � � <N 0
where N 0 = N (K +K 0) + N(N�1)

2 .3

For the ith variable, de�ne Fi
(T�K)

; Ci
(T�K)

and Xi
(T�K0)

with rows f 0it =
w0itp
hit
;

c0it =
1

hit

@hit
@'0i

and x0it =
1

hit

@hit
@�0i

respectively. Then de�ne

F
(NT�NK)

= diag (Fi) ;

F 0t
(N�NK)

= diag (f 0it) for t = 1; � � � ; T:

In a similar way, de�ne C; X; C 0t and X
0
t matrices. It will be useful to de�ne

Et
(N�N)

= diag (�it) ; �A = IN +
�
��1 � �

�
and ��1 has a typical element �ij :

Finally, let �k be the kth column of ��1; de�ne �k = ��1diag (�k) ; where
�k = f�ikg ; (N � 1) ; i = 1; :::; N ; i.e. �k be the (N �N) matrix of zeros,

3For example, AR(1)-Bivariate CCC speci�cation with GARCH (1,1) model for individual
volatility have we have N = 2; K = 2; K0 = 3 and N 0 = 11:
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except for column k which is �k. De�ne the following two (N �N) symmetric
matrices:

Pk = �k +
�
�k
�0

�km = �k (�m)
0
+ �m

�
�k
�0
:

2.1.1 The Score, Hessian and limit distribution of the FQMLE

Under the assumption of conditional normality, de�ne the average log-likelihood

function as L�T ($) =
1

T

P
l�t (�; �); where l

�
t � l�t (�; �) is the quasi-conditional

log-likelihood per observation, t; (ignoring any constant terms) which can be
written as,

l�t = �
1

2
ln j�j � 1

2

NX
j=1

lnhjt �
1

2
� 0t�

�1�t (7)

where, Ht � Ht ($) ; Dt � Dt (�) :4 The parameter estimates can be obtained
by quasi maximum likelihood (QML) method:

$̂ = argmax
$

TX
t=1

l�t :

Assuming L�T ($) = T�1
PT

t=1 l
�
t (�; �) is at least twice continuously di¤er-

entiable, de�ne the average score for CCC model G�T ($) = T�1
PT

t=1 g
�
t ($)

where g�t ($) =
�
@l�t
@�0
;
@l�t
@�0

�0
=

�
@l�t
@'0

;
@l�t
@�0

;
@l�t
@�0

�0
and S� as a (T �N 0) ma-

trix with rows g�0t ($) :Using the similar notation, de�ne the Hessian of the

log-likelihood function for observation t as H�
t ($) =

@2l�t
@$@$0 =

@g�t ($)
@$0 . The

expression for g�t ($) is provided in Lemma 1.

Lemma 1 The score vector for observation t of (7), g�t ($) =
�
@l�t
@�0
;
@l�t
@�0

�0
=�

@l�t
@'0

;
@l�t
@�0

;
@l�t
@�0

�0
is given by

@l�t
@'

= Ft�
�1�t +

1

2
Ct
�
Et�

�1�t � �N
	
= Ft"

�
t +

1

2
Ct fEt"�t � �Ng

@l�t
@�

=
1

2
Xt
�
Et�

�1�t � �N
	
=
1

2
Xt fEt"�t � �Ng

@l�t
@�ij

= vecl (Mt) = mij;t; j < i = 2; :::; N (with �ii � 1) (8)

where , Et; Ft; Ct and Xt de�ned earlier andMt = fmij;tg = ��1
�
�t�

0
t � �

�
��1:

4Note that we make use of asterisk (*) to di¤erentiate joint log-likelihood from the uni-
variate GARCH log-likelihood.
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The FQMLE $̂0 =
�
�̂
0
; �̂0
�
satis�es G�T ($̂) = 0. Bollerslev and Wooldridge

(1992) showed that under regularity conditions the conditional heteroskedastic-
ity FQML estimators are consistent and asymptotically normal. However, they
did not verify whether the regularity conditions hold for speci�c MGARCH
model. Jeantheau (1998) gave conditions for strong consistency of FQMLE for
MGARCH and veri�ed the conditions for extended CCC (ECCC) model. Comte
and Lieberman (2003) proved the strong consistency and asymptotic normal-
ity of QMLE (both when initial state is stationary or �xed) for the BEKK
MGARCH speci�cation which requires the �niteness of the moments of the non-
Gaussian process "t up to order 8 i.e. E

�
"8i;t
�
< 1; i = 1; � � � ; ; N . Ling and

McAleer (2003) presented a theoretical framework for a class of vector ARMA-
GARCH models with ECCC speci�cation for the conditional heteroskedasticity
and their conditions require E

�
"6i;t
�
<1; i = 1; � � � ; ; N . Since the CCC model

is nested within this class, we can make use of the following results. Following
Ling and McAleer (2003) and Nakatani and Teräsvirta (2009), to ensure the
asymptotic normality of QMLE $̂ we assume that the followings to hold:

Assumption 2.1 The elements (yit;W 0
it) are strictly stationary and ergodic

for all i = 1; � � � ; N ; and m (Wit;'i) is continuous and Ft�1-measurable for all
'i 2 	 � <K .

Assumption 2.2 The spectral radius & (�) has a positive lower bound over the
parameter space � which is a compact subset of the Euclidean space such that
$0 lie in the interior of �: In addition each element of a0 has a positive lower
and upper bounds over �:

Assumption 2.3 All the roots of det
�
IN �

Pq
k=1

eAkxk �Pp
j=1

eBjxj� lie out-
side the unit circle.

Assumption 2.4 The identi�ability conditioned presented in Jeantheau (1998)
are satis�ed.

Assumption 2.5 E
�
"6i;t
�
<1; i = 1; � � � ; N:

Assumption 2.6 plimT!1
1
T

PT
t=1H�

t ($) exists and �nite for all $ 2 � such
that the N �N nonrandom matrix

J�$$ = �E0 [H�
t ($0)] = plim

T!1
� 1
T

TX
t=1

H�
t ($0) :

Theorem 1 Given these assumptions, $̂
p�! $0 and

p
T ($̂ �$0)

d�! N
�
0; J��1$$ �

�
GGJ

��1
$$

�
where J�$$ = �E0 [H�

t ($0)] and ��GG = E0 [g
�
0tg

�0
0t] are both �nite and positive

de�nite and E0 [:] denotes expectation evaluated at the true parameter values $0

=
�
�00; �

0
0

�0
:
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The matrix J�$$ is the negative of the expected Hessian while ��GG is
the expectation of the outer product of the score vector both evaluated at
$0 and the later is often called the population information matrix. More-
over, if �t � N (0; IN ) ; then ��GG = J�$$ and the asymptotic covariance
matrix reaches to the Cramer-Rao lower bound i.e. ���1GG : Note that by the
consistency of the QMLE $̂; J�$$ can be consistently estimated by Ĵ�$$T =

� 1
T

PT
t=1H�

t ($̂) = � 1
T

PT
t=1

@2lt
@$@$0

���
$=$̂

: Note that by de�nition Ht ($0) =

E0 ("t"
0
tjFt�1) which implies that it would be computationally easier to work

with eH�
t ($0) = E0 [H�

t ($0)j Ft�1] (say); as under conditional expectation op-
erator a number of terms in @2lt

@$@$0 cancel when evaluated at $0. Further by the
law of iterated expectation we have J�$$ = �E0 [E0 [H�

t ($0)j Ft�1]] and a sim-
pler estimate of J�$$ is obtained as Ĵ�$$T = � 1

T

PT
t=1

eH�
t ($̂) :

5 The Hessian
can be derived with reference to Nakatani and Teräsvirta (2009, 2008) who
provide the general expression of eH�

t ($) for ECCC-GARCH model. However
these authors derive the expression assuming a known or zero conditional mean.
Besides, they did not specify any particular Dt:
The following Lemma 2 provides a new expression for eH�

t ($0) in the regres-
sion context, which considers the conditional mean function and GARCH (p; q)
speci�cation for individual conditional variances in Dt:While Lemma 3 provides
the expression for Ĵ�$$T which will be required in our tests discussed in the next
section.

Lemma 2 eH�
t ($0) = E0 [H�

t ($0)j Ft�1] where

eH�
t ($) =

264 eH�
''

eH�
'�

eH�
'�

H�0
'�

eH�
��

eH�
��eH�0

'�
eH�0
��

eH�
��

375 :
and the typical (i; j)-th block of eH�

''; eH�
'�; eH�

'�; eH�
��; eH�

�� and eH�
��; i; j =

1; � � � ; N are given as, respectively:

eH�
'i'j

= ��ijfitf 0jt �
1

4

�
�ij + �

ij�ij
�
citc

0
jt;

eH�
'i�j

= �1
4

�
�ij + �

ij�ij
�
citx

0
jt;

eH�
'i�ij

= �1
2
�jk�

ikckt �
1

2
�ik�

jkckt; i > j

eH�
�i�j

= �1
4

�
�ij + �

ij�ij
�
xitx

0
jt:

eH�
�i�ij

= �1
2
�jk�

ikxkt �
1

2
�ik�

jkxkt; i > jeH�
�ij�km

= ��ik�jm � �im�jk; i > j

5Although both Ĵ�$$T = � 1
T

PT
t=1H�

t ($̂) and Ĵ
�
$$T = � 1

T

PT
t=1

eH�
t ($̂) are asymp-

totically equivalent; in �nite sample their performance may vary (see Hafner and Herwartz,
2008).
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Lemma 3 For QMLE $̂; J�$$�Ĵ�$$T = op (1) ; and Ĵ�$$T = � 1
T

PT
t=1

eH�
t ($̂)

has the form

Ĵ�$$T =

264Ĵ�''T Ĵ�'�T Ĵ�'�T
Ĵ�0'�T Ĵ���T Ĵ���T
Ĵ�0'� Ĵ�0��T Ĵ���T

375 = T�1 TX
t=1

26666664
@2l�t
@'@'0

@2l�t
@'@�0

@2l�t
@'@�0

@2l�t
@�@'0

@2l�t
@�@�0

@2l�t
@�@�0

@2l�t
@�@'0

@2l�t
@�@�0

@2l�t
@�@�0

������������
Ft�1

37777775
$=$̂

where

Ĵ�''T =
1

T

�
F̂ 0
�
�̂�1 
 IT

�
F̂ +

1

4
Ĉ 0
�
�̂A 
 IT

�
Ĉ

�
�! J�''

Ĵ�'�T =
1

4T
Ĉ 0
�
�̂A 
 IT

�
X̂ �! J�'�

Ĵ�'�T =
1

2T
Ĉ 0 (IN 
 �0T ) P̂ �! J�'�

Ĵ���T =
1

4T
X̂ 0
�
�̂A 
 IT

�
X̂ �! J���

Ĵ���T =
1

2T
X̂ 0 (IN 
 �0T ) P̂ �! J���

Ĵ���T =
beP �! J�''

where P
N�N(N�1)

2

has rows p0k = vecl(Pk)
0; k = 1; :::; N and eP

N(N�1)
2 �N(N�1)

2

has

columns epkm = vecl (�km) ; m = 1; :::; N � 1; k = m+ 1; :::; N (k changes more
quickly than m) while F 0; C 0; X 0; �A; Pk and �km are de�ned at the onset of
this section.

2.2 Partial (or Two-step) QMLE (PQMLE) Estimation

Because of the structure of log-likelihood of the conditional correlation model,
a simpli�ed two step estimation procedure can be implemented as suggested by
Engle (2002), which involves (at the �rst step) separate estimation of the N
univariate GARCH models to get the volatility estimates, and then using these
obtain the correlation parameter estimates. Such a procedure is consistent, but
asymptotically ine¢ cient when compared with the FQMLE procedure. This
partial estimation technique is mostly useful for the DCC models due to the
complexity of the estimation procedure, but can be used for the CCC model.
Note that (7) can be expressed as the sum of two components; l�t (�; �) =PN
j=1 l

V
t (�j)+ l

C
t (�; �) where

PN
j=1 l

V
t (�j) = �

1

2

PN
j=1

�
lnhjt + h

�1
jt "

2
jt

	
repre-

sents conditional log-likelihood contributions for N separate GARCH(p; q) mod-

els which is functionally independent of �, and lCt (�; �) = �
1

2
ln j�j � 1

2�
0
t�
�1�t

+ 1
2�
0
t�t contains the correlation structure. Two step estimation is then pursued

as follows:

10



1. Obtain �̂j = argmax�j
PT

t=1 l
v
t (�j); j = 1; :::; N by QML applying to

univariate GARCH(p; q) speci�cation for individual variables.6 Then con-

struct standardized residuals as �̂jt = ĥ
�1=2
jt "̂jt; and lCt (�̂; �) = �

1

2
ln j�j�

1

2
�̂
0
t�
�1�̂t+

1

2
�̂
0
t�̂t = kt�

1

2
ln j�j � 1

2
�̂
0
t�
�1�̂t where kt is a constant as far

as � is concerned.

2. obtain �̂ = argmax�
PT

t=1 l
C
t (�̂; �); which satis�es the score equationsPT

t=1

�
"̂�it"̂

�
jt � �̂ij

�
= 0; j < i; with "̂�t =

�
"̂�jt
	
= �̂�1�̂t:

Hence the PQMLE $̂ =
�
�̂
0
; �̂0
�0
=
�
�̂
0
1; � � � �̂

0
N ; �̂

0
�0
can be obtained from

the above two steps. Note that to avoid notational complexity we use "hat" to
denote both FQMLE and PQMLE; this should not make any confusion as later,
while deriving the test statistics, notational di¤erences will clearly distinguish
the estimation procedure employed. Hafner and Herwartz (2008) provides an
analytical expression for the variance of the two-step QMLE for both the CCC
and DCC models.
As noted by Engle (2002), the correlation matrix �t is also the conditional

covariance matrix of standardized errors i.e. E
�
�t�

0
tjFt�1

�
= �: Although, the

scores for � obtained in second step is not equal to
PT

t=1

�
�̂it�̂jt � �̂ij

�
= 0; j <

i, Bollerslev�s (1990) pointed out that a suitable reparameterization ensures that

T�1
PT

t=1

�
"̂2t

ĥt
� 1
�
= 0 so that

PT
t=1

�
�̂it�̂jt � �̂ij

�
=
PT

t=1

�
"̂�it"̂

�
jt � �̂ij

�
=

0; j < i. Therefore, we can use �̂ij =
1
T

PT
t=1 �̂it�̂jt; j < i as a consistent

estimator for �ij : However, noting that in �nite sample sample covariance matrix
of standardized residuals will never be a correlation matrix, as the diagonal will
not be exactly equal (though very close) to 1, another option is to use the usual
correlation estimator i.e.

�̂�ij =

PT
t=1 �̂it�̂jtqPT

t=1 �̂
2

it

PT
t=1 �̂

2

jt

; i; j = 1; � � � ; N

which is a linear (one-to-one) transformation of �̂ij =
1
T

PT
t=1 �̂it�̂jt; j < i:

In the literature both versions are used to estimate the correlation parameters.
For testing of the CCC assumption we only need �̂ij i 6= j; and score tests are
invariant to linear transformation of parameter space (see Dagenais and Dufour,
1991). Hence in this paper when developing the asymptotic theory we will use

�̂ = 1
T �̂t�̂

0
t as the PQML estimator of �:

6For the scores, see e.g. Halunga and Orme (2009).
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3 A Class of Asymptotically Valid CMTest Pro-
cedures

In this section, we develop a class of asymptotically valid parametric testing
procedures, along with the �rst order asymptotic distribution results, of the
CCC assumption that are derived from the conditional moment (CM) princi-
ple. If both individual GARCH speci�cations and CCC assumption is correct,
then the de�nition of standardized residuals, given in (4), provides the moment
condition corresponding to CCC assumption i.e. E

�
�t�

0
t � �jFt�1

�
= 0: Note

that, the diagonal elements of
�
�t�

0
t � �

�
correspond to the individual GARCH

(or volatility) speci�cations whereas the o¤-diagonal elements correspond to the
CCC assumption. Also due to the symmetry of

�
�t�

0
t � �

�
; there are N(N+1)

2
independent restrictions in this moment condition; hence we can write these
distinct moment restrictions as:

E
�
vech

�
�t�

0
t � �jFt�1

��
= 0: (9)

If we are interested in testing simply the CCC assumption leaving the individ-
ual GARCH speci�cations aside, then we need to consider the strictly lower
triangular portion of

�
�t�

0
t � �

�
; i.e.

E
�
vecl

�
�t�

0
t � �jFt�1

��
= 0: (10)

The parametric misspeci�cation tests of the conditional correlation models can
be constructed by considering either (9) or (10). If the test is based on (9),
which will be referred as Full CM (FCM) test, it can be treated as a joint
misspeci�cation test of the complete MGARCH speci�cation as this would also
pick any misspeci�cation in individual volatility speci�cations with that of the
correlation speci�cation. On the other hand if the underlying moment restriction
of the test is (10), we will refer the test as CCC CM (CCM) test.
Therefore, a joint parametric misspeci�cation test of the CCC and individual

volatility assumptions might be constructed as test of the following null moment
restriction :

E
�
vech

�
�t�

0
t � �

�

 rt ($0)

�
= 0 (11)

where rt ($0) be a Ft�1 measurable test variables. To test this null, the generic
CM test indicator is constructed as

M̂ j
T =

1

T

TX
t=1

(�̂t 
 r̂t) =
1

T

TX
t=1

m̂j
t (12)

where the superscript j denote joint testing of CCC and individual volatil-

ity speci�cations and �̂t = vech
�
�̂t�̂

0
t � �̂

�
where "hats" denote that every-

thing is evaluated at the consistent null parameter estimator (either FQMLE or

PQMLE), $̂ =
�
�̂
0
; �̂0
�0
. Similarly, a misspeci�cation test of the CCC assump-

tion, only, can be conducted by testing the moment restriction:

E
�
vecl

�
�t�

0
t � �

�

 rt ($0)

�
= 0 (13)
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The corresponding CM test indicator would have the following form:

M̂ c
T =

1

T

TX
t=1

(�̂�t 
 r̂t) =
1

T

TX
t=1

m̂c
t (14)

where �̂�t = vecl
�
�̂t�̂

0
t � �̂

�
and superscript c denote testing of only CCC as-

sumption. It is to be noted here that (14) is simply a subset of (12).

Example 1 For example, in the bivariate case,

E
�
�t�

0
t � �jFt�1

�
= E

��
�21t �1t�2t
�1t�2t �22t

�
�
�
1 �
� 1

�����Ft�1� = 0:
Then (9) becomes

E
h�
�21t � 1; �1t�2t � �; �22t � 1

�0���Ft�1i = 0:
The �rst and third components refer to individual GARCH equations while sec-
ond one corresponds to the CCC assumption. Therefore, in this case (10) is
simply E [�1t�2t � �jFt�1] = 0: Subsequently for a Ft�1 measurable test variable
rt ($0) (11) becomes:

E

24 �21t � 1
�1t�2t � �
�22t � 1

35
 rt ($0) = 0: (15)

and (13) becomes: E [(�1t�2t � �)
 rt ($0)] = 0:

To develop asymptotically valid tests of CCC hypothesis we need to establish
the limit distributions of the test indicator vector

p
TM̂T : Both FQMLE and

PQMLE approaches are considered while deriving the test statistics and their
asymptotic distributions. We illustrate the procedure of constructing the test
statistics considering both Gaussian and non-Gaussion distribution of the fully
standardized error process, �t: In case of non-normally distributed �t we develop
a non-normality robust procedure in the similar spirit of Wooldridge (1990).7

When �t follows a normal distribution the generalized IM inequality holds (see,
e.g. Newey 1985) and the outer product of gradient (OPG) covariance matrix
estimator can be employed in deriving the test statistics.

3.1 Case 1: Tests based on FQMLE

The test indicator under consideration is M̂FT � MFT ($̂) = T�1
PT

t=1 m̂Ft;
where subscript F represent FQMLE case; with E0 [mFt] = 0: De�ne the (T � r)
matrix R with rows m0

Ft. Hereafter we will use the notation G
�
0T = G

�
T ($0) ;

M0FT �MFT ($0); etc. where $0 denotes the true parameter values and M̂FT ;
Ĵ��1$$T etc. to denote evaluation at $̂. We assume su¢ cient regularity to satisfy
the following central limit theorem :

7Similar approach was employed by Halunga and Orme (2009).
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Proposition 1
p
T

�
M0FT

G�0T

�
= T�1=2

" PT
t=1m0FtPT
t=1 g

�
0t

#
d�! N (0;��) ;

where �� =
�
�MM ��MG

��GM ��GG

�
;

�MM = plimT!1 T
�1PT

t=1m0Ftm
0
0Ft;

��GG = plimT!1 T�1
PT

t=1 g
�
0tg

�0
0t; and

��MG = plimT!1 T
�1PT

t=1m0Ftg
�0
0t:

Remark 1 Assuming a suitable ULLN, �MM might be consistently estimated,
for example, by T�1

PT
t=1 m̂Ftm̂

0
Ft; but see also Halunga and Orme (2009).

We then have the following result.

Theorem 2 Given $̂
p�! $0; the CLT stated in Proposition 1 and a suitable

ULLN, p
TM̂FT

d�! N (0; V )

where
V = A���A�0;

�� =

�
�MM ��MG

��GM ��GG

�
; (see Proposition 1) and

A� =
�
Ir : �J�M$J

��1
$$

�
; with J�$$ = � plim

T�!1
1
T

hPT
t=1H�

t ($0)
i
; J�M$ =

� plim
T�!1

�
@M0Ft

@$0

�
; and Ir is the identity matrix of rank r = rank (�MM ) :

Remark 2 Note that the variance-covariance matrix V can be written as

V = �MM � ��MGJ
��1
$$ J

�0
M$ � J�M$J

��1
$$ �

�
GM + J�M$J

��1
$$ �

�
GGJ

��1
$$ J

�0
M$:

From the preceding result, the general form of the CCC misspeci�cation test
statistic based on FQMLE is the quadratic form

TF = TM̂
0
FT V̂

�1
T M̂FT (16)

under the null which has a �2r limiting distribution, where V̂T is any consistent
estimator for V i.e. V̂T = V + op (1) :

3.1.1 Case 1a: Robust FQMLE test

To construct a robust (to non-normality) test statistics we need a consistent
estimator V̂ rT = Â

��̂�Â�0 where the superscript r signi�es the robust estimator;

for which we require Ĵ�M$T = �T�1
P @mFt

@$̂0 ; Ĵ
�
$$T and �̂

�: For $̂; we can

construct Ĵ�M$T using the results provided in Proposition 2.
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Proposition 2 It can be shown that for i = 1; � � �N:

E0

"
@
�
�2it � 1

�
@�0

rt

#
= � plim

T�!1

1

T
[R�0(0; : : : ; Zi; � � � ; 0)] ;

and for i 6= j; j < i = 2; � � � ; N:

E0

�
@(�it�jt � �ij)

@�0
rt

�
= �1

2
�0 plim

T�!1

1

T
fR�0(0; � � � ; Zi; � � � ; Zj ; � � � 0)g

E0

�
@(�it�jt � �ij)

@�0
rt

�
= � plim

T�!1

1

T
(0; : : : ; 10; � � � ; 0)R�.

where Zi is (T � ki) matrix having rows z0it = (c0it; x0it) and R� having rows r0t;
if rt is a vector of test variables, or R� is a vector with typical element rt if rt
is a scalar.

Example 2 Again consider N = 2 Then the full moment condition given in
(15); so we have:

Ĵ�M$T =
1

T

24 R̂�0(Ẑ1; 0; 0)
1
2 �̂R̂

�0(Ẑ1; Ẑ2); �
0
T R̂

�

R̂�0(0; Ẑ2; 0)

35
Clearly, for only CCC moment condition Ĵ�M$T =

n
1
2T �̂R̂

�0(Ẑ1; Ẑ2); �
0
T R̂

�
o
:

Now using the next lemma a robust and consistent estimator V̂ rT can be
obtained.

Lemma 4 Under suitable assumptions, �̂�T ��� = op (1) and Â��A� = op (1)
where

�̂�T =

�
�̂MM �̂�MG

�̂�GM �̂�GG

�
=
1

T

�
R̂0R̂ Ŝ�0R̂

R̂0Ŝ� Ŝ�0Ŝ�

�
Â� =

h
Ir : �Ĵ�M$T Ĵ

��1
$$T

i
where R and S� are matrices with rows m0

Ft and g
�0
t ($) respectively; Ĵ

�
$$T

and Ĵ�M$T are constructed using Lemma 3 and Proposition 2 respectively; all
evaluated at $̂: Therefore we have,

V̂ rT = �̂MM��̂�MGĴ
��1
$$T Ĵ

�0
M$T�Ĵ�M$T Ĵ

��1
$$T �̂

�
GM+Ĵ

�
M$T Ĵ

��1
$$T �̂

�
GGĴ

��1
$$T Ĵ

�0
M$T :

Tests that are based on this estimator V̂ rT will be referred as robust FQMLE
test and will be denoted as T (r)F .
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3.1.2 Case 1(b) OPG FQMLE test

However, if �t � N (0; IN ) ; then ��GG = J�$$ and V reduces to V = �MM �
��MG�

��1
GG �

�
GM : The following lemma provides an expression for the consistent

estimator of V when the normality assumption holds.

Lemma 5 Under suitable assumptions and �t � N (0; IN ), V can be consis-
tently estimated by

V̂T = �̂MM � �̂�MG�̂
��1
GG �̂

�
GM =

1

T
Ŵ �0Ŵ �

where

�̂MM = T�1
TX
t=1

m̂Ftm̂
0
Ft = T

�1R̂0R̂;

�̂�GG = T�1
TX
t=1

ĝ�t ĝ
�0
t = T

�1Ŝ�0Ŝ�;

�̂�MG = T�1
TX
t=1

m̂Ftĝ
�0
t = T

�1Ŝ�0R̂;

Ŵ � = B̂�Â�0

Â� =
h
Ir : ��̂�MG�̂

��1
GG

i
; and

B� = [R; S�]

where R and S� are matrices with rows m0
Ft and g

�0
t ($) respectively evaluated

at $̂:

In this case, the test statistic (16) has a convenient OPG (Outer Product of
Gradient) form. To see this, note that

Ŵ � = B̂�Â�0 = R̂� Ŝ�
�
Ŝ�0Ŝ�

��1
Ŝ�0R̂

Exploiting the FOC that Ŝ�0�T � 0 =) Ŵ �0�T � R̂0�T ; hence an alternative
form of the test statistic under normality is give by:

TF = �
0
T R̂
�
Ŵ �0Ŵ �

��1
R̂0�T = �

0
T Ŵ

�
�
Ŵ �0Ŵ �

��1
Ŵ �0�T (17)

where �T is the (T � 1) column vector of ones. (17) can be interpreted as
T � RSS where RSS is the residual sum of squares from the regression of �T
on Ŵ : Note that, this test can be constructed easily by de�ning Û� =

�
R̂; Ŝ�

�
,

then

TF = �
0
T Û

�
�
Û�0Û�

��1
Û�0�T (18)

and can be obtained as T �RSS from a regression of �T on Û�:
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3.1.3 Summary: FQMLE

From the above results, for each of the FCM and CCM test statistics, based on
the FQMLE $̂, we have two versions namely, robust and OPG i.e.

1. Robust (to non-normality) FCM test:

T
j(r)
F = TM̂ j0

FT

�
V̂
j(r)
T

��1
M̂ j
FT (19)

2. OPG FCM test

T jF = TM̂
j0
FT

�
V̂ jT

��1
M̂ j
FT (20)

3. Robust (to non-normality) CCM test

T
c(r)
F = TM̂ c0

FT

�
V̂
c(r)
T

��1
M̂ c
FT (21)

4. OPG CCM test

T cF = TM̂
c0
FT

�
V̂ cT

��1
M̂ c
FT (22)

where the robust variance estimator V̂ j(r)T and V̂ c(r)T can be obtained using
lemma (4) while OPG test statistics are constructed using the arti�cial regres-
sion as given in (18) with appropriate test indicators.

3.2 Case 2: Tests based on PQMLE

De�ne the test indicator under investigation as:

M̂PT �MPT (�̂; �̂) =
1

T

TX
t=1

mPt(�̂; �̂)

with E0 [mpt] = 0; where subscript P represents the PQMLE case i.e. the
correlation parameters are estimated by �̂ij =

1
T

PT
t=1 �̂it�̂jt; j < i: We will

establish the results considering the bivariate case for the ease of exposition so
that �0 =

�
�01; �

0
2

�
; the results can be generalized to higher dimensional cases in

an obvious way.

Let LiT (�i) =
1

T

PT
t=1 lit(�i) be the average log-likelihood of univariate

GARCH models for the i-th variable where lit(�i) = � 1
2

�
ln (hit) +

"2it
hit

�
(ig-

noring constants). De�ne Gi(�i) =
1

T

PT
t=1 git(�i) =

1

T

PT
t=1

@lit(�i)

@�i
; and

J�� =

�
J1(�1) 0
0 J2(�2)

�
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where Ji (�i)� Ji = �E0
h
@2lit(�i)
@�i@�0i

i
= �plimT!1

1

T

PT
t=1

@2lit(�i)

@�i@�
0
i

. The block

diagonal structure of J�� follows from the fact that in PQMLE framework,
the univariate GARCH estimating equations are functionally independent i.e.
Gi(�i); i = 1; 2 are functionally independent. Also de�ne Q = (Q1; Q2) and
S = (S1; S2) where Qi and Si are both (T � ki) matrix, ki = K+K1; with rows

g0it(�i) =
@lit(�i)

@�0i
and g�0t (�i) =

@l�t (�; �)

@�0i
; i = 1; 2 respectively.8 Also, as before,

R be the (T � r) matrix but now with rows m0
Pt:

The separate limit distributions of
p
T
�
�̂i � �i0

�
= Ji(�i0)

�1pTGi(�i0) +
op(1); for true parameter values �i0; (ki � 1) ; i = 1; 2; are essentially given in

Halunga and Orme (1990, Theorem 1). We have,
p
TG(�0)

d�! N (0;�GG) ;
where, G0T = (G1(�10)0; G2(�20)0)

0
; and

�GG = plim
T!1

1

T
Q0Q = plim

T!1

1

T

�
Q01Q1 Q01Q2
Q02Q1 Q02Q2

�
:

Now to test the signi�cance of the test indicator, M̂PT ; the limit joint dis-
tribution needs to take account of the estimation e¤ect from correlation para-
meter. We can ignore this estimation e¤ect from �, which will eventually lead
to relatively simple to construct asymptotically valid tests, if we can impose the
following condition:

Condition 1
p
TMT (�̂; �̂) =

p
TM̂T (�̂; �0) + op(1):

This implies that the e¤ect of estimating � using the �rst step estimator �̂
0
=�

�̂
0
1; �̂

0
2

�
can be ignored (asymptotically). Although it seems a very restricted

condition, in our case this condition can easily be met by using a centered (i.e.
demeaned) test variable

�
r̂t � b�r� and thereby transforming the test indicator

M̂PT functionally independent of �:

Example 3 For example, in the bivariate context consider the only correlation
test indicator which is given by

M̂ c
PT =

1

T

TX
t=1

h
�̂1t�̂2t � �̂

i
r̂t

=
1

T

TX
t=1

�̂1t�̂2t
�
r̂t � b�r� = 1

T

TX
t=1

�
�̂1t�̂2t � �̂

� �
r̂t � b�r� (23)

where b�r = 1

T

PT
t=1 r̂t and �̂ =

1

T

PT
t=1 �̂1t�̂2t.

8That is, Qi is the matrix having rows univariate GARCH scores g0it(�i) while the rows of
Si contains the FQMLE scores g�0t (�i); given in Lemma 1, corresponding to the conditional
mean and volatility parameters �i barring correlation parameter �:
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This simple demeaning trick produce algebraically equivalent test indicators,

but will not involve �̂: In other words, M̂PT is simply a function of
�
�̂
0
1; �̂

0
2

�
and

does not involve �̂ and hence allow us to deduce the limit distribution with
Condition 1.

Remark 3 Note that since 1
T

PT
t=1

�
�̂
2

it � 1
�
6= 0;

1

T

TX
t=1

�
�̂
2

it � 1
�
r̂t 6=

1

T

TX
t=1

�̂
2

it

�
r̂t � b�r� :

However, Condition 1 does apply to the full CM test indicator M j
PT since

1

T

PT
t=1

�
�̂
2

it � 1
�
r̂t; i = 1; 2 does not involve �̂: Hence, it is not necessary

to demean the test variable for the elements of test indicator M̂ j
PT which do

not involve �̂. However, hereafter for simplicity we will consider demeaned test
variables for all elements of M̂ j

PT ; i.e.

M̂ j
PT =

1

T

TX
t=1

0BBB@
h
�̂
2

1t � 1
i �
r̂t � b�r��

�̂1t�̂2t � �̂
� �
r̂t � b�r�h

�̂
2

2t � 1
i �
r̂t � b�r�

1CCCA =
1

T

TX
t=1

�
�̂t 


�
r̂t � b�r�	 (24)

To derive the asymptotic distribution, we assume the following central limit
theorem to hold:

Proposition 3 Under suitable regularity conditions,

p
T

�
M0PT

G0T

�
=

1p
T

" PT
t=1m0PtPT
t=1 g0t

#
d�! N (0;�)

where � =
�
�MM �MG

�GM �GG

�
with

�MM = plim
T!1

T�1
TX
t=1

m0Ptm
0
0Pt = plim

T!1

1

T
R0R;

�GG = plim
T!1

T�1
TX
t=1

g0tg
0
0t; and

�MG = plim
T!1

T�1
TX
t=1

m0tg
0
0t = plim

T!1

1

T
R0Q:

The above arguments enable us to construct asymptotically valid test from
the �rst stage estimates of �̂ only. The following theorem gives the limit distri-
bution of

p
TM̂PT under condition (1).
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Theorem 3 Given $̂
p�! $0; the CLT stated in proposition (3) and a suitable

ULLN;
p
TM̂PT

d�! N (0; V1) where
V1 = A1�A

0
1;

� =

�
�MM �MG

�GM �GG

�
see Proposition (3);

A1 =
�
Ir; �JM� � J�1��

�
with

J�� =

�
J1(�10) 0
0 J2(�20)

�
, JM� = � plim

T�!1

�
@M0Pt

@�0

�
and Ir is the identity

matrix of rank r = rank (�MM ) :

From this result, the general form of the CCC misspeci�cation test using
PQMLE has the quadratic form

TP = TM̂
0
PT V̂

�1
1T M̂PT (25)

under the null which has a �2r limiting distribution, where V̂1T is any consistent
estimator for V1 i.e. V̂1T = V1 + op (1) : We want to stress here that to get
asymptotically valid test statistic, one has to use �̂t 


�
r̂t � b�r� (for FCM) and�

�̂1t�̂2t � �̂
�
(r̂t � �r) (for CCM) rather than �1t�2t (rt � �r) when constructing

the test indicator M̂PT : This has no e¤ect on the numerator of the test statistic,

as
PT

t=1

h
�̂1t�̂2t � �̂

i
r̂t =

PT
t=1

�
�̂1t�̂2t � �̂

� �
r̂t � b�r� = PT

t=1 �̂1t�̂2t
�
r̂t � b�r� ;

but gives us the right expression for the asymptotic variance estimate.
To construct asymptotically valid test statistics we need a consistent expres-

sion of V1: Similar to FQMLE case, we will consider both the robust and OPG
version in the following.

3.2.1 Case 2a: Robust PQMLE test

To construct a robust (to non-normality) test of (25), �rst note that ĴM�T can
be obtained using the results of Proposition 2, but corresponding to � only and
replacing rt by

�
r̂t � b�r� ; the demeaned test variables. Let us de�ne R� as a

matrix having rows (rt � rt)0 if rt is a vector of test variables, or as a vector
with typical element (rt � rt) in case of scalar rt.

Example 4 In bivariate case with full moment condition, we have:

Ĵ�M$T =
1

T

2664
bR�0(Ẑ1; 0)

1
2 �̂
bR�0(Ẑ1; Ẑ2)bR�0(0; Ẑ2)

3775 (26)

and for only correlation moment condition it becomes Ĵ�M$T =
1
2T �̂

bR�0(Ẑ1; Ẑ2):
Besides, from Halunga and Orme (1990, Lemma 1), for ith variable we have:

Ĵi =
1

2T

�
Ĉ 0iĈi Ĉ 0iX̂i
X̂ 0
iĈi X̂ 0

iX̂i

�
+
1

T

�
F̂ 0i F̂i 0
0 0

�
; (27)
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where Fi; Ci and Xi have rows f 0it =
w0itp
hit
; c0it =

1

hit

@hit
@'i

and x0it =
1

hit

@hit
@�i

;

all evaluated at PQMLE �̂
0
i =

�
'̂0i; �̂

0
i

�
:

Combining the above two results, the next lemma provides an expression
for the robust consistent variance estimator V̂ r1T for bivariate case which can be
generalized in an obvious way.

Lemma 6 Suppose M̂ j
PT is the joint CM test indicator (partial QMLE case)

for N = 2; a robust (to non-normality) consistent estimator of V1 is given by

V̂ r1T =
1

T
Ŵ r0Ŵ r =

1

T
Âr1B̂

0B̂Ar01

where
W r = BAr01 ; B̂ =

h
R̂; Q̂1; Q̂2

i
; i.e. B̂ has rows (m̂0

Pt; ĝ
0
1t; ĝ

0
2t) ;

Âr1 =
h
Ir : �Ĵ�M$T Ĵ

�1
��

i
; with Ĵ�� =

�
Ĵ1 0

0 Ĵ2

�
; Ĵi is obtained from (27),

Ĵ�M$T is given in (26) and Ir is the identity matrix of rank r = rank (�MM ) :

Remark 4 For N = 2; we can write Âr1 and Ŵ
r as

Âr1 =

2664Ir : � 1T
2664

bR�0(Ẑ1; 0)
�̂bR�0(Ẑ1; Ẑ2)bR�0(0; Ẑ2)

3775� Ĵ�11 0

0 Ĵ�12

�3775

=

2664Ir : � 1T
2664
bR�0Ẑ1Ĵ�11 0

�̂bR�0Ẑ1Ĵ�11 �̂bR�0Ẑ2Ĵ�12
0 bR�0Ẑ2Ĵ�12

3775
3775

and

Ŵ r = R̂� 1

T

�
Q̂1Ĵ

�1
1 Ẑ 01

bR�; 1
2
�̂
�
Q̂1Ĵ

�1
1 Ẑ 01 + Q̂2Ĵ

�1
2 Ẑ 02

� bR�; Q̂2Ĵ�12 Ẑ 02
bR��

respectively.

Tests that are based on this estimator V̂ r1T will be referred as robust PQMLE
test and will be denoted as T (r)P : Note that exploiting the FOC Q̂0i�T � 0 for �̂i,
i = 1; 2, we have Ŵ r0�T � R̂0�T ; where �T is the (T � 1) column vector of ones
implying

T (r)p = TM̂ 0
PT V̂

r�1
1T M̂PT = �

0
T Ŵ

r
�
Ŵ r0Ŵ r

��1
Ŵ r0�T (28)

which can be obtained as T �RSS from a regression of �T on Ŵ r:
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3.2.2 Case 2(b): OPG PQMLE test

The following lemma provides an expression for a consistent estimator of the
variance-covariance matrix V1 under normality.

Lemma 7 Assuming that the speci�cation of the log-likelihood for the joint es-
timation of parameters in section 3.1 is correct (i.e. �t � N (0; IN )); Â1�̂Â01 �
V1 = op(1) where

Â1 =

264Ir : � 1
T R̂

0Ŝ

0B@
�
1
T Q̂

0
1Ŝ1

��1
0

0
�
1
T Q̂

0
2Ŝ2

��1
1CA
375 ;

�̂ = 1
T B̂

0B̂ and

B̂ =
h
R̂; Q̂1; Q̂2

i
i.e. B̂ has rows (m̂0

Pt; ĝ
0
1t; ĝ

0
2t)

Hence, V1 can be consistently estimated by V̂1T =
1

T
Ŵ 0Ŵ where

Ŵ = B̂Â01 = R̂� Q̂1
�
Ŝ01Q̂1

��1
Ŝ01R̂� Q̂2

�
Ŝ02Q̂2

��1
Ŝ02R̂:

Again, the FOC Q̂0i�T � 0 implies Ŵ 0�T � R̂0�T so that

Tp = TM̂
0
PT V̂

�1
1T M̂PT = �

0
T Ŵ

�
Ŵ 0Ŵ

��1
Ŵ 0�T (29)

which can be obtained as T �RSS from a regression of �T on Ŵ :

3.2.3 Summary: PQMLE

Hence, in case of PQMLE, we again consider the following four test statistics:

5. Robust (to non-normality) FCM test:

T j(r)p = TM̂
j(r)0
pT

�
V̂
j(r)
1T

��1
M̂

j(r)
pT (30)

6. OPG FCM test

T jp = TM̂
j0
pT

�
V̂ j1T

��1
M̂ j
pT (31)

7. Robust (to non-normality) CCM test

T c(r)p = TM̂
c(r)0
pT

�
V̂
c(r)
1T

��1
M̂

c(r)
pT (32)

8. OPG CCM test

T cp = TM̂
c0
pT

�
V̂ c1T

��1
M̂ c
pT (33)

where the robust variance estimator (V̂ j(r)1T and V̂ c(r)1T ) and OPG variance
estimator (V̂ j1T and V̂

c
1T ) can be obtained using Lemma 6 and Lemma 7 respec-

tively.
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4 Analysis of Tse�s LM test

Tse (2000) proposed a LM test for the multivariate CCC-GARCH model against
the alternative that the correlation are changing as functions of the previous
standardized residuals, having the form

�ijt = �ij + � ijyi;t�1yj;t�1 or �t = � +�� yt�1y0t�1 (34)

where � is a symmetric parameter matrix with the leading diagonal elements
equal to zero. Note that (34) does not de�ne a particular alternative to CCC as
�t is not necessarily a positive de�nite matrix for all t. Therefore, Silvennoinen
and Teräsvirta (2008) interpreted this as a general misspeci�cation test. And the
null hypothesis is H0 : � = 0 or H0 : vecl(�) = 0: Note that � ij , 1 � i < j � N
are N(N�1)

2 additional parameters in the extended model. Under this setting
Tse proposed the following statistic:

LMT = bes0�beS0beS��1 bes (35)

= �0T
beS �beS0beS��1 beS0�T (36)

where bes is the ��N 0 + N(N�1)
2

�
� 1
�
score vector, beS is

�
T �N 0 + N(N�1)

2

�
matrix, with rows of partial derivatives of the log likelihood function and �T is
the (T � 1) column vector of ones. 9 Note that (36) can be interpreted as T
times R2, where R2 is the uncentered coe¢ cient of determination of the regres-

sion of �T on
beS. Under the usual regularity conditions LMT is asymptotically

distributed as �2N(N�1)
2

:

It is informative to note that this LMT can be interpreted as a test of
moment condition E

�
vecl

�
"�t "

�0
t � ��1jFt�1

��
= 0 where "�t is the transformed

standardized errors as given in (6). This test is based on the FQMLE approach
and can not be implemented directly within the PQMLE framework. We can,
however, modify the test indicator in such a way so that the testing procedure
based on PQMLE developed in previous section can be employed. Again the
procedure will be demonstrated in the bivariate context.

In the bivariate case, "�t = ("
�
1t; "

�
2t)

0
= ��1�t =

1

1� �2

�
�1t � ��2t
�2t � ��1t

�
; and

9For the full expressions of the �rst partial derivatives of the likelihood function lt with
respect to the model parameters, readers are referred to Tse (2000).
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the implicit null of CCC is E

�
"�1t"

�
2t +

�

1� �2 jFt�1
�
= 0:Note that

"�1t"
�
2t +

�

1� �2 =
1

(1� �2)2
�
f�1t � ��2tg f�2t � ��1tg+ �

�
1� �2

��
=

1

(1� �2)2
�
��
�
�21t � 1

�
+
�
1 + �2

�
(�1t�2t � �)� �

�
�22t � 1

��
=

1

(1� �2)2
�0vt

where �0(�) � �0 =
�
��;

�
1 + �2

�
;��

�
; v0t =

�
�21t � 1; �1t�2t � �; �22t � 1

�
:

4.1 FQMLE case

Assuming that rt is a scalar and ignoring the irrelevant factor of proportionality,
1=
�
1� �2

�2
; de�ne Tse�s �modi�ed�indicator as

M̂ t
FT =

1

T

TX
t=1

m̂t
F t ($̂) =

1

T

TX
t=1

�̂0v̂tr̂t =
1

T

TX
t=1

�̂0m̂j
Ft ($̂) (37)

where the superscript t represents Tse�s indicator and m̂j
Ft ($̂) is the contribu-

tion of tth observation to the test indicator for FCM test M̂ j
FT , all evaluated at

FQMLE $̂.

Corollary 1 From Theorem (2),
p
TM̂ j

FT
d�! N

�
0; V j

�
; hence

p
TM̂ t

FT
d�!

N (0; V t) where V t = �0V j�:

Then, an equivalent procedure to Tse�s LM test, LMT can be obtained
applying the CM testing framework developed in section 3.1 by using M̂ t

FT and
constructing the OPG version of the test as:

T tF = TM̂
t0
FT

�
V̂ tT

��1
M̂ t
FT = TM̂

t0
FT

�
�̂0V̂ j �̂

��1
M̂ t
FT (38)

where V̂ j = �̂MM � �̂�MG�̂
��1
GG �̂

�
GM comes from OPG FCM test given in (20):

As noted earlier that Tse assumes the generalized IM equality to hold while
developing his OPG version of LM test which may not be robust under non-
normality. Using the robust variance estimator as given in Lemma (4), we can
now robustify this LM test i.e.

T
t(r)
F = TM̂ t0

FT

�
V̂
t(r)
T

��1
M̂ t
FT = TM̂

t0
FT

�
�̂V̂

j(r)
T �̂0

��1
M̂ t
FT (39)

where V̂ t(r)T = �̂V̂
j(r)
T �̂0 and V̂ j(r)T is the variance-covariance matrix de�ned in

(19).
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4.2 PQMLE case

For PQMLE, to obtain asymptotically valid test statistic of the CCC assump-
tion, we apply the demeaning technique so that the estimation e¤ect from �
asymptotically negligible (i.e. condition (1) holds) in the following way:

M̂ t
PT =

1

T

TX
t=1

m̂t
P t

�
�̂; �̂
�
=
1

T

TX
t=1

�
"̂�1t"̂

�
2t +

�̂

1� �̂2
��
r̂t � b�r�

=
1

T

TX
t=1

�̂0v̂t
�
r̂t � b�r� = 1

T

TX
t=1

�̂0m̂j
Pt

�
�̂; �̂
�

(40)

where the last equality follows from (24).

Also note that since
1

T

PT
t=1

�
"̂�1t"̂

�
2t +

�̂

1� �̂2
�
6= 0 unless FQMLE is em-

ployed, M̂ t
PT 6=

1

T

PT
t=1

�
"̂�1t"̂

�
2t +

�̂

1� �̂2
�
r̂t. Now using the following corol-

lary and the results of preceding section, we can construct asymptotically valid
tests of the CCC assumption employing Tse�s modi�ed indicator M̂ t

PT based on
PQMLE.

Corollary 2 From theorem (3),
p
TM̂ j

PT
d�! N

�
0; V j1

�
; hence

p
TM̂ t

PT
d�!

N (0; V t1 ) where V
t
1 = �

0V j1 �:

In particular, the OPG and robust test statistics with M̂ t
PT can be con-

structed easily by:

T tP = TM̂
t0
PT

�
V̂ t1T

��1
M̂ t
PT = TM̂

t0
PT

�
�̂0V̂ j1T �̂

��1
M̂ t
PT (41)

and

T t(r)p = TM̂ t0
PT

�
V̂
t(r)
1T

��1
M̂ t
PT = TM̂

t0
PT

�
�̂0V̂

j(r)
1T �̂

��1
M̂ t
PT (42)

where V̂ j(r)1T and V̂ j1T are given in (30) and (31) respectively.
Alternatively, V̂ t1T can be constructed as V̂

t
1T =

1
T Ŵ

t0Ŵ t where Ŵ t = B̂Â01�̂;

and B̂ and Â1 are de�ned as before. Similarly, V̂
t(r)
1T = 1

T Ŵ
t(r)0Ŵ t(r) where

Ŵ t(r) = B̂Âr01 �̂: And then the test statistics are obtained as T � RSS from a
regression of �T on Ŵ t or Ŵ t(r):

Remark 5 Notice that if we demean test indicator M̂ j
PT only for the compo-

nents which involve �̂ then, as noted before, OPG-FCM and robust FCM proce-
dure will be asymptotically valid but (41) or (42) can not be employed. In other
words, it is necessary to demean all elements of the moment condition to obtain
valid test statistics based on M̂ t

PT :
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Test indicator Tests

M̂ j
T T jF ; T

j(r)
F ; T jP and T

j(r)
p

M̂ c
T T cF ; T

c(r)
F ; T cP and T

c(r)
p

M̂ t
T T tF ; T

t(r)
F ; T tP and T

t(r)
p

Table 1: Various test indicatots and tests considered in the simulation

5 Monte Carlo Evidence

In this section, we present Monte Carlo evidence on �nite sample size and
power performance of the 12 tests de�ned in (19)-(22), (30)-(33), (38), (39),

(41) and (42). To recapitulate, we consider three test indicators FCM
�
M̂ j
T

�
;

CCM
�
M̂ c
T

�
and Tse�s "modi�ed" indicator

�
M̂ t
T

�
; each having four versions

(FQMLE OPG, FQMLE robust, PQMLE OPG and PQMLE robust). Table 1
displays various test indicators and associated test statistics under considera-
tion.
The parameter values for the null and alternative DGPs are taken from

the existing literature (e.g. Engle and Ng, 1993; Tse, 2000; Lundbergh and
Teräsvirta, 2002; Halunga and Orme, 2009). For each experiment, three series
of 1200, 900 and 700 data realizations were generated with the �rst 200 ob-
servations being discarded to avoid initialization e¤ects, yielding sample sizes
of T = 1000; 700 and 300 respectively. Each model is replicated and esti-
mated, 10,000 times (for size experiments) and 2000 times (for robustness to
non-normality and power experiments), both by FQMLE and PQMLE. Next,
the above mentioned 12 test statistics are calculated. For this simulation study,
we consider the product of the 1-period lagged standardized residuals as the
scalar test variable, i.e. r̂t = �1;t�1�2;t�1 to calculate all 12 test statistics.

5.1 Size

To assess the size properties of the tests we consider a bivariate AR(1)-CCC-
GARCH (1,1) data generating process (DGP) as our null model i.e.10

yit = 'i0 + 'i1yi;t�1+"it; i = 1; 2

V ar ("tjFt�1) = Ht ) E
�
"2itjFt�1

�
= hii;t; "t = H

1=2
t ($) �t; �t � N(0; I)

hii;t = �i0 + �i1"
2
i;t�1 + �i1hi;t�1

Ht = Dt�Dt; Dt =

�p
h11t 0
0

p
h22t

�
and � =

�
1 �
� 1

�
(43)

Four experiments are considered and the corresponding true parameter vec-
tors are presented in Table (2). E1 and E2 represent models with relatively

10We also consider CCC-GARCH (1,1) DGP (i.e. assuming zero or known conditional
mean) to evaluate size property. However, to save space and due to the qualitative similarity
we will discuss only AR(1)-CCC GARCH (1,1) results.
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high persistence (�+ � = 0:95 for E1 and �+ � = 0:90 for E2) while E3 and
E4 correspond to relatively low persistence model (� + � = 0:70 for both E3
and E4): On the other hand, E1 and E3 represent high correlation models and
E2 and E4 represent low correlation models. Hence E1, E2, E3 and E4 represent
high-persistent-high-correlation, high-persistent-low-correlation, low-persistent-
high-correlation and low-persistent-low-correlation speci�cation respectively.
Table (3) reports the actual rejection frequencies when the null of CCC is

true and �t � N(0; I): The results are reported for a nominal size of 5%: It can
be seen that for low correlation DGPs (E2 and E4), the empirical sizes for all
test statistics, except OPG FCM (T jF and T

j
P ), are very close to the nominal size

of 5%. Although the OPG version based on FQMLE of other two tests (T tF and
T cF ) slightly overrejects when T = 500, size property improves as T increases.
Interestingly, PQMLE and robust version of all these tests demonstrate better
performance even in small sample. In case of experiments with high correla-
tion, particularly with high persistence volatility (E1), all FQMLE-OPG tests
(T tF ; T

c
F and T

j
F ) are slightly oversized; robust version of these statistics, how-

ever, corrects this size distortion. Tests based on M̂ t
T perform comparatively

better for high correlation case.
Our �nding that size performance depends on correlation but volatility per-

sistence does not have much impact on rejection frequencies, are in line with that
of Tse (2000). He reports "correlations seem to play a role in determining the
rate of convergence to the nominal size. Models with low correlations are less
subject to over-rejection in small samples....the persistence of the conditional
variance does not have much e¤ect.. " (Tse, 2000 pp:115).
In summary, tests with Tse�s modi�ed indicator based on PQMLE (i.e. T tP

and T t(r)P ) provide the most reliable size property; robust versions, in general,
perform better than OPG; OPG-FCM tests are slightly oversized and all test
statistics perform better in low correlation experiments.

5.2 E¤ect of Non-normality

Table (4) presents the actual rejection frequencies when the null of CCC is true
and �t � t(6); �t � t(8) and �t � t(10): The inclusion of t(6) o¤ers some evidence
on the robustness of the procedure to violations of the underlying moment as-
sumptions (cf. Assumption 2.5). First thing to observe that all OPG-FQMLE
tests (T tF , T

c
F and T jF ) overrejects the null for both high and low correlation

models, but more severe in high correlation models. Particularly, note that
Tse�s LM test (T tF ) is sensitive to the departure from normality assumption.
Interestingly, the OPG-PQMLE tests T tP and T

c
P demonstrate robust size per-

formance under non-normality. The robust version of FQMLE tests reduce the
overrejection rate considerably and in fact T c(r)F and T c(r)F are slightly under-
sized for low persistent-low correlation model with t(8) and t(10) errors. The
empirical size of robust tests based on Tse�s indicator (particularly T t(r)P ) and
CCM tests, in general, are close to nominal level of 5% while all versions of the
FCM tests show unreliable size property (in general, they are oversized).
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5.3 Impact of univariate volatility misspeci�cation

We consider four experiments (M1, M2, M3 and M4) in the regression context
to investigate the e¤ect of misspeci�cation in the univariate GARCH model
when the true correlation structure is constant. M1 and M3 has low correlation
(� = 0:20) and M2 and M4 follow high correlation (� = 0:80) structure. The
conditional mean parameters are the same as in the size experiments. For both
M1 and M2, the univariate volatility speci�cation for �rst variable is given by
high persistence GARCH (1,1) model i.e. h11;t = 0:01 + 0:15"21;t�1 + 0:80h1;t�1
while the second variable follows the EGARCH(1,1) model of Nelson (1991)
with parameter values considered by Engle and Ng (1993) and Halunga and
Orme (2009) in their simulation study: log (h22;t) = �0:23 + 0:9 log (h2;t�1) +
0:25

����t�1��� 0:3�t�1� : On the other hand, in experiment M3 and M4, we as-
sume that both variables are subject to volatility spillover (i.e. ECCC model)
in the following way:

hii;t = �i0 + �i1"
2
i;t�1 + �iihi;t�1 + �ijhj;t�1; i = 1; 2 and i 6= j

with

(�10; �11; �11; �12) = (0:01; 0:15; 0:80; 0:02) and

(�20; �21; �22; �21) = (0:05; 0:20; 0:70; 0:03) :

Table(5) reports the results of the simulation study based on 2000 repli-
cations where the data is generated with normal errors and the nominal level
of signi�cance is set to 5%. It can be observed that the tests are robust to
volatility spillover case (i.e. M3 and M4). On the other hand these tests seem
to be non-robust with GARCH-EGARCH-High correlation speci�cation (M2),
all tests overreject the null of CCC. It is to be noted here that due to the fact
that FCM test indicator involve the volatility moment condition, these tests
expectedly display the power to pick the misspeci�cation. For M3 (GARCH-
EGARCH-low correlation), the tests, except FCM, are not that much sensitive
to univariate conditional variance misspeci�cation.
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P1 P2 P3 P4 P5e� 0:05 0:10 0:15 - -e� 0:90 0:85 0:80 - -

Q

�
1:00 0:60
0:60 1:00

�
- -

AB - - -
�
0:30 0:10
0:10 0:30

� �
0:40 0:20
0:20 0:40

�
BB - - -

�
0:60 0:20
0:20 0:60

� �
0:40 0:20
0:20 0:40

�
CB - - -

�
0:20 0:10
0:10 0:20

� �
0:20 0:04
0:04 0:20

�
Table 6: True parameter values for power simulation

5.4 Power Simulation

To examine the power of these tests we consider two types MGARCH mod-
els with time varying correlations again in the regression context. The AR(1)
speci�cation for the conditional mean function introduced for size simulation is
retained. First we assume that the true DGP for conditional variance matrix
Ht follows Engle�s (2002) DCC-GARCH(1,1) model as follows:

yit = 'i0 + 'i1yi;t�1+"it; i = 1; 2

V ar ("tjFt�1) = Ht ) E
�
"2itjFt�1

�
= hii;t;

hii;t = �i0 + �i1"
2
i;t�1 + �i1hi;t�1

Ht = Dt�tDt; Dt =

�p
h11t 0
0

p
h22t

�
�t = (I �Qt)�1=2Qt (I �Qt)�1=2 = diag(Qt)�1=2Qtdiag(Qt)�1=2

Qt = (1� e�� e�)Q+ e��t�1� 0t�1 + e�Qt�1; (44)

Secondly, we consider BEKK model of Engle and Kroner (1995) as the true
DGP for conditional variance matrix Ht

yit = 'i0 + 'i1yi;t�1+"it; i = 1; 2

V ar ("tjFt�1) = Ht

Ht = CB +A
0
B

�
"t�1"

0
t�1
�
AB +B

0
BHt�1BB (45)

Five experiments are considered; P1, P2 and P3 with DCC DGP and remain-
ing two (P4 and P5) with BEKK DGP. The true parameter values for con-
ditional mean functions of size simulation experiment are maintained for all
DGPs. Also for DCC DGPs, high persistence individual volatility speci�cation
for both variables, as given in E1 and E2, is retained (i.e. �01 = (0:01; 0:15; 0:80)
and �02 = (0:05; 0:20; 0:70)). The remaining true parameter vectors are given in
Table (6). The parameter values for BEKK models are taken from Tse (2000).
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Table (7) and Table (8) presents the power results with 2000 replications for
DCC and BEKK DGPs respectively where the nominal size is again 5%. The
data is generated assuming normality. The average of the estimated correlation
parameter and true range of correlations in the simulated sample (as a measure
of time variability) are presented in the last panels.
It can be seen when the true DGP is DCC, P3 has the largest variability in

correlations followed by P2 and P1 i.e. variability increases as e� increases and e�
decreases. In general, the tests based on Tse�s indicator is found to have higher
power in all three DCC experiments. However, as the variability in correlation
decreases power decreases. The FCM tests also show nice power property. It is
to be noted that even with T = 500, both Tse and FCM tests show high power
especially in P2 and P3. But CCM tests lack power considerably, particularly
for P1. The OPG-FQMLE tests show greater power; however using robust and
PQMLE versions do not cost much power. In case of BEKK DGP the conclusion
is quite similar to DCC models. P5 has larger variability in correlation than P4
and the tests also oblige the fact. All tests show excellent power for P5; CCM
tests, however, lacks power for P3.
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6 Concluding Remarks

In this paper, we propose a set of asymptotically valid CM tests of testing
the CCC hypothesis for MGARCH model. We consider tests considering both
FQMLE and particularly PQMLE framework for CCC models and tests with the
latter is nonexistent in the literature. Moreover, the robust and OPG versions
of these tests are developed. These tests are very easy to implement. We also
analyze and accommodate Tse�s (2000) LM test, which is a OPG type test, and
consider a robust version of it. We examine the �nite sample performance of
these asymptotically valid tests.
Monte Carlo experiments indicate that in general all tests have desirable

size property and robust version perform better than OPG version. It is found
that the correlation parameter has a signi�cant impact on empirical size of
these tests (low correlation is associated with better size property); the size is,
however, not a¤ected by the degree of univariate volatility persistence. The
robust versions demonstrate better size than OPG tests in case of the departure
from normality assumption of true error; particularly all OPG-FQMLE tests are
oversized. Interestingly, PQMLE based tests exhibit more robustness compared
to FQMLE tests. Besides, when the assumption of the null model is violated
by assuming misspeci�ed univariate volatility structure but maintaining CCC
assumption, the size of these tests are not a¤ected by volatility spillover e¤ect;
however when one equation is misspeci�ed and true correlation is high all tests
overreject the null of the CCC assumption. The rejection rate is higher in case
of FCM tests expectedly; as by construction these tests consider the individual
volatility moment conditions as well.
The power of these tests depends on the variability of the true correlation

parameter and it is found that tests based on Tse�s modi�ed indicator and FCM
show excellent power, even in models with less dispersed correlations. The CCM
tests, in general, show lower power and particularly in models with less dispersed
correlations have limited power. In terms of power there is very little to choose
between OPG and robust; and between FQMLE and PQMLE.
To sum up, testing correlation constancy depends on the true correlation

parameter and no signi�cant di¤erence is observed whether one use FQMLE
and PQMLE approach. The robust versions manifest better size under non-
normality. The FCM tests check the individual volatility along with CCC as-
sumption; hence can be treated as a general diagnostic test. The CCM test
has desirable size properties, but lacks power under certain DGPs. Tse�s LM
test, which is a OPG-FQMLE type, has good size and power properties but
is sensitive to the departure from normality while its OPG-PQMLE display
impressive robustness maintaining the high power performance. The robust
version of Tse-FQMLE, however, has empirical size close to the nominal level
under non-normality.
The tests here is derived for to check CCC assumption which in many situ-

ations is not a realistic or reasonable one. It is therefore is of interest to devise
test of time varying correlation. In practice, two-stage estimation approach is
almost always applied to estimate time varying correlation model indicating to
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develop a testing framework based on PQMLE approach. However,in this case
correlation is not a scalar and the simple demeaning technique, that we have
used to derive the PQMLE tests in this paper, is not possible and we need to
consider the estimation e¤ect emerging from correlation parameter to derive the
limit distribution of the test statistics. Such extensions, however, left for future
research.
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Appendices

A Proofs

For the CCC we have,

corr ["it; "jtjFt�1] = E

"
"it"jtp
hit
p
hjt

�����Ft�1
#
= �ij :

We have the following de�nitions:

1. �it = "it=
p
hit is iid (0; 1) ; for t = 1; :::; T; with E

�
�it�jtjFt�1

�
= �ij ; or

E
�
�t�

0
tjFt�1

�
= � =

�
�ij
	
; (N �N) ; where �t = f�itg ; (N � 1) ; and

�ii � 1; � = �0 is symmetric and positive de�nite.

2. Let ��1 =
�
�ij
	
; so that

PN
m=1 �

im�mj = �ij ; the Kronecker Delta, i.e.
�ii = 1; �ij = 0; i 6= j:

3. "�it =
PN

m=1 �
im�mt; so that "

�
t = f"�itg = ��1�t:

4. fit = wit=
p
hit; cit =

1

hit

@hit
@'i

; xit =
1

hit

@hit
@�i

:

Then, in addition to the properties of �it listed in (1), we have the following:

E ["
�
itjFt�1] = 0

E ["
�
t "
�0
t jFt�1] = ��1 =

�
�ij
	
=
�
E
�
"�it"

�
jtjFt�1

�	
E
�
"�t �

0
tjFt�1

�
= IN =

�
E
�
"�it�jtjFt�1

�	
so that, in particular, E

�
"�it�jtjFt�1

�
= �ij .

A.1 Proof of Lemma 1

To construct the expected Hessian matrix conditional on Ft�1, we �rst obtain
the second partial derivatives given Ft�1: Since "0tH

�1
t "t = �

0
t�
�1�t = �

0
t"
�
t we

can write the likelihood function (7) as:

l�t = �1
2
ln j�j � 1

2

NX
j=1

lnhjt �
1

2
� 0t�

�1�t

= �1
2
ln j�j � 1
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j=1

lnhjt �
1

2

NX
j=1

�jt"
�
jt:

Using the results of Lemma 1, and noting that "�it =
PN

j=1 �
ij�jt and �

ij = �ji;

we have
@"�jt
@'i

= ��ij
�
fit +

1

2
�itcit

�
; and

@"�jt
@�i

= �1
2
�ij�itxit: Then we have:
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�itcit

�
"�it �
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Similarly,
@l�t
@�i

=
1

2
(�it"

�
it � 1)xit: (47)

Finally, as in Tse (2000, p.113) we have:

@l�t
@�ij

= "�it"
�
jt � �ij ; i > j: (48)

To see how (48) is derived, note from Magnus & Neudecker (p. 178) we have:

d ln j�j = j�j�1 d j�j = tr
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�ij
	
; ��1 =

�
�ij
	
; and where (in line 2) we have used the fact

that �kk � 1 and that �km = �mk: Thus

@ ln j�j
@�ij

= 2�ij ; i > j:

Furthermore, since "�kt =
PN

m=1 �
km�mt we can write

@"�kt
@�ij

=
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@�km

@�ij
�mt:

Note from Magnus & Neudecker (1999, pp. 183) we have (the di¤erential)
d��1 = ���1 (d �) ��1: Then looking at the elements we see (with � =

�
�ij
	
;
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A.2 Proof of Lemma 2

Recall that E ["�itjFt�1] = 0; E [�it"�itjFt�1] = 1 and E
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= �ij ; so that
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@�0j

(�it"
�
it � 1) +

1

2
�ijxit"

�
it

@�it
@�0j

+
1

2
xit�it

@"�it
@�0j

=
1

2
�ijxit"

�
it

@�it
@�0j

+
1

2
xit�it

@"�it
@�0j

+ {4t

= �1
4
�ijxit"

�
it�jtx

0
jt �

1

4
�ijxit�it�jtx

0
jt + {4t

= �1
4
�ijxitx

0
jt �

1

4
�ij�ijxitx

0
jt + {4t

where {4t =
1

2
�ij
@xit
@�0j

(�it"
�
it � 1) so that E0 [{4tjFt�1]$=$0

= 0: Thus

eH�
�i�j

= �1
4

�
�ij + �

ij�ij
�
xitx

0
jt: (52)
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5. Di¤erentiating (48) with respect to �k yields

@2l�t
@�ij@�

0
k

= "�jt
@"�it
@�0k

+ "�it
@"�jt
@�0k

= �1
2
�ik"�jt�ktxkt �

1

2
�jk"�it�ktxkt

= �1
2
�jk�

ikxkt �
1

2
�ik�

jkxkt (53)

Note that i > j; here, so that

eH�
�i�ij

=

8>><>>:
�1
2
�jixit = �

1

2
�ijxit; k = i > j;

�1
2
�ijxjt; k = j < i

0; k 6= i; k 6= j:

6. Di¤erentiating (48),
@l�t
@�ij

= "�it"
�
jt � �ij ; i > j;with respect to �km yields

@2l�t
@�ij@�km

=
@"�it
@�km

"�jt + "
�
it

@"�jt
@�km

� @�ij

@�km

= ��ik"�mt"�jt � �im"�kt"�jt � �jk"�mt"�it � �jm"�kt"�it
+�ik�jm + �im�jk

where we have used the previous results:
@�ij

@�km
= ��ik�jm � �im�jk and

@"�it
@�km

= ��ik"�mt � �im"�kt: We thus obtain, using symmetry,

eH�
�ij�km

= ��ik�mj � �im�kj � �jk�mi

��jm�ki + �ik�jm + �im�jk

= ��jk�mi � �jm�ki

= ��ik�jm � �im�jk = @�ij

@�km
(54)

A.3 Proof of Lemma 3

First we de�ne the following:
� = vecl(�) =

�
�ij
	
; j = 1; :::; N � 1; i = j + 1; :::; N (i.e., the i subscript

changes more quickly than the j subscript);

For the ith variable, de�ne Fi
(T�K)

; Ci
(T�K)

and Xi
(T�K0)

with rows f 0it =
w0itp
hit
;
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c0it =
1

hit

@hit
@'0i

and x0it =
1

hit

@hit
@�0i

respectively. Then de�ne

F
(NT�NK)

= diag (Fi) ;

~F
(T�NK)

= [F1; F2; :::; FN ]

F 0t
(N�NK)

= diag (f 0it) fort = 1; � � � ; T:

In a similar way, de�ne C; X; ~C; ~X: C 0t and X
0
t: Also, de�ne Et

(N�N)
= diag (�it) ;

and the (N � T ) matrices E = f�itg and E� = f"�itg = ��1E having columns
�t and "

�
t respectively. It will be useful to de�ne �A = IN +

�
��1 � �

�
:

Let �k be the kth column of ��1; de�ne �k = ��1diag (�k) ; where �k =
f�ikg ; (N � 1) ; i = 1; :::; N ; i.e. �k be the (N �N) matrix of zeros, except for
column k which is �k. De�ne the following two (N �N) symmetric matrices:

Pk = �k +
�
�k
�0

�km = �k (�m)
0
+ �m

�
�k
�0

Note that ~F = (�0N 
 IT )F; so that, ~F 0 ~F = F 0 (�N 
 IT ) (�0N 
 IT ) F = F 0 (JN 
 IT )F .
Now

1.

E0

"
TX
t=1

@2lt
@'i@'

0
j

�����Ft�1
#
$=$0

= ��ij
TX
t=1

fitf
0
jt �

1

4

�
�ij + �

ij�ij
� TX
t=1

citc
0
jt

= ��ijF 0iFj �
1

4

�
�ij + �

ij�ij
�
C 0iCj

Hence,

E0

"
TX
t=1

@2lt
@'@'0

�����Ft�1
#
$=$0

= �
�
��1 
 JK

�
� ~F 0 ~F � 1

4
(�A 
 J)� ~C 0 ~C

= �
�
��1 
 JK

�
� F 0 (JN 
 IT )F

�1
4
(�A 
 JK)� C 0 (JN 
 IT )C

= �F 0
�
��1 
 IT

�
F � 1

4
C 0 (�A 
 IT )C

2. Similarly,

E0

"
TX
t=1

@2lt
@'@�0

�����Ft�1
#
$=$0

= �1
4
(�A 
 JK)� ~C 0 ~X

= �1
4
(�A 
 JK)� C 0 (JN 
 IT )X

= �1
4
C 0 (�A 
 IT )X
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3.

E0

"
TX
t=1

@2lt
@�@�0

�����Ft�1
#
$=$0

= �1
4
(A
 JK)� ~X 0 ~X

= �1
4
X 0 (A
 IT )X

4. For i > j,

E0

"
TX
t=1

@2lt
@�ij@'

0
k

�����Ft�1
#
$=$0

= �1
2

�
�ik�

jk + �jk�
ik
�
�0TCk

= �1
2

�
�ik�

kj + �ik�kj
�
�0TCk

Then, the matrix with typical element �ik�kj is �k� 0k; where �k = f�ikg ;
i = 1; :::; N: (N �N) ; �k is the kth column of ��1; and ek is the kth

column of IN ; k = 1; :::; N: Similarly,
�
�ke0k

�0
=
�
�ik�

kj
	
: Alternatively,

let �k be the (N �N) matrix of zeros, except for column k which is �k;
the kth column of ��1; i.e., �k = ��1diag (�k). De�ne the symmetric
matrix Pk = �k+

�
�k
�0
; pk = vecl(Pk); and Rk = �T p0k: Then, since i > j;

E0

"
TX
t=1

@2lt
@�@'0k

�����Ft�1
#
$=$0

= �1
2
vecl (Pk) �

0
TCk

= �1
2
pk�

0
TCk

Collecting the k blocks together we get

E0

"
TX
t=1

@2lt
@�@'0

�����Ft�1
#
$=$0

= �1
2
P 0 (IN 
 �0T )C

where P
N�N(N�1)

2

has rows p0k = vecl(Pk)
0; k = 1; :::; N .

5. In a similar way to the previous result,

E0

"
TX
t=1

@2lt
@�@0�

�����Ft�1
#
$=$0

= �1
2
P 0 (IN 
 �0T )X

6. Finally, eP
N(N�1)

2 �N(N�1)
2

has columns epkm = vecl (�km) ; m = 1; :::; N � 1;

k = m+ 1; :::; N

E0

�
@2lt

@�ij@�km

����Ft�1�
$=$0

= ��ik�jm � �im�jk

= ��ik�mj � �im�kj :
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Now, the (N �N) matrix with typical (i; j)th element equal to �ik�mj is
�k (�m)

0 and that with typical (i; j)th element equal to �im�kj is �m
�
�k
�0
:

Let �km = �k (�m)
0
+ �m

�
�k
�0
; and let pkm = vecl (�km) : Then

E0

�
@2lt

@�@�km

����Ft�1�
$=$0

= �pkm

or

E0

�
@2lt
@�@�0

����Ft�1�
$=$0

= � eP
E0

"
TX
t=1

@2lt
@�@�0

����Ft�1
#
$=$0

= �T eP
where eP = [ep21; ep31; :::; epN;N�1] ; a matrix with columns epkm; m = 1; :::; N�
1; k = m+ 1; :::; N (k changes more quickly than m):

A.4 Proof of Theorem 2

Proof. The test indicator under consideration is M̂FT � T�1
PT

t=1 m̂Ft: By the
consistency of $̂ we have,

p
T ($̂ �$0) = J

��1
$$

p
TG�0T + op (1) where J

�
$$ =

�E0 [H�
t ($0)] = plimT!1 T

�1PT
t=1

@g�0t
@$0 and assuming J

�
M$ = plimT!1 J

�
M$T

(by a ULLN) where J�M$T = �T�1
PT

t=1

@m0Ft

@$
: Taking a mean value expan-

sion of M̂FT about $0 =
�
�00; �

0
0

�0
;

p
TM̂FT =

p
TM0FT � J

�
M$T

p
T ($̂ �$0)

=
p
TM0FT � J�M$J

��1
$$

p
TG�0T + op(1)

= A�
1p
T

TX
t=1

�
m0Ft

g�0t

�
+ op(1)

where J
�
M$T = �T�1

PT
t=1

@mFt

@$

����
$

and $ is the usual "mean value" satisfying

$ = $0 + op (1) ) J
�
M$T = J�M$ + op (1) and A

� =
�
Ir : �J�M$J

��1
$$

�
: Now

using Proposition 1, we conclude that
p
TM̂FT

d�! N (0; V )

where V = A���A�0 with �� =
�
�MM ��MG

��GM ��GG

�
:

A.5 Proof of Proposition 2

Proof. The test indicator under consideration is M̂FT =
1

T

PT
t=1 (�̂t 
 r̂t) =

1

T

PT
t=1 m̂Ft where �̂t = vech

�
�̂t�̂

0
t � �̂

�
. De�ne J�M$ = plim

T�!1
J�M$T where
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J�M$T = �
1

T

PT
t=1

@mFt

@$0 = �
�
1

T

PT
t=1

@mFt

@�0
;
1

T

PT
t=1

@mFt

@�0

�
; Z = (Z1; � � � ; ZN )

where Zi is (T � ki) matrix having rows z0it = (c0it; x
0
it) for i = 1; � � �N: Also

de�ne R� having rows r0t; if rt is a vector of test variables, or R
� is a vector with

typical element rt if rt is a scalar.
Note that �t =

�
�2it � 1

	
if i = j and �t =

�
�it�jt � �ij

	
if i 6= j; j < i =

2; � � � ; N: Since �jt are functionally independent of both 'i and �i, i 6= j; and �

does not enter in �; Now, we have
@�it
@'i

= �fit�
1

2
�itcit;

@�it
@�i

= �1
2
�itxit; hence

@
�
�2it � 1

�
@'i

= �2�it
�
fit +

1

2
�itcit

�
and

@
�
�2it � 1

�
@�i

= �2�2itxit and for i 6= j;

j < i = 2; � � � ; N ;
@(�it�jt � �ij)

@'i
= ��jt

�
fit +

1

2
�itcit

�
;
@(�it�jt � �ij)

@�i
=

��jt
�
1

2
�itxit

�
;
@(�it�jt � �ij)

@�ij
= �1. Hence,

@
�
�2it � 1

�
@�0i

=

�
�2�it

�
f 0it +

1

2
�itc

0
it

�
;�2�2itx0it

�
;

@(�it�jt � �ij)
@�0i

= ��jt
�
f 0it +

1

2
�itc

0
it;
1

2
�itx

0
it

�
:

Now, note that E
�
�2jtjFt�1

�
= 1; E

�
fit�jtjFt�1

�
= E [fit�itjFt�1] = 0; since

fit is Ft�1 measurable and E0 [�1t�2tjFt�1] = �0: Therefore

E0

"
@
�
�2it � 1

�
@�0

rtjFt�1

#
= plim

T�!1

1

T
R�0(0; : : : ; Zi; � � � ; 0) (55)

and, for i 6= j; j < i = 2; � � � ; N

E0

"
TX
t=1

@(�it�jt � �ij)
@�0

rtjFt�1

#
=
1

2
�0 plim

T�!1

1

T
fR�0(0; : : : ; Zi; � � � ; Zj ; � � � 0)g

(56)
Finally,

E0

"
@
�
�2it � 1

�
@�0

rtjFt�1

#
= 0 (57)

and

E0

�
@(�it�jt � �ij)

@�0
rtjFt�1

�
= plim

T�!1

1

T
(0; : : : ; 10; � � � ; 0)R� (58)

A.6 Proof of Lemma 5

Proof. Under normality, from the generalized IM inequality (e.g. Newey, 1985),
we have J�M$ = ��MG and J�$$ = ��GG and the result follows. Further (by
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ULLN) the consistent estimator of ��MG; �
�
GG.and �

�
MM are given by

�̂�MG = T�1
TX
t=1

m̂Ftĝ
�0
t = T

�1Ŝ�0R̂;

�̂�GG = T�1
TX
t=1

ĝ�t ĝ
�0
t = T

�1Ŝ�0Ŝ�;

�̂MM = T�1
TX
t=1

m̂Ftm̂
0
Ft = T

�1R̂0R̂:

Hence, Â� =
h
Ir : ��̂�MG�̂

��1
GG

i
: Now De�ne B̂� =

h
R̂; Ŝ�

i
; and Ŵ � = B̂�Â�0

where R and Ŝ�are (T � r) and (T �N 0) matrices having rows m̂0
Ft and

@l�t
@$0 ;

evaluated at $̂:Then V can be consistently estimated by V̂T =
1

T
Ŵ �0Ŵ � =

�̂MM � �̂�MG�̂
��1
GG �̂

�
GM :

A.7 Proof of Theorem 3

Proof. De�ne M̂PT � M̂; Ji(�0) = �plimT!1
1
T

hPT
t=1

@2lit(�i)
@�i@�0i

i
�=�0

;rMi �

rMPTi(�1; �2) = plimT!1
@M0PT

@�i
, i = 1; 2: Now taking a mean value expan-

sion of
p
TM̂ about �̂ = �0
p
TM̂ =

p
TM(�0) +rM1(�10; �20)� J1(�10)�1

p
TG1(�10)

+rM2(�10; �20)� J2(�20)�1
p
TG2(�20) + op(1)

=
p
TM(�0)� JM� � J�1��

p
TG (�0) + op(1)

= A1

� p
TM(�0)p
TG (�0)

�
+ op(1) (59)

where JM� = �
�
rM1 rM2

�
; G (�0) =

�
G1(�10)
G2(�20)

�
; J�� =

�
J1(�10) 0
0 J2(�20)

�
and A1 = [Ir; �JM� � J��] : Thus, when the proposition (3) holds we can write
that p

TM̂T
d! N(0; V1)

where V1 = A1�A01:

A.8 Proof of Lemma 7

Proof. Assuming that the speci�cation of the log-likelihood for the FQML
estimation of parameters is correct, we can use a generalized (conditional) IM
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equality which says that

E0

�
@

@�i

�
@lit(�i)

@�0i

�
jFt�1

�
= �E0

��
@lit(�i)

@�i

��
@l�t (�; �)

@�0i

�����Ft�1�
E0

�
@mt(�)

@�0i

����Ft�1� = �E0
�
mt(�)

@l�t (�; �)

@�0i

����Ft�1� ;
where

@l�t (�; �)

@�0i
is the score for �i; i = 1; 2. from the FQMLE log-likelihood.

Then Ji = �plimT!1
1
T

hPT
t=1

@2lit(�i)
@�i@�0i

i
= plimT!1

1

T
Q0iSi and JM� =

�plimT!1
1

T
R0Si: Substituting these into (59) yields

p
TM̂ =

p
TM(�0)�

1

T
R0S

264 1

T
Q01S1 0

0
1

T
Q02S2

375
�1
p
TG (�0) + op(1)

= A1

� p
TM(�0)p
TG (�0)

�
+ op(1)

where A1 =
�
Ir : �R0S

�
(Q01S1)

�1
0

0 (Q02S2)
�1

��
and S = [S1; S2] : Now

de�ning B = [R; Q1; Q2] ; � = plimT!1B
0B: Hence, the variance-covariance

matrix V1 can be written as V1 = plimT!1
1

T
A1B

0BA01 = plimT!1
1

T
W 0W

where W = BA01 = R�Q1 (S01Q1)
�1
S01R�Q2 (S02Q2)

�1
S02R:

Now V1 can be consistently estimated by V̂1T =
1

T
Ŵ 0Ŵ ; where hats denote

�0 replaced by the individual GARCH estimators, �̂; and �0 replaced by the

estimator �̂ =
1

T

PT
t=1 �̂1t�̂2t:
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