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ABSTRACT. This paper examines the effects of violating the common
prior assumption embedded in the “Product differentiation and location deci-
sions under demand uncertainty”model by Meagher and Zauner (Journal of
Economic Theory [2004]). In particular, a situation is discussed in which the
firms do not know the exact distribution of the location and price elasticity of
consumer demand, but resolve the resulting ambiguity using the Arrow and
Hurwicz α-maxmin criterion [3].
When the firms are suffi ciently pessimistic (α is high enough), the results are
in contrast with the existing literature. In particular, an increase of demand
location uncertainty decreases the equilibrium product differentiation, as well
as the resulting second-stage equilibrium prices and profits for any realisation
of consumer demand, although the effect is dampened by a possibility of higher
price elasticity of demand. Furthermore, pessimism could serve as a form of
strategic deterrence, because any firm that can commit itself to a more pes-
simistic approach increases its equilibrium share of the market and becomes
better off at the competitor’s expense. However, this generates a Prisoner’s
Dilemma situation, since both firms lose when they both become more pes-
simistic, suggesting that the presence of ambiguity can make the market more
competitive.
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1 Introduction

Over the last few decades, the Hotelling model of spatial competition has been used
to explain a wide variety of social phenomena, from the location of retail outlets to
competition among political parties. A relatively new strand of the relevant liter-
ature investigates the effects of random demand fluctuations on the firms’location
decisions. This typically entails introducing some form of demand uncertainty into
a modified Hotelling setting. For instance, Balvers and Szerb [4] study the effect of
random shocks to the products’desirability under fixed prices. Harter [9] examines
the uncertainty in the form of a uniformly distributed random shift of the (uniform)
customer distribution, where the firms locate sequentially. Other papers, such as
[1], concentrate on the strategic effect of acquiring information about the demand
through price-experimentation.
On the other hand, relatively few studies consider the effect of demand uncer-

tainty in an otherwise unchanged Hotelling framework. Of those, Casado-Izaga [6]
adopts the same form of uncertainty as Harter, but the duopolists locate simulta-
neously, before observing the actual customer distribution and then choosing prices.
Meagher and Zauner [13] consider a similar setting, but succeed in parametrizing
the support of the (uniform) random variable that shifts the customer distribution
and report that demand uncertainty increases the equilibrium level of product dif-
ferentiation. Finally, another study by Meagher and Zauner [12] (henceforth, MZ)
considers a random shock arbitrarily (rather than uniformly) distributed on a fixed
interval. Tractability of the model is maintained by assuming that the variance of
the shock is small enough relative to the ex-post differentiation of tastes, so that no
firm would ever choose to capture the entire market in any state of nature. Once
again, it turns out that more uncertainty results in higher equilibrium level of product
differentiation.
The intuition for those results is simple: if the demand is more likely to be

located away from the centre of the market, then it is natural for the firms to venture
into more distant areas and away from one another, relaxing the second-stage price
competition. Nevertheless, one can conjure a similarly intuitive reasoning to the
opposite effect if the firms are pessimistic, in the sense of always trying to prepare
for the worst-case scenario. In such case, an increase in the range of possible demand
variations means a player has to consider a potentially larger strategic advantage on
the competitor’s behalf, especially when the players are highly specialized, leaving
more room for shifts in consumer preferences to favour one over the other. To insure
against this threat, a pessimistic player might then want to make her product more
similar to that of the rival when uncertainty increases.
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A particularly useful illustration of the described mechanism is offered by the
online sports betting industry. In general, the betting market is associated with a
large degree of product differentiation, as different bookmakers specialize in differ-
ent sports, types of bets and outcomes of a particular sporting event (for instance,
some are known to offer better prices on the favorites, others on the underdogs of a
competition). This gives them flexibility in balancing the bets, while avoiding head-
to-head competition in terms of the overall house edge1, which a ’recreational’bettor
will find diffi cult to compare between bookmakers with different relative prices, par-
ticularly for events with several possible outcomes, such as horse races. Those events
are characterized by a significant increase of the uncertainty about bettors’prefer-
ences shortly before the start of the competition, as evidenced by intensified trade
and increased price volatility in betting exchanges (see Smith et al. [14] for more
information). Interestingly, this coincides with the odds baskets offered by different
bookmakers ceasing to be differentiated (with a smaller house edge), i.e. everyone
quotes exactly the same price on every horse.
The explanation might lie in the fact that bookmakers are unlikely to know the

exact distribution of the punters’betting preferences, although they might be able to
place them within a certain range (for instance, an outsider will not suddenly become
the clear favorite of a race). Furthermore, a unique feature of the gambling industry
is its extremely pessimistic approach to uncertainty, manifested by the traditional
objective of ’balancing the books’, i.e. effectively focusing on the worst-case scenario
in which the outcome that attracted the largest volume of bets is realized. Assuming
the bookmakers extend this attitude to uncertainty about consumer preferences, an
increase in the range of possible demand variations will make it more undesirable for
any particular firm to differentiate its odds from those of the competitors, because
there is more room for the betting patterns to shift ’against it’, in the sense of
the books becoming more unbalanced due to bettors switching to and from other
bookmakers in search of better odds. Consequently, losses associated with the success
of the most excessively backed contestant are becoming more severe.
The existing literature outlined earlier is unable to accommodate the above mech-

anism, because of its reliance on the common prior assumption in modelling demand
uncertainty. On the one hand, it seems reasonable to assume that the firms are not
completely certain of the exact consumer preferences at the time of designing the
product or choosing the location of their outlet. On the other hand, for all firms
to unanimously form precise probabilistic estimates of all potential demand realiza-
tions may be too much to ask of an industry. Thus, the present paper considers

1 i.e. the percentage of bettors’money the bookmaker is aiming to keep as revenue regardless of
the outcome of the event
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an altogether different scenario, where the firms are ignorant of the distribution of
demand fluctuations and possibly differ in their resolution of the resulting ambiguity.
In particular, the setting is the same as in MZ, except the demand is allowed to vary
not only in location, but also in its price elasticity, as captured by the transportation
cost parameter2. Furthermore, the firms know only the support of the distribution
of those changes, which of course requires a different payoff specification for the re-
duced location game. Instead of calculating the expected value of the second stage
Nash Equilibrium profits for a particular location-pair, the firms consider a weighted
average of the highest and lowest of those profits, i.e. use the Arrow-Hurwicz α-
maxmin criterion [3] to resolve the ambiguity3. The definition of uncertainty must
also change. In MZ it was specified as the variance of the distribution of the shock
shifting consumer preferences, which is not applicable in the absence of a common
prior. Instead, an increase of demand uncertainty will be modelled via spreading the
support of the random demand fluctuations, which is closer to the approach taken
in [13]. The terms ’ambiguity’and ’uncertainty’will be used interchangeably in the
context of the present model, while ’uncertainty’will be exclusive to MZ.
It turns out that an increase of uncertainty about the demand’s location decreases

the equilibrium product differentiation (and with it, the resulting second-stage prices
and profits) when the firms are suffi ciently pessimistic, in the sense of assigning
a high enough weight to the worst-profit scenario. This is because a pessimistic
player effectively assumes that the consumer preferences will move in a way offering
a strategic advantage to the counterpart ahead of the second-stage price competition.
By locating closer to the rival, he partly insures against this possibility, because even
if the customers find the product of the other firm more suitable, his own one, being
similar, is not so badly handicapped.
Surprisingly, the effect of pessimistic expectations is moderated by uncertainty

about the price elasticity of demand (represented by a possibility of lower transport
costs) despite the fact that the transportation cost parameter has no effect on location
decisions in the Hotelling framework. This is because a pessimist will expect to see
unfavorable consumer preferences combined with competitive pricing due to high
elasticity of demand. A possibility of lower costs will make the price competition in
such worst-case scenario even more intense, so that the pessimistic outcome of the

2The total consumer demand is, by assumption, completely inelastic in the Hotelling framework.
However, when the transport cost parameter decreases, the individual demand of each firm for given
locations and the counterpart’s price becomes more elastic in the firm’s own price, which is what
is henceforth meant by price elasticity.

3For the model discussed here, the α-maxmin profits coincide with the α-Maxmin Expected
Utility (as in Ghirardato et al. [8]) of a risk-neutral agent.
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uncertainty becomes even more threatening. However, it also becomes more costly
to insure against this threat, because a larger reduction of product differentiation
is required in order to achieve the same second-stage profit improvement in those
unfavorable circumstances, resulting in a more significant reduction of one’s strategic
advantage in case of the demand being favorably located. Consequently, a firm
must be more pessimistic in order to continue to decrease product differentiation in
response to an increase of uncertainty about the demand’s location.
The results are, to a large extent, robust to a change in timing, such that the

pricing decisions are made before the resolution of the uncertainty. Despite the exis-
tence of multiple price equilibria for ’not too asymmetric’locations, both the highest
and lowest possible equilibrium prices are decreasing in demand location uncertainty
when the firms are pessimistic, despite the effect being dampened by uncertainty
about transport costs. Thus, uncertainty about the placement of consumer demand
still makes pessimistic producers more competitive, although less so when faced with
a possibility of a highly price elastic demand.
Finally, whenever a particular firm adapts a more pessimistic approach, its equi-

librium location is further towards the competitor’s end of the market, with the rival
withdrawn into his own hinterland. As a result, the pessimistic firm becomes better
off in equilibrium at the counterpart’s expense, regardless of the eventual demand
realisation, i.e. of whether or not the firm’s pessimistic expectations prove justi-
fied. This suggests that if the duopolists could commit themselves to an attitude
of ’preparing for the worst’, then they might use pessimism as a form of strategic
deterrence, preventing the competitor from targeting their own market niche.
However, this also creates a prisoner’s Dilemma situation, because when both

firms become more pessimistic, product differentiation decreases and both fall victim
of the intensified price competition in the second stage of the game. In a sense, their
self-imposed pessimism becomes a self-fulfilling prophecy. Alternatively, rather than
through deliberate commitment, a pessimistic approach towards uncertainty could
become prevalent through the elimination of firms who fail to adapt it and do worse
relative to the competitors. Either way, on this evidence the presence of ambiguously
distributed demand fluctuations makes the product market more competitive.
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2 The Model

As indicated above, the setting is, in general, the same as in MZ. In the first stage of
the game, two firms simultaneously choose locations x1, x2 (without loss of generality
set x1 ≤ x2) and then proceed to simultaneous setting of their respective prices p1, p2
in the second stage. As usual, a consumer located at x chooses to buy a unit of the
good from firm i ∈ {1, 2}, so as to minimize the total purchase cost of pi+t (xi − x)2,
where t > 0 is the transportation cost parameter. The good costs nothing to produce
and the consumers are uniformly distributed on the interval

[
M − 1

2
,M + 1

2

]
, where

the duopolists get to know the value of M , as well as t, once they choose the loca-
tions, but before setting prices. Initially, all they know is that the joint probability
distribution of (M, t) has support [−L,L]× [t0, 1], where L ∈

[
0, 1

2

]
and t0 ∈ (0, 1]4.

The difference from MZ is introducing uncertainty about transportation costs (MZ
assumes t = 1), as well as the fact that the exact probability distribution of (M, t) is
unknown and so is the expected value of the second stage Nash Equilibrium profits.
Instead, the players’payoffs in the reduced location game are given by a weighted
average of the lowest and highest possible profits, i.e. are computed using the Ar-
row/Hurwicz α-maxmin criterion instead of the expected value. More specifically,
let π∗i (x1, x2,M, t) be the second-stage unique Nash Equilibrium profit associated
with a particular location-pair and demand realization. Then the first-stage payoffs
are given by:

Πi (x1, x2) = α

[
min

(M,t)∈[−L,L]×[t0,1]
π∗i (x1, x2,M, t)

]
+

+ (1− α)

[
max

(M,t)∈[−L,L]×[t0,1]
π∗i (x1, x2,M, t)

]
where α ∈ [0, 1] is a parameter representing the degree of the duopolists’pessimism.

4The assumption that transportation costs are always no greater than 1 can be imposed without
loss of generality. The assumption L ≤ 1/2 was imposed in MZ for the purpose of mathematical
tractability and is equally useful here.
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3 Results

The second-stage unique Nash Equilibrium profits are exactly the same as the ones
derived in MZ, i.e.:

π∗i (x1, x2,M, t) =


t (x2 − x1)

[
1 + 2 (−1)i (M − x)

]
(−1)i (M − x) ≥ 3/2

t (x2 − x1)
[
3 (−1)i + 2 (M − x)

]2
/18 (M − x) ∈ (−3/2, 3/2)

0 otherwise

where x = (x1 + x2) /2. The first (topmost) segment of the above piecewise function
corresponds to firm i capturing the entire market (later referred to as “monopolistic
equilibrium”), while the middle segment is where firm i shares the market with the
rival (“competitive equilibrium”). It is immediately clear that π∗i (x1, x2,M, t) is
increasing in t and straightforward to verify that it is also decreasing in M for i = 1
and increasing in M for i = 2. In other words, the second stage equilibrium profit
of the firm located on the left declines as the customers are located further and
further to the right. Similarly for the firm located on the right when the consumer
preferences shift leftward. Consequently, we have:

Πi (x1, x2) = απ∗i

(
x1, x2,−L [−1]i , t0

)
+ (1− α) π∗i

(
x1, x2, L [−1]i , 1

)
Note that a player can always ensure a positive α-maxmin profit, by locating at
xi = −x−i, so that x = 0 and (M − x) ∈ (−3/2, 3/2) for both M = −L and M = L
(recall L < 1/2 by assumption), i.e. there is a competitive equilibrium in both the
highest-profit and lowest-profit scenarios.
We will now show that any Nash Equilibrium of the reduced location game must

satisfy (M − x) ∈ (−3/2, 3/2) for M ∈ {−L,L}, i.e. that it must result in the
best and worst second-stage equilibria being competitive. To this end, consider the
following cases:

1. Player 1 captures the entire market for M = −L, while player 2 does the same
for M = L. This is impossible, since:

(L+ x ≥ 3/2 ∧ L− x ≥ 3/2)⇔ L− 3/2 ≥ |x|

which is false by the assumption of L < 1/2.

2. The same player i monopolizes the market for bothM = −L andM = L. This
cannot constitute a Nash Equilibrium of the reduced location game, because
the other player is able to improve on her zero payoff.
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3. Player 1 monopolizes the market in the highest-profit scenario ofM = −L and
a competitive equilibrium follows for M = L. The α-maxmin profit of player
2 then equals:

Π0c
2 (x1, x2) = α× 0 + (1− α) (x2 − x1) [3 + 2 (L− x)]2 /18

For α = 1 the above is equal to 0, so that player 2 benefits from re-locating
to x2 = −x1 and ensuring competitive equilibria for M ∈ {−L,L}. As for the
case of α < 1, differentiating the above expression with respect to x2 gives:

(1− α) (3 + 2L+ x1 − 3x2) [3 + 2 (L− x)]

we have 3 + 2 (L− x) > 0, since (L− x) ∈ (−3/2, 3/2). The only stationary
point left is therefore xs2 = 1 + (2L+ x1) /3, so that x = (3 + 2L+ 4x1) /6 and
the monopolistic equilibrium at M = −L implies:

L+ (3 + 2L+ 4x1) /6 ≥ 3/2⇔ x1 ≥ x1 = (3− 4L) /2

The α-maxmin profit of player 1 equals:

Πcm
1 (x1, x2) = αt0 (x2 − x1) [2 (L− x)− 3]2 /18+

+ (1− α) (x2 − x1) [1 + 2 (L+ x)]

differentiating with respect to x1 and substituting xs2 for x2 we obtain:

φ (x1) = −16αt0
81

x21 +

([
2 +

4(8L− 15)t0
81

]
α− 2

)
x1+

+
2 [81L− 2(L− 3)(4L− 3)t0]α

81
− 1− 2L+ α

which is quadratic concave with a maximum at:

x1 = ([81 + 2(8L− 15)t0]α− 81) /16t0α < x1

Furthermore:

φ (x1) = 2L− 4(1− α)− (2L+ [2 + L(16L/9− 4)] t0)α

which is negative under the assumptions on α,L and t0. Hence, the derivative
φ (·) is negative, i.e. whenever player 2 is satisfied with her current location,
player 1 wants to move leftward. Consequently, there can be no location equi-
librium with player 1 monopolizing the market forM = −L and a competitive
equilibrium atM = L. Similarly for the opposite case of player 2 monopolizing
the market for M = L and a competitive equilibrium at M = −L.
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The only remaining possibility is that the price equilibrium is competitive for
M ∈ {−L,L}, in which case payoffs equal:

Πcc
i (x1, x2) = αt0 (x2 − x1)

[
(−1)i (3− 2L)− 2x

]2
/18+

+ (1− α) (x2 − x1)
[
(−1)i (3 + 2L)− 2x

]2
/18

The corresponding first order conditions are:

∂Πcc
1 /∂x1 = [1 + (t0 − 1)α] [4L2 + (3 + 3x1 − x2)(3 + x1 + x2)]−

− 4L(3 + 2x1) [(t0 + 1)α− 1] = 0

∂Πcc
2 /∂x2 = [1 + (t0 − 1)α] [4L2 − (3 + x1 − 3x2)(x1 + x2 − 3)]+

+ 4L(2x2 − 3) [(t0 + 1)α− 1] = 0

This has three possible solutions, two of which fail to satisfy the competitive equilib-
rium condition (M − x) ∈ (−3/2, 3/2) for M ∈ {−L,L} (see online appendix). The
remaining solution is:

x∗1 = −x∗2 =
(3 + 2L)2 (1− α) + (3− 2L)2t0α

4 [2L([t0 + 1]α− 1)− 3− 3(t0 − 1)α]
(1)

which gives both players an α-maxmin profit equal to:

Π∗ =
[(3 + 2L)2 (1− α) + (3− 2L)2t0α]

2

36 [3 + 3(t0 − 1)α− 2L([t0 + 1]α− 1)]

Indeed, it turns out that no unilateral deviation from x∗i can result in a payoff higher
than Π∗. Firstly, player 1 cannot deviate to a x1 < x∗2 and monopolize the market
for M = L, since this requires:

−L+ (x1 + x∗2) /2 ≥ 3/2⇔ x1 ≥ 3 + 2L− x∗2

while we have:

3 + 2L− x∗2 < x∗2 ⇔
(9 [1− t0] + 4L [3 + L+ 3(L− 1)t0])α− (3 + 2L)2

2L [(t0 + 1)α− 1]− 3[1 + (t0 − 1)α]
< 0

where both the numerator and the denominator of the above fraction are negative
under the imposed parameter assumptions.
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Player 1 can still deviate to a x1 < x∗2 such that he will monopolize the market for
M = −L only. However, it turns out that the first derivative of Πcm

1 with respect to
x1 is negative for x2 = x∗2 and L + (x1 + x∗2) /2 > 3/2. Similarly, when it is player 2
who monopolizes the market for M = L only, i.e. when L− (x1 + x∗2) /2 > 3/2 and
−L− (x1 + x∗2) /2 ∈ (−3/2, 3/2) , then the derivative of:

Π0c
1 (x1, x

∗
2) = α× 0 + (1− α) (x∗2 − x1) [−3 + 2 (−L− (x1 + x∗2) /2)]2 /18

with respect to x1 is positive. In other words, an optimal location x1 to the left of
x∗2 must be such that the resulting price equilibria are competitive forM ∈ {−L,L}.
Out of all such locations, x∗1 is best, as it can be shown that ∂Πcc

1 (x1, x
∗
2) /∂x1

is negative for x1 < x∗1 and positive for x1 > x∗1, as long as M − (x1 + x∗2) /2 ∈
(−3/2, 3/2) forM ∈ {−L,L} (see the online appendix for details of all the algebraic
derivations).
This means it is also impossible to benefit from deviating to a x1 > x∗2. To see this,
observe that the game is symmetric, in the sense that Π2 (x1, x2) = Π1 (−x2,−x1).
As a consequence, for each x1 > x∗2 there exists a location x

′
1 = x∗2 − (x1 − x∗2) < x∗2

giving a higher payoff, since:

Π1 (x′1, x
∗
2)− Π2 (x∗2, x1) = Π1 (2x∗2 − x1, x∗2)− Π1 (−x1,−x∗2)

which means switching from x1 to x′1 is equivalent to shifting the locations of both
players rightward by the same distance of 2x∗2 > 0. This in turn has the same effect
as shifting the customer distribution leftward for locations fixed, thereby increasing
the second-stage profit of player 1 for M ∈ {−L,L}. All in all, it is impossible for
player 1 to gain by deviating from x∗1, while the converse is true for player 2 (again,
by symmetry of the game).

We now turn to the comparative statics of the above solution. Firstly, for symmet-
ric locations the equilibrium product differentiation is ∆∗ = 2x∗2, which is decreasing
in α, t0 and:

∂∆∗

∂L
=

[(t0 − 1)α + 1] [(3 + 2L)2 (1− α)− (3− 2L)2t0α]

(3 + 3(t0 − 1)α− 2L [(t0 + 1)α− 1])2
< 0⇔

⇔ α > α̂ =
(3 + 2L)2

(3 + 2L)2 + (3− 2L)2t0

where α̂ is decreasing in t0 and increasing in L, so that for α > 4/ (4 + t0) the
equilibrium product differentiation is decreasing in L over the whole range of the
parameter. The effect of the parameters on second stage equilibrium prices and
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profits is a consequence of their impact on ∆∗. As the price equilibria resulting from
x∗i are always competitive, we have:

π∗i (x∗1, x
∗
2,M, t) = ∆∗t

[
3 (−1)i + 2M

]2
/18, p∗i (x∗1, x

∗
2,M, t) = ∆∗t

[
3 + 2 (−1)iM

]
/3

and since M ∈ [−1/2, 1/2], the effect of α, t0 and L on π∗i and p
∗
i has the same sign

as their effect on ∆∗.

The above results may be summarized as follows:

Proposition 1 Consider a variant of the Hotelling duopoly game in which the joint
distribution of transport costs and the median of the (uniform) consumer preferences
is unknown with support on [t0, 1] × [−L,L], where t0 ∈ (0, 1] and L ∈

[
0, 1

2

]
. Sup-

pose the firms choose locations so as to maximize the α-maxmin value of the ex-post
second-stage equilibrium profits. Then the unique equilibrium locations are given by
(1), while the corresponding product differentiation, as well as the second-stage equi-
librium prices and profits, are all increasing in L for α suffi ciently large.

This shows that ambiguity attitudes determine the way in which the firms respond
to changes in the spectrum of possible demand variations when their exact probability
distribution is unknown. On the one hand, it follows from condition α > α̂ that
firms taking an optimistic approach (α < 1/ [1 + t0]) always respond to an increase
of uncertainty by venturing further away from one another, which is consistent with
MZ. On the other hand, when the duopolists are moderately pessimistic relative to
the minimum transport costs (α ∈ [1/ (1 + t0) , 4/ (4 + t0)]), they initially decrease
product differentiation when L increases, but reverse this tendency when uncertainty
becomes suffi ciently large. Finally, highly pessimistic firms (α > 4/ [4 + t0]) always
locate closer together when uncertainty increases, in contrast with MZ.
What drives the results is the fact that the players’α-maxmin approach prescribes

them to resolve the uncertainty they face in different ways, in the sense that they
proceed ‘as if’they each had a different prior over M and were aiming to maximize
the expected value of second-stage profits. Specifically, the player located on the
left effectively assumes that the probability of a ‘worst-case scenario’, in which the
demand is as far to the right as possible and transport costs are at their lowest,
is equal to α. When taking a pessimistic approach, the player will then want to
locate relatively far to the right and close to the competitor, thereby improving her
strategic position (and the resulting Nash Equilibrium profits) in the lowest profit
case of M = L. This will occur at the cost of losing some of the strategic advantage
in case of a favorable demand realisation, but this has low-priority when α is high.
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Crucially, the other player associates the same probability α with an opposite market
scenario (M = −L), so that, when pessimistic, she will want to locate relatively far to
the left and will mirror player 1’s shift towards the counterpart, rather then respond
by moving away in order to relax the resulting second-stage price competition5. This
is also interesting in the context of the ’certainty’Hotelling game, which was analyzed
for various, not necessarily symmetric, customer distributions (see, for example [2],
[11]), but always based on the firms having exactly the same expectations regarding
the distribution of customers across the space of tastes and possible states of nature.
The present paper demonstrates that, starting from a common degree of ignorance,
the firms may end up acting “as if”they maximized expected profits subject to non-
identical priors.
In order to understand the effect of L on the equilibrium locations, it is helpful to
observe that for (M − x) ∈ (−3/2, 3/2):

∂π∗1 (x1, x2,M, t) /∂x1 = t(3− 2M + x1 + x2)(2M − 3− 3x1 + x2)/18

which in turn is concave in M . In other words, as the demand shifts more and more
to the right, the marginal gains from moving in the same direction increase by less
and less. Consequently, when L increases, any additional benefits from re-locating
rightward which this brings about in the lowest profit scenario are smaller than the
corresponding additional losses in theM = −L case, the more so the larger the value
of L. Hence, any gains from reducing product differentiation due to an increase of
uncertainty will be outweighed by losses, unless L is suffi ciently small relative to α,
i.e. the losses are small relative to the importance of gains for the player’s decision
variable. For this reason, the players’ tendency to differentiate their products is
weakened when uncertainty increases only as long as it is not too big, which could
mean that it never happens (α < 1/ [1 + t0]) or that it is the case for the entire range
of L ∈ [0, 1/2] (α > 4/ [4 + t0]).
Returning to the sports betting example invoked in the introduction, it would

appear that the bookmakers’degree of pessimism is large even relative to a consid-
erably wide spectrum of possible demand variations. For this reason, an increase of
demand uncertainty shortly before the start of a race makes them reduce the differ-
entiation in the offered baskets of odds, despite the fact that this brings about a more
competitive house edge. This is because any bookmaker who chose to offer different

5A notable caveat is that the players may not choose to re-locate to the other side of the
competitor despite acting ’as if’the majority of consumers were bound to be located there. This is
because doing so would cause the former lowest-profit demand realisation to become the highest-
profit one and vice versa, i.e. the players would effectively switch their beliefs when switching
sides.
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odds from the rest would face a particularly bad worst-case scenario, in which the
betting patterns shift significantly in a way favorable to the competitors, making
his bets extremely unbalanced. In order to insure against this threat, it is better to
offer the same product as everybody else, because without customers switching to
and from other bookmakers in search of better odds any excessive volumes of bets
resulting from a change in preferences will not be large enough to greatly unbalance
the books. In other words, uncertainty then affects everyone in the same way and
even an extreme pessimist sees no way of becoming disadvantaged6.
It is interesting to observe that t0, reflecting the degree of uncertainty about

transportation costs, affects the equilibrium locations, despite the fact that the cor-
responding transport cost parameter t has no effect on location decisions under cer-
tainty. This was possibly why the potential role of uncertainty about transport costs
(or, in general, about the price elasticity of consumer demand) has been ignored by
the relevant literature (MZ assume t = 1). On the one hand, this seems reason-
able, because if t does not affect location decisions under certainty, then it should
not matter that the firms do not know its exact value, since the optimal choice will
be the same regardless of what it is. On the other hand, it overlooks the potential
interaction between two types of uncertainty: about the customers’ locations and
about the transport costs that they incur. In particular, if a certain realisation of
consumer demand usually coincides with low transportation costs, then the resulting
second-stage price competition is fierce and the equilibrium profits are low. Thus,
a firm may choose not to locate in a way that would be advantageous in those cir-
cumstances if that means being further away from demand realizations associated
with higher transportation costs and hence potentially more profitable. In a sense,
locating under uncertainty is similar to designing a product to be sold in distinct
markets, characterized by different consumer preferences and various degrees of price
competition. It is therefore natural for the firms to target those of them where the
consumers care more about the characteristics of the product than about its price,
i.e. the ones which are less competitive.
In the current α-maxmin framework, the lowest-profit outcome entails trans-

portation costs t0, so that a reduction of this parameter would make the worst-case
scenario even more of a threat. Despite that, the firms are less determined to insure
against it by staying close together, because they would need to sacrifice more in the
optimistic scenario in order to improve their situation in the pessimistic one. Thus,

6It may also be noted that no bets are accepted by traditional bookmakers after the start of the
race, despite this form of betting being very popular in the betting exchanges. This may be due to
the practical diffi culties associated with coordinating their odds at a stage when betting patterns
change within seconds.
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uncertainty about the intensity of price competition dampens the negative effect of
pessimism on strategic product differentiation, leading to the observed tradeoff be-
tween α and t0. This is interesting, because the fact that re-scaling the transport
costs fails to affect location choices in the classic Hotelling framework is somewhat
paradoxical. In contrast, the current model shows that firms facing a possibility of
lower transportation costs are more likely to venture out into more distant areas,
relaxing the intensified price competition.
Overall, ambiguity attitudes cause more variety in the players’behaviour than

the characteristics of the common prior in MZ. In the latter model, the equilibrium
locations are also symmetric, with product differentiation ∆∗MZ = 3/2 + 2σ2/3, σ2

being the variance of the distribution ofM . Because of the restriction on the support
of this distribution (L < 1/2), the maximum possible variance is 1/4, and hence∆∗MZ

ranges from 11
2
(certainty) to 12

3
(maximum uncertainty). In contrast, in the current

model we have ∆∗ = 3/2 + L for α = 0 and ∆∗ = 3/2 − L for α = 1, i.e. product
differentiation ranging from 1 to 2 depending on the size of the uncertainty.

4 Extensions

We now turn to consider the possibility of the players being characterized by different
degrees of pessimism. One would strongly expect the comparative statics results of
the previous section to continue to hold, i.e. an increase of uncertainty should still
decrease the equilibrium product differentiation for both duopolists not too optimistic
relative to the minimum transportation costs. For this reason, let L = 1/2 and
t0 = 1, with the focus instead on the effect of a ceteris paribus change of attitude by
a particular player on the equilibrium profits. The first-stage payoff function is:

Πi (x1, x2) = αiπ
∗
i

(
x1, x2,− [−1]i /2, 1

)
+ (1− αi) π∗i

(
x1, x2, [−1]i /2, 1

)
The logic of the proof derives from that presented in the previous section. Firstly,
the discussion of cases (1)− (3) applies just as well to the present situation, i.e. the
players’best-response mapping still ensures that any equilibrium locations must be
such that the resulting price equilibrium is competitive for any realisation of the un-
certainty. Consequently, the result is, once again, obtained as the unique solution to
the first order conditions within the range of qualifying locations. However, because
of the complexity of the involved algebra, only a sketch of the proof is provided here,
with the details of all derivations (as well as the exact solution formulae) relegated
to the online appendix.
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Let x∗i (αi, α−i) denote the unique equilibrium locations, where uniqueness holds
‘up to symmetry’. For instance, there is an equilibrium in which x∗1 (0, 1) = −5

4

and x∗2 (1, 0) = 1
4
, and one in which x∗1 (1, 0) = −1

4
and x∗2 (0, 1) = 5

4
, i.e. the

pessimistic player is always located closer towards the centre of the market and both
receive the same payoffs regardless of which configuration is selected. This of course
raises a certain coordination problem, which is, however, no different from the classic
Hotelling case, since each player gets to choose between two alternative equilibrium
locations. See [5] for the related discussion.
We will now show that a ceteris paribus increase of αi increases the ex-post equi-

librium profit of player i and decreases that of the other player, for any demand
realisation M ∈ [−1/2, 1/2]. To this end, consider the ex-post competitive equilib-
rium profit of player 1 given a particular value of M :

π1 (x∗1 (α1, α2) , x
∗
2 (α2, α1) ,M) =

= [x∗2 (α2, α1)− x∗1 (α1, α2)] [−3 + 2M − x∗1 (α1, α2)− x∗2 (α2, α1)]
2 /18

differentiating with respect to α1 gives a product of:

[−3 + 2M − x∗1 (α1, α2)− x∗2 (α2, α1)] /18 < 0

and:

∂x∗2 (α2, α1)

∂α1
[−3 + 2M + x∗1 (α1, α2)− 3x∗2 (α2, α1)]−

− ∂x∗1 (α2, α1)

∂α1
[−3 + 2M + x∗2 (α1, α2)− 3x∗1 (α2, α1)]

which is negative for all M ∈ [−1/2, 1/2] if and only if it is negative for M = −1/2,
because it can be shown that ∂x∗1 (α2, α1) /∂α1 > ∂x∗2 (α2, α1) /∂α1 > 0, i.e. when
a player becomes more pessimistic, both shift towards the other player’s end of the
market, with the player who changed her attitude shifting more than the counterpart.
This immediately implies that the player whose attitude remains the same becomes
worse off for all values of M . For the other player to become better off, we need:

∂x∗2 (α2, α1)

∂α1
[−4 + x∗1 (α1, α2)− 3x∗2 (α2, α1)] <

<
∂x∗1 (α2, α1)

∂α1
[−4 + x∗2 (α1, α2)− 3x∗1 (α2, α1)]

which can be shown to be the case for all α1, α2 ∈ [0, 1] . A converse of this argument
holds for a change in the attitude of player 2 (by symmetry of the game) and we
may summarize these findings as follows:
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Proposition 2 Consider a variant of the Hotelling duopoly game in which the dis-
tribution of the median of the (uniform) consumer preferences M is unknown with
support on [−1/2, 1/2]. Suppose the firms choose locations so as to maximize the
α-maxmin value of the ex-post second-stage equilibrium profits, based on their respec-
tive degrees of pessimism α1, α2 ∈ [0, 1]. Then the equilibrium locations x∗i (αi, α−i)
are unique up to symmetry and such that for any i, j ∈ {1, 2} :

(1) : (−1)i [∂x∗i (αi, α−i) /∂αi] < (−1)i
[
∂x∗−i (α−i, αi) /∂αi

]
< 0

(2) : ∀M ∈ [−1/2, 1/2] : (−1)i−j ∂πi (x
∗
1 (α1, α2) , x

∗
2 (α2, α1) ,M) /∂αj > 0

This result is particularly interesting if the firms have some way of committing
to a pessimistic policy, for instance, by appointing cautious CEO’s or by putting
themselves in a position where losing customers due to a sudden change in pref-
erences could mean bankruptcy, thereby making it necessary to take the necessary
precautions. In such case, pessimism could serve as a way of strategic deterrence,
discouraging the competitor from targeting one’s market niche and instead making
him withdraw into his own hinterland. However, a similar motive on behalf of the ri-
val generates a Prisoner’s Dilemma situation, as it was shown in the previous section
that when both players become more pessimistic, they locate closer together and so
earn less for all demand realizations. In this way, the firms’self-imposed pessimism
becomes a self-fulfilling prophecy.
Alternatively, rather than through conscious commitment, the approach based

on concentrating fully on the worst-case scenario could become prevalent via grad-
ual elimination of underperforming, overly optimistic firms Either way, assuming
the duopolists are eventually characterized by α1 = α2 = 1, the resulting product
differentiation is equal to 1, less than the one resulting from the players following
any common prior. Since the associated prices are also lower, the presence of ambi-
guity seems to benefit the consumers, although the average transport costs they pay
(and hence, the socially-optimal locations) will depend on the actual distribution of
M . On the other hand, the presence of ambiguously distributed demand fluctua-
tions adversely affects the firms (compared with the certainty case), the opposite of
what happens when the demand variations follow a commonly known pattern (as
evidenced by the MZ model).
Interestingly, the equilibrium locations associated with α1 = α2 = 1 coincide

with the ones which are socially-optimal, given customers uniformly distributed on
the [−1, 1] interval (see, for example [7] or [10]). In the current framework, all that is
known to the firms is that the consumer preferences are contained in [−1, 1]. Hence,
the equilibrium locations seem like a sensible choice for an equally uninformed social-
planner.
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Finally, we may follow MZ in considering the possibility of a change of timing, so
that both stages of the game are played before uncertainty is resolved. For the firms
uncertain only about the demand’s location (but not the transport costs) the model
is then relatively straightforward. Since the price is the same for all demand realiza-
tions, the payoff associated with a particular set of locations and prices is equal to
a firm’s own price multiplied by the α-maxmin value of the corresponding demand,
i.e. of the consumer mass located on the relevant side of the ‘indifferent consumer’.
Hence, each player acts ’as if’being involved in a certainty Hotelling game in which
the customer distribution is given by a weighted average of the demand realisation
located as far as possible towards the rival and the one at the opposite extreme,
with α and 1 − α being the respective weights. Consequently, a pessimistic player
will consider an increase of uncertainty in similar terms as a shift of a small mass
of consumers into his own hinterland matched by an opposite shift of a larger mass
of customers into the hinterland of the competitor. Naturally, such a change would
persuade a suffi ciently pessimistic firm to move towards the rival, i.e. more uncer-
tainty would decrease product differentiation and prices, as in the model discussed
in the previous section.
The situation is somewhat complicated with the introduction of uncertainty about

transport costs. Since lower costs (i.e. higher price elasticity of the demand for a
firm’s product) are better for the lower priced firm, while higher costs are better for
the firm with a higher price, we have:

πi (x1, x2, p1, p2) = α
[
−L+ 1/2− (−1)i x̃

]
pi + (1− α)

[
L+ 1/2− (−1)i x̂

]
pi

where x̃ is the location of the indifferent consumer in the worst case scenario, i.e. the
value of x that solves:

p1 + t (x1 − x)2 = p2 + t (x2 − x)2

with t = 1 if pi < p−i and t = t0 otherwise. Similarly, x̂ is the best possible indifferent
consumer location, obtained for t = t0 if pi < p−i and t = 1 otherwise. The profit
function is concave in pi for α > 1/2, but its first derivative is discontinuous at
pi = p−i, so that the best-response functions are:

BRi =


(p−i + p0i ) /2 for p−i > p0i
(p−i + p1i ) /2 for p−i < p1i
p−i otherwise

where:

17



pji =
t0 (x2 − x1)

[
1 + (2− 4α)L− (−1)i+j (x1 + x2)

]
(t0)

j + (−1)j+1 α (1− t0)
In other words, for a range of the counterpart’s prices [p1i , p

0
i ] each firm would choose

to respond with an identical price. If this coincides with a similar range of prices on
the competitor’s behalf, the set of Nash Equilibria of the price-subgame associated
with locations x1, x2 is:{

(p1, p2) :
(
∃p∗ ∈

[
p11, p

0
1

]
∩
[
p12, p

0
2

])
(p1 = p2 = p∗)

}
It is easy to check that this happens when the firm locations are not ’too asymmetric’,
so that they satisfy:

x1 + x2 ∈ [−xT , xT ] , xT = (1− 2α) [(4α− 2)L− 1] (1− t0)/ (1 + t0) (2)

More specifically, the range of equilibrium prices is:{
[p11, p

0
2] for x1 + x2 ∈ [−xT , 0]

[p12, p
0
1] for x1 + x2 ∈ [0, xT ]

while for x1 + x2 /∈ [−xT , xT ] there is a unique asymmetric equilibrium.
Because of the possible multiplicity of price equilibria, the firms’location decisions

will not be examined here. Nevertheless, assuming that locations are indeed not ’too
asymmetric’(in the sense explained above), it may be observed that:

∀i, j :
∂pji
∂L

< 0⇔ α ∈ (1/2, 1]⇔ ∀i, j :
∂pji
∂L∂t0

< 0

leading to the following statement:

Proposition 3 Consider a variant of the Hotelling duopoly game in which the joint
distribution of transport costs and the median of the (uniform) consumer preferences
is unknown with support on [t0, 1]×[−L,L], where t0 ∈ (0, 1] and L ∈

[
0, 1

2

]
. Suppose

the firms’ locations satisfy condition (2) and that the firms choose prices so as to
maximize the α-maxmin value of the resulting profits. In any Nash Equilibrium, the
firms set identical prices, where the lowest and highest possible equilibrium prices both
decrease as L increases, provided that α ∈ (1/2, 1] . However, the effect is dampened
by a fall in t0.
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Apart from the complication associated with the existence of multiple equilibria,
the results are in line with those in the previous section. For pricing decisions made
upon learning the consumer preferences, an increase of uncertainty led pessimistic
firms to reduce product differentiation, thereby indirectly decreasing the resulting
equilibrium prices. In the present case, uncertainty causes a similar change in prices
by affecting the pricing decisions directly. Either way, the increase in the intensity of
price competition can be dampened by a possibility of a more price elastic consumer
demand.
Furthermore, we observe a tendency of the firms to mimic the competitor, where

in the present case this takes an extreme form of what is effectively a coordination
problem, even when each firm’s initial situation ahead of the pricing stage is differ-
ent. Once again, this may be related to the sports betting example, where the odds
on offer converge shortly before the start of a race. Interestingly, some of the major
bookmarkers offer a so called ’best odds guarantee’7 within a given time before the
start of the biggest races, pledging to at least match the competitors’prices when
paying out the winnings. This could be seen as an attempt to solve the coordina-
tion problem, because the effective prices are all equal to the maximum of the ones
actually offered by the bookmakers participating in the scheme.

5 Concluding Remarks

The paper examined a variation of the “Product differentiation and location decisions
under demand uncertainty”model by Meagher and Zauner, in which the firms are
unaware of the exact distribution of demand fluctuations, but resolve the resulting
ambiguity using the Arrow-Hurwicz α-maxmin criterion. The change made it possi-
ble to accommodate a scenario in which firms mimic the competitors’behaviour in
response to an increase of demand uncertainty, as illustrated by the sports betting
industry.
Intuitively, a large range of possible demand variations is potentially more harmful

to a player when product differentiation is bigger. Hence, a pessimistic entrepreneur
may respond to an increase of uncertainty by making his offer more similar to that
of the other firm, thereby leaving less room for his product being disadvantaged.
This mechanism was analyzed in the context of the current model, where it turns
out that, contrary to the existing literature, an increase of uncertainty about the
location of consumer preferences makes the equilibrium more competitive when the
firms are suffi ciently pessimistic. In particular, product differentiation decreases,

7see, for example, http://tinyurl.com/2g65uyy
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and with it the second-stage equilibrium prices and profits for any realisation of
the uncertainty. This effect is moderated by uncertainty about the transport cost
parameter (reflecting the price elasticity of demand), which has no effect on location
decisions under certainty, but interacts with uncertainty about the placement of
consumer demand.
When price-competition takes place before the realisation of uncertainty, it is

affected in a similar way. In particular, despite the existence of multiple equilibria
for ’not too asymmetric’locations, the highest and lowest possible equilibrium prices
both decrease when demand location uncertainty increases, as long as the firms are
pessimistic. Once again, the positive effect of this type of uncertainty on the degree
of competition between pessimistic firms is moderated by a possibility of higher price
elasticity of demand.
Finally, whenever a particular firm adapts a more pessimistic approach, it be-

comes better off at the competitor’s expense, suggesting that ’being prepared for the
worst’could serve as a form of strategic deterrence. Whether by conscious changes
in approach, or via elimination of underperforming firms, pessimistic attitudes to-
wards ambiguity seem destined to become prevalent. This means considerably less
strategic product differentiation and lower prices than under certainty, suggesting
that ambiguously distributed demand variations make the market more competitive,
as opposed to ones that can be characterized by a common prior.
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6 Appendix

Click on the link http://tinyurl.com/36pnrl4 to download (Wolfram Mathemat-
ica file) or enter directly into browser.
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