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Abstract

A remarkable result in economic theory is that price competition between a small
number of sellers producing a homogeneous good may result in the perfectly competi-
tive market outcome. We return to the issue of what prices constitute a pure strategy
Bertrand equilibrium when we admit the possibility of coalitional deviations from the
market. We consider a market with a finite number of buyers and sellers and standard
market primitives. In this context we introduce a new core notion which we term the
Bertrand core. A trading price is said to be in the Bertrand core if all sellers quoting
this price constitutes a pure strategy Bertrand equilibrium and no subset of traders,
buyers and sellers, can leave the market and improve their outcomes by engaging in
Bertrand price competition by themselves. Under standard assumptions we show that
the Bertrand core is non-empty. Moreover, we are able to obtain a partial equilibrium
analogue of the well-known Debreu-Scarf (1963) result by showing that as the set of
market traders is replicated then any price other than the competitive equilibrium can
be blocked by some subset of traders provided that the market is replicated sufficiently
many times.
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1 Introduction

A central problem in economic theory is to establish under what market conditions we might
expect economic outcomes to be close to the equilibrium when agents have no market power.
The original model of price competition proposed by Joseph Bertrand (1883) showed that
subject to certain technical conditions, such as smoothness of market demand and constant
returns to scale costs, price competition between two or more sellers is sufficient to obtain
the competitive equilibrium of the market. However, this outcome is well-known to fail
under different market conditions such as when sellers have limited capacities or decreasing
returns to scale costs.1 We reconsider the problem of establishing what price a homogeneous
good might be traded at in a market where sellers have strictly convex costs and act as
strategic price-makers. The difference in this paper is that we introduce the possibility that
coalitions of traders may choose to deviate by leaving the market and trading by themselves.
To study which prices may result in the market we introduce a new core concept which we
term the Bertrand core. A trading price is said to be in the Bertrand core if it constitutes
a pure strategy Bertrand equilibrium for the whole market and no subset of buyers and
sellers can improve their outcomes trading by themselves. Mas-Colell et al.(1995, p.655)
note that there is a close relationship between Bertrand price competition and the standard
Edgeworth core.2 The seminal result of Debreu and Scarf (1963) showed that as an economy
is replicated the only allocations which remain in the core are Walrasian allocations.3 In
this paper we find that there are some deep similarities between the Edgeworth core and
the Bertrand core. Whereas Walrasian allocations always belong to the Edgeworth core we
show that price-taking equilibria always belong to the Bertrand core. Moreover, we establish
a partial equilibrium analogue of the Debreu-Scarf result: as the number of traders in the
market is replicated the only price which remains in the Bertrand core is the competitive
equilibrium. Remarkably, this result remains valid even when the limit market possesses
uncountably many pure strategy Bertrand equilibria. Therefore, we are able to provide a
new strategic foundation for price-taking behaviour in large markets.

The Bertrand core is an original combination of the classical ideas of Bertrand and
Edgeworth. It is well-known that Edgeworth (1897) criticized Bertrand’s model of price
competition which resulted in the study of markets with capacity constraints and decreasing
returns to scale costs. However, Edgeworth’s other seminal insight, that of the core of an
economy, analyzed in Edgeworth (1881), has tended to be studied solely in the context of
general equilibrium exchange. This paper combines Edgeworth’s insight regarding the core
with Bertrand price competition. As noted above, the Bertrand core, although a partial
equilibrium concept, displays close similarities with the Edgeworth core.

1For a succinct summary of the Bertrand model see Vives (1999, Ch.5) or Baye and Kovenock (2008).
2At a technical level the models display a number of similarities. Walrasian allocations belong to the

Edgeworth core and competitive equilibria belong to the set of Bertrand equilibria (subject to the sharing
rule). Moreover, generically the Edgeworth core has uncountably many allocations and there are generically
uncountably many Bertrand equilibrium prices.

3This result still holds even if traders increase arbitrarily provided that all traders do not vanish as a
fraction of the limit economy (Hildenbrand and Kirman, 1988, pp.190-9).
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A number of papers have considered strategic price-making foundations of competitive
equilibrium. Dixon (1992) analyzed a model where sellerss had symmetric, strictly convex
costs and showed that if sellers post prices and can commit to supplying a quantity greater
than their competitive supplies, subject to a no-bankruptcy condition, then the only can-
didate pure strategy equilibrium is the price-taking equilibrium. A sufficient condition was
found to be that all but one seller could supply the market demand at the competitive price
without incurring a loss. In an influential paper, Dastidar (1995) considered price compe-
tition, with a commitment to supply all demand forthcoming, between sellers with strictly
convex costs. In a market with symmetric sellers and equal sharing at prices ties it was
shown that there are uncountably may pure strategy Bertrand equilibria and the competi-
tive equilibrium belongs to the set (Vives, 1999, p.122). Chowdhury and Sengupta (2004)
considered when the refinement of coalition proofness reduces the equilibrium set in stan-
dard Bertrand games. It was established that if sellers have symmetric costs then the game
admits a unique coalition-proof Bertrand equilibrium. They showed that if one considers
sequences of economies then as the number of sellers in the market becomes large the set of
coalition-proof equilibria coincides with the competitive equilibrium of the market provided
all sellers are active in the limit. Yano (2006a) analyzed a market model with free entry
where sellers had u-shaped average costs. Sellers posted prices and a set of quantities they
were willing to sell at the posted prices. It was shown that under certain conditions the
competitive outcome is a Nash equilibrium of the game despite only a small number of sell-
ers being active in the market. In a related paper, Yano (2006b) showed that the Bertrand
paradox and Edgeworth criticism could be obtained as special cases of the game where sellers
post prices and quantities.

We follow the tradition of these papers by analyzing price competition between sellers
producing a single perfectly homogeneous good. However, unlike most of the previous litera-
ture, we model the demand side of the market in an explicit manner by assuming that there
is a finite number of buyers. This framework then permits a rich set of trading possibilities
as any subset of buyers and sellers could trade by themselves. We also allow for asymmetries
between buyers and sellers so the model imposes few restrictions upon buyers’ market de-
mands and sellers’ cost functions. In the next section we introduce standard mathematical
notation used throughout the rest of the paper. In the following section we present the mar-
ket model, define the Bertrand core, and present the main results. The final section presents
some suggestions for future research.

2 Notation

The following notation is used throughout the rest of the paper.
<n denotes n-dimensional Euclidean space.
<n

+ is the non-negative orthant of <n.
2X denotes all the subsets of X.
|X| denotes the cardinality of X.
\ denotes set theoretic subtraction.
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∅ denotes the emptyset.
N denotes the set of natural numbers.
Q denotes the set of rational numbers.

3 The Bertrand game

Consider the market for a perfectly homogeneous good. In the market there is a finite set
of buyers B = {1, ..., b}, b ≥ 2, and a finite set of sellers S = {1, ..., s}, s ≥ 2. Each seller
in the market has a cost function Ci : <+ → <+ which is C2, strictly convex and satisfies
Ci(0) = 0 and C ′i(0) = 0. Each buyer in the market has a demand function Dj : <+ → <+

which is C2 and for each j ∈ B there exist strictly positive finite real numbers P̄j, Q̄j such
that Dj(P̄j) = 0 and Dj(0) = Q̄j. Also, D′j(P ) < 0 and D′′j (P ) < 0 for all P ∈ (0, P̄j). In
what follows we shall make frequent use of sellers’ competitive supplies. The profit of each
seller, as a function of quantity, is πi(Q) = PQ − Ci(Q). The competitive supply of the
seller, as a function of price, is hi(P ) = arg maxQ∈<+ πi(Q). As each seller’s cost function
is strictly convex the function πi(Q) is strictly concave in Q and hi(P ) is well-defined and
single-valued. Also let π∗i (P ) = Phi(P )−Ci(hi(P )) so π∗i (P ) is the value function. We shall
want to consider a Bertrand price competition game between possible subsets of buyers and
sellers so let χB = {M : M ∈ 2B \ ∅} and let χS = {M : M ∈ 2S \ ∅}. The set χB is all
the non-empty subsets of buyers and χS is all the non-empty subsets of sellers. For any
B′ ∈ χB and S ′ ∈ χS consider a classical Bertrand price game between these buyers and
sellers. Each seller simultaneously and independently chooses a Pi ∈ <+ with a commitment
to supply all the demand forthcoming from the buyers, B′. If a seller posts the unique
minimum price in the market then it serves all the demand forthcoming at that price. If a
seller is undercut then it obtains no demand and its profit is zero. If a seller ties with other
sellers at the minimum price then a sharing rule describes how the market demand is shared.
Throughout we shall assume the market demand is shared according to capacity sharing.4

Let βi(P ) = Si(P )/
∑

j∈A Sj(P ) is the share of the market demand which seller i obtains
when it ties with A \ {i} other sellers at minimum price P . Letting Ei(Pi, P−i) denote the
profit of seller i, P−i denote the prices of the sellers S ′ \ {i}, and D(B′, P ) =

∑
j∈B′ Dj(P )

we can summarize the profit as:

Ei(Pi, P−i) =


PiD(B′, Pi)− Ci(D(B′, Pi)) if Pi < Pk ∀k 6= i;

Piβi(Pi)D(B′, Pi)− Ci(βi(Pi)D(B′, Pi)) i ties with A \ {i} at min price;

0 if Pi > Pk for some k.

(1)
Then for any B′ ∈ χB and S ′ ∈ χS we shall let G(B′, S ′) denote the Bertrand game in which
the set of buyers is B′ and the set of sellers is S ′.
Definition 1. In a market with B′ ∈ χB buyers and S ′ ∈ χS sellers a pure strategy Bertrand

4This sharing rule has been used, amonst others, by Dastidar (1997) and Chowdhury and Sengupta
(2004).
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equilibrium is a vector of prices (P ∗i , P
∗
−i) ⊆ <

|S′|
+ such that Ei(P

∗
i , P

∗
−i) ≥ Ei(Pi, P

∗
−i) for all

Pi ∈ <+ and i ∈ S ′.
We shall let E(G(B′, S ′)) ⊆ <|S

′|
+ denote the set of pure strategy Bertrand equilibria of

the price-setting game with B′ buyers and S ′ sellers. Before proceeding to the equilibrium
properties of the game we introduce some lemmas which will help in understanding the
results.
Lemma 1. hi(0) = 0 and h′i(P ) > 0 for all i ∈ S.
Proof. As hi(P ) = arg maxQ∈<+ πi(Q) if P = 0 then the profit of the seller is πi(Q) =
−Ci(Q). Therefore the profit maximizing output is Q = 0. To establish the second part of
the lemma note that hi(P ) must satisfy the first-order condition for maximization:

P − C ′i(hi(P )) = 0.

Differentiating w.r.t. P we obtain:

1− C ′′i (hi(P ))h′i(P ) = 0.

Rearranging:
h′i(P ) = 1/C ′′i (hi(P )).

As sellers have strictly convex cost functions C ′′i (·) > 0 and therefore h′i(P ) > 0. �
Lemma 2. π∗′i (P ) > 0 for all P > 0.
Proof. From the definition π∗i (P ) = Phi(P )− Ci(hi(P )) and therefore:

π∗′i (P ) = hi(P ) + Ph′i(P )− C ′i(hi(P ))h′i(P ).

Factorizing:
π∗′i (P ) = hi(P ) + h′i(P )[P − C ′i(hi(P ))].

From the first-order condition P − C ′i(hi(P )) = 0 therefore:

π∗′i (P ) = hi(P ).

From Lemma 1 we know that hi(P ) > 0 for all P > 0 which establishes the result. �

3.1 Price-taking equilibrium and the Bertrand core

In a market where all sellers take prices as given a price-taking, or competitive, equilibrium
is a price such that the quantities the sellers are willing to supply to the market is exactly
equal to the quantity demanded by the buyers. We state this formally in the next definition.
Definition 2. A price-taking equilibrium in a market with B′ ∈ χB buyers and S ′ ∈ χS

sellers is a price P ′ ∈ <+ such that:∑
i∈S′

hi(P
′) = D(B′, P ′). (2)
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We shall let P(B′, S ′) ⊆ <+ denote the price-taking equilibria of the market with B′ buyers
and S ′ sellers. We now present the following result which shows that a market possesses a
unique price-taking equilibrium.
Proposition 1. For any B′ ∈ χB and S ′ ∈ χS P(B′, S ′) 6= ∅ and |P(B′, S ′)| = 1.
Proof. Define the function f(P ) = D(B′, P )−

∑
i∈S′ hi(P ). The function f(P ) is the excess

demand function. From the first-order condition hi(P ) = C ′−1
i (P ) and as the cost function

Ci(·) is C2 the first derivative is continuous and the inverse of the first derivative is continuous.
Therefore f(P ) is a is a continuous function of price. Note that f(0) =

∑
j∈B′ Q̄j > 0 and

letting P̄ = max{P̄j : j ∈ B′} we have f(P̄ ) = −
∑

i∈S′ hi(P̄ ) < 0. As f(P ) is continuous,
the intermediate value theorem guarantees that ∃ a P ′ ∈ (0, P̄ ) such that f(P ′) = 0 which
implies D(B′, P ′) =

∑
i∈S′ hi(P

′). To see that the price-taking equilibrium is unique note
that f ′(P ) < 0. �

Having established that a market possesses a price-taking equilibrium we now show that
this implies that the set of pure strategy Bertrand equilibria is non-empty provided the
number of sellers are at least two sellers in the market.5

Proposition 2. For any B′ ∈ χB and S ′ ∈ χS if P(B′, S ′) = {P ′} then (P ′, ..., P ′) ∈
E(G(B′, S ′)) provided |S ′| ≥ 2.
Proof. Suppose we have a market with B′ ∈ χB buyers and S ′ ∈ χS sellers. If each seller
quotes price P ′ to the buyers, with P(B′, S ′) = {P ′} the profit which the sellers obtain at
this price is:

P ′βi(P
′)D(B′, P ′)− Ci(βi(P

′)D(B′, P ′)).

As βi(P
′) = hi(P

′)/
∑

j∈S′ hj(P
′) and

∑
j∈S′ hj(P

′) = D(B′, P ′) the profit of each seller
simplifies to:

P ′hi(P
′)− Ci(hi(P

′) = π∗i (P ′).

Now consider whether any seller could profitably deviate from quoting this price. If a seller
were to quote a price P ′′ < P ′ then the maximum profit they could obtain is π∗i (P ′′). Lemma
2 then implies π∗i (P ′′) < π∗i (P ′) and this is not a profitable deviation. If a seller increases
their price then as |S ′| ≥ 2 they lose all demand and earn zero profit which is not a profitable
deviation. Therefore (P ′, ..., P ′) ∈ E(G(B′, S ′)). �.

The price-taking outcome can be achieved as the result of sellers setting prices rather
than acting as price takers. Therefore this gives a strategic explanation for price-taking
behaviour. However, in Bertrand games with sellers as described here there will often be
uncountably many Bertrand equilibria. This is certainly the case when the market sellers are
symmetric. As a result, the outcomes of Bertrand price competition may be quite different
from the competitive equilibrium. We now turn to the question of whether a stronger
foundation for price-taking behaviour can be established in the context of this price-setting
game. Specifically, we admit the possibility that a group of traders may break away from
the market and by engaging in Bertrand price competition by themselves improve their
outcomes. Then, a price vector will be said to belong to the Bertrand core if it is immune
to these coalitional deviations. Formally we introduce this new core concept below.

5As far as the author is aware Dastidar (1997) was the first to establish this result.
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Definition 3. A price vector (P1, ..., P|S|) ∈ <|S|+ is in the Bertrand core if (P1, ..., P|S|) ∈
E(G(B, S)) and @ B′ ∈ χB, S ′ ∈ χS and (P ′1, ..., P

′
|S′|) ∈ E(G(B′, S ′)) such that:

(i) min{P ′1, ..., P ′|S′|} < min{P1, ..., P|S|} (3)

(ii) πi(P
′
i , P

′
−i) > πi(Pi, P−i) ∀i ∈ S ′. (4)

A price vector belongs to the Bertrand core if it constitutes a pure strategy Bertrand
equilibrium for the whole market, and there does not exist a subset of buyers and sellers
which could leave the market and improve their outcomes by trading by themselves. By an
improvement we mean that there exists a pure strategy Bertrand equilibrium for the market
formed by the deviating agents in which: (i) buyers are able to obtain the homogeneous good
at a lower price (this is expressed in eq.(3)); (ii) the deviating firms obtain higher profits at

the new equilibrium price vector (this is expressed in eq.(4)). We shall let C(B, S) ⊆ <|S|+

denote the set of Bertrand core prices. It should be clear that C(B, S) ⊆ E(G(B, S)). We
now show that under the assumptions made here the Bertrand core is non-empty.
Proposition 3. C(B, S) 6= ∅.
Proof. We shall show that if P(B, S) = {PC} then (PC , ..., PC) ∈ C(B, S). That is, the
price-taking equilibrium for the whole market belongs to the Bertrand core. Suppose a set
of buyers, B′ ∈ χB, and a set of sellers, S ′ ∈ χS, deviate from the market. The profit
which a seller i ∈ S ′ earned at the price-taking equilibrium was π∗i (PC). Suppose that
(P ′1, ..., P

′
|S′|) ∈ E(G(B′, S ′)) is the equilibrium price at which trade takes place amongst

B′ and S ′. Let P ′j = min{(P ′1, ..., P ′|S′|)}. If P ′j < PC then the maximum profit firm j

obtains from deviating is π∗j (P ′j) < π∗j (PC) and deviating is not profitable for firm j. If
P ′j ≥ PC then the deviating coalition is not a strict improvement for buyers. Therefore
(PC , ..., PC) ∈ C(B, S). �

Therefore the market has a non-empty Bertrand core. In a market with a finite number
of traders the Bertrand core will typically be a strict subset of the set of pure strategy
Bertrand equilibria C(B, S) ⊂ E(G(B, S)). The following example shows how the Bertrand
core reduces the equilibrium set.

3.2 Example 1

Consider a market with two buyers, B = {1, 2}, and three sellers, S = {1, 2, 3}. The market
demand of each buyer is given by the piecewise-affine function D(P ) = max{0, 5− 1

2
P}. Each

seller’s cost function is given by C(Q) = Q2. Standard calculations6 reveal that the Bertrand
equilibrium set for the whole market is E(G(B, S)) = {P ∈ <3

+ : Pi = Pj,∀j 6= i, Pi ∈
[21

2
, 55

7
]}. There are a number of different coalitions which could deviate from the market.

One possibility is that a single seller leaves the market and trades with a subset of buyers.
However, routine calculation shows that the monopoly price which a seller facing a single
buyers would charge is 62

3
. Therefore this coalition would not benefit buyers. Second, a

coalition with two sellers and one buyer, B′ = {1} and S ′ = {1, 2}, could form. Routine

6See Vives (1999, pp.120-2) or Dastidar (1995).
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calculations show that E(G(B′, S ′)) = {P ∈ <2
+ : Pi = Pj,∀j 6= i, Pi ∈ [2, 42

7
]}. Of the

possible coalition prices it is straightforward to check that all prices in the interval [2, 313
19

)
represent profitable deviations from the whole market. The final possible coalition is that of
two buyers and two sellers, B′′ = {1, 2} and S ′′ = {1, 2}. The set of equilibria of this market
is E(G(B′′, S ′′)) = {P ∈ <2

+ : Pi = Pj,∀j 6= i, Pi ∈ [31
3
, 6]}. Of the possible coalition prices

the prices in the interval (4 6
11
, 55

7
] represent profitable deviations from the whole market.

Therefore the Bertrand core is C(B, S) = {P ∈ <3
+ : Pi = Pj,∀j 6= i, Pi ∈ [313

19
, 4 6

11
]} ⊂

E(G(B, S)). Note that the competitive supply of each seller is h(P ) = P
2

and the price-
taking equilibrium is PC = 4.

3.3 A limit result on the Bertrand core

Given that the Bertrand core includes the price-taking equilibrium it is desirable to know
what other properties the core set has. We now turn to this issue. As was shown in the
previous example, the Bertrand core of a finite market includes prices that may be quite
different from the competitive outcome. However, we shall show that as the number of
buyers and sellers in the market becomes large the Bertrand core converges to the price-
taking equilibrium. Moreover, this will be the case even when there are uncountably many
pure strategy Bertrand equilibria in the large markets. Therefore, admitting coalitional
deviations from the market provides a new strategic foundation for price-taking behaviour.
To show what happens as the market becomes large we introduce the standard concept of
a replicated market. Formally, the r ∈ N replication of the market with S sellers and B
buyers is the market in which there are r number of each type of buyer and seller. Following
the notation used above we shall let Pr(B, S) ∈ <+ denote the price-taking equilibria of

the r-replicated market, Er(G(B, S)) ⊆ <r|S|
+ will denote the set of pure strategy Bertrand

equilibria of the r-replicated market, and Cr(B, S) ⊆ <r|S|
+ will denote the set of Bertrand

core prices of the r-replicated market.
Proposition 4. Pr(B, S) = P(B, S) for all r ∈ N.
Proof. Define the excess demand of the replicated market as f(P, r) = rD(B,P )−

∑
i∈S rhi(P ).

Factorizing gives f(P, r) = r(D(B,P ) −
∑

i∈S hi(P )). As r ∈ N, f(P ′, r) = 0 if and only if
f(P ′) = 0. �
Proposition 5. Cr(B, S) 6= ∅ for all r ∈ N.
Proof. As Pr(B, S) = P(B, S) for all r ∈ N the same steps used in the proof of Proposition
3 establish that for PC ∈ P(B, S) the price vector (PC , ..., PC) ∈ Cr(B, S) for all r ∈ N. �

Having established that the Bertrand core is non-empty for each replicated market we
now present the main result which proves that the price-taking equilibrium is the only price
vector which remains in the Bertrand core as the market becomes large. Before doing so, we
introduce the following two lemmas which will be helpful in proving the main result.
Lemma 3. In a market with S ′ ∈ χS symmetric sellers (identical cost functions) and
B′ ∈ χB buyers ∃ a unique P̃ with 0 < P̃ < P̄ and P̄ = max{P̄j : j ∈ B′} such that:

1

|S ′|
P̃D(B′, P̃ )− Ci(

1

|S ′|
D(B′, P̃ )) = 0 ∀i ∈ S ′.
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Moreover, for P ′ ∈ P(B′, S ′), P̃ < P ′, and provided |S ′| ≥ 2, all sellers quoting P ′′ ∈ [P̃ , P ′]
is a pure strategy Bertrand equilibrium. That is, (P ′′, ..., P ′′) ∈ E(G(B′, S ′)).
Proof. Define the function g(P ) as:

g(P ) =
1

|S ′|
PD(B′, P )− Ci(

1

|S ′|
D(B′, P )).

Routine calculations reveal that g′′(P ) < 0. Therefore g(P ) is strictly concave in P . Let
P ′ ∈ P(B′, S ′). As all sellers are symmetric we have:

g(P ′) = P ′hi(P
′)− Ci(hi(P

′)) = π∗i (P ′).

As P ′ ∈ (0, P̄ ) Lemma 2 implies h(P ′) > 0. Then h(P̄ ) = 0, h(0) < 0 and the strict concavity
of h(P ) imply that ∃ a unique P̃ with 0 < P̃ < P ′ such that h(P̃ ) = 0. For the last part of
the lemma, that all sellers quoting P ′′ ∈ [P̃ , P ′] is a pure strategy Bertrand equilibrium the
reader is referred to Vives (1999, pp.120-2). �

The next lemma shows that there is a simple form of equal treatment in the Bertrand
core.
Lemma 4. Suppose (P ′1, ..., P

′
r|S|) ∈ Cr(B, S) and P ′i = min{(P ′1, ..., P ′r|S|)}. Then all sellers

of the same type as seller i post price P ′i .
Proof. If a seller of type i posts the minimum price in the market they must earn non-negative
profit. Letting A denote the set of firms tied at the minimum price we have:

(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i )
)P ′i − Ci(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i )
) ≥ 0. (5)

If a firm of type i posted a price above this price then the share of the demand they could
obtain by joining the minimum price tie is:

hi(P
′
i )∑

j∈A hj(P ′i ) + hi(P ′i )
.

The demand shares are such that:

0 <
hi(P

′
i )∑

j∈A hj(P ′i ) + hi(P ′i )
<

hi(P
′
i )∑

j∈A hj(P ′i )
.

Therefore ∃ a γ ∈ (0, 1) such that:

γ(
hi(P

′
i )∑

j∈A hj(P ′i )
) =

hi(P
′
i )∑

j∈A hj(P ′i ) + hi(P ′i )
. (6)

By the convexity of the cost function:

γCi(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i )
) + (1− γ)Ci(0) > Ci(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i ) + hi(P ′i )
).
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As Ci(0) = 0 this gives:

γCi(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i )
) > Ci(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i ) + hi(P ′i )
). (7)

Combining eq.(5) and γ > 0 gives:

γ((
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i )
)P ′i − Ci(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i )
)) ≥ 0.

γ(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i )
)P ′i − γCi(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i )
) ≥ 0. (8)

Eq.(6) and eq.(8) give:

(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i ) + hi(P ′i )
)P ′i − γCi(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i )
) ≥ 0. (9)

Then eq.(7) and eq.(9) give:

(
hi(P

′
i )D(A,P ′i )∑

j∈A hj(P ′i ) + hi(P ′i )
)P ′i − Ci(

hi(P
′
i )D(A,P ′i )∑

j∈A hj(P ′i ) + hi(P ′i )
) > 0.

Which means the seller of type i posting a price above the minimum price has a profitable
deviation by joining the minimum price tie. �

The result in Lemma 4 states that if a seller of a given type posts the minimum price
in the market then all other sellers of the same type must also post the minimum price in
the market. Note that this is a weaker property than the equal treatment property of the
Edgeworth core as Lemma 4 imposes no restrictions upon the prices of sellers which are
greater than the minimum price. Let Pmin = min{P1, ..., Pr|S| : (P1, ..., Pr|S|) ∈ Cr(B, S)}
and Pmax = max{P1, ..., Pr|S| : (P1, ..., Pr|S|) ∈ Cr(B, S)}. That is, Pmin is the minimum
price across all price vectors in the r-replicated Bertrand core and therefore the minimum
price at which trade takes place. Further, Pmax is the maximum price of any vector in the
r-replicated Bertrand core. We now present our main result which shows that as the market
replication becomes large all trade takes place at the price-taking equilibrium as the upper
and lower bounds of the Bertrand core converge to price-taking equilibrium.
Proposition 6. As r →∞, Pmin → PC and Pmax → PC with PC ∈ P(B, S).
Proof. The result will be established by showing that if Pmin < PC then ∃ r̄ ∈ N such that
the sellers quoting Pmin can deviate from the market for any r ≥ r̄ and if Pmax > PC the
sellers quoting Pmax can deviate from the market for all r ≥ r̄. Therefore any prices different
from the price-taking equilibrium can be blocked by some coalition of traders provided the
market is replicated sufficiently many times.

Suppose Pmin < PC . Then there is a seller of some type, say i ∈ S, which in some
equilibrium vector posts price Pmin. The minimum demand which the seller posting Pmin

serves in the r-replicated market is:

hi(P
min)

rD(B,Pmin)

r
∑

j∈S hj(Pmin)
= hi(P

min)
D(B,Pmin)∑
j∈S hj(Pmin)

.
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As Pmin < PC we know that D(B,Pmin) >
∑

j∈S hj(P
min) and:

hi(P
min)

D(B,Pmin)∑
j∈S hj(Pmin)

> hi(P
min).

Therefore seller i serves greater demand than its competitive supply and the profit which
the seller obtains from posting Pmin must be strictly less than π∗i (Pmin).

We shall show that if the market is replicated sufficiently many times sellers of type i
can obtain profit arbitrarily close to π∗i (Pmin). Fix an ε > 0 and j ∈ B with Dj(P

min) > 0
and we have:

hi(P
min)

Dj(Pmin)
<
hi(P

min) + ε

Dj(Pmin)
.

By the everywhere denseness of the rationals in the real line7 ∃ z ∈ Q such that:

hi(P
min)

Dj(Pmin)
< z <

hi(P
min) + ε

Dj(Pmin)
.

As z ∈ Q we can write z = x/y with x, y ∈ N and y ≥ 2 so that:

hi(P
min)

Dj(Pmin)
<
x

y
<
hi(P

min) + ε

Dj(Pmin)
.

Now let r̄ = max{x, y} and consider the market with x buyers of type j and y sellers of type
i. By deviating from the market at price Pmin they obtain demand:

hi(P
min) <

xDj(P
min)

y
< hi(P

min) + ε.

Therefore sellers of type i can obtain profit arbitrarily close to π∗i (Pmin). Now suppose that
each firm of type i posts a price Pmin − δ, δ > 0, so that the trade is strictly beneficial for
buyers of type j. All that remains to see that this market blocks the price vector with Pmin

from being in the Bertrand core is to show that (Pmin− δ, ..., Pmin− δ) ∈ E(G(x, y)).8 That
is, the price vector (Pmin − δ, ..., Pmin − δ) is a pure strategy Bertrand equilibrium of the
market formed by the deviating traders. As:

hi(P
min) <

xDj(P
min)

y
< hi(P

min) + ε.

This tells us that the price Pmin < P ′ with P ′ ∈ P(x, y). That is, Pmin is below the price-
taking equilibrium of the market formed by the deviating traders. Therefore provided δ > 0
and ε > 0 are sufficiently small the result in Lemma 3 implies (Pmin − δ, ..., Pmin − δ) ∈
E(G(x, y)). We can conclude that Pmin → PC as r →∞.

7See, for example, Rudin (1976, p.9).
8We are slightly abusing the notation by letting E(G(x, y)) denote the pure strategy Bertrand equilibria

of the market with x buyers and y sellers. However, we hope the reader is aware of what is meant.
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Now suppose that Pmax > PC . There are two possible cases to consider: (i) the seller
which posts price Pmax is undercut by another seller (ii) all sellers post price Pmax in the
market we consider these cases separately.

(i) The seller posting Pmax is undercut. Suppose a seller of type i posts price Pmax.
From Lemma 4 we know all sellers of type i must post prices higher than P ′ and therefore
all sellers of type i earn zero profit. Suppose that P̂ < Pmax is the price at which trade takes
place.

As above fix an ε > 0 and j ∈ B with Dj(P̂ ) > 0 and we have:

hi(P̂ )

Dj(P̂ )
<
hi(P̂ ) + ε

Dj(P̂ )
.

Following the same argument as above ∃ a rational number expressed as x/y with x, y ∈ N
and y ≥ 2 such that:

hi(P̂ )

Dj(P̂ )
<
x

y
<
hi(P̂ ) + ε

Dj(P̂ )
.

Let r̄ = max{x, y} and consider a market composed of x buyers of type j and y sellers of
type i. Following the same argument as above this group of buyers and sellers can leave
the market and sellers of type i post prices P̂ − δ, δ > 0, and provided ε, δ are sufficiently
small the sellers obtain profit arbitrarily close to π∗i (P P̂ ) > 0 and buyers obtain the good at
a lower price P̂ − δ. Therefore, for r ≥ r̄ this price vector does not belong to the Bertrand
core.

(ii) Now consider the other case where all firms post price Pmax. The demand which a
seller of type i serves is:

hi(P
max)

D(B,Pmax)∑
j∈S hj(Pmax)

.

As Pmax > PC we know that D(B,Pmax) <
∑

j∈S hj(P
max) and:

hi(P
max)

D(B,Pmax)∑
j∈S hj(Pmax)

< hi(P
max).

Therefore the demand which any sellers serves at this price is strictly less than their com-
petitive supply and the profit which seller i earns at this price is strictly less than have
π∗i (Pmax). As above fix an ε > 0 and j ∈ B with Dj(P

max) > 0 and we have:

hi(P
max)

Dj(Pmax)
<
hi(P

max) + ε

Dj(Pmax)
.

By repeating the previous steps it can then be shown that there is rational number x/y with
x, y ∈ N such that a market composed of x buyers of type j and y sellers of type i could
profitably deviate from the market. Therefore as r →∞, Pmax → PC . �
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3.4 Example 2

Consider the market in Example 1. We found that the Bertrand core was C(B, S) = {P ∈
<3

+ : Pi = Pj,∀j 6= i, Pi ∈ [313
19
, 4 6

11
]}. The set of Bertrand equilibria was E(G(B, S)) =

{P ∈ <3
+ : Pi = Pj, ∀j 6= i, Pi ∈ [21

2
, 55

7
]} and the price-taking equilibrium was PC = 4.

Now consider what happens as the market is replicated. Routine calculation reveal that
Er(G(B, S)) = {P ∈ <r3

+ : Pi = Pj,∀j 6= i, Pi ∈ [21
2
, 55

7
]} for all r ∈ N. Therefore the set of

pure strategy Bertrand equilibria is not reduced as the market is replicated. Letting Pmin =
min{P1, ..., Pr|S| : (P1, ..., Pr|S|) ∈ Cr(B, S)} and Pmax = max{P1, ..., Pr|S| : (P1, ..., Pr|S|) ∈
Cr(B, S)} we know from Proposition 6 that as r →∞, Pmax → 4 and Pmin → 4. The only
price which remains in the Bertrand core as the market becomes large is the price-taking
equilibrium.

4 Conclusion

This paper has reconsidered what price a homogeneous good may be traded at when there
are a finite number of buyers and sellers in the market. Despite markets possessing uncount-
ably many pure strategy Bertrand equilibria we have shown that if coalitional deviations
from the market are permitted then the only price which remains in the Bertrand core as
the market becomes large is the price-taking equilibrium. This is a partial equilibrium ana-
logue of the Debreu-Scarf result. Moreover, the ideas presented here suggest there are close
connections between the Edgeworth core and the Bertrand core. Given that the Bertrand
core is a new concept which permits different trading possibilities to what have usually been
considered in price-setting games there are a number of possible extensions for future re-
search. First, Aumann (1964) showed that in markets with an atomless measure space of
traders the Edgeworth core is equal to the set of Walrasian allocations. It is possible that a
partial equilibrium result of this type regarding the Bertrand core and the set of price-taking
equilibria could be established in a market with demand generated by an atomless measure
space. Second, a significant amount of research has analyzed the Edgeworth core under
asymmetric information (Glycopantis and Yannelis, 2005). It may be possible to model
an oligopoly market with asymmetric information and characterize which prices are in the
Bertrand core. Finally, in markets with non-convexities a price-taking equilibrium may fail
to exist but the set of Bertrand equilibria may still be non-empty.9 It would be interesting
to establish whether the Bertrand core is non-empty in such markets and whether there is
convergence to price-taking behaviour as the market becomes large.
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