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Abstract

We propose a simple mechanism capable of achieving international agreement on averting the
threat of global warming. It employs a contest creating incentives among participating nations
to exert both efficient productive efforts and efficient emissions reductive efforts. Participation
in the scheme is voluntary and turns out to be individually rational if the alternative is no
agreement at all. The scheme requires no principal or enforcing penalties. All rules are mutually
agreeable and are unanimously adopted if proposed. (JEL C7, D7, H4, Q5. Keywords: Climate

policy, Contests, Efficiency.)

1 Introduction

The disappointing 2009 Copenhagen Accord1 has highlighted the international impasse in preventing

further global warming. Yet recent reports such as Mitrovica, Gomez, and Clark (2009) suggest

taking action now in order to prevent warming beyond the agreed 2◦C limit. This paper provides

a strikingly simple answer to one the most pressing questions in this context: How to provide

incentives for participating nations to reduce harmful emissions to their socially efficient levels while

not infracting upon productive efficiency? Our answer involves a contest among nations rewarding

the countries with the highest reductive efforts with some share of global output. This contest

provides incentives for the efficient provision of both productive and reductive efforts. Participation

is individually rational, that is, players find it more profitable to jointly participate in the reductive

contest than to stay out. No enforcing sanctions are required, as the players first commit their output

share in order to participate in the contest and only then choose their efforts. Once an agreement

is reached and players subscribe to the contest, the unique equilibrium involves the efficient choice

of efforts along both dimensions.

Greenhouse gases are widely seen as the main contributing factor to global warming. Emitted

by one country, they are disseminated around the globe regardless of where they were produced.

∗Thanks for comments to Alex Gershkov, Jianpei Li, Thomas Giebe, and seminar participants at the University

of Manchester. This draft is preliminary and incomplete. (01-03-2010)
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Thus a reduction of emissions benefits all countries but the costs of such reductions are carried

individually. This generates a classic free rider problem, in which each country would like the threat

of global warming removed but no one is ready to pay the cost, relying instead on others to take

appropriate measures and reduce emissions.2 An example for how we think about productive and

reductive efforts is the (simultaneous) investment decision into a power plant’s generation capacity

and emissions filters. For instance, the recent investments of Brandon Shores generation station in

emissions reduction are documented in Maryland Department of Natural Resources (2007). Other

well publicised examples are the design tradeoffs between engine thrust and emissions in Boeing’s

new 787 Dreamliner or Airbus Industry’s A380 aircrafts.

There are at least three existing approaches to overcome the emissions free-riding problem:

command-and-control regulation, quantity-oriented market approaches, and tax-or-pricing regimes.

The approach adopted by the 187 signatories of the Kyoto protocol is the quantity-oriented market

approach targeting a reduction based on developed countries’ emissions in 1990. The treaty, how-

ever, failed to obtain ratification by major players including, most prominently, the United States.

Moreover, the concern was expressed that developing countries might have ratified the treaty with-

out the intention of keeping emissions in check. This mars the current emissions reduction reality

with the dual frustrations of insufficient participation and diluted objectives.

Nordhaus (2006), among others, argues that emissions fees or taxes are likely to be more efficient

than quantitative quotas given the considerable uncertainty on climate change. As alternative

mechanism, Nordhaus proposes a harmonised carbon tax leading to efficient reduction efforts in the

general spirit of Pigouvian taxation. There are many details like the necessary sanctions, taxation

location, trade treatments and transfers to developing countries which are subject to negotiation

under such a scheme. A system based on our approach, by contrast, is self-enforcing and easier to

negotiate while still sharing the benefits of a taxation approach.

1.1 Related literature

The idea that in many circumstances a prize awarded on the basis of a rank order among competi-

tors’ efforts induces efficiency is due to Lazear and Rosen (1981). This idea has found numerous

applications and extensions, for instance in the work of Green and Stokey (1983), Nalebuff and

Stiglitz (1983), Dixit (1987), Moldovanu and Sela (2001), or Siegel (2009). To our knowledge,

however, the present paper is the only analysis of contests with multi-dimensional efforts except for

the orthogonal Münster (2007) who is concerned with the possibility of sabotage, ie. wholly destruc-

tive efforts directed at the opponents. Our analysis is close to Gershkov, Li, and Schweinzer (2009)

who analyse the efficient single-dimensional effort choice in partnership problems. While our setup

is more complicated, many of their insights still apply and we follow much of their methodology.

Morgan (2000) is the only existing analysis of public good provision relating to contests that we are

aware of. He studies a lottery which uses some of the proceeds obtained from ticket sales for the

2 One may advocate the view that some countries could climatically benefit from global warming. However, the
impact on the world economy and consequences in terms of migration make us pessimistic about the likelihood
of emerging net beneficiaries.
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provision of a public good. Contrasting with our market design analysis he is not concerned with

achieving efficiency. A detailed survey of the contests literature is made redundant by the recent

Konrad (2008).3

Our team setup seems to be vindicated by the universally accepted property of international

environmental agreements (IEA) to be self-enforcing. Indeed, there is no supranational principal

to enforce such arrangements between countries. Nevertheless, this feature is absent from the IEA

literature (see Finus (2008) for a summary of the main results). Its self-enforcing branch, including

Barrett (1994), has found that IEA are either unlikely to consist of many participants, or if they

do, are similarly unlikely to produce substantial benefits. Moreover, Diamantoudi and Sartzetakis

(2006) show that no more than four countries will find it profitable to form a coalition regardless

of the number of countries participating in the negotiations. Kolstad (2007) demonstrates that the

size of IEAs decrease as uncertainty grows. Besides, the outcome of such non-cooperative coalition

formation games depends on specific membership rules. Carraro, Marchiori, and Oreffice (2009)

show that the introduction of a minimum participation rule increases the number of signatories.

More recently Barrett (2006) studies an alternative to the Kyoto protocol in proposing a system

of two treaties, one promoting cooperative R&D investments and the other encouraging collective

adoption of new technology emerging from this R&D. This solution, however, may not be cost-

effective. Carbone, Helm, and Rutherford (2006) argue that even if countries pursue only their

self-interest, an international system of trading permits can achieve substantial emission reduction.

Our analysis shows, however, that it is unlikely to achieve efficiency.

We depart from the existing literature in two key aspects. First, we design an incentive mechanism

which is self-enforcing and therefore induces full participation. Second, our scheme is taking into

account both productive and reductive efforts. Our key result is, of course, to obtain efficiency in

both dimensions for a broad class of model specifications. Following the model definition in section

2, we present the idea of our mechanism through an illustrative example in section 3.1. Although

highly stylised, this simple example conveys much of the intuition of our general results presented

in section 4. Proofs and details are relegated to the appendix.

2 The model

There is a set N of n ≥ 2 risk-neutral players. Each player i ∈ N can exert efforts along two

dimensions: productive effort ei ∈ [0,∞] and reductive effort fi ∈ [0,∞]. We assume that neither

effort type is verifiable and denote the full vectors of efforts by e = e1, . . . , en and f = f1, . . . , fn,

respectively. These combined efforts cost the individual c(ei, fi). This function is assumed to be

strictly convex in either argument, additively separable and define costless zero efforts for either

component.4 Productive efforts generate strictly concave individual gains of y(ei) and cause strictly

convex global emissions of m(max{0,∑h eh−
∑

h fh})—only depending on the difference between

3 The contest model we develop may be applied to problems other than climate change (in both the global and
local varieties). For instance, the problem of enforcing monetary discipline among a group of trading nations
seems to be similarly applicable.

4 The full separability is not necessary. All we need is for the cross-partial derivatives not to add local maxima.
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global productive and reductive efforts—of which player i suffers a known share si.
5 We primarily

interpret these shares as physical pollution and assume that
∑

h sh = 1 to introduce a public bad

team problem.6

As means to alleviate this problem we use an incentive system which ranks individual reductive

efforts and awards the top-ranked players prizes. The total prize pool is taken to be the sum of

fraction 1 − α of each participant’s individual output. Thus the mechanism’s budget balances by

definition. From the total prize pool, a fraction β1 is awarded to the winner, β2 to the player

coming second, and so on. We assume that all βh ∈ [0, 1] and
∑

h β
h = 1. We assume that some

noisy and partial ranking of the players’ reductive efforts is observe- and verifiable. It gives player

i’s probability phi (f) of being awarded prize h as a function of the imperfectly monitored reductive

efforts of all participants. We assume that pi(f) is strictly increasing in fi, strictly decreasing in all

other arguments, equal to 1/n for identical arguments, twice continuously differentiable, and zero for

fi = 0 and at least one fj > 0, j 6= i ∈ N .

Timing

Since the players’ expected payoffs are symmetric, we can think of a simple proposal game in which

the design parameters are proposed by one player and the game is played iff all others agree to the

proposed parameters. More precisely, we propose a two-stage mechanism at the first stage of which

an arbitrary potential participant is chosen to propose the balanced budget mechanism 〈α, β, p(f)〉.
We call this proposer player 1. All other players then decide whether to accept the proposal or

not. If they accept, the reductive contest is set up, players commit their shares (1 − α)y(ei) and

the game proceeds to the next stage. If at least one player rejects, the game ends and each player

obtains his reservation utility (which we specify in proposition 3). At the second stage, conditional

on the formation of the agreement, players choose their efforts simultaneously to maximise their

own expected utility. The noisy ranking of reductive efforts specifies a winner, second, etc, and final

output realises. The prize pool is then redistributed among the participants: the winner obtains the

share (1− α)β1 of total output, the player coming second gets (1− α)β2, and so on.

One of the main issues with an International Environmental Agreement is the participants’

commitment. Countries may sign the agreement but no supranational entity is there to enforce it in

case of defection.7 Thus countries can always choose not to exert the efficient effort and free ride

once the agreement is signed, hoping that other countries will not. In our setup, this issue is avoided

as countries first pay to participate in the contest and only then choose their efforts. But once they

commit their participation share of output, the only rational effort choice is efficient efforts. Thus

there is no enforcement issue subsequent to the initial agreement.

5 Requiring non-negative differences in the damage function m(·) ensures that reductive efforts cannot substitute
productive efforts. Since this requirement is fulfilled for most of our analysis, we redefinem := m(max{0,∑

h
eh−∑

h
fh}) and only make the non-negative argument explicit when necessary.

6 In principle, our results also apply to the more general case of 0 < T =
∑

h
sh < n in which the individual shares

si could be interpreted as eg. perceived pollution. Depending on this precise interpretation the planner’s objective
(1) may change to

∑

i
(y(ei)− c(ei, fi))− Tm(

∑

i
(ei − fi)).

7 A simple way of deterring this kind of free-riding on the agreement may be to grant most favoured ‘green’ trading
terms only to participating nations.
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3 Efficiency benchmark

The full intuition of our results can be understood from the simple two players case on which the

body of the paper rests. The appendix presents the general setting. For the two players case we

write i = 1, 2 and j = 3− i. We define the efficient levels of both productive and reductive efforts

(e∗, f ∗) as those maximising social welfare absent of incentive aspects

max
(e,f)

u(e, f) = 2y(e)−m (2e− 2f)− 2c(e, f) ⇔
{

y′(e∗) = m′(2e∗ − 2f) + ce(e
∗, f),

m′(2e− 2f ∗) = cf(e, f
∗).

(1)

In the absence of an incentive scheme, a participating player i = 1, 2 individually maximises

y(ei)− sim(ei + ej − fi − fj)− c(ei, fi) ⇔
{

y′(e∗) = sim
′(2e∗ − 2f) + ce(e

∗, f),

sim
′(2e− 2f ∗) = cf (e, f

∗).
(2)

where si is player i’s local share of global emissions. Since si + sj = 1, the individual focs cannot

both equal those in (1).8 Introducing an endogenised rank-order emissions reduction reward scheme

attaching weights β and 1 − β to the players coming first and second, respectively, the individual

problem changes to

max
(ei,fi)

αy(ei) +
∑

h

ph(f)βh(1− α) (y(ei) + y(ej))− sim(ei + ej − fi − fj)− c(ei, fi), (3)

where the prize pool is taken as a share 1−α from individual productive output. We define individual

rationality as the requirement that the utility from efficient effort provision in (3) exceeds the utility

from both non-formation of the agreement (2) and of free-riding on the others’ reductive efforts

within the agreement. Our mechanism cannot deter free-riding given an existing agreement and

therefore the proposal game which endogenises the choice of design parameters must take commit-

ments seriously.7 The reductive efforts determining the contest outcome can be easily normalised

with respect to, for instance, the individual (perceived) emission consumption share si.
9

8 This, in a nutshell, is the argument used by Holmström (1982) to show that efficient unverifiable efforts are
impossible in a partnership production problem. Battaglini (2006) derives multi-dimensional efficiency in an
unrelated setup.

9 The Jesuit missionary Paul Le Jeune documents the convexity of damage cost for his 1635 experiences during a
winter hunting party on which he accompanied native Canadians. The bitter cold made it necessary to light fires
inside the Indians’ hunting cabin, “but, as to the smoke, I confess to you that it is martyrdom. It almost killed
me, and made me weep continually, although I had neither grief nor sadness in my heart. It sometimes grounded
all of us who were in the cabin; that is, it caused us to place our mouths against the earth in order to breathe.
For, although the Savages were accustomed to this torment, yet occasionally it became so dense that they, as well
as I, were compelled to prostrate themselves, and as it were to eat the earth, so as not to drink the smoke. I have
sometimes remained several hours in this position, especially during the most severe cold and when it snowed; for
it was then the smoke assailed us with the greatest fury, seizing us by the throat, nose, and eyes.”
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3.1 Example of the efficient mechanism

We use a simple symmetric example to demonstrate the basic idea behind our model. In this

framework, substituting into the planner’s objective (1) gives

max
(e,f)

2e
1/2 − (2e− 2f)2 − 2(e2 + f 2) ⇔







e∗ =

(
3
5

)2/3

2× 21/3
≈ 0.2823,

f ∗ =
1

52/361/3
≈ 0.1882.

(4)

The corresponding individual problem is to

max
(ei,fi)

e
1

2

i − si(ei + ej − fi − fj)
2 − (e2i + f 2

i ) ⇔







êi =

(
1+2si
1+4si

)2/3

2× 21/3
> e∗,

f̂i =
si

(2 + 20si + 64s2i + 64s3i )
1/3

< f ∗.

For the present example we assume that the probability of winning the reduction award is given by

the Tullock success function.10 Then, under our incentive scheme, the individual problem is to max

αe
1

2

i +
f r
i

f r
i + f r

j

β(1−α)(e
1

2

i +e
1

2

j )+
f r
j

f r
i + f r

j

(1−β)(1−α)(e
1

2

i +e
1

2

j )−si(ei+ej−fi−fj)
2−(e2i +f 2

i )

which gives the set of simultaneous focs as

16ei = 8fi +
1 + α√

ei
, 2ei = 4fi +

√
eir(α− 1)(2β − 1)

2fi
.

Setting e = ei = e∗, f = fi = f ∗ and solving for symmetric efforts (under si =
1/2) gives the

efficiency inducing

α∗ =
3

5
, β∗ =

1

2
+

1

6r
. (5)

Notice that β∗ only depends on r. Thus, the rewards scheme—and in particular the relative size

of the prizes paid to the winner and loser—can be designed as seen fit and allowed by equilibrium

existence. Figure 1 shows that participating in the contest gives higher utility than staying out and

free-riding on the other’s effort. It confirms (α∗, β∗, e∗, f ∗) as unique equilibrium in pure strategies.11

The economics behind this result is simple: An increase in productive efforts ei causes individual

output y(ei) and global pollution m(
∑

h eh −
∑

h fh) to rise of which the player retains the shares

α and si, respectively. An increase in reductive efforts fi enlarges the player’s chance to win the

prize share β in the reduction contest and simultaneously decreases global pollution. Trading off α

against β allows us to fine-tune efforts to their efficient levels.

10 The particular monitoring technology is not important as we generalise over the set of applicable success functions
in the appendix. What is important is that the success function incorporates enough randomness in its outcome.
If the ranking is too precise (as is the case with the all-pay auction) then equilibria in pure strategies typically fail
to exist. This would be problematic as our contest strives to implement the efficient pure effort choices.

11 Since both partial derivatives are strictly negative, it is sufficient to investigate optimality of the two-dimensional
problem along both effort dimensions. That this is admissible is shown in the proof of proposition 2.
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Figure 1: The top line is the equilibrium utility from (α∗, β∗, e∗, f∗). The curves below show the utility
from unilaterally deviating in either effort dimension. Notice the positive utility from free-riding at zero
efforts. The dashed lines give the (outside) utility from no agreement formation.

4 Results

Recall that under our award scheme, an individual i = 1, 2 chooses a pair of efforts (ei, fi) to max

αy(ei)+(1−α)

(

βp(f)
∑

j

y(ej) + (1− β)(1− p(f))
∑

j

y(ej)

)

−sim (ei + ej − fi − fj)−c(ei, fi)

where p(f) is the probability of coming first in a ranking of reductive efforts f . We require that

y′ > 0, y′′ ≤ 0, m′ > 0, m′′ ≥ 0, and finally c′1,2 > 0, c′′1,2 ≥ 0. We moreover assume that m(·) only
depends on the difference of total productive minus reductive efforts and that the cost function is

additively separable in both types of efforts. Taking derivatives wrt both effort types, we obtain the

simultaneous pair of focs defining individually optimal efforts (ei, fi) as

ce(ei, fi) + sim
′(ei + ej − fi − fj) = (1− β + αβ + (1− α)(2β − 1)p(fi, fj))y

′(ei)

cf(ei, fi) + (α− 1)(2β − 1)(y(ei) + y(ej))p
′(fi, fj) = sim

′(ei + ej − fi − fj).

Assuming that a symmetric equilibrium e = ei = ej , f = fi = fj, si =
1/2 exists, this simplifies to

2ce(e, f) +m′(2e− 2f) = (α + 1)y′(e)

2cf(e, f)−m′(2e− 2f) = 4(1− α)(2β − 1)p′(f∗)y(e)
(6)

where f
∗ = (f ∗, f ∗). Equating these efforts to those in (1), we obtain

4p′(f∗)(2β − 1) =
y′(e∗)

y(e∗)
⇔
{

ce(e
∗, f) = αy′(e∗),

cf(e, f
∗) = 4(1− α)(2β − 1)p′(f∗)y(e∗).

(7)

Efficiency can be obtained as we know that there exists an α ∈ [0, 1] to satisfy the first equation

from (1). Substituting this α in the second equation determines β ∈ [1/2, 1] for a suitably chosen
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ranking p. Without further restrictions on the design parameters—and in particular the slope of

the ranking technology p(·) in equilibrium—(7) can always be accomplished. Taking equilibrium

existence as given, the following proposition establishes the precise criteria on the parameters for

both productive and reductive efficiency to obtain simultaneously for any number of players n ≥ 2.

Proposition 1. For appropriately chosen 〈α, β, p(f)〉 specifying prize shares β =
(

β1, 1−β1

n−1
, . . . , 1−β1

n−1

)

,

player i ∈ N chooses efficient productive as well as reductive efforts (e∗, f ∗) in

max
(ei,fi)

αy(ei) + (1− α)
∑

h

(

βhph(f)
∑

j

y(ej)

)

− sim

(
∑

h

eh −
∑

h

fh

)

− c(ei, fi). (8)

All proofs can be found in the appendix. It is straightforward to show that proposing 〈α, β, p(f)〉
at the first stage of the game maximises player 1’s expected utility, given that players’ efforts are

functions of the proposed mechanism (e(α, β, p), f(α, β, p)). This is unsurprising as payoffs are

symmetric and, hence, whatever maximises welfare must also maximise the proposer’s utility.

A consequence of the previous result is that full efficiency in the symmetric n-player model can

be obtained with just two different prizes: one for the winner and another for everyone else. As one

only needs to check for a winner, such a scheme is easy to monitor. Since the general objective is

not necessarily well behaved, we proceed to show that equilibria exist for the subclass of problems

governed by the Tullock success function in the following proposition.

Proposition 2. The provision of efficient efforts (e∗, f ∗) is globally optimal for player i ∈ N provided

that reduction costs are sufficiently convex. In particular, we derive a sufficient existence threshold

(17) for contests governed by the Tullock success function.

Equilibrium existence implies that free-riding is not attractive once a nation has joined the

agreement. As the number of participants in the mechanism n goes up, the utility from free-riding

increases as the disutility from pollution m(
∑

h(eh − fh)) approaches the efficient level. Hence the

only leverage left is the contest on the pre-committed output share of (1− α). Our contest cannot

deter free-riding on the reductive efforts of the participants once an agreement is in place. Thus

participation in the agreement is individually rational in the sense that it is optimal to agree to

commit one’s output share at the proposal stage. Players cannot, however, be granted the option

to leave the agreement once it is formed.

Proposition 3. For a sufficiently large number of participants n, a player’s expected utility from

participation in mechanism (8) is at least as high as the utility when no agreement is reached.

For the simple quadratic setup of the example in section 3.1, n = 2 is enough to encourage

agreement formation. Finally, we show that our efficiency result is not an artifact of our symmetry

assumptions. The result is presented for two players as the extension to n-players case is trivial.

8



Proposition 4. Let i = 1, 2 and j = 3− i. For appropriately chosen 〈α, β, p(f)〉, efficient solutions

exist to player i’s asymmetric problem

max
(ei,fi)

αyi(ei) + (1− α) (βip(f)(yi(ei) + yj(ej)) + (1− βi)(1− p(f))(yi(ei) + yj(ej)))

−sim (ei + ej − fi − fj)− ci(ei, fi).
(9)

Although we demonstrate most of our results in a simplified symmetric setup, the previous

proposition shows that this can be done without loss of generality. A small example in the appendix

shows that our results are robust to the choice of contest success function. A further short example

details the working of an asymmetric contest. Both show that our proposed mechanism indeed

solves the problem of reducing emissions to their efficient level in a general setup.

5 Concluding remarks

We show that a simple contest organised among nations implements both efficient productive and

reductive efforts. Desirable generalisations are in the realism and welfare implications of our as-

sumptions. Which share of global (per capita) GDP would have to be redistributed—in reality—to

the country with the highest emissions reduction in order to implement our results? Is the resulting

wealth redistribution one we would like to see? These questions are to a large extent empirical and

all have huge policy implications. At any rate we do not feel qualified to answer these questions

now. What we do provide, however, are firm results showing that an incentive mechanism along the

lines we indicate can in principle solve the world’s emission problems.

Appendix

Proof of proposition 1. Efficient efforts are extending (1) as the pair (e, f) solving

y′(e) = m′(ne− nf) + ce(e, f), m
′(ne− nf) = cf (e, f). (10)

Let P = (1−α)
∑n

h=1 y(eh). Since we are only interested in deviations from symmetric equilibrium,

we set ej = e−i. Rewriting (8) for our 2-prize structure
(

β1, 1−β1

n−1
, . . . , 1−β1

n−1

)

results in

αy(ei) + β1p1i (f)P +
n∑

h=2

1− β1

n− 1
phi (f)P − sim (ei + (n− 1)ej − fi − (n− 1)fj)− c(ei, fi)

which simplifies to

αy(ei) + β1p1i (f)P +
1− β1

n− 1
(1− p1i (f))P − sim (ei + (n− 1)ej − fi − (n− 1)fj)− c(ei, fi).

9



The symmetric e = ei = ej , f = fi = fj , focs for this problem are

ce(e, f) + sim
′(ne− nf) =

1− β + α(n+ β1 − 2) + (1− α)(nβ − 1)

n− 1
p(f)y′(e),

cf(e, f) = sim
′((e− f)n) +

n(1− α)(nβ1 − 1)

n− 1
p′(f)y(e).

(11)

Plugging in (10) and imposing si = 1/n, one obtains

α∗ = 1− y′(e∗)− ce(e
∗, f ∗)

y′(e∗)
and β∗ =

1

n
+

(n− 1)2y′(e∗)

n3y(e∗)p′(f∗)
(12)

which can always be done by picking a suitably steep ranking technology p(f∗).

Proof of proposition 2. We tentatively assume that we can split the problem into two independent

problems along the respective effort dimensions. As it turns out that both partial derivatives are

strictly increasing to the left of the efficient efforts and strictly decreasing to the right, no mixture

between the two can constitute a beneficial deviation either. Setting P = (1− α)
∑n

h=1 y(eh), the

two separate problems are

αy(ei) + β1p1i (f
∗)P +

1− β1

n− 1
(1− p1i (f

∗))P − sim (ei + (n− 1)e∗ − n f ∗)− c(ei, f
∗),

αy(e∗i ) + β1p1i (f)P +
1− β1

n− 1
(1− p1i (f))P − sim (ne∗ − fi − (n− 1)f ∗)− c(e∗, fi).

(13)

1) We show that exerting productive effort ei = e∗ gives a global maximum. As players are symmetric

and we are looking for a profitable deviation from the efficient level we set f∗ = (f1 = f ∗, . . . , fn =

f ∗) implying that the probability of wining is p1i (f
∗) = 1/n. Thus the problem simplifies to

αy(ei) +
1

n
P − sim (ei + (n− 1)e∗ − (n)f ∗)− c(ei, f

∗) (14)

giving the foc for productive effort ei as
12

y′(ei) (α +
1

n
(1− α))

︸ ︷︷ ︸

ց

= sim
′
(
max{0, ei + (n− 1)e∗j − (n)f ∗}

)

︸ ︷︷ ︸

ր

+ cei(ei, f
∗)

︸ ︷︷ ︸

ր

.

Notice that output is strictly increasing in ei and is strictly concave. Thus y′′(ei) < 0 and y′(ei) is

decreasing. Both cost functions are increasing and convex, therefore sim
′′(·) + c′′(ei) > 0 and the

rhs is increasing. As y′(0) > sim
′(max{0, (n− 1)e∗ − nf ∗}) + c′(0),13 this confirms single crossing

of rhs and lhs and ensures the existence of a unique equilibrium.

2) We now demonstrate global optimality of fi = f ∗. Assuming efficient productive effort

12 It is routine to verify that both focs identify a maximum.
13 As output is concave and the sum of cost functions is convex in ei, the slope of the output derivative at zero

y′(ei = 0) is clearly bigger than that of the cost sim
′′(max{0, (n− 1)e∗ − nf∗}) + c′′(ei = 0).

10



provision, the foc for reductive effort is

n y (e∗) (1− α) (β n− 1) p′(fi, f
∗)

︸ ︷︷ ︸

=B

= cfi(fi, e
∗)

︸ ︷︷ ︸

=Cր

− sim
′(max{0, ne∗ − (n− 1)f ∗ − fi})

︸ ︷︷ ︸

=Aց

. (15)

Notice that the rhs is strictly increasing as we know that wrt fi, sim
′′(·) ≤ 0 and thus that

A is decreasing and the cost function is convex. Without further assumptions on the monitoring

technology p(·) we cannot sign the slope of B. Notice, however, that increasing cfi(fi, e
∗) sufficiently

guarantees single crossing and thus equilibrium uniqueness whatever the precise specification of p(·).
3) We now show that (15) identifies a global maximum for the Tullock success function.14 Again,

sim(max{0, ne∗ − (n− 1)f ∗ − fi}) > 0 for fi = 0 while p′(fi, f
∗) = 0 and thus the lhs of (15) is

zero at fi = 0 while the rhs is negative. Single crossing is immediate for the case of r ∈ (0, 1] as B

is (weakly) decreasing. In the general case of

pi(f) =
f r
i

∑n
j=1 f

r
j

, r > 1, (16)

the function B has a single critical point and is decreasing when fi ≥ f ∗
(

(n−1)(r−1)
r+1

)1/r

.

To get single crossing if the two curves are increasing we need to ensure either strict concavity

or convexity for the lhs and strict convexity for the rhs and prove that if fi = 0, lhs is larger than

the rhs. As we have not specified anything about our functions regarding the third derivative we

illustrate this point using the specific cfi(fi, e
∗) = bf b−1 and sim(max{0, ne∗− (n− 1)f ∗− fi}) =

si(max{0, ne∗− (n−1)f ∗− fi})b. We find that both curves have an inflection point, thus we need

to find a condition to ensure single crossing.

We first show that the rhs starts out negative and eventually becomes positive as for fi = 0 we

have C = −sim
′(max{0, ne∗ − (n− 1)f ∗}) < 0. Therefore, as long as the rhs is positive and the

lhs negative, the two curves cannot cross. We find that C −A < 0 for fi < f ∗ 2

n
1

b−1 +1
because

C −A =
−(

=2f∗

︷ ︸︸ ︷

ne− (n− 1)f ∗−f)b−1b

n
+ f b−1b = 0 ⇔ (2f ∗ − f)b−1 = nf b−1.

Moreover, for the rhs, the inflection point occurs when the curve is negative, and it is first concave

and then convex. Thus we can conclude than when the curve is above zero, it is strictly convex.

We find that (C − A)′′ < 0 for fi < f ∗ 2

n
1

b−3+1
and fi < f ∗ 2

n
1

b−3 +1
< f ∗ 2

n
1

b−1 +1
because

C −A =
−(2f ∗ − f)b−3(b− 2)(b− 1)b

n
+ f b−3(b− 2)(b− 1)b = 0 ⇔ (2f ∗ − f)b−3 = nf b−3,

⇔ f ∗ 2

n
1

b−1 + 1
− f ∗ 2

n
1

b−3 + 1
= −2

f ∗
(

−n(b−3)−1

+ n(−1+b)−1

)

(
n(−1+b)−1

+ 1
) (

n(b−3)−1

+ 1
) ≥ 0.

14 A nearly identical argument can be made for any other ratio-based success function. In that more general case,
however, we cannot derive an explicit existence threshold.
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Figure 2: Single crossing in equation (15) ensures a unique global maximum at fi = f∗ for the example
setup of section 3.1. The dotted line gives the location of inflection points f̂ for different r.

We conclude that the rhs is strictly increasing and convex when it is positive.

For the lhs, there are two inflection points: one in the increasing part and the other in the

decreasing part. In the increasing part we find a condition which implies that the inflection occurs

if the rhs is negative.15 A sufficient condition for equilibrium uniqueness is therefore that

2r(f ∗)r
(

n
1

b−1 + 1
)r ≥

(n− 1)
(

2(f ∗)r(r2 − 1)−
√
3
√

(f ∗)2rr2(r2 − 1)
)

2 + 3r + r2
︸ ︷︷ ︸

=:f̂

. (17)

Thus if the rhs of (15) is positive, it is also strictly convex. If (17) is respected, the lhs is strictly

concave or convex. Notice also that at the inflection point, the rhs is positive and the lhs is negative

and therefore the lhs is larger than the rhs. The geometric intuition of (17) is shown in figure 2 for

the setup of the example section 3.1. The figure shows a family of curves B for r ∈ {1, 2, 4, 10, 11}
with inflection points labelled f̂2, f̂4, f̂10, and f̂11, respectively. Condition (17) is fulfilled as long as

the red cost curve C − A is negative at the respective inflection point. This is true for r = 2 and

r = 4 soon after which (17) starts failing. Uniqueness, however, is actually only lost for r > 10.

Proof of proposition 3. Player i’s equilibrium participation utility for P = (1 − α)ny(e∗) in the

efficiency-inducing mechanism 〈α, β, p(f)〉 from (8) is

u∗
i (e

∗, f ∗) = αy(e∗) + 1
n
βP + (n− 1) 1

n
1−β
n−1

P − sim (ne∗ − nf ∗)− c(e∗, f ∗)

= αy(e∗) + 1
n
(1− α)ny(e∗)− sim (ne∗ − nf ∗)− c(e∗, f ∗)

= y(e∗)− sim (ne∗ − nf ∗)− c(e∗, f ∗).

(18)

15 The inflection point in the decreasing part does not matter. As long as one curve is increasing and the other is
decreasing they can only cross once.
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Non-participation gives

us
i (ei, fi) = y(ei)− sim(ei + (n− 1)e∗ − fi − (n− 1)f ∗)− c(ei, fi). (19)

Notice that the latter formulation requires n > 2 as the contest can only produce efficient incentives

if at least two players participate in the contest. The inherent incentives make it impossible to

deter free-riding once an agreement is operational. It is, however, individually rational to join the

agreement if the alternative is no agreement at all because disagreement utility is

ud
i (ei, fi) = y(ei)− sim(ei + (n− 1)ed − fi − (n− 1)f d)− c(ei, fi) (20)

implying both ed > e∗ and f d < f ∗ compared with (10). Since the cost differential

m(ned − nf d)−m (ne∗ − nf ∗) (21)

is increasing in n, there is an agreement size which makes everybody join. Thus, for a large enough

populace, every player finds it individually rational to join the reductive contest.

Proof of proposition 4. Analogous to (1), let the player’s asymmetric efficient efforts be given by

y′i(e
∗
i ) = m′(2e∗i − 2fi) + cei(e

∗
i , fi) and m′(2ei − 2f ∗

i ) = cfi(ei, f
∗
i ). (22)

Let the winner’s shares be identity-dependent, ie. a winning player i gets share βi and a winning j

gets share βj of the prize pool P = (1− α)(yi(ei) + yj(ej)). Thus, taking e∗j , f
∗
j as given, player i

maximises (9) simplified to

αyi(ei) + βip(f)P + (1− βi)(1− p(f))P − sim (ei + ej − fi − fj)− ci(ei, fi).

Taking derivatives wrt ei, fi and inserting (22), gives player i’s best response as determined by

(1− si)m
′(ei + ej − fi − fj) = (α− 1)((2βi − 1)p(fi, fj)− βi)y

′
i(ei),

2βi − 1

cfi(f
∗
i )

p′(fi, fj)P = 1− si.
(23)

Solving for player j’s best response to ei = e∗i , fi = f ∗
i gives two more equations. Solving the

resulting system gives parameters 〈α, βi, βj, p(f)〉 eliciting asymmetric efficient efforts.

Robustness with respect to the choice of success function

Consider a n-player extension of the problem of subsection 3.1 with prize structure
(
β, 1−β

n−1
, . . . , 1−β

n−1

)
.

The present example shows that efficiency can be obtained in proposition 2 for the ‘difference-form’

success function. Difference-form success functions have been widely used in the literature, for

instance by Che and Gale (2000), but suffer from the lack of a generally accepted extension to more
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than two players. We define player i’s probability of winning as16

pi(∆) =
exp∆r

i

∑n
j=1 exp

∆r
j
, where ∆ = (∆1, . . . ,∆n), ∆i = fi −

∑

j 6=i fj

n− 1
, and r > 0. (24)

Setting P = (1− α)(eoi + (n− 1)eoj), o ∈ (0, 1), m, b > 1 and all j 6= i equal, player i’s individual

problem is to

max
(ei,fi)

αeoi + pi(∆)βP + (1− pi(∆))
1− β

n− 1
P − si(ei + (n− 1)ej − fi − (n− 1)fj)

m − (ebi + f b
i )

which, in symmetric equilibrium e = ei = ej , f = fi = fj gives for any pi(∆)

α =
e−o
(
(e− f)

(
bebn− eoo

)
+ em((e− f)n)msi

)

(e− f)(n− 1)o
,

β =
e−o
(
−b(e− f)f b(n− 1)n+ f (m(n− 1)((e− f)n)msi + eo(e− f)n2(α− 1)p′i(0))

)

(e− f)fn3(α− 1)p′(0)

where ∆ = 0 is the equilibrium vector of deviations. Plugging in the efficient efforts from (4),

employing (24), and returning to the example setup from section 3.1: n = 2, o = 1/2, b = m = 2,

and si =
1/2, this results in a very similar efficient mechanism as under the Tullock success function

α∗ =
3

5
, β∗ =

1

2
+

r + (5/6)2/3

2r

where β∗ ∈ (.5, 1] is ensured for r ≥ (5/6)2/3. A picture nearly identical to figure 1 confirms, for

instance, (α∗, β∗, r = 2) as equilibrium. The precise form of ranking technology employed is thus

immaterial to our results.

Asymmetries

This subsection extends the two-player setup of section 3.1 with unequal relative damage shares

si ∈ (0, 1), i = 1, 2. Since shares sum to 1, both efficient effort types are still given by (4). Player

i′s problem is unchanged and results in the focs

1 + α = 8
√
e(e + 2esi − 2fsi), f

2(4 + 8si) +
√
er(−1 + α)(−1 + 2β) = 8efsi.

Imposing efficiency (4) we obtain the shares

α∗ =
1

5
(1 + 4si), β

∗ =
1

2
+

1

6r
. (25)

Notice that only α∗ turns out to dependent on the player’s identity (class), the efficiency-inducing

prize structure β is identical to the symmetric case. As to be expected, the share 1 − α∗ of

16 This formulation is justified by Schweinzer and Segev (2010) who also provide the equilibrium analysis for a broad
class of difference-form success functions and the corresponding existence results.
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output which has to be committed to the contest gets arbitrarily small when the public bad problem

disappears as si approaches 1. On the other extreme, a player who does not suffer from the effects

of global warming at all must be asked to commit close to 4/5 of her output to the contest in

order to induce efficient efforts on her behalf. A numerical example taking relative damage shares

of s1 =
1/4, s2 =

3/4 requires α1 = 0.4 and α2 = 0.8 in order to implement efficiency.

Next consider the general case of n > 2 players with damage shares parameterised by

si =
2i

n + n2
, i = 1, 2, . . . , n with

n∑

i=1

si = 1.

Efficient efforts are then given by

4e(1 + n) =
1√
e
+ 4fn, en = f(1 + n) ⇔







e∗ =
1 + n

2× 21/3 ((1 + n)(1 + 2n)2)1/3
,

f ∗ =
n

2× 21/3 ((1 + n)(1 + 2n)2)1/3
.

Solving the n-player individual asymmetric problem under our example contest and the two-part

price structure
(
β, 1−β

n−1
, . . . , 1−β

n−1

)
employed previously

αe
1/2
i +

f r
i

f r
i + (n− 1)(f ∗)r

βP +

(

1− f r
i

f r
i + (n− 1)(f ∗)r

)(
1− β

n− 1

)

P−

si(ei + (n− 1)e∗ − fi − (n− 1)f ∗)2 − (e2i + f 2
i )

for P = (1 − α)(e
1/2
i + (n− 1)(e∗)1/2) results in the intimidating but straightforwardly interpreted

efficiency inducing shares

α∗ =

√
1+n

((1+n)(1+2n)2)1/3
(1 + n + nsi)n− ((1 + n)(1 + 2n)2)

1/3

(n− 1) ((1 + n)(1 + 2n)2)1/3
,

β∗ =
(n− 1)n(1 + 2n)2

(
1+n

((1+n)(1+2n)2)1/3

)3/2

+ n (n2 − 1) (1 + n + nsi) + 2(1 + n)2r(2 + n(3 + si))

2n(1 + n)2r(2 + n(3 + si))
.

A numerical example for n = 187, r = 3 gives α∗ = 0.501333, implying for ‘type’ si = 1/n an

efficiency-inducing redistribution vector of

(

β∗ = 0.170241,
1− β∗

n− 1
= 0.00446107, . . . ,

1− β∗

n− 1
= 0.00446107

)

which compares to the flat 1/n = 0.00534759. Under the contest, type si = 1/n gives up roughly

50% of her output but gets back 41.6% even if losing the contest. She gets almost 16 times her

output if she wins. Notice that if equilibrium existence allows this can be further equalised by

employing a more precise ranking and thereby increasing r.
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