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1 Introduction

Estimation of panel data when the error components are heteroskedastic is a topic of interest in
econometrics, given that the assumption of equally distributed errors is oftern unattainable in
practice. Contributions to this area have been made by Mazodier and Trognon (1978), Baltagi
and Griffin (1988), Li and Stengos (1994), and Roy (2002) among many others. The last two
articles consider adaptive Fixed Effects (FE) and Random Effects (GLS) estimation, so that no
structural assumptions are made regarding the precise nature of the heteroskedastictiy.

There are situations when the exogeneity assumption underpinning RE in unsustainable, but
FE proves limited in scope because the researcher is interested in the effect of variables which do
not vary as time goes by. A classic example is estimation of wage equations, where attention fo-
cuses on years of schooling, which is constant within individual observations. In these situations
the linear papel data estimator proposed by Hausman and Taylor (1981) (referred to as HT in
what follows) provides efficient, consistent estimates of the coefficients in the regression, under
weak regularity conditions. This note extends the HT estimator to allow for heteroskedastic
individual effects. This case is of particular relevance in the analysis of Stochastic Frontiers,
(Aigner et al. (1977) and Schmidt and Sickles (1984)), where time invariant heterogeneity cap-
tures individual firm inefficiency and one might expect that the spread of this distribution varies
widely across the sample, with groups of small firms exhibiting wider ranges of efficiency scores
than larger groups of larger firms.

As in Li and Stengos (1994) and Roy (2002), the method relies on nonparametric regression
in order to estimate the conditional variance of the compound error component. Unlike these
references we explore further the potential efficiency gains that could result from alternative
nonparametric regression techniques. In particular, we study if Local Polynomial Regression can
aid to increase efficiency attainment.

2 Adaptive IV Estimation

The point of departure of the analysis that will follow is the linear panel data estimator proposed
by Hausman and Taylor (1981). These authors consider a linear panel data model such as

yit = x′1,itβ1 + x′2,itβ2 + z′1,iα1 + z′2,iα2 + ui + vit

for i = 1, . . . , N , t = 1, . . . , T , which may be written in matrix form as

y = X1β1 +X2β2 + Z1α1 + Z2α2 + u+ v. (2.1)
= Qγ + ε (2.2)

where ε = u+ v. In this model, x1,it and x2,it are K1 and K2 vectors of time varying regressors,
z1,i and z2,i are L1 and L2 vectors of time invariant covariates, and (β′1, β

′
2, α
′
1, α
′
2) ∈ RK1×RK2×

RL1×RL2 are unobserved parameters which must be estimated. In this model, vit ∼ i.i.d.(0, σ2
v) is

independent of ui ∼ i.i.d.(0, σ2
u), so that the variance covariance matrix for the NT observations

equals,

Σ = diag(σ2
u)⊗ JT + diag(σ2

v)⊗ IT

= diag(σ2)⊗ JT
T

+ diag(σ2
v)⊗ (IT −

JT
T

) (2.3)

where JT is a T × T matrix of ones, IT is a T × T identity matrix and σ2 = Tσ2
u + σ2

v . In
the model, while E(vit|x1,it, z1,i, x2,it, z2,i) = 0 and E(ui|x1,it, z1,i) = 0 the remaining covariates
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are endogenous to ui; that is E(ui|x2,it, z2,i) 6= 0. Efficient and consistent estimates of the
parameters α and β may be obtained via instrumental variable estimation of,

Σ−1/2y = Σ−1/2X1β1 + Σ−1/2X2β2 + Σ−1/2Z1α1 + Σ−1/2Z2α2 + Σ−1/2ε (2.4)

where

Σ1/2 = INT + (1− θ)PD (2.5)

D stand for the NT × N matrix of individual dummies, PD is its projection matrix and θ =[
σ2
v/(σ

2
v + Tσ2

u)
]1/2. The the instrument set may be built using sample information by exploiting

the above distributional assumptions. As usual, the exogenous covariates X1 and Z1 provide
K1 +L1 instruments; in addition to this, time invariance provides another K1 +K2 instruments.
To see this last point, MD = INT−PD = INT−D(D′D)−1D′ is its projection matrix, so that MD

transforms any matrix in deviations with respect to the group means. Then, M(X1

...X2) provides

K1 + K2 instruments, because cov(u,M(X1

...X2)) = 0, since Mu = 0, although M(X1

...X2) is

correlated with (X1

...X2). Given the K1+K2+L1+L2 covariates and 2K1+K2+L1 instruments,
we see that identification is attained provide that K1 ≥ L2. Thus, the final instrument set is
given by

A = (x1,it; z1,i;x1,it − x̄1,i;x2,it − x̄2,i) (2.6)

and its projection matrix is PA = A(A′A)−1A′. Further efficiency gains are available by imposing
slightly stronger distributional assumptions. Amemiya and MaCurdy (1986), and Breusch et al.
(1989) and Breusch et al. (1999) discuss the conditions under which these assumptions lead
to non-redundant additional instruments that improve the accuracy of the estimates (see also
Cornwell and Ruppert (1988) and Baltagi and Khanti-Akom (1990)). Although we do not make
explicit reference to these alternative contributions in this article, our results carry over in a
straightforward fashion.

A drawback of the above estimation method is that the error term is assumed to be ho-
moskedastic, however this is generally not satisfied in the typical application. Therefore, the
assumption is now relaxed, by allowing ui to be independent random variables such that

var(ui|wi) = γ(wi) = σ2
u,i (2.7)

where (hereafter) wi is a d×1 vector of (time invariant) informative variables, and might include
some or all of the elements in x̄k,i ⊗ ιT , or zk,i, for k = 1, 2, where x̄k,i has typical element
T−1

∑
t xit and ιT is a T × 1 vector of ones. The mapping γ(.) is unknown. The covariance

matrix of the regression model is now

Σ = diag(σ2
i )⊗ JT

T
+ diag(σ2

v)⊗ (IT −
JT
T

) (2.8)

where σ2
i = Tσ2

u,i + σ2
v varies across i. It is well know (see, for example Hausman and Taylor

(1981)) that

Σ−1/2 = INT − diag(1− θi)PD. (2.9)

When all covariates are exogenous, estimation of β and α could be done via the efficient Random
Effects estimator suggested by Roy (2002); however, such a procedure does not seem appropriate
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here, given the assumed non-zero correlations between Q and u. As alternative procedure can
be devised as follows.

Firstly, we can estimate (2.1) via Fixed Effects, obtaining consistent estimates of β; the
residual of this regression, say v̂it − v̂i. , can then be used to construct a consistent estimator of
σ2
v , namely

σ̂2
v =

∑N
i=1

∑T
t=1(v̂it − v̂i.)2

N(T − 1)−K
. (2.10)

Under the maintained assumptions 2SLS estimation of (2.1) with the instrument set A produces
consistent, but inefficient estimates of γ′ = (β′1, β

′
2, α
′
1, α
′
2). The residual from this regression,

ε̃it = yit − q′itγ̂ compounds the two error components u and v, and under the assumptions
imposed on the generating process, it may be used to consistently estimate the conditional
moment E(ε2it|wi) = σ2

u,i + σ2
v via kernel regression method1. Estimation is discussed below, so

let us assume by now that such estimator is available, and denote it by Ẽ(ε̃2it|wi). Then the
difference

σ̃2
u,i = Ẽ(ε̃2it|wi)− σ̂2

v . (2.11)

provides a consistent estimator for the variance of the individual effects. Substituting σ2
u,i and

σ2
v by their estimates, we obtain a consistent estimator of Σ−1/2, say Σ̂−1/2. Finally, consistent

and efficient estimates of the parameters in the model will follow by implementing the generalize
2SLS estimation of (2.4) with the set of instruments A and Σ̂−1/2 replacing Σ−1/2. That is,

γ̂(1) = (Q′Σ̂−1/2PAΣ̂−1/2Q)−1Q′Σ̂−1/2PAΣ̂−1/2Y (2.12)

Σ̂−1/2 = INT + diag(1− θ̂i)PD (2.13)

and θ̂2i = σ̂2
v/(σ̂

2
v + T σ̂2

u,i).
In practice researchers will often be interested in evaluating instrument relevance after es-

timation. Then, the measures in Shea (1997) and Godfrey (1999) can be applied directly but
bearing in mind that comparisons show now involve the ratio of variances and error variances of
the IV method just described with respect to the efficient GLS method in Roy (2002).

2.1 Nonparametric Estimation

The above procedures require the use of a consistent estimators for the moment E(ε2it|wit). These
are readily available from the literature on nonparametric methods (see, for instance, surveys
by Silverman (1986), Hardle (1990), or more recent and comprehensive contributions by Pagan
and Ullah (1999) and Li and Racine (2006)). The Random Effects models in Roy (2002) and
Li and Stengos (1994) use a Nadaraya-Watson regression (NW) to estimate the aforementioned
moment. This estimator solves the problem,

min
m

(x)
∑
k

(yk −m(x))2Kh(
xk − x
h

). (2.14)

This is as a weighted least squares problem where K(.) is the usual kernel function2, h = h(n)
is the bandwidth parameter (which satisfies h → 0, nhd → ∞ as n → ∞), m(x) = E(y|x) and,

1Alternatively, series and spline regression methods are available.
2For simplicity, Kh is assumed to be a product kernel, so that, if x has dimension q, then Kh(x) =

1
hq

∏q
j=1 k(xj), where k(.) : R 7→ R+
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therefore, m̂(x) is a local estimator of m(x) at x. The NW estimator is simple to compute,
consistent and asymptotically normal, thus facilitating inference. However, it is well known that
use of local polynomial regression (LPR) to estimate conditional moments can yield estimates
of a better quality. There are two key reason underlying this claim. Firstly LPR solves the
alternative least squares problem

min
m(x)

∑
k

(yk −m(x)−m(1)(x)(xk − x) . . .m(p)(x)(xk − x)p)2Kh(
xk − x
h

) (2.15)

where m(x) = (m(x),m(1)(x), . . . ,m(p)(x))′. In above optimization problem, the variable of
interest is regressed on a pth order Taylor Series approximation of the unknown form of the
conditional moment (m(p) denotes the pth partial derivative of m(.) with respect to x). From this
point of view, the NW relies on a zero order approximation of the unknwn moment, and therefore,
LPR are likely to reduce the amount of variability due to approximation errors. Secondly, LPR
has the potential to mitigate the boundary bias problem. At the boundary of X , the NW’s
error of estimation disappears asymptotically, but at a rate slower than in the interior of the
set on which the regressors take values from, so that larger amounts of data are required in the
boundaries of the sample to obtain an error of magnitude comparable to that in the interior
of the set of regressors. In the typical application, however, sample points are sparse in the
boundaries, and this claims for boundary bias corrections when implementing kernel methods
in small samples. It is known (see, for example, Wand and Jones (1994)) that the rate of
convergence of LPR is similar to that of NW, however this rate is uniform across the range of
X, thus improving the quality of the estimates in those areas in finite samples. Given these two
features of the estimators, this article explores if estimating the conditional second moments via
LPR as opposed to NW brings further efficiency gains in estimation.

3 Monte Carlo

In order to justify our claims of efficiency gains we report the results of a Monte Carlo experiment.
The Data Generating Processes used in the experiment combined specifications in Im et al.
(1999) and Roy (2002) to allow for endogenous covariates and heteroskedastic individual effects.
To produce a panel with heteroskedastic random effects, data was drawn from the linear model

yit = β0 + x′itβ + z′iγ + ui + vit.

where xit = (x1,it, x2,it, x3,it, x4,it)′, zi = (z1,i, z2,i)′ βj = γj = 1. For j = 1, 2, xj,it = 0.7xj,it−1 +
δj,i+εj,it. For j = 3, 4 xj,it = 0.7xj,it−1 +δj,i+ui+εj,it, so that these covariates are endogenous.
The coefficient 0.7 ensures these processes are stationary. For t = 0, xj,it = 0. All δj,i, εj,it are
drawn from Uniform distributions on (−2, 2). Similarly, z1,i = 0.5 ∗ δ1,i + 0.5δ2,i + ξ1,i, while
z2,i = δ1,i + δ2,1 + ui + ξ2,i. Here ξj,i are uniformly distributed on (−2, 2). In this specification,
z1,i is correlated with x1,it, x2,it via δ1,i and δ2,i, but uncorrelated with ui and vit. On the other
hand, z2,i is correlated with x1,it, x2,it as well as ui.

The error components were vit ∼ N(0, σ2
v), independent of ui ∼ N(0, ωi), where ωi = α2(1 +

λz1,i)2. The total variance was fixed to E(v2
it)+E(ωi) = 8. The contribution of σ2

v was controlled
in the simulations, by assigning values 2, 4 and 6, corresponding to 25%, 50% and 75% of the
total expected variance, while the functional form of the heteroskedasticity was ruled by the
parameter λ. This parameter was assigned values 0 (corresponding to homoskedastic individual
effects), 1, 2 and 4 (with larger values increasing the curvature of ωi. Each choice of values for
the pair (σ2

v ;λ) implies a value of α, which then can be derived by solving the equation for the
expected total variance.
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We used Ox V.5. for the simulations3. The results reported here are based on R = 2000
replication. We report the average standard error of each parameter as well as the magnitude
MSR = R−1

∑
r(β̂j,r − βj,0)2, where βj,0 is the true value of the parameter. Without loss of

generality4, here we report results for N = 50, T = 5, σ2
v = 4. These results are collected in

Tables 1 to 3.
As in Roy (2002) and Baltagi et al. (2005) , we find that the results are fairly robust to the

choice of bandwidth, at leat for this simple case where only one covariate has been considered in
the nonparametric regressions. In gereral, all methods exhibit a loss of efficiency in the estimation
of the endogenous variables with respect to the exogenous variables, and the coefficeints of time
varying covariates are estimated much more efficienctly than the coefficients of time invariant
ones. Simulations not reported here show that as σ2

v increases, so does the mean standard error
and MSE of the estimators, while increases in the sample size mitigate this loss of efficiency.

For the case λ = 0 (homoskedasticity), all four estimators provide very similar results. The
HT estimator seems to dominate all the others, as was expected. However, on occassions the
adaptive method can be more efficient than HT. This is most noticeable with the time invariant
parameters and the intercept, where and adaptive estimator of based on a LPR of order 2 is
more efficient than HT. Once heteroskedasticity is introduced in the generating process (λ > 0),
the adaptive methods exhibit a clear comparative advantage. Although efficiency gains can be
observed for all the parameters, the use of adaptive estimators has its most notorious effect on
the coefficients of the time invariant variables. Efficiency gains for these parameters are in the
region of a 12% reduction on average s.d. and a 20% reduction on the MSE with respect to the
estimator in Hausman and Taylor.

Within the group of adaptive estimators, we observe some efficiency gains when a local
linear regression is used in place of the Nadaraya-Watson estimator, and often local polynomial
regression of order 2 and 3 could provide some efficiency gains. However, these efficiency gains
are not consistent in our results, and they seem to vary from case to case, which ultimately
suggests there are not net comparative advantages in the use of LPR of orders above 1. On
ocassions, these might even induce a small efficiency loss with respect to the adaptive estimator
that uses the Nadaraya Watson regression.

Tables 4 and 5 collect the empirical size and power of the t-ratios. We only report the case
σ2
v = 4 for the Hausman Taylor estimator and adaptive estimators using a Nadaraya Watson

and Local Linear Regression estimators of the conditional variances of the error components.
Attention is focused on the coefficients β4 and α2 corresponding to a time varying and time
invariant endogenous regressor, as well as β2 (a exogenous time varying regressor) for comparison.
There is no major size distortion as far as the t-ratio for β2 is concerned; however the size
distortion of the t-ratio when testing β4 = 0 is considerable (exceeding 5%) and α2 = 0 (well
below the 5% significance level). The performance of the test is more or less constant for the
adaptive estimators across different patterns of heteroskedasticity, however heteroskedasticity
seems to affect the t-ratios for α2 derived from the Hausman-Taylor estimator. In this case, the
empirical size falls even further for large λ. The t-ratio succeeds to reject the null hypothesis
when falls 100% of the time as far as the coefficients of the time-varying covariates is concerned.
These tests exhibit low power when testing the coefficients of time-invariant covariates. This loss
of power is mitigated if inference is based on the adaptive estimator, provided that λ > 0.

Overall the adaptive Hausman Taylor estimators provide significant efficiency gains in esti-
mation of a linear error components model when the individual effects are heteroskedastic. This
efficiency gain affects primarily the coefficients of the time-invariant covariates and the corre-

3The codes are available for inspection upon request.
4For different choices of these parameters, the absolute value of the magnitudes changed, but the conclusions

stayed the same. The un-tabulated results of the whole simulation are, of course, available upon request.
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sponding t-ratios. Among the class of adaptive estimators, we observe modest efficiency gains
if local linear regression is used to estimate the conditional variance of the compound error, as
opposed to the simpler Nadaraya-Watson. However, it is unclear whether these gains justify the
added complexity in the model.

4 Conclusion

This note presents a class of adaptive IV of estimator of a error component model with het-
eroskedastic random effects. The estimator is inspired on earlier work by Roy (2002), and is a
natural extension of Hausman and Taylor (1981), although the approach applies without modi-
fications to the estimators found in Amemiya and MaCurdy (1986) and Breusch et al. (1989)).
The method relies on nonparametric regression to estimate the conditional variance of the com-
pound error term, and we explored whether different estimators lead to substantial differences
in the results. The new method provides significant efficiency gains with respect to the original
estimator and it is useful in a variety of cases, such as the estimation of Stochastic Frontiers
where firm’s inefficiency, which is is captured through the time invariant random effect, is often
expected to be differently distributed across clusters of firms.
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N=50, T=5
Bandwidth h = 0.2.

DGP λ = 0, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10472 0.01061 0.10385 0.01073 0.10406 0.01071 0.10353 0.01142 0.10374 0.01186
β2 0.10443 0.01083 0.10359 0.01091 0.10336 0.01004 0.10304 0.01048 0.10371 0.01130
β3 0.12453 0.01698 0.12429 0.01693 0.12520 0.01559 0.12489 0.01558 0.12490 0.01632
β4 0.12477 0.01698 0.12453 0.01689 0.12502 0.01527 0.12485 0.01620 0.12511 0.01627
β0 0.43251 0.18423 0.41270 0.19545 0.41490 0.15970 0.40431 0.15778 0.40613 0.15261
α1 0.40768 0.16479 0.38739 0.16534 0.39523 0.15783 0.37466 0.13271 0.37546 0.16354
α2 0.53565 0.29709 0.52114 0.30439 0.54006 0.31137 0.50635 0.26338 0.50878 0.30186

DGP λ = 1, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10377 0.01049 0.10058 0.00998 0.10142 0.01029 0.09988 0.00972 0.10040 0.00990
β2 0.10362 0.01026 0.10035 0.00980 0.10087 0.00976 0.10135 0.00975 0.10125 0.01008
β3 0.12547 0.01544 0.12566 0.01554 0.12584 0.01605 0.12543 0.01615 0.12559 0.01677
β4 0.12547 0.01671 0.12564 0.01685 0.12595 0.01584 0.12527 0.01595 0.12568 0.01638
β0 0.41952 0.15004 0.36498 0.11678 0.37245 0.12067 0.36523 0.12296 0.36268 0.11668
α1 0.39082 0.15671 0.34445 0.10978 0.36057 0.11056 0.34812 0.11410 0.35166 0.11537
α2 0.50753 0.23536 0.44327 0.18321 0.45825 0.20682 0.44073 0.18678 0.44020 0.18039

DGP λ = 2, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10418 0.010624 0.10080 0.01010 0.10113 0.01056 0.10105 0.01061 0.10083 0.01007
β2 0.10420 0.010108 0.10098 0.00974 0.10105 0.01057 0.10058 0.01017 0.10069 0.00990
β3 0.12557 0.015617 0.12576 0.01565 0.12537 0.01583 0.12553 0.01598 0.12603 0.01666
β4 0.12538 0.015924 0.12555 0.01601 0.12554 0.01596 0.12555 0.01531 0.12604 0.01565
β0 0.42403 0.15296 0.35246 0.10341 0.35748 0.10620 0.34945 0.09667 0.34993 0.09828
α1 0.40065 0.16916 0.36353 0.13313 0.36731 0.12766 0.36317 0.12939 0.35885 0.12443
α2 0.52162 0.28568 0.44400 0.19353 0.44589 0.19884 0.44051 0.18861 0.43749 0.18137

Table 1: Results from Simulation. R = 2000

10



N=50, T=5
Bandwidth h = 0.4.

DGP λ = 0, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10472 0.01061 0.10334 0.01081 0.10287 0.01068 0.10330 0.01028 0.10390 0.01091
β2 0.10443 0.01083 0.10389 0.01049 0.10422 0.01060 0.10407 0.01016 0.10406 0.01212
β3 0.12453 0.01698 0.12484 0.01584 0.12497 0.01672 0.12486 0.01586 0.12511 0.01568
β4 0.12477 0.01698 0.12483 0.01632 0.12514 0.01696 0.12508 0.01604 0.12507 0.01695
β0 0.43251 0.18423 0.41771 0.15846 0.40197 0.14719 0.41136 0.18772 0.42198 0.19338
α1 0.40768 0.16479 0.39180 0.18137 0.37730 0.14399 0.36792 0.12002 0.39365 0.16691
α2 0.53565 0.29709 0.52929 0.31701 0.50973 0.26593 0.50446 0.24380 0.53364 0.34394

DGP λ = 1, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10377 0.01049 0.10105 0.01003 0.10091 0.01003 0.10068 0.00995 0.10105 0.01004
β2 0.10362 0.01026 0.10049 0.01017 0.10120 0.01008 0.10080 0.00959 0.10106 0.00991
β3 0.12547 0.01544 0.12593 0.01657 0.12588 0.01714 0.12617 0.01710 0.12598 0.01598
β4 0.12547 0.01671 0.12601 0.01578 0.12567 0.01567 0.12580 0.01661 0.12573 0.01577
β0 0.41952 0.15004 0.37335 0.11853 0.36946 0.11263 0.37012 0.12396 0.36667 0.12198
α1 0.39082 0.15671 0.35526 0.11698 0.35260 0.11337 0.35597 0.12429 0.35192 0.11173
α2 0.50753 0.23536 0.44733 0.18618 0.44917 0.20457 0.44919 0.20145 0.44334 0.19295

DGP λ = 2, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10418 0.01062 0.10000 0.00976 0.10066 0.01029 0.10077 0.01014 0.10123 0.01063
β2 0.10420 0.01010 0.10094 0.00994 0.10085 0.01027 0.10133 0.01030 0.10065 0.01000
β3 0.12557 0.01561 0.12590 0.01602 0.12585 0.01610 0.12603 0.01737 0.12587 0.01713
β4 0.12538 0.01592 0.12558 0.01618 0.12602 0.01613 0.12602 0.01672 0.12591 0.01612
β0 0.42403 0.15296 0.34759 0.09826 0.35368 0.10568 0.35191 0.10249 0.35616 0.10168
α1 0.40065 0.16916 0.36232 0.13227 0.36785 0.13609 0.36541 0.14172 0.37044 0.13616
α2 0.52162 0.28568 0.43481 0.17758 0.43786 0.18980 0.43937 0.18498 0.45284 0.19192

Table 2: Results from simulation. R = 2000
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N=50, T=5
Bandwidth h = 0.8.

DGP λ = 0, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10472 0.01061 0.10447 0.01110 0.10339 0.01151 0.10353 0.01142 0.10334 0.01029
β2 0.10443 0.01083 0.10351 0.01026 0.10346 0.01100 0.10304 0.01048 0.10404 0.01016
β3 0.12453 0.01698 0.12540 0.01642 0.12517 0.01563 0.12489 0.01558 0.12531 0.01632
β4 0.12477 0.01698 0.12496 0.01639 0.12532 0.01556 0.12485 0.01620 0.12498 0.01605
β0 0.43251 0.18423 0.41924 0.16640 0.40212 0.14301 0.40431 0.15778 0.43950 0.17118
α1 0.40768 0.16479 0.38449 0.16483 0.37106 0.14888 0.37466 0.13271 0.42330 0.17982
α2 0.53565 0.29709 0.52708 0.29527 0.50126 0.27860 0.50635 0.26338 0.56610 0.31250

DGP λ = 1, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10377 0.01049 0.10064 0.00958 0.10129 0.00969 0.099881 0.00972 0.10085 0.01053
β2 0.10362 0.01026 0.10061 0.00979 0.10107 0.00990 0.10135 0.00975 0.10130 0.01043
β3 0.12547 0.01544 0.12541 0.01624 0.12608 0.01675 0.12543 0.01615 0.12593 0.01664
β4 0.12547 0.01671 0.12596 0.01648 0.12616 0.01617 0.12527 0.01595 0.12598 0.01553
β0 0.41952 0.15004 0.36686 0.11409 0.37868 0.12616 0.36523 0.12296 0.36559 0.11807
α1 0.39082 0.15671 0.34618 0.11239 0.36252 0.12053 0.34812 0.11410 0.35175 0.11757
α2 0.50753 0.23536 0.43981 0.17522 0.45376 0.20188 0.44073 0.18678 0.44375 0.19901

DGP λ = 2, σv = 4

HT Polynomial 0 Polynomial 1 Polynomial 2 Polynomial 3

S.d. MSE S.d. MSE S.d. MSE S.d. MSE S.d. MSE

β1 0.10418 0.01062 0.10123 0.00994 0.10084 0.01018 0.10105 0.01061 0.10050 0.01048
β2 0.10420 0.01010 0.10099 0.01002 0.10081 0.01001 0.10058 0.01017 0.10130 0.01086
β3 0.12557 0.01561 0.12545 0.01614 0.12587 0.01662 0.12553 0.01598 0.12556 0.01647
β4 0.12538 0.01592 0.12579 0.01631 0.12604 0.01714 0.12555 0.01531 0.12537 0.01650
β0 0.42403 0.15296 0.35259 0.10636 0.35300 0.11061 0.34945 0.09667 0.35078 0.10578
α1 0.40065 0.16916 0.36483 0.13791 0.36572 0.13842 0.36317 0.12939 0.35442 0.12629
α2 0.52162 0.28568 0.44505 0.22778 0.43516 0.19059 0.44051 0.18861 0.45244 0.19733

Table 3: Results from simulation. R = 2000
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Empirical Significance Levels t-ratios (Size)

N = 50, T = 5 N = 100, T = 5

DGP λ = 0, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 4.10 4.40 4.20 5.15 4.20 4.10
β4 5.60 5.70 5.60 4.90 5.30 5.40
α2 2.40 3.00 3.15 4.20 3.65 3.60

DGP λ = 1, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 4.50 4.85 4.85 5.00 5.15 5.00
β4 6.55 6.75 6.65 4.05 6.05 6.05
α2 2.70 3.05 3.00 3.60 4.70 4.50

DGP λ = 2, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 5.80 6.40 6.25 4.05 4.85 4.75
β4 5.55 5.70 5.75 5.60 5.75 5.70
α2 3.60 4.30 4.30 2.85 4.20 4.05

Table 4: Proportion of Rejections of the Null Hypothesis (Ho : βj = 0)

Proportion of Rejections t-ratios

N = 50, T = 5 N = 100, T = 5

DGP λ = 0, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 100.00 100.00 100.00 100.00 100.00 100.00
β4 100.00 100.00 100.00 100.00 100.00 100.00
α2 70.65 63.90 65.20 81.25 82.00 82.55

DGP λ = 1, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 100.00 100.00 100.00 100.00 100.00 100.00
β4 100.00 100.00 100.00 100.00 100.00 100.00
α2 64.40 69.85 66.00 83.05 89.80 89.90

DGP λ = 2, σv = 4; Bandwidth h = 0.2.
ht nw llr ht nw llr

β2 100.00 100.00 100.00 100.00 100.00 100.00
β4 100.00 100.00 100.00 100.00 100.00 100.00
α2 62.45 67.65 66.45 83.65 90.90 91.10

Table 5: Proportion of Rejections of the Null Hypothesis (Ho : βj = 0)
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