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Abstract

We analyze the classical model of Bertrand competition in a homogeneous good

market with constant marginal costs and uncertainty regarding rivals’ costs. First,

we show that there exists a mixed strategy Nash equilibrium under the conventional

equal sharing rule. Second, we illustrate the result for the case of piecewise-affine

market demand.
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1 Introduction

Up until the last twenty years the Bertrand model of price competition was associated

with the striking result that if two firms compete by simultaneously setting prices, both

firms have symmetric constant returns to scale cost functions, and the market demand

possesses a finite choke-off price, then the unique Nash equilibrium is that both firms price

at marginal cost and earn zero profits. This, of course, is the famous ‘Bertrand paradox’.1

However, subsequent research has revealed that the Bertrand model of price competition

has other notable results. Dastidar (1995) showed that if firms have strictly convex costs,

consistent with decreasing returns production technology, then there exists a continuum

of pure strategy price equilibria in which the firms earn strictly positive profits. This

result also holds if firms play mixed strategies. Hoernig (2002) has shown then when

firms have strictly convex costs then there exist different types of mixed strategies with

firms placing probability mass on a finite number of prices, or playing mixed strategies

with continuous supports.

When firms have increasing returns to scale cost functions, the literature indicates that

the existence of pure strategy Bertrand equilibrium is problematic.2 Dastidar (2006) has

shown that when firms have increasing returns to scale cost functions then there does

not exist any pure strategy price equilibrium under the conventional equal sharing rule.

However, it is well-known that if the sharing rule is altered so that a single firm is selected

randomly from the set of firms tieing at the minimum price to serve all the market

demand, the so-called “winner-takes-all” sharing rule, then this restores the existence

of pure strategy equilibrium (Vives, 1999, p.119). The existence of a mixed strategy

equilibrium with increasing returns to scale costs has, up until recently, been an open

question. In their survey of the literature Baye and Kovenock (2008) proved that there

1If no finite choke-off price exists, and monopoly revenues are unbounded, then in addition to the

pure strategy zero profit Nash equilibrium, there exist a continuum of atomless mixed strategy equilibria

in which the firms earn positive profits (Kaplan and Wettstein, 2000).
2As Bertrand competition is a game with discontinuous payoffs, the Glicksberg-Fan theorem cannot be

used to establish existence, and more recent existence results for discontinuous games, such as Dasgupta

and Maskin (1986) and Reny (1999), are not applicable because payoffs are neither quasi concave, sum

upper semicontinuous nor reciprocally upper semicontinuous.
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does not exist a mixed strategy equilibrium either.

An extension of the Bertrand model is to consider the case when firms have asymmet-

ric costs. If both firms have constant marginal costs, and the high marginal cost is below

the profit maximizing price for the low-cost firm, it has recently been shown that the price

equilibrium has the low-cost firm setting price equal to the higher marginal cost, and the

high-cost firm randomizing uniformly on an interval above (Blume, 2003).3 Related to

asymmetric costs is research which analyzes the Bertrand model when costs are uncer-

tain. Typically, it is assumed each firm knows their own cost type but does not know the

cost type of their rivals. Spulber (1995) showed that if the cost function is parameter-

ized, and the parameter drawn from a continuous probability distribution, then if firms

are uncertain about their rivals’ cost profiles, they price above marginal cost and make

positive profits. Vives (1999, p.230) analyzed the general case where firms have constant

marginal costs drawn from a continuous probability distribution with compact support,

and showed by the log-supermodularity of the expected profit function that there always

exists a Bayesian Nash equilibrium in which firms set prices contingent upon cost type.

However, there is a notable gap in the research. There are no equilibrium existence re-

sults for the classical Bertrand model when there is discrete cost uncertainty. A survey of

textbook questions on market competition reveals that the problem of finding a Bayesian

Nash equilibrium in the homogeneous good Cournot model with discrete cost uncer-

tainty is a frequently encountered question (Mas-Colell et al., 1995, p.265).4 Bertrand

competition with differentiated goods and discrete cost uncertainty is also a commonly

encountered textbook problem (Tirole, 1988, p.362). But the case of homogeneous good

Bertrand price competition, with constant returns to scale production technology, and

discrete cost uncertainty, does not appear in any textbooks or in the professional liter-

ature. The aim here is to fill this gap. The main result (Proposition 2) is that there

exists a mixed strategy equilibrium. The next section of the paper presents the model

3For a long time this simple case of asymmetric costs did not have a well-defined solution. It was

typical to assume the price space was discrete and the low-cost firm would price at some small unit, a

minimum currency, below the high marginal cost. See, for example, Tirole (1988, p.211).
4Although Einy et al. (2009) have shown that when firms have differential information regarding

costs and/or demand, and there are a finite number of states, then a pure strategy Bayesian Cournot

equilibrium may fail to exist.
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and result. The final section draws some conclusions regarding future research.

2 The Model

Consider the market for a homogeneous good in which there are N = {1, ..., n}, n ≥ 2,

firms which compete by simultaneously and independently setting prices. The market

demand D : <+ → <+ is C2 and ∃ positive finite real numbers PMax, QMax, satisfying

D(PMax) = 0 and D(0) = QMax. Also, D′(P ) < 0 ∀P ∈ (0, PMax). Firms’ cost functions

are derived from constant returns to scale production technology and take one of two

forms: high or low. That is, Ci(Q) = ciQ with i ∈ {H,L} and 0 < cL < cH < PMax.

Each firm has probability θ of having marginal cost cL and probability 1 − θ of having

marginal cost cH with θ∈ (0, 1). It is assumed each firm knows their own cost type but

does not know the cost type of their rivals. Firms supply all the demand they face and

maximize their expected profits.5 Ties at the lowest price are resolved by firms sharing

the market demand equally. Define πi(P ) to be the monopoly profit of a firm with cost

type i, and π̂i(P,m) to be the shared profit of a firm with cost type i when it ties with

m− 1 firms at the lowest price:

πi(P ) = (P − ci)D(P ) (1)

π̂i(P,m) =
1

m
(P − ci)D(P ) (2)

Finally, we assume that πi(P ) and π̂i(P,m) are strictly concave in price. All the as-

sumptions employed here are standard specifications of the Bertrand model apart from

the uncertainty regarding costs. In the classical Bertrand model the firms have the same

cost type and the price-setting game is a one of complete information. Here, each firm

only knows their own cost type and the probability distribution over the possible cost

types of their rivals. As a result, the price setting game becomes a game of incomplete

information. Let P = [0, PMax] denote the pure strategy price space, and let G denote the

game in which firms simultaneously and independently set prices. In order to simplify

5This is what distinguishes Bertrand competition from Bertrand-Edgeworth competition. In

Bertrand-Edgeworth competition firms may refuse to supply all the demand forthcoming at any price.

For a succinct summary, see Vives (1999, Ch.5).
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the main result define the following:

P ∗ = arg max
P∈P

πL(P )

P̂ = min{cH , P ∗}

In words, P ∗ is the monopoly price for the low-cost firm, and P̂ is the minimum of the

high marginal cost and P ∗.

Lemma 1 There exists a unique P̃ ∈ (cL, P̂ ) s.t. πL(P̃ ) = (1− θ)n−1πL(P̂ ).

Proof. First, note that 0 < (1−θ)n−1πL(P̂ ) < πL(P̂ ). As the profit function is continuous,

and πL(cL) = 0, the intermediate value theorem6 guarantees ∃ a P̃ ∈ (cL, P̂ ) such that

πL(P̃ ) = (1− θ)n−1πL(P̂ ). The strict concavity of the profit function implies π′L(P ) > 0

for all P ∈ (cL, P̂ ). This ensures that P̃ is unique. �

Proposition 1 G does not possess a pure strategy Bayesian Nash equilibrium.

Proof. Start by assuming there does exist a pure strategy equilibrium. There are two

cases to consider. The first case is when the firms play a symmetric pure strategy. The

second case is when the firms play an asymmetric pure strategy.

Case 1 : The firms play a symmetric pure strategy with the low-cost firms setting a price

PL > cL and the high-cost firms setting a price PH > cH , and suppose, without loss

of generality, that PL < PH . That is, when low-cost firms are in the market, high-

cost firms do not receive any demand. The expected payoff to the high-cost firm is

(1−θ)n−1π̂H(PH , n). As πH(P ) > π̂H(P, n) for all P ∈ (cH , P
Max) one firm could deviate

to a price PH−ε > cH and increase their expected profit. The possibility of undercutting

means that in any equilibrium the high-cost firm must price at marginal cost: PH = cH .

Now consider the low-cost firm. The expected profit is:

(1− θ)n−1πL(PL) +
n−1∑
r=1

(
n− 1

r

)
θr(1− θ)n−1−rπ̂L(PL, r + 1)

Which is strictly less than πL(PL). This means one low-cost firm could deviate to a

6See, for example, Rudin (1976, p.93) Theorem 4.23.
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price PL − ε > cL and increase its expected profit. As with the the high-cost firm, the

possibility of undercutting leads to the consideration of PL = cL as a possible equilibrium.

However, this cannot be an equilibrium because if PL = cL then one firm could deviate

to a price P ∈ (cL, cH) and earn expected profit of (1 − θ)n−1πL(P ) > 0. Hence, there

does not exist a symmetric pure strategy equilibrium.

Case 2 : The firms play asymmetric pure strategies. The same reasoning as above means

that the high-cost strategy must have at least two firms pricing at marginal cost, and all

other firms either pricing at marginal cost or a higher price.7 However, as no low-cost

firms want to tie at the same price suppose, without loss of generality, that the pricing

strategies of the low-cost firms are cL ≤ PL
1 < PL

2 ... < PL
n < cH . Consider the firms

setting the lowest two prices. If PL
2 ≤ P ∗ then firm one could increase its expected

profit by setting a price arbitrarily close to PL
2 . Assume that PL

1 = PL
2 − ε. Then

firm two would be able to increase its expected profit by pricing slightly below firm one.

Similarly, if PL
2 > P ∗, then firm one is best choosing PL

1 = P ∗. Then firm two would

be able to increase its expected profit by slightly undercutting firm one. This possibility

of undercutting means that if there is an equilibrium then it must be symmetric with

PL
i = cL for i = 1, ..., n. As was shown in Case 1, pricing at marginal cost is not an

equilibrium for the low-cost firm because one firm could deviate to a price P ∈ (cL, cH)

and earn expected profit of (1 − θ)n−1πL(P ) > 0. Hence, there does not exist a pure

strategy price equilibrium. �

Proposition 2 G possesses a mixed strategy Bayesian Nash equilibrium.

Proof. We shall show that there exists an equilibrium with the low-cost firm playing an

atomless mixed strategy on [P̃ , P̂ ] and the high-cost firm pricing at marginal cost. In

equilibrium the expected payoff to the low-cost firm is strictly positive and the expected

payoff to the high-cost firm is zero. First, we show what the strategies of the firms are.

Second, we show that no firm wants to deviate from these strategies.

Step 1 : Let F (P ) be the distribution function which describes the mixed strategy the

low-cost firm plays over [P̃ , P̂ ]. Let α ∈ < denote the expected payoff to the low-cost

firm. As the low-cost firm must be indifferent between playing any price in the support

7This is the standard Bertrand equilibrium when there are two or more firms in the market.

6



of F (P ) we require:

n−1∑
r=0

(
n− 1

r

)
θr(1− θ)n−1−r(1− F (P ))rπL(P ) = α (3)

We can now check that for any P ∈ [P̃ , P̂ ] there is an implied value of F (P ) which

satisfies (3) and possesses all the required properties of a distribution function. First, we

require that F (P̂ ) = 1. Substituting this into (3) then gives α = (1 − θ)n−1πL(P̂ ) > 0.

Equation (3) can be rewritten as:

n−1∑
r=0

(
n− 1

r

)
θr(1− θ)n−1−r(1− F (P ))r =

(1− θ)n−1πL(P̂ )

πL(P )
(4)

Evaluating the R.H.S of (4) at P̃ , and using the result in Lemma 1, implies that F (P̃ ) = 0

on the L.H.S. Moreover, as the R.H.S is continuous and strictly decreasing in price, this

implies that F ′(P ) > 0 for all P ∈ [P̃ , P̂ ). Hence, we know that there exists an atomless

mixed strategy, described by F (P ), which gives the low-cost firm an expected payoff of

α > 0.8

Step 2 : Now consider whether any firm can profitably deviate from playing F (P ) when

low-cost, and pricing at marginal cost when high-cost. Consider the low-cost firm. As-

sume that P̂ = cH . There are two possible deviations. The low-cost firm could deviate

to a price P ′ ∈ [0, P̃ ). From Lemma 1 we know that πL(P̃ ) = α. The strict concavity

of the profit function implies πL(P ′) < α. Second, the low-cost firm could deviate to

a price P ′ > cH . Then the expected profit is zero. Assume that P̂ = P ∗. Then in

addition to the possible deviations already covered the low-cost firm could deviate to a

price P ′ ∈ (P ∗, cH) and earn expected profit of (1 − θ)n−1πL(P ′). The expected payoff

from playing F (P ) is α = (1− θ)n−1πL(P ∗). As P ∗ is the profit maximizing price for the

low-cost firm this is not a profitable deviation. Hence, the low-cost firm has no better

strategy than to play F (P ). Now consider the high-cost firm. There are two possible price

deviation. First, a high-cost firm could set a price P ′ < cH . As the high-cost firm would

then be serving any demand forthcoming at a price less than marginal cost, the expected

profit would be less than zero. Second, a high-cost firm could set a price P ′ > cH . Then

8Note that if P̂ = cH then payoff indifference holds almost everywhere in the support. I am grateful

to Andreas Blume for clarifying this point.
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this firm would be undercut with certainty and make zero profit, which is no better than

pricing at marginal cost. Therefore we conclude that no firm can profitably deviate from

playing F (P ) when low-cost and pricing at marginal cost when high cost. �

We illustrate the result in the following numerical example:

Example Consider a duopoly, n = 2, with piecewise-affine market demand D(P ) =

max{0, 10 − P}. Each firm has either a high or low marginal cost with cL = 1 and

cH = 3. The probability of having low-marginal cost is θ = 3
7

and the probability of having

high-marginal cost is 1− θ = 4
7
. Routine calculations reveal that P ∗ = 51

2
, P̂ = 3, P̃ = 2

and α = 8. The distribution function which describes the mixed strategy the low-cost firm

plays satisfies:
3

7
(1− F (P ))πL(P ) +

4

7
πL(P ) = 8

This can be solved for the distribution function:

F (P ) =
7

3

[
1− 8

(P − 1)(10− P )

]
It can be checked that F (2) = 0, F (3) = 1 and F ′(P ) > 0 for all P ∈ [2, 3). Hence we

know from Proposition 2 that the low-cost firm playing F (P ) on [2, 3] and the high-cost

firm pricing at marginal cost is a Bayesian Nash equilibrium.

3 Conclusion

In this paper we have shown that the classical Bertrand model possesses a mixed strat-

egy Bayesian Nash equilibrium when there is discrete cost uncertainty. Previous research

showed that the Bertrand model possesses mixed strategy equilibria when monopoly rev-

enues are unbounded (Kaplan and Wettstein, 2000), or when costs are strictly convex

(Hoernig, 2002), but as far as the author is aware, this is the first paper, with the ex-

ception of Blume (2003), to show the existence of a mixed strategy equilibrium with

bounded demand and constant marginal costs. Future research should explore the exis-

tence of equilibrium with incomplete information when firms compete in different ways.

For example, Weibull (2006) has examined the existence of equilibrium in repeated price

competition when firms have convex costs. It would be of interest to extend these results

to consider repeated competition with incomplete information.

8



References

[1] Baye, M. and D. Kovenock, 2008, Bertrand competition, The New Palgrave Dictio-

nary of Economics.

[2] Blume, A., 2003, Bertrand without fudge, Economics Letters, 78, 167-8.

[3] Dasgupta, P. and E. Maskin, 1986, The existence of equilibrium in discontinuous

economic games, Review of Economic Studies, 53, 1-26.

[4] Dastidar, K., 1995, On the existence of pure strategy Bertrand equilibrium, Eco-

nomic Theory, 5, 19-32.

[5] Dastidar, K., 2006, On the existence of pure strategy Bertrand equilibrium revisited,

unpublished manuscript.

[6] Einy, E.: O. Haimanko; D. Moreno; B. Shitovitz, 2009, On the existence of Bayesian

Cournot equilibrium, forthcoming in Games and Economic Behavior.

[7] Hoernig, S., 2002, Mixed Bertrand equilibria under decreasing returns to scale: an

embarassment of riches, Economics Letters, 74, 359-62.

[8] Kaplan, T. and D. Wettstein, 2000, The possibility of mixed-strategy equilibria with

constant-returns-to-scale technology under Bertrand competition, Spanish Economic

Review, 2, 65-71.

[9] Mas-Colell, A.; M. Whinston and J. Green, 1995, Microeconomic Theory, Oxford

University Press.

[10] Reny, P., 1999, On the existence of pure and mixed strategy Nash equilibria in

discontinuous games, Econometrica, 67, 1029-56.

[11] Rudin, W., 1976, Principles of Mathematical Analysis, McGraw-Hill.

[12] Spulber, D., 1995, Bertrand competition when rivals’ costs are unknown, Journal of

Industrial Economics, 43, 1-11.

[13] Tirole, J., 1988, The Theory of Industrial Organization, MIT Press.

9



[14] Vives, X., 1999, Oligopoly Pricing: Old Ideas and New Tools, MIT Press.

[15] Weibull, J., 2006, Price competition with convex costs, unpublished manuscript.

10


