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Abstract

This paper re-examines the Hotelling two-stage mill-pricing duopoly
game, with the �rms uncertain of the exact location of the demand at the
time of choosing locations. A model is proposed that allows changes in the
degree of demand uncertainty while preserving the average demand across
all states of nature. This adjustment leads to strikingly di¤erent compara-
tive statics results from those present in the existing literature. The e¤ect
of uncertainty is found to be similar to that of price discrimination in the
�certainty�model, as it leads to a decrease of product di¤erentiation, pro�t
reduction and social welfare improvement, with the standard �certainty�
results appearing as limiting cases.
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JEL Classi�cation: C72, D43, D81, L13, R32

1 Introduction

Since the publication of Hotelling�s original paper [7], spatial product di¤eren-
tiation has been a long debated issue in economic literature. First questioned
on the grounds of the "purely spatial" model [4], the initial "Minimum Dif-
ferentiation Principle" was eventually overturned by d�Aspremont et al. [3].
They showed that in a two stage location-then-price duopoly with quadratic
transportation costs and mill-pricing the �rms maximize product di¤erentia-
tion to the largest possible extent. Two well-established extensions of the latter
framework form the baseline of this paper.
First, the model with unconstrained locations [9] illustrates that the duopolists

may, in fact, choose to di¤erentiate beyond the market�s boundaries when per-
mitted to do so. In particular, the unique pure strategy Subgame-Perfect NE
has the �rms located a quarter of the market�s length outside the opposite
boundaries.

1 I would like to thank prof. Paul Madden for all his support and prof. Takatoshi Tabuchi
for his comments on the �nal draft of the paper. This work was supported by the Economic
and Social Research Council [grant number ES/G016321/1].

2Department of Economics, The University of Manchester, M13 9PL Manchester, UK.
e-mail: Michal.Krol@manchester.ac.uk

1



On the other hand, in the model with discriminatory pricing [5] the �rms
deliver the goods to the consumers with the discretion to set a di¤erent price
at each location. Here, the unique SPNE is socially optimal with the �rms now
located inside the market, at its �rst and third quartile.
However, one assumption that could be criticised as somewhat unrealistic,

is that the �rms are certain of what the distribution of consumer tastes is, even
before making the �rst-stage location decisions. In fact, a number of papers
introduced some form of demand uncertainty into the Hotelling setting. Balvers
and Szerb [2] study the e¤ect of random shocks to the products�desirability
under �xed prices. Harter [6] examines the uncertainty in the form of a uniformly
distributed random shift of the (uniform) customer distribution, where the �rms
locate sequentially. Other papers, such as [1], concentrate on the strategic e¤ect
of acquiring information about the demand through price-experimentation.
But there are two approaches to the problem which are of a particular impor-

tance to this study. Unlike the papers listed above, they preserve the structure
of the conventional "certainty" models (despite, of course, adding uncertain de-
mand), so that these models can be used as benchmarks when assessing the
e¤ect of uncertain demand. In particular, Izaga [8] adapts the same form of
uncertainty as Harter, but the duopolists locate simultaneously. The second
study, conducted by Meagher and Zauner ([10], [11]), adapts the same setting,
but also parametrizes the support of the random variable that shifts the cus-
tomer distribution, which allows for comparative statics.
Those two approaches, discussed in more detail in the next section, rely

on the idea of a uniformly distributed additive shock as a representation of the
demand uncertainty. First introducing the shock and then increasing the spread
of its distribution is said to represent the growing uncertainty about consumer
tastes. Consequently, any resulting changes in the outcome of the game are
attributed to the fact that the demand is becoming more uncertain, ignoring the
potential e¤ects of changes in the average demand. As the spread of the shock
increases, some people in some states of nature begin to display preferences that
were not seen before, while other sorts of tastes are becoming less common. It is
therefore not obvious that the associated changes in equilibrium characteristics
are due to the increase of uncertainty and not to the fact that, on average terms,
the customer distribution is changing its shape.
For instance, consider a market for sweets in which the only two �rms present

are certain that the consumers prefer reduced sugar products and this is what
they choose to provide. Suppose now that the duopolists come to believe that
it is equally likely that people will start choosing ordinary sweets in favour of
the reduced-sugar ones. As a result, each �rm decides to specialise in a di¤erent
type of product, i.e. product di¤erentiation increases. But is this an e¤ect of
the increased demand uncertainty or simply of the fact that, on average across
all states of nature, the spread of consumer tastes has become wider?
The above seems to suggest a way of re-examining the comparative statics

of the Hotelling game with respect to demand uncertainty. Maintaining the
general structure of Meagher and Zauner�s analysis, it might be interesting to
adjust it so that it would allow to study the e¤ects of changing the uncertainty of
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the demand, while leaving it on average the same. In other words, the question
is what happens when the consumer mass in any area of interest to the �rms
still has the same expected value, but is more variable than before. This will be
addressed by modelling a change in demand uncertainty in the following way.
Take an arbitrary point on the line representing consumer tastes and consider

a set of all points located on one side (i.e. to the left or to the right) of the
point selected (in what follows, any such set will be called a "half-market").
That is to say, take any subset of the space of consumer tastes that a duopolist
might capture for some combination of locations and prices. With any such
half-market we can associate a random variable representing the total mass
of consumers located there. This paper investigates what happens when, for
every half-market, the distribution of the associated random variable undergoes
a mean-preserving spread, i.e. when the associated demand allocation becomes
more risky, but remains on average the same.
This could allow to disentangle the e¤ect of changing the demand uncertainty

from that of changes in its average level. In a similar way, in order to determine
an individual�s attitude towards risk, it is more helpful to present this person
with a choice of two lotteries with equal expected values but di¤erent levels of
risk, rather than with a pair of lotteries that di¤er with respect to both of these
factors. For those reasons, a model that allows increasing the uncertainty of the
demand while leaving it on average the same could be a valuable addition to
the ones present in the existing literature.
The paper is structured as follows. Section Two de�nes the general form

of the problem to be discussed, and provides a more detailed assessment of
the existing research. Sections Three and Four describe the model and derive
its SPNE respectively. Section Five examines the implications of the obtained
equilibrium characteristics, conducting comparative statics of product di¤eren-
tiation, pro�ts and social welfare. Section Six summarises the results.

2 Theoretical Background

2.1 Location-then-price Game with Demand Uncertainty

Suppose that, as in the standard Hotelling framework, there are two �rms com-
peting in a linear market with uniformly distributed consumers and quadratic
transportation costs.
In the �rst stage of the game, �rms simultaneously choose locations, x1 and

x2, where without loss of generality x1 � x2. In the second stage, with locations
�xed, the �rms simultaneously set prices, p1 and p2, knowing that a consumer
located at x will purchase one unit of the good from �rm 1 if:

p1 + t(x� x1)2 < p2 + t(x� x2)2

or from �rm 2 if the opposite strict inequality holds (t > 0 represents trans-
portation costs and we assume without loss of generality that the production
cost is zero).
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The di¤erence from the �standard�model is that at the time of choosing x1
and x2, the �rms are uncertain of the exact location of the demand. All they
know is that in each state of the world the distribution of customers will be
uniform, speci�cally U(Z;Z + c), where Z � U(a; b) is itself random and a; b; c
are (known) constants.
Crucially, the �rms learn the realisation of Z after they choose locations

but before setting prices. Assuming risk-neutrality, it is then possible to de�ne
payo¤s in the reduced single stage game as the �rms�expectations of the second-
stage equilibrium pro�ts with respect to the distribution of Z. One can then
�nd the SPNE locations as the equilibrium strategies of the reduced game.

2.2 Existing research

Two studies of the demand uncertainty problem, as outlined above, can be found
in the literature:

1. Izaga [8] compares the standard certainty model with unconstrained loca-
tions (as in [9]) with a particular instance of the above problem: a = 0,
b = c = 1. He �nds that in equilibrium x�2 � x�1 = 1 59 > 1

1
2 (the certainty

case) and concludes that demand uncertainty increases product di¤eren-
tiation.

2. Meagher and Zauner ([10] and [11]) extend this analysis to allow for com-
parative statics of welfare. They introduce a parameter L > 0 intended
to represent the degree of uncertainty and consider a continuum of games
where a = �L�1

2 , b = L�1
2 and c = 1. Having derived the SPNE lo-

cations in terms of L, they conclude that demand uncertainty increases
product di¤erentiation and can have a positive or negative welfare e¤ect,
depending on the value of L.

Both studies rely on spreading the distribution of Z (i.e. increasing b � a)
while holding c �xed as a representation of an increase in the demand uncer-
tainty. The next subsection argues that this could lead to certain di¢ culties
with interpreting the resulting changes in equilibrium characteristics.

2.3 The average customer distribution

As indicated before, in this paper we are interested in comparing situations
di¤erent with respect to the degree of demand uncertainty but with other factors
held constant. In particular, the customer distribution, despite becoming more
or less uncertain, should remain on average the same. Before proceeding, the
latter notion needs to be clari�ed.
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De�nition 1 the average customer distribution (over all states of nature)
is given by the following density function:

h(x) =

Z +1

�1
f(x; z)� g(z) dz (1)

where f(x; z) is the customer density at location x when the state-of-nature
determining variable Z takes a value z, and g is the PDF of Z

This implies that the expected value of the customer mass located between
any two points x0 and x1 is equal to

R x1
x0
h(x)dx: In particular, for the model

described in subsection 2.1, we have Z � U(a; b) and f(x; z) is the PDF of
U(z; z + c), i.e.:

g(z) =

�
1
b�a
0

for a � z � b
otherwise

and f(x; z) =

�
1
c
0

for z � x � z + c
otherwise

Hence, (1) takes the following form, illustrated in Fig. 1:

h(x) =
1

c (b� a) �

8>><>>:
x� a a � x < minfb; a+ cg

minfc; b� ag minfb; a+ cg � x < maxfb; a+ cg
b� x+ c maxfb; a+ cg � x � b+ c

0 otherwise

(2)

It follows from (2) that the "uncertainty" case in Izaga�s model (a = 0,
b = c = 1) is associated with the following average customer distribution:

h(x) =

8<: x 0 � x < 1
2� x 1 � x � 2
0 otherwise

(3)

This is a symmetric triangular distribution with support on [0; 2], clearly di¤er-
ent from U(0; 1).
Similarly, in Meagher and Zauner�s model the spread of the average distrib-

ution is (see Fig. 1): (b+ c)� a = L+ 1; increasing in L. Moreover, for L < 1
the average distribution becomes more centralised as L increases, for L = 1 it
is symmetric triangular and for L > 1 it decentralises again.

Fig. 1 The average customer distribution over all states of nature
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Thus, in both cases, one may suspect that the observed changes in equilib-
rium characteristics are brought about by, loosely speaking, a convolution of
three factors:

1. a change in the spread of the average customer distribution: any increase
of (b + c) � a is likely to also increase the equilibrium level of product
di¤erentiation, just as happens under certainty.3 Expected pro�t maxi-
mizers are motivated to move away from one another into more distant
areas when more consumers (on average) are located there. In fact, this
could help understand the unbounded increase of both product di¤eren-
tiation and pro�ts in the model by Meagher and Zauner when L ! 1,
as this is exactly what happens in the certainty case when the support of
the customer distribution expands (but is di¢ cult to interpret as a result
of simply increasing the uncertainty)4

2. a change in the shape of the average distribution (rectangular vs. trape-
zoidal / triangular): the �rms have a motivation to move closer to one
another, i.e. reduce product di¤erentiation, when on average there are
more customers in the centre of the market. See [13] for a study of this
e¤ect in the certainty case.5

3. a change in the demand uncertainty, understood as a change of the riski-
ness of the customer mass distribution for at least some half-markets.

Consequently, it is di¢ cult to assess how much of the observed variation in
the equilibrium locations is due to (3.) and how much due to the accompanying
changes (1.) and (2.). Hence, in this paper, we attempt to disentangle the e¤ect
of (3.) from those of (2.) and (1.). The following section presents a model in
which it is possible to manipulate the spread of the additive shock while holding
the support of the average distribution �xed, thereby eliminating any potential
e¤ect of (1.). Within this framework, a way is then proposed of making pairwise
comparisons such that any variation in (2.) is also removed and the e¤ect of
(3.) is unambiguous, in the sense that the customer mass distribution becomes
more risky for every half-market.
After the SPNE of the model are worked out, this leads to a number of

statements as to the ceteris paribus e¤ect of demand uncertainty, represented
by a mean-preserving spread of the customer mass distribution for every half-
market.

3 it follows directly from [9] that x�2�x�1 =
3
2
c, where c is the length of the market and also

the spread of the average distribution under certainty (i.e. when a = b = 0)
4This also means that the consumers�reservation price, even if high enough to be ignored

in the certainty case, is exceeded for L big enough and the validity of the model could then
be questioned.

5For a symmetric triangular distribution with support on [0; 1], there are two assymmetric
SPNE, each with a di¤erentiation of 7

3
p
6
� 0:95 < 3

2
(the [0; 1] uniform distribution case)
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3 The Model

Suppose the setting is as in subsection 2.1 with a = 0; b = 1 � m; c = m,
where m 2 [0; 1] is a parameter determining the size of the market in each state
of nature, as well as the support of the shock Z to the market�s position. In
particular:

� m = 1 implies a = b = 0, i.e. the shock is always zero and the size of the
market is c = m = 1, which means the customer distribution is always
U(0; 1) : the standard certainty case

� as m decreases, so does the size of the market in a particular state. At
the same time, the spread of the distribution of Z increases by the same
amount. Hence, the ratio of the size of the market in a particular state to
the size of the support of Z decreases, just as happens in the model by
Meagher and Zauner when L is getting bigger.

� �nally, when m = 0, we have c = 0, which we interpret as everyone being
located at the same point, the distribution of which is U(0; 1). Interest-
ingly, the following statement is true.

Proposition 2 The Hotelling mill-pricing Model with demand uncertainty and
a = c = 0; b = 1 is equivalent to the certainty model with price discrimination
and customer distribution U(0; 1).

Proof. Consider the second stage subgame of the game with uncertainty where
all customers are located at z. Because of that, the �rm that is cheaper to buy
from for consumers at z will attract the total (unit) demand and the two �rms
will engage in a Bertrand-style competition. In equilibrium, the �rm closer to
z (an equivalent of a cost advantage) takes the entire market by setting a price
that makes everyone indi¤erent between its o¤er and that of the other �rm given
it sets its price to zero. Hence, the pro�t of �rm i in state z is:

�i(x1; x2; z) = maxft
h
(x�i � z)2 � (xi � z)2

i
; 0g

and is the same as the pro�t of �rm i in the subgame associated with location z
in the certainty model with price discrimination. Pro�ts in the reduced single-
stage game are expectations of the above with respect to the distribution of Z,
i.e.:

�i(x1; x2) =

Z 1

0

�i(x1; x2; z) dz

which is the same as the payo¤ function of the reduced game in the certainty
model (see [5]).

We may take Fig.1 and substitute for a; b; c to see how changing the value
of m a¤ects the average customer distribution.
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Fig. 2 The average customer distribution for a given value of m

First of all, the support of h is [0; 1]; regardless of m. That is not to say
that the shape of the distribution is maintained. For m = 0 the distribution is
U(0; 1), but as uncertainty decreases, it becomes trapezoidal and the �uniform�
segment [minf1�m;mg;maxf1�m;mg] initially decreases, until at m = 1

2
the distribution becomes triangular and the process is reversed, until it is again
U(0; 1) at m = 1. Thus, if we compare equilibria in this model associated with
di¤erent values of m, we need to be aware of the fact that, despite holding the
support of the average distribution �xed, some variation in �rm locations may
still be an e¤ect of the average distribution becoming more or less centralised.
The problem may be avoided by considering pairs of situations where m =

1
2 �v, v 2

�
0; 12

�
(i.e. two values of m symmetric with respect to 1

2 ). In the case
of m = 1

2 � v we have a = 0; b =
1
2 + v; c =

1
2 � v. Hence, (2) becomes:

h(x) =
1�

1
2 � v

� �
1
2 + v

� �
8>><>>:

x x 2
�
0; 12 � v

�
1
2 � v x 2

�
1
2 � v;

1
2 + v

�
1� x x 2

�
1
2 + v; 1

�
0 otherwise

which is also the case form = 1
2+v = 1�

�
1
2 � v

�
=) a = 0; b = 1

2�v; c =
1
2+v.

Let Dm
x denote the random variable representing the customer mass located to

the left of x; given a particular value of m: It follows that:

8x;m : E (Dm
x ) = E

�
D1�m
x

�
Moreover, the following is true.

Proposition 3 For every m 2 (0; 1=2) and every x 2 (0; 1), the distribution of
Dm
x is a mean-preserving spread of the distribution of D1�m

x :

Proof. Let Fmx (s) = Pr (Dm
x � s) : The demand located to the left of x is

non-increasing in the value of the shock (z) : We have:

(x� z) 1
m
= s, z = x�ms
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Hence, for s 2 [0; 1] ; Z � U(0; 1�m) and Z0 � U(0; 1) :

Fmx (s) = Pr (Z � x�ms) = Pr (Z0 � (x�ms) = (1�m))

so that:

for
x�ms
1�m � x� (1�m) s

1� (1�m) , s � x we have Fmx (s) � F 1�mx (s)

Conversely, for s � x we have Fmx (s) � F 1�mx (s) : Together with the equality
of means (

R
sdFmx (s) =

R
sdF 1�mx (s)) this implies:

8y :
Z y

0

Fmx (s) ds �
Z y

0

F 1�mx (s) ds

i.e. Fmx (s) is a mean-preserving spread of F
1�m
x (s) :

By symmetry, Proposition 3 is also valid when we think of Dm
x as the con-

sumer mass located to the right of x. This means that the customer mass dis-
tribution associated with any half-market has exactly the same expected value,
but is more risky for the smaller of any two symmetric values ofm. We will refer
to this situation as an unambiguous mean-preserving increase of uncertainty.

4 SPNE analysis

Proposition 4 The location-then-price Hotelling game with uncertainty and
customer distribution U(Z;Z +m); where Z � U(0; 1 �m); has a unique pure
strategy SPNE with the equilibrium locations as follows:(

x�1 = 1� x�2 = 8m2�1
8m�4 if 0 � m < 1

4

x�1 = 1� x�2 = 20m�28m2�1
36m if 14 � m � 1

Proof.6 To begin with, consider the 2nd stage subgame of the above game
associated with locations x1; x2 and state of nature z, i.e. a price-competition

6As an alternative, one could make an assumption of scale invariance and indirectly infer
the solution from the one given by Meagher and Zauner:�

�x�1 = x�2 =
�
27� L2

�
=36 if 0 < L � 3

�x�1 = x�2 =
�
5 + L2 � 2L

�
=4(L� 1) if L > 3

Shifting the distribution of Z by (L + 1)=2 and re-scaling it, as well as the size of the mar-
ket, by the same factor of 1=(L + 1) should result in the equilibrium undergoing the same
transformation, namely:8<: bx�1 = 1� bx�2 = �L2�2736

+ L+1
2

�
1

L+1
= 18L�L2�9

36(1+L)
if 0 < L � 3bx�1 = 1� bx�2 = � 5+L2�2L4�4L + L+1

2

�
1

L+1
= 2L+L2�7

4(L2�1)
if L > 3

to be the SPNE locations when a = 0; b = L=(L+ 1); c = 1=(L+ 1). Setting L = (1�m)=m
gives a = 0; b = 1 � m; c = m and the above solution reduces to the one stated in the
proposition. Despite validating this conjecture, the (longer) proof given here also has the
advantage of providing explicit formulae for the payo¤ and best-response functions, which is
useful when interpreting the results in Section 5.
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with given �rm locations and customer distribution U(z; z +m). It follows (as
a simple generalisation) from [9] that the �rms�equilibrium pro�ts satisfy one
of the three cases:

1. if z < x � 2m, where x = x1+x2
2 , then the customer distribution is close

enough to the 1st �rm and su¢ ciently far away from the 2nd for the �rst
�rm to capture the entire market in equilibrium. Pro�ts are then:(

t(2(z +m)� x1 � x2)(x1 � x2) player 1

0 player 2
(4)

2. if x � 2m � z < x +m, then no �rm can capture the entire market and
equilibrium pro�ts are:(

t(x2�x1)(x1+x2�2z+2m)2
18m player 1

t(x2�x1)(x1+x2�2z�4m)2
18m player 2

(5)

3. if x+m � z, then case 1 is reversed and �rm 2 captures the entire market,
resulting in pro�ts of:(

0 player 1

t(x1 � x2)(x1 + x2 � 2z) player 2
(6)

The players�payo¤s in the game are expectations of the above pro�ts with
respect to the distribution of z, i.e. U(0; 1 � m). Taking into account that
one only needs to consider the values of z inside [0; 1 � m], it is possible to
de�ne z1 = max fmin fx� 2m; 1�mg ; 0g ; z2 = max fmin fx+m; 1�mg ; 0g
and write the payo¤ of player 1 as:

CASE 1.z }| {
z1Z
0

t(2(z +m)� x1 � x2)(x1 � x2)
1�m dz +

CASE 2.z }| {
z2Z
z1

t(x2 � x1)(x1 + x2 � 2z + 2m)2
18m (1�m) dz

By considering di¤erent cases with respect to z1; z2 and integrating accordingly,
the above expression may be written as a piecewise function, the precise form
of which depends on the value of m.
As for the second player, consider a pair of locations x01 = 1�x2, x02 = 1�x1

and z0 = 1 �m � z. Observe that according to (4)-(6) the NE pro�t of player
2 given locations (x01; x

0
2) and customer distribution U (z

0; z0 +m) is the same
as the NE pro�t of player 1 given locations (x1; x2) and customer distribution
U (z; z +m). In other words, given a pair of locations symmetric with respect
to 1

2 to the original ones, for every s.o.n. z there is a (symmetric) z
0 2 [0; 1�m]

such that the NE pro�t of the player located at x01 in state z
0 is equal to the NE

pro�t of the player located at x2 in state z. Since z is uniformly distributed,
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the expected pro�t of the x2 player must be equal to that of the x01 player, i.e.
we may write:

E�2 (x1; x2) = E�1 (1� x2; 1� x1) (7)

where E�i (�) is the expected pro�t of player i. Thus, in what follows we focus
on the analysis of player 1, as the payo¤ and best-response functions of the
second player can then be easily obtained. The analysis is split into two parts.

4.1 Case 0 < m < 1
4
("A")

In this situation it is impossible for the �rms to share the market in all states
of nature, i.e. z1 = 0, x� 2m � 0 implies x+m < 1�m, z2 < 1�m and
z2 = 1�m implies z1 > 0. Consequently, the payo¤ of player 1, E�A1 (x1; x2) ;
becomes:8>>>>>>><>>>>>>>:

0 x1 � �2m� x2
2t(x2�x1)(m+x)3

27(1�m)m �2m� x2 < x1 � 4m� x2
t(x2�x1)(2m(m�x)+x2)

1�m 4m� x2 < x1 � 2� 4m� x2
38m3�2(x�1)3+3m(2+x)(5x�2)�6m2(13x�4)

27(1�m)m[t(x2�x1)]�1
2� 4m� x2 < x1 � 2 + 2m� x2

t(x2 � x1)(2x� 1�m) x1 > 2 + 2m� x2

Notation 5 Let '[[j:a]] denote the functional form constituting the j-th seg-
ment of the piecewise function ' and let '[[j:b]] denote the associated inequality
condition.

For instance, E�A1 [[2:a]] =
2t(x2�x1)(m+x)3

27(1�m)m and E�A1 [[1:b]] represents x1 �
�2m� x2:

The corresponding best-response function BRA1 (x2) is:8>>>>>>><>>>>>>>:

x
2

x2 � �m
1
2 (x2 �m) �m < x2 � 3m
1
3

�
4m� x2 + 2

p
x22 � 2m2 � 2mx2

�
3m < x2 � 16m�22m2�3

�2+6m

2nd root (with respect to x1) of:
@E�A1 [[4:a]]

@x1
16m�22m2�3

�2+6m < x2 � 3+3m
2

1+m
2 x2 >

3+3m
2

and the unique SPNE locations are:

x�1 = 1� x�2 =
8m2 � 1
8m� 4 (8)

(see the Appendix for details of the proof).
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4.2 Case 1
4
� m < 1 ("B")

In this case it is possible for the �rms to share the market in all states of nature,
i.e. we may have z1 = 0 () x� 2m � 0 and z2 = 1�m , x+m � 1�m,
since 1 � 2m � 2m , m � 1

4 . Moreover, z1 > 0 implies z2 = 1 � m and
z2 < 1�m implies z1 = 0, i.e. at most one �rm can capture the whole market
in some states of nature. The payo¤ of player 1, E�B1 (x1; x2) ; becomes:8>>>>><>>>>>:

0 E�A1 [[1:b]]
E�A1 [[2:a]] �2m� x2 < x1 < 2� 4m� x2
2t(x2�x1)((x+m)3�(x+2m�1)3)

27(1�m)m 2� 4m� x2 � x1 � 4m� x2
E�A1 [[4:a]] 4m� x2 < x1 < 2 + 2m� x2
E�A1 [[5:a]] E�A1 [[5:b]]

leading to a best response function BRB1 (x2):8>>>>><>>>>>:

x2 x2 � �m
BRA1 [[2:a]] �m < x2 � 1

3 (4� 7m)
2�6m�x2+2(2m2�m�x2+3mx2+x22)

1=2

3
1
3 (4� 7m) < x2 � '0 (m)

BRA1 [[4:a]] '0 (m) < x2 � '1 (m)
BRA1 [[5:a]] x2 > '1 (m)

where '0 (m) and '1 (m) are certain increasing functions of m. BR
B
1 (x2) is

discontinuous for m > 2
3 ; but it does not a¤ect the equilibrium. The SPNE

locations are still unique, speci�cally:

x�1 = 1� x�2 =
�
20m� 28m2 � 1

�
=36m (9)

(again, see the Appendix for details).

5 Comparative Statics

5.1 Product Di¤erentiation

It follows from (9) that for m ! 1 the SPNE locations approach the ones
associated with the unconstrained "certainty" Hotelling Model (as in [9]). This
is also the case as L! 0 in Meagher & Zauner�s model.
The new feature here is that the other limiting case, for m! 0, is the "cer-

tainty" Hotelling Model with price discrimination, in which the SPNE locations
are x�1 =

1
4 and x

�
2 =

3
4 :

The piecewise function giving the SPNE locations for a given m (depicted
in Fig. 3 below) has a "kink" at m = 1

4 , i.e. at the point of "switching" from
case "A" and the solution (8) to case "B" and the solution (9). The locations
are closest to one another at m� = 1

4

�
2�

p
2
�
� 0:15, with equilibrium product

12



di¤erentiation decreasing in m for m 2 [0;m�] and increasing otherwise. Most
importantly, when we look at the pairs of symmetric values of m; i.e. consider
m = 1

2�v, v 2
�
0; 12

�
, it is obvious that the lower value ofm is always associated

with less product di¤erentiation.

Fig. 3 The SPNE locations for di¤erent values of m

Corollary 6 In a location-then-price Hotelling game with uncertainty and cus-
tomer distribution U(Z;Z+m); where Z � U(0; 1�m), an unambiguous mean-
preserving increase of uncertainty decreases the SPNE product di¤erentiation.

What could explain the e¤ect associated with m 2 [0;m�] is the fact that for
m < 1

2 any increase of m results in the average customer distribution becoming
more centralised, despite its support being held constant. A larger customer
base in the centre of the market is what convinces the �rms to move even more
towards it. However, the same increase of m also creates opportunities for
sharing the market in more and more states of nature. Thus, it is becoming
more and more bene�cial to "accommodate", rather than "�ght" and there is
no better way in this framework to weaken the price competition than by spatial
di¤erentiation. Eventually, that second tendency "overpowers" the �rst one and
the equilibrium level of di¤erentiation begins to increase.
This can be seen by looking at the best-response curves depicted in Fig.

4 below. The dashed downwards sloping line corresponds to x1 = 1 � x2 and
hence its intersection with the BR function gives the symmetric SPNE locations.
In general, as m increases, the BR curve shifts downwards, approaching the
dotted bottom BR curve of the �certainty�mill-pricing model. Consequently,
the duopolists locate further away from each other.

13



Fig. 4 The best-response function of player 1 for di¤erent values of m

This is, however, not true for m < 0:15 and the relatively �more concave�
section of the BR function, corresponding to Player 1 securing a �hinterland�of
states of nature in which she takes the entire market. Initially, this section lies
above the other dotted line, representing the BR in the �certainty�model with
price discrimination, and bends upwards as m increases. This is because moving
further to the right allows to add some of the now more densely populated central
areas of the average distribution to the �monopolised�section of the probability
space. However, an increase of m also pushes the concave segment to the right,
as Player 2 now needs to be located further away from the centre for Player
1 to be able ever to take the entire market. Otherwise, moving rightwards
no longer increases one�s �monopoly area�, instead making price competition
stronger when the market is shared.

5.2 Pro�ts

Substituting the SPNE locations, as stated in Proposition 4 into the pro�t
function (speci�cally, into E�A1 [[3:a]] and E�

B
1 [[3:a]]) derived in Section 4, one

obtains the SPNE pro�t:

E�1 (x�1; x
�
2) =

8<:
(1�4m+8m2)

2
t

8+8m(2m�3) 0 < m < 1
4

(1�2m+28m2)
2
t

972m2
1
4 � m < 1

(10)

which is the same for both players, since:

E�2 (x�1; x
�
2) = E�1 (1� x�2; 1� x�1) = E�1 (x�1; x�2)

14



It is interesting to compare (10) with the pro�ts the �rms would earn were they
certain of the exact location of the demand at the time of choosing locations.
By a simple generalisation of [9] (to a market of sizem rather than 1), the SPNE
locations are:

x�1 = �
m

4
; x�2 =

5m

4

giving a pro�t of 3m
2t
4 to both players. This can be shown to be less than (10)

for 0 � m � 1. It is also clear from Fig. 5 that this pro�t loss due to more
information is larger for m = 1

2 � v than for m = 1
2 + v; where v 2 (0;

1
2 ]:

Corollary 7 In a location-then-price Hotelling game with uncertainty and cus-
tomer distribution U(Z;Z+m); where Z � U(0; 1�m), an unambiguous mean-
preserving increase of uncertainty decreases the SPNE pro�ts and increases the
pro�t loss due to certainty.

Fig. 5 the SPNE pro�t associated with uncertainty (black), certainty (grey)
and the di¤erence between the two (dashed) for di¤erent values of m (and

t = 1)

5.3 Social Welfare

What is, perhaps, more important, is the e¤ect of uncertainty on social welfare.
Since the demand is inelastic, the social welfare in a particular state of nature can
be measured by (minus) the total transportation cost incurred by all consumers
in this state. But since the state is uncertain, we consider the expectation, or
average of this cost over all states. This is equal to:

ETC (m) =

(
7m�32m2+120m3�288m4+224m5�1

48(1�2m)2(m�1)=t for 0 < m < 1
4

28m+120m2�296m3+1208m4�7
3888m2=t for 1

4 � m < 1

(see the Appendix for derivation)
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Fig. 6 Expected Total Cost in equilibrium for di¤erent values of m and t = 1

The Expected Cost is minimized at m � 2=21 and slightly decreasing in m
below this value. This could be explained by the fact that, with locations close
to 1

2 , the in�ux of customers (in average terms) to the centre of the market will
decrease the average distance one has to travel in order to make a purchase.
Still, it is obvious from Fig. 6 that for any pair of symmetric values of m,

the lower value will result in a lower ETC. Hence:

Corollary 8 In a location-then-price Hotelling game with uncertainty and cus-
tomer distribution U(Z;Z+m); where Z � U(0; 1�m), an unambiguous mean-
preserving increase of uncertainty leads to a social-welfare improvement.

We may also want to compare the equilibrium ETC with the Planner�s �rst-
best optimal solution, where:

� 2nd stage prices are set equal to one another, so that each consumer buys
from the closer �rm

� the (symmetric) locations xso1 = 1� xso2 are chosen so as to minimize the
resulting Expected Total Cost

The corresponding socially-optimal ETC is:

ETCso (m) =

(
3�12m+24m2�24m3+8m4

144(m�1)2=t for m < 1
2

4m�8m3+8m4�1
144m2=t for m � 1

2

(11)

(again, see the Appendix for derivation).

Not surprisingly, this is symmetric, so that the symmetric pairs of values of m
are associated not only with the same average customer distribution but also
with the same minimum level of expected total transportation costs. In fact,
the di¤erence between the equilibrium and optimal expected costs is always
increasing in m (see Fig. 7 below).
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Fig. 7 The di¤erence between the equilibrium and the socially optimal
Expected Total Cost

As m ! 0, the model approaches the limiting case of the price-discrimination
model with the equilibrium being socially optimal and ETC = ETCSO .

5.4 Extensions

It is interesting to observe how the above results are a¤ected by two sorts of
changes:

� a change in timing. Suppose the value of Z is revealed to the play-
ers only after they have chosen their prices. The (expected) payo¤ of
player i in a second-stage (price-setting) subgame associated with a pair
of locations x1; x2 is now:

�i(x1; x2; p1; p2) = pi

Z 1�m

0

Di(x1; x2; p1; p2; z)
1

1�m dz (12)

where Di (�) is the demand in state z given locations and prices, i.e.:

D1(x1; x2; p1; p2; z) =

Z ex
�1
f (x; z) dx = 1�D2(x1; x2; p1; p2; z)

where ex (the "indi¤erent consumer") solves p1+t(ex�x1)2 = p2+t(ex�x2)2:
Noting that f(�) is jointly measurable and non-negative, we may reverse
the order of integration and, using (12), write the pro�t of pl.1 �1 (�) as:

p1

1�mZ
0

24 exZ
�1

f (x; z) dx

35 1

1�m dz = p1

1�mZ
0

24 exZ
�1

f (x; z)

1�m dx

35 dz

= p1

exZ
�1

24 1�mZ
0

f (x; z)

1�m dz

35 dx = p1

exZ
�1

h (x) dx
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i.e. the payo¤ function is the same as in the certainty game with the
customer distribution equal to the average customer distribution of the
game with uncertainty (recall De�nition 1). As the same is true for player
2, the two games are equivalent. Consequently, demand uncertainty itself
will have no e¤ect on the outcome of the game when disentangled from
the e¤ect of changes in the average demand. In particular, m = 1

2 � v
now represents exactly the same game as m = 1

2 + v; because the average
distribution is unchanged and so are the payo¤ functions.

� a change in the pricing rules. Speci�cally, suppose that mill pricing
is replaced by price discrimination, as in the model described by [5]. This
means a Bertrand-style competition at every location in every state of
nature. In particular, the equilibrium pro�t of �rm i at location x is:

�i (x1; x2; x) = maxft
h
(x�i � x)2 � (xi � x)2

i
; 0g

This is integrated with respect to the state-dependant customer distribu-
tion function to give the total pro�t (from all locations) in state z:

+1Z
�1

�i (x1; x2; x)� f (x; z) dx

Consequently, the total expected pro�t (the payo¤ function of the reduced
game) is:

�i (x1; x2) =

1�mZ
0

24 +1Z
�1

�i (x1; x2; x) f (x; z) dx

35� 1

1�m dz =

+1Z
�1

24 1�mZ
0

�i (x1; x2; x) f (x; z)

1�m dz

35 dx = +1Z
�1

�i (x1; x2; x)h (x) dx

and is the same as the payo¤ in the price discrimination game under
certainty, with the customer distribution equal to the average customer
distribution in the game with uncertainty7 . Hence, an unambiguous mean-
preserving increase of uncertainty has again no e¤ect on the outcome.

This suggests that the role of demand uncertainty lies in the extra discretion
or �exibility of the �rms to di¤erentiate their prices across states of nature. As
the market becomes smaller relative to the support of the shock a¤ecting its
placement, this di¤erentiation becomes more and more similar to perfect price
discrimination with respect to physical locations. But when the said discretion is
eliminated by a change of timing, or when it is already embedded in the pricing

7Note that the joint measurability of �i (x1; x2; x)� f (x; z) was used to reverse the order
of integration.
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rule, introducing demand uncertainty or increasing it has, ceteris paribus, no
e¤ect at all. The question then simply reduces to investigating the e¤ect of
re-shaping the customer distribution in a certainty model and has already been
considered in the literature (see, for example [13] or [12]).

6 Concluding Remarks

In this paper, the problem of a Hotelling duopoly facing an uncertain demand
is re-examined in a slightly di¤erent framework to the one present in the litera-
ture. The simplifying assumption of uniformly distributed additive shock to the
(uniform) customer distribution is preserved. However, in this modi�ed setting
demand uncertainty is modelled as a mean-preserving spread of the customer
mass distribution in every half-market.
Once the SPNE locations are obtained, the above feature makes it possible to

see what happens when customer tastes become more uncertain while remaining
on average the same. This allows re-examination of the comparative statics
with respect to demand uncertainty, with the e¤ect of changes in the average
distribution removed from the analysis.
The results are strikingly di¤erent from the existing studies of this prob-

lem. Most importantly, the e¤ect of demand uncertainty seems to be similar to
that of price discrimination in a certainty model. When allowed to set di¤erent
prices for di¤erent realisations of customer demand, the �rms are e¤ectively
price-discriminating between states of nature. As the size of the market in a
particular state decreases, the �exibility of price di¤erentiation increases, ap-
proaching the discretion of setting prices independently at each physical loca-
tion. Furthermore, the second-stage price-competition becomes more and more
similar to the Bertrand Model with asymmetric costs. The �rm closer to the
customer distribution (equivalent of a cost advantage) takes the entire market,
earning a pro�t that depends on how much the transportation costs of getting to
the "losing" �rm exceed those of reaching the winner. As a result, the individual
(expected) pro�ts become more and more related to the total (expected) trans-
portation costs incurred by the customers. Consequently, the �rms implicitly
begin to pursue a socially desirable objective. Whenever the uncertainty in-
creases for a given average demand, product di¤erentiation falls, pro�ts decline
and social welfare gets closer to the optimal level. As the size of the market
in a particular state goes to zero, the model approaches the limiting case of
the standard Hotelling Model with price discrimination and a socially optimal
outcome.
On the other hand, when di¤erentiating the prices is ruled out by a change of

timing, or when it is already present under certainty, then making the demand
more uncertain, while holding it on average the same, ceases to have any e¤ect
on the actions of expected-pro�t maximizing �rms.
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APPENDIX

Best-Response and Equilibrium derivation for subs. 4.1

We proceed to derive the best response function of �rm 1 to the opponent�s
location, i.e. the maximum of E�A1 over x1 2 (�1; x2] for a given value of x2.
The �rst thing to do is to �nd all local maximum points of the payo¤function,

by taking each of its segments in turn, �nding any local maximum points of the
associated function and the values of x2 such that those local maximum values
of x1 will satisfy the associated condition on x1. We have:

1. @E�A1 [[2:a]]
@x1

= t(m+2x1�x2)(2m+x1+x2)2
54(�1+m)m . This has two roots, one of which,

x1 =
1
2 (x2 �m), is a local maximum.

We have �2m�x2 < 1
2 (x2 �m) � 4m�x2 , �m < x2 � 3m : for those

values of x2 this is the local maximum of the payo¤ function.

2. @E�A1 [[3:a]]
@x1

=
t(8m2�8mx1+(3x1�x2)(x1+x2))

4(�1+m) has two roots, where the larger

one, x1 = 1
3

�
4m� x2 + 2

p
x22 � 2m2 � 2mx2

�
is a local maximum and

satis�es E�A1 [[3:b]] i¤ 3m < x2 � 16m�22m2�3
6m�2

3. @E�A1 [[4:a]]
@x1

=

=
38m3+6m2(4�13x1)�2(2x1�x2�1)(x�1)2+ 3m

4 (32x1+15x
2
1+10x1x2�5x2�16)

27(m�1)m=t

The function E�A1 [[4:a]] is a 4th order polynomial in x1 and has a limit of
+1 as x1 ! �1. Thus, we are interested in the 2nd (middle) root of the
corresponding cubic derivative. This root is real and satis�es E�A1 [[4:b]]
i¤ �3+16m�22m2

�2+6m < x2 � 1
2 (3 + 3m).

4. @E�A1 [[5:a]]
@x1

= t(1 +m� 2x1) has a unique root x1 = 1+m
2 which is a local

maximum and satis�es E�A1 [[5:b]] i¤ x2 >
1
2 (3 + 3m).

The above intervals on x2 are mutually exclusive: for every value of x2 player
1�s payo¤ function has exactly one local maximum (except for x2 � �m, when
the payo¤ is always zero and we assume player 1 chooses x1 = x2 so as to reduce
the payo¤ of player 2 to zero as well). Moreover:

� both the payo¤ and its derivative are continuous (to see this, it is su¢ cient
to verify that there are no discontinuities at the points of switching from
one functional form to another)

� lim
x1!�1

E�A1 (x1; x2) = lim
x1!x�2

E�A1 (x1; x2) = 0

� 8x1 < x2 : E�A1 (x1; x2) � 0
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Hence, we may conclude that any local maximum is a global maximum of the
payo¤ function on the (�1;x2] interval and write the best response function
BRA1 (x2) as stated in the main body of the paper.
We proceed to �nd the Nash Equilibrium. It follows from symmetry of the

game (and, speci�cally, equation (7)) that BRA2 (x1) = 1�BRA1 (1� x1) : Hence,
we may write the necessary condition as:�

x�1 = BR
A
1 (x

�
2)

x�2 = BR
A
2 (x

�
1) = 1� BRA1 (1� x�1) () 1� x�2 = BRA1 (1� x�1)

(13)

Let x = x�2, f = x�1, x
0 = 1 � x�1 and f 0 = 1 � x�2. The two points (x; f) and

(x0; f 0) must lie on the best-response curve of player 1. But since:

x0 � x = 1� x�1 � x�2 = f 0 � f

the points must also lie on a straight line with a slope of 1. It is straightforward

to verify that BRA1 (�) is continuous and that
@BRA1 (x2)

@x2
< 1 for x2 > �m. When

x2 � �m we have BRA1 (x2) = x2, which ensures zero payo¤s for both �rms in
all states of nature, so we can reject this as a potential equilibrium. Hence, the
only possibility for (13) to be satis�ed is when:

x0 � x = 0 () x�1 = 1� x�2
i.e. when the equilibrium locations are symmetric. So, we are looking for an x�2
such that:

1� x�2 = BRA1 (x�2) <
1

2

Since BRA1 (�) is non-decreasing, the solution must be unique. Solving:

1� x�2 = BRA1 [[3:a]] (x�2) =
1

3

�
4m� x�2 + 2

q
�2m2 � 2mx2 + (x�2)

2

�
we obtain a location x�2 =

8m�8m2�3
8m�4 satisfying BRA1 [[3:b]]; i.e.:

3m < x�2 �
16m� 22m2 � 3

�2 + 6m
as long as 0 < m < 1

4 :

Consequently, the pair of locations x�1 = 1 � x�2 = 8m2�1
8m�4 is the only one

such that x�1 maximizes E�
A
1 (x1; x

�
2) over x1 2 (�1;x�2] and x�2 maximizes

E�A2 (x
�
1; x2) over x2 2 [x�1;1).

It remains to verify that player 1 would not wish to locate optimally to the
right rather than to the left of player 2, which, by symmetry, also ensures that
player 2 would not wish to locate optimally to the left rather than to the right
of player 1. We need:

E�A1 (x
�
1; x

�
2) = E�

A
1 (BR

A
1 (x

�
2) ; x

�
2) �

E�A2 (x
�
2;BR

A
2 (x

�
2)) = E�

A
2 (x

�
2; 1� BRA1 (1� x�2)) =

E�A1 (BR
A
1 (1� x�2) ; 1� x�2) = E�A1 (BRA1 (x�1) ; x�1)
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Intuitively, E�A1 (BR
A
1 (x

�
2) ; x

�
2) �E�A1 (BRA1 (x�1) ; x�1) is true, i.e. it is better to

locate optimally to the left of x�2 than to the left of x
�
1 < x

�
2. Indeed, it is easy

to see from (4)-(6) that as x1 and x2 increase by the same amount, the pro�t of
player 1 does not decrease in any state z and that it strictly increases for some
z. Hence, the expected pro�t E�A1 (x1; x2) must increase. Consequently:

E�A1 (BR
A
1 (x

�
1) ; x

�
1) < E�

A
1 (BR

A
1 (x

�
1) + (x

�
2 � x�1); x�2) � E�A1 (BRA1 (x�2) ; x�2)

where the last inequality follows from the de�nition of BRA1 (�).
To conclude, (8) constitutes the unique SPNE, given that 0 < m < 1

4 .

Best-Response and Equilibrium derivation for subs. 4.2

As in the previous case, we proceed to �nd all local maximum points of the
payo¤ function E�B1 (x2):

1. We have: E�B1 [[2:a]] =E�
A
1 [[2:a]], so that x1 =

1
2 (x2 �m) is again the

local maximum and satis�es E�B1 [[2:b]] i¤ �2m � x2 < 1
2 (x2 �m) �

2 � 4m � x2 , �m < x2 � 1
3 (4 � 7m) : for those values of x2 this is a

local maximum of the payo¤ function.

2. @E�B1 [[3:a]]
@x1

= � t(28m2+(2�3x1)2+4m(�5+9x1)+6x1x2�3x22)
54m has two roots. The

larger one, x1 = 1
3

�
2� 6m� x2 + 2

p
2m2 � x2 + 3mx2 + x22 �m

�
is a

local maximum and satis�es E�B1 [[3:b]] i¤
1
3 (4� 7m) � x2 �

1�17m+79m2

�3+21m

3. The 2nd root of @E�
A
1 [[4:a]]
@x1

is real, corresponds to a local maximum and

satis�es @E�B1 [[4:b]]
@x1

i¤:

(a) 1
4 � m < 2

3 and
1�17m+79m2

�3+21m < x2 <
1
2 (3 + 3m), OR:

(b) 2
3 � m < 11

13 and � (m) � x2 <
1
2 (3 + 3m), where � (�) is a certain

function of m

4. Since E�B1 [[5:a]] =E�
A
1 [[5:a]] and E�

B
1 [[5:b]] =E�

A
1 [[5:b]]; x1 =

1+m
2 is

again a local maximum i¤ x2 > 1
2 (3 + 3m).

Unfortunately, the above intervals are mutually excludable for all values of
x2 only as long as 14 � m < 2

3 (see Fig. 8 below). When
2
3 � m < 11

13 , there is a
range of values of x2 such that local maxima associated with cases (2) and (3)
above will both appear (area A), while for m > 44+9

p
11

95 � 7
9 there is a range

where the same happens for the maxima associated with cases (2) and (4) (area
B). As far as area "B" is concerned, it can be shown that as long as m > 4

5 and
x2 <

18
35 +

30
11m, the local maximum (2) is associated with a larger value of the

payo¤ function. The same is true for the part of area "A" where m � 4
5 and

x2 <
1
16 (137� 57m)m�

103
55 .
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Fig. 8 Non-uniqueness of local maxima for m > 2
3

We may therefore de�ne:

'0 (m) =

8<:
1�17m+79m2

�3+21m
1
4 � m � 2

3
1
16 (137� 57m)m�

103
55

2
3 < m � 4

5
18
35 +

30
11m

4
5 < m < 1

and '1 (m) =
�

1
2 (3 + 3m)

1
4 � m � 4

5
18
35 +

30
11m

4
5 < m < 1

and write the best-response function BRB1 (x2) as stated. For
2
3 < m � 4

5 there
is a discontinuity at '0[[2:a]] (m): the global maximum "switches" from local
maximum (2) to a distant (3). For 4

5 < m there is a similar discontinuity at
'1[[2:a]] (m), associated with switching from (2) to (4).
As in the case of 0 < m < 1

4 , the necessary condition for a NE to occur is:�
x�1 = BR

B
1 (x

�
2)

1� x�2 = BRB1 (1� x�1)

Unlike in the previous case, however, it is not always true that @BR
B
1 (x2)
@x2

< 1 for
x2 > �m and BRB1 (�) is not always continuous. Hence, one has to proceed as
follows.
First of all, it must be that any equilibrium has x�1 <

1
2 < x

�
2:If both �rms

were located on the same side of 12 ; say x
�
1 < x

�
2 <

1
2 ; then player 1 could instead

locate optimally to the right of 2 and obtain:

E�B2 (x
�
2;BR

B
2 (x

�
2)) � E�B2 (x�2; x�2 + (x�2 � x�1)) = E�B1 (1� 2x�2 + x�1; 1� x�2) >

E�B1 (1� 2x�2 + x�1 � (1� 2x�2) ; 1� x�2 � (1� 2x�2)) = E�B1 (x�1; x�2)
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We can therefore rule out x�2 > '1 (m), because then x
�
1 =BR

B
1 (x

�
2) =

(1 +m) =2 > 1
2 : Similarly we can rule out 1 � x

�
1 > '1 (m) ,BRB1 (1� x�1) =

(1 +m) =2 = 1 � x�2 > 1
2 () x�2 <

1
2 . It is also true that x

�
2 > �m, since

x�2 >
1
2 and that 1 � x

�
1 > �m, since x�1 < 1

2 () 1 � x�1 > 1
2 . Recalling the

earlier notation:

x = x�2; f = x
�
1; x

0 = 1� x�1; f 0 = 1� x�2

we may, at this stage, conclude that the points (x; f) and (x0; f 0) need to lie
somewhere on the three "middle" segments of BRB1 (�) and to the right of 1

2 .
Moreover, since they must also lie on a line with a slope of 1 and we still have
@BRB1 (x2)

@x2
< 1 for x2 2 (�m;'0 (m)], at least the point located further to the

right must lie on BRB1 [[4:a]] (�) if the NE is not to be symmetric. The following
cases need to be considered:

1. both points lie on BRB1 [[4:a]] (�) : This can be ruled out, since this section of
the best-response function corresponds to the maximum of E�B1 (�) being
attained on the segment E�B1 [[4:a]] (�). This means E�B1 [[4:b]] must be
satis�ed, i.e. 4m � x2< x1< 2 + 2m � x2 , 0 < x � 2m < 1 � m )
x +m > 1 �m, so that z1 = x � 2m and z2 = 1 �m. Hence, the player
responding according to BRB1 [[4:a]] (�) claims the entire market in some
states and a positive fraction of it in all the other states. Clearly, this
cannot be true for both players.

2. one point lies on BRB1 [[3:a]] (�) : The player responding with BRB1 [[3:a]] (�)
maximizes E�B1 (�) where it is given by E�B1 [[3:a]] (�), which happens i¤
2 � 4m � x2� x1� 4m � x2 , (x+m � 1�m ^ x� 2m � 0), so that
z1 = 0 and z2 = 1�m. Hence, the player shares the market with the rival
in every state, so the rival cannot take the entire market in any state and
the other point cannot lie on BRB1 [[4:a]] (�).

3. �nally, let f =BRB1 [[2:a]] (x) : Then x
0 = 1�f = 1+m�x

2 and BRB1 [[4:a]] (x
0)

should be equal to f 0 = 1� x whenever '0 (m) < x0 � '1 (m). However,
substituting 1 + m�x

2 for x2 and 1� x for x1 in @E�A1 [[4:a]]
@x1

, we obtain an
expression which is equal to zero i¤:

22m3 + x3 +m2(45x� 32) + 8m(2 + (x� 4)x) = 0

which can be shown not to hold as long as 1=4 � m < 1 and '0 (m) <

1 + m�x
2 � '1 (m) : Hence, x1 = 1 � x is not a root of

@E�A1 [[4:a]]
@x1

: When
player 1 responds to x�2 according to BR

B
1 [[2:a]] (�), then even if player 2

wants to respond according to BRB1 [[4:a]] (�), this best-response to x�1 is
di¤erent from x�2:

It follows that an asymmetric NE is not possible, i.e. we must have:

1� x�2 = BRB1 (x�2) <
1

2
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where the solution, once again, must be unique. Solving:

1� x�2 = BRB1 [[3:a]] (x�2) =
2� 6m� x�2 + 2

q
2m2 �m� x�2 + 3mx�2 + (x�2)

2

3

we obtain a location x�2 =
1+16m+28m2

36m satisfying BRB1 [[3:b]] for
1
4 � m < 1: A

pair of symmetric locations (9) is the unique SPNE, since no player will want
to relocate to the other side of the competitor (as established in section 4.1).

SPNE ETC derivation for subsection 5.3

Given customer distribution U(z; z +m); the following cases are possible:

1. when z � x� 2m, everyone buys from �rm i = 1 and the total cost is:

TTCi =

z+mZ
z

1

m
t (x� xi)2 dx

where for z � x+m the case is reversed with i = 2:

2. when x�2m < z < x+m the two �rms share the market with the division
at:

ex = 1

6
(4z + 2m+ x1 + x2) (a simple generalisation of the result in [3])

and consequently the total cost becomes:

TTC1;2 =

exZ
z

1

m
t (x� x1)2 dx+

z+mZ
ex

1

m
t (x� x2)2 dx

But since the state of nature is uncertain, we are interested in the expected,
or average transportation cost over all states of nature.
With symmetric locations, we have x = 1

2 and if, in addition, m > 1
4 ; then

we have x � 2m < z < x +m for every z 2 [0; 1�m]. Consequently, case 2 is
true in every state and the expected total cost is:

1�mZ
0

1

1�mTTC1;2 dz (14)

substituting the SPNE locations (9) for x1 and x2, (14) becomes:

ETC2 =
28m+ 120m2 � 296m3 + 1208m4 � 7

3888m2=t
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On the other hand, for 0 < m � 1
4 case 1 is true in some states and the

expected equilibrium total cost is:

ETC1;2 =
1

1�m

264
1
2�2mZ
0

TTC1 dz +

1
2+mZ

1
2�2m

TTC1;2 dz +

1�mZ
1
2+m

TTC2 dz

375
substituting the SPNE locations as given by (8), this becomes:

ETC1;2 =
7m� 32m2 + 120m3 � 288m4 + 224m5 � 1

48(1� 2m)2(m� 1)=t

We can therefore de�ne:

ETC (m) =
�
ETC1;2 for 0 < m � 1

4
ETC2 for 1

4 < m < 1

Socially-Optimal ETC derivation for subsection 5.3

In each s.o.n. everyone to the left of 12 buys from �rm 1 and everyone else buys
from 2.The total cost in a particular state is then:

� TTCi =
z+mZ
z

1
m t (x� x

so
i )

2
dx; for 1

2 =2 [z; z +m] ; where i = 1 for 1
2 >

z +m and i = 2 for 1
2 < z

� TTC1;2 =
1=2Z
z

1
m t (x� x

so
1 )

2
dx+

z+mZ
1=2

1
m t (x� x

so
2 )

2
dx for 1

2 2 [z; z +m]

and the Expected Total Cost is:8>>>>>>><>>>>>>>:

1
1�m

264
1
2�mZ
0

TTC1 dz +

1
2Z

1
2�m

TTC1;2 dz +

1�mZ
1
2

TTC2 dz

375 for m < 1
2

1�mZ
0

1
1�mTTC1;2 dz for m � 1

2

substituting 1 � xso1 for xso2 , integrating and minimizing the above expression
with respect to x1 we obtain the optimal Expected Total Cost as stated in (11).
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