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Abstract

Stochastic Frontier Models have been successfully implemented in the estimation of short-
run cost curves and the measurement of productive efficiency. Although developed and used
mostly by economists, the model can be applied in the realm of other disciplines such as
Epidemiology or Public Health by adequately re-interpreting the ideas of cost and productive
efficiency. In these areas, cost is generally interpreted as a count of events, such as number of
deaths or observed numbers of certain disease. Traditional SFM assume that the dependent
variable under study has a continuous distribution (generally resulting from a convolution of
continuous distributions). Therefore application of these models neglect the discrete nature
of the variables of interest. In this article a new Maximum Likelihood model is proposed to
estimate Stochastic Frontier Models with a discrete valued dependent variable. Measures of
cross-sectional levels of efficiency are constructed through recurring to the conditional expected
value of the inefficiency term given the information encompassed by the observed count.

Key Words: Stochastic Frontier, Discrete Random Variable, Discrete Convolution, Dela-
porte Distribution.
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1 Introduction

In this article, we present a likelihood based Stochastic Frontier Model which can estimate cost
functions whenever the dependent variable is a discrete valued random variable. The need for such
a model arose from a study of the determinants of infant mortality in England. Our dependent
variable was a count of the total number of newborn children who died prematurely (before one
year of age) in England in 2001. The aim of the study was (1) to identify the drivers of absolute
mortality and (2) to identify those areas of relatively high mortality. Accurate estimation of cost
frontiers is a topic of importance for researchers and policymakers. In economics, a good behavioural
approximation to the curve of production/cost possibilities provides information about the optimal
output/cost attainable with a given technology. It also informs about the marginal product of each
input in the process and the marginal rates of substitution between inputs. Likewise, in a health
environment as the one described later in the paper, estimation of the cost frontier will assist us
to (1) measure the minimal expected outcome of certain undesirable condition (2) to understand
the marginal contribution or responsibility of each harmful agent in the health production process
and (3) to approximate the marginal rate of substitution among these harmful agents. This latter
point is important in the development of public health measures, since inferences about this rate
of substitution can assist to discriminate among policies affecting different epidemiological vectors
carrying or transmitting undesirable effects from the environment to a group of hosts or to society
(as well as substituting between policies to deliver a more cost effective public health).

Although the study of frontiers is intrinsically united to the economics of production, the con-
cept itself is an accomplished one, so that efficiency analysis can greatly contribute to a range of
other seemingly unrelated disciplines such as epidemiology and public health. However, successful
exportation of the idea of frontier often requires a reinterpretation of the concepts of efficiency and
cost, the latter being frequently found in terms of count of events.

Following the literature on health production, we could characterize a (mortality) frontier quan-
tifying the minimal expected number of infant deaths per year per area. The actual number of
infant deaths registered at a geographic unit would depart from that minimal number due to two
different sources of variation. Firstly, the area might be subject to unpredictable shocks, such as
natural disasters or luck, which may cause unusually high (or lower than expected) numbers of
deaths. In other words, the mortality frontier is stochastic across geographies. Secondly, a given
area might be subject to idiosyncratic, albeit unobservable environmental effects which may lead
to higher mortality than optimal ; in the economic literature on production and cost frontiers, the
latter shocks are referred to as technical efficiency.

This setting we have just described is similar to that encountered in economic applications of
SFM. However, there are two major differences with respect to this traditional setting. Firstly,
the ideas of cost function and technical productive efficiency needed to be accommodated to a
new scenario: cost is now measured in terms different to monetary units, and efficiency is studied
in terms of additional-to-expected lives losses. Secondly, number of deaths is a discrete valued
random variable with certain mass function. Existing models for frontier analysis are built around
continuously distributed random variables and, therefore, will fail to capture the discrete nature of
the dependent variable, yielding inefficient and inconsistent estimations.

The model developed in this paper tries to solve the above problem. It is inspired on earlier
work on applications of the Poisson Distribution by Hausman, Hall and Griliches ([7] ) and Cameron
and Trivedi ([2], [3]), as well as pioneer work on Stochastic Frontier Analysis by Aigner, Lovell and
Schmidt ([1]), Meeusen and Broeck ( [11]) and Greene ([5]). The model results from the discrete
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convolution of a Negative Binomial and a Poisson distributions. The former distribution appears
as a Mixture Poisson random variable, designed to controlling two features: firstly, the stochastic
variation of the frontier conditional upon a set of regressors and, secondly, unobserved heterogeneity
in sample, so that individuals are allowed to differ randomly due to features of the data other than
inefficiency, not fully accounted for by the regressors and unobservable to the researcher. The second
component of the convolution, the Poisson Distribution, is used in other capture the inefficiency in
the sample.

The convolution of a Poisson and Negative Binomial is known as a Delaporte Distribution.
Ruohonen ([12]) used it in order to model a claim number processes. In his article, the number of
claims is modeled as a mixing Poisson Process, where the mixing random variable follows a shifted
Gamma distribution. Willmot and Sundt [16] showed that this Mixing Poisson variable equals to
the convolution of a Poisson and a Negative Binomial (a Delaporte) distribution. Ruohonen then
argues that the number of claims can be decomposed as the sum of two random variables (a Poisson
and a Negative Binomial).

The structure of the article is as follows. Section 2 introduces the model. Maximum Likelihood
is suggested in order to estimate the parameters in the model and thus, we provide the appropriate
log likelihood function. In Section 3, we discuss how to estimate the inefficiency in the sample. As
in the case of Stochastic Frontiers with continuous distributions, the generating process is such that
large amounts of heterogeneity in the sample can lead to a non-trivial number of sample points
falling underneath the frontier, and thus efficiency measures based on distances from fitted to real
values are likely to be inappropriate. As in the article by Jondrow et al [8], we provide an estimator
which corresponds to the conditional expected value of the inefficiency term. The evaluation of
the small sample performance of the method is discussed in Section 4, and the following section
Section [?] illustrates the empirical application of the model with a very simple study related to the
effect of deprivation on the number of infant deaths in England. Finally Section ?? present some
concluding remarks and directions for further research.

2 The Frontier Model

Let us denote by x the k × 1 vector of covariates which are thought to determine the level of a
technology frontier, characterized by a count variable. Let us denote the value of the frontier for
individual i = 1, 2, . . . , n in the sample by Qi = Q (x′iβ), where β is a vector of unknown scaling
constants which must be estimated. The mapping Q is the Discrete (Cost) Frontier providing the
minimum expected number of counts given the levels of the covariates x. The frontier quantity Q is
unobservable in practice because the discrete frontier is subject to two different sources of variation
across sample points. Firstly, as it happens in traditional regression models, Q will be subject
to pure stochastic variation, so that the value of Q will oscillate, randomly, above and below the
optimal. Therefore, the observed value of the dependent variable is itself a random variable with
a, suitable, probability mass function.

Secondly, each sample point will be affected, to some degree, by technical inefficiency. The
incidence of a technical inefficiency leads to values of the studied discrete variable which are large
than the optimal value Q. The magnitude of this increments can itself vary randomly across sample
points and, therefore this amount will be represented by a random variable with a probability mass
function. Let U denote that additional number of units above Q caused by technical inefficiency.
Then, an the observed value of the dependent variable for individual i, denoted Yi, is given by the
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following expression:
Yi = Qi + Ui = Q (x′iβ) + Ui (1)

where Q : Q 7→ Z+ and U : U 7→ Z+ (Z+ being the union of the set of Natural Numbers and {0} )
are, possibly, correlated random variables.

Given that Y is the sum of two random variables, namely Q and U , its mass function PY (y) =
P (Y = y) can be obtained from standard probability theory which establishes that, when Q and U
have range on the set of non-negative integers, the conditional (on x) probability mass function of
Y is given by

PY (y|x) =
y∑

q=0

PQ,U (q, y − q|x) . (2)

where PQ,U (.) is the joint mass function of Q and U .
Estimation by Maximum Likelihood would be feasible, should we know the actual family of

distribution functions to which the joint density PQ,U (.) belongs. However, from a practical per-
spective, knowledge of this density will not be available. Fortunately, if we were willing to assume
that Q,U are independent random variables, then the above conditional probability would be given
by the convolution

PY (y|x) = PY (q + u|x) =
y∑

u=0

PQ (y − u|x) ∗ PU (u|x)

=
y∑

q=0

PQ (q|x) ∗ PU (y − q|x) (3)

which only requires specification of the marginal mass functions of Q and U1.

2.1 Stochastic Specification under Independence of U and Q

We begin the stochastic specification of the model by characterizing the behaviour of Q, minimal
number of counts associated to an experiment. Following a long tradition in statistics and econo-
metrics (see [3] among many others), counts of events can be modeled with the Poisson distribution,
and we adopt this probability law here. Therefore,

PQ (qi|xi) =

{
e−λiλ

qi
i

qi!
for q = 0, 1, . . .

0 otherwise

where λi = λi (x′iβ) = exp (x′iβ) ≥ 0. One important feature of the Poisson Distribution is that
(conditional on x) mean and variance have identical value; that is E [Qi|xi] = var [Qi|xi] = λi.
This restricts the length of the upper tail of the distribution, so that relatively high values of Q
are very rarely attainable. However, experimental data generally exhibits long upper tails (a phe-
nomenon referred to as overdispersion). When overdispersion is present in the sample, the Poisson
model might be of limited utility. In the setting of our Frontier model, we argue that observed

1This assumption is clearly restrictive, although some authors have found it innocuous (see [10]) and, probably
because of this the assumption underlies most of the literature on stochastic frontier; only recently Smith ([14]) has
proposed the use of copula methods in order to relax the restriction. Although we conjecture that a similar approach
could be adopted for our model, we leave the development of such device for later research.
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overdispersion will generally be present, and this is likely to be due to unobserved heterogeneity
across individuals. Agents respond differently (and randomly) to the stimulus of x. This different
responses will be reflected in Q through λ, the mean value of the distribution, so that heterogeneity
in the data can be captured if we allow lambda to vary randomly across observations. Following
several precedents in the literature (and the article by Hausman, Hall and Griliches [7] in partic-
ular), heterogeneity can be introduced in the model by defining a new mean value parameter as
follows:

λ∗i = exp (x′iβ + ui) = λiαi,

where α = exp (u) is a (continuous) random variable such that α ∼ f (α), E (α) = 1 and var (α) > 0.
Conditional on α, the density function of Q is

PQ (qi|xi, αi) =

{
e−λ∗i (λ∗i )qi

qi!
for q = 0, 1, . . .

0 otherwise

a Poisson Density with parameter λ?, while, integrating out the unobserved α, we obtain

PQ (qi|xi) =
∫ ∞

0

P (qi|xi, αi) f (αi) dαi

whose final expression will depend on the particular choice of f (α). In principle, any continuous
distribution on a non-negative support will be suitable; however this choice will have to satisfy
a number of conditions. Namely, it must have range (α) = R+, it must be adaptable to a wide
variety of forms of heterogeneity and, finally, it must yield the mathematical analysis tractable.
Following Hausman et al [7] we can let α follow a Gamma distribution with parameters r = p = δ;
that is α ∼ G (δ, δ). This distribution satisfies the above requirement, and in addition E (α) = 1,
var (α) = δ−1, so that the average expected effect of the heterogeneity in the sample is null (and
increasing values of δ reduce the domain of variation of α).

It is well know that the present choice of density for α leads from the Poisson model specified
above to a Negative Binomial mass function. The derivation of the result is readily available in a
number of sources (see, for example, [6] or [7]), but we reproduce it here for illustrative purposes.
Under the Poisson-Gamma model,∫ ∞

0

PQ (qi|xi, αi) f (αi) dαi

=
∫ ∞

0

e−λiαi (λiαi)
qi

qi!
δδ

Γ (δ)
αδ−1

i e−δαidαi

=
δδλqi

Γ (δ) qi!

∫ ∞

0

e−(λi+δ)αiαqi+δ−1
i

(
λi + δ

λi + δ

)qi+δ−1

dαi

and letting s = (λi + δ)αi ,so that ∂s
∂αi

= (λi + δ),

PQ (qi|xi) =
δδλqi

Γ (δ) qi!
Γ (qi + δ)

1

(λi + δ)qi+δ

=
Γ (qi + δ)
Γ (δ) qi!

(
δ

λi + δ

)δ (
λi

λi + δ

)qi

∼ NB (pi, δ)
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the expression of a negative binomial density, where in our notation p = δ
λ+δ . It is easy to show that

E (Q|x) = δ (1− p) p−1 = λ, var (Q|x) = δ (1− p) p−2 = λ
(

λ
δ + 1

)
> E (Q|x) and E [Q|x, α] = λ,

var [Q|x, α] = λ (1 + αλ) > λ if α > 0. Whether conditionally on α or not, the stochastic frontier
so defined will admit a longer right tail, and therefore this distribution will be suitable to model
those common situations where overdispersion is observed in the data.

Having obtained the conditional density function of Q we can next proceed to complete our
frontier model by finding a suitable distribution for the error term U . We note first that if we allow
U to follow a Negative Binomial distribution, then the conditional distribution of Y will also be a
Negative Binomial distribution; however the parameters of the resulting model will not be identified.
There are several feasible choices for this random variable, however a Poisson Distribution seems a
logical choice: U must be positive and, since heterogeneity in the sample is assumed to be due to
the term α, extreme values of U must be ruled out. Therefore, we advocate that U ∼ P (η), where
η is the mean inefficiency parameter.

Having completed the stochastic specification of the terms in the model, we finally obtain the
conditional density of Y on x, given by the following expression:

PY (yi|xi) =
yi∑

qi=0

PQ (qi|xi) PU (yi − qi|xi)

=
yi∑

qi=0

Γ (qi + δ)
Γ (δ) qi!

(
δ

λi + δ

)δ (
λi

λi + δ

)qi e−ηη(yi−qi)

(yi − qi)!
(4)

The distribution 4 is know as a Delaporte Distribution ([4]), and has been previously employed
in actuarial science to model the number of insurance claims against accidents (see [4] and [12]).
However, to the best of our knowledge, the genesis of these applications substantially differ from
our motivation, and relationship between Delaporte’s distribution and stochastic frontier is novel
in our analysis. The properties of Delaporte’s distribution can be studied generally from the theory
pertaining to Mixed Poisson distributions (see Karlis and Xekalaki [9]) since the Delaporte Distribu-
tion can be obtained as a mixed Poisson distribution with a shifted Gamma as mixing distribution
(Willmot and Sundt [16]). Under this interpretation, Karlis and Xekalaki (pg. 39) give a rule to
easily compute the non-central moments of Y as a weighed average of the moments of the mixing
distribution. Alternatively note that, under independence, the probability generating function of
of Y (given x) equals

φY |x (t) = φQ|xφU |x = e−η(1−t)

(
p

1− (1− p)et

)δ

= e−η(1−t)

(
delta

delta− λ(1− t)

)δ

where the last equality follows since we defined p = δ/ (λ + δ); replacing t by et, we obtain the
moment generating function, from which the moments of Delaporte Distribution can be obtained.
Clearly, the first and second moments of the Delaporte Distribution can be easily computed given
that Y is the sum of two independent random variables. In particular,

E (Y |x) = λ + η (5)

var (Y |x) = λ

(
λ

δ
+ 1

)
+ η. (6)

6



That is, by introducing the inefficiency error component in the negative binomial model we cause
two effects: firstly, the center of the distribution is shifted by η, the average inefficiency; secondly,
the variance of the stochastic frontier is the result of three components (pure stochastic noise, un-
observed heterogeneity and inefficiency). By introducing the inefficiency term, our model alleviates
the amount of variation encompassed by the Negative Binomial random variable, extracting from
the heterogeneity the amount of variation exclusively due to inefficiency.

Finally, the likelihood function of our model, L (Y |β, η, δ) = log(
∏n

i=1 P (yi|xi)) equals to

L (y|β, η, δ) = log
n∏

i=1

yi∑
q1=0

Γ (qi + δ)
Γ (δ) qi!

(
δ

λi + δ

)δ (
λi

λi + δ

)qi e−ηη(yi−qi)

(yi − qi)!

= −nη + log (η) nȳ

+
n∑

i=1

δ log
(

δ

δ + λi

)
+

n∑
i=1

log

[
yi∑

qi=1

w (qi)

]
(7)

where

w (qi) = w (qi|β, η, δ) =
Γ (qi + δ)

Γ (δ) Γ (qi + 1)

(
λi

η (λi + δ)

)qi 1
Γ (yi − qi + 1)

(8)

Estimation of the parameters will result from the maximization of the above log likelihood
function. Standard statistical theory would then allow us to conclude that the estimator so obtained
is consistent for the true parameter values, asymptotically normal and attains the Cramer-Rao lower
bound. Test of hypothesis can be implemented based on the classic Wald or Likelihood Ratio Test.
In particular, it is of interest to test whether there is overdispersion in the sample, Ho : δ = 0
vs. Ha : δ > 0 and whether there is inefficiency in the sample Ho : η = 0 vs. Ha : η > 0. In
both situations, the null hypothesis sets the parameter of interest in the boundary of the parameter
space, and in these cases the usual critical values from the Chi-Square distribution are not valid
(see,for example, Silvapulle and Sen [13]). However, for the Wald test, the asymptotic critical values
can be based on those of the one-sided asymptotically normal test.

2.2 Interpretation of the Coefficients

Under the assumptions of the model, and in particular, under the assumption of independence of Q
and U , interpretation of the coefficients of the model follows from standard analysis of count data.
Thus, let xj be the jth regressor in the sample. Then the Marginal Cost of input xj is given by
MPj = ∂E(Y |x)

∂xj
= exp (x′β) βj , so that

βj =
∂E (Y |x)

∂xj

1
E (Y |x)

which can be interpreted as an elasticity (capturing the percentage variation in the expected value
of Y when the jth input changes by ∂xj percent). Note that the above partial derivative depends
on the particular value of the vector x. By calculating this quantity at different values of xj , we
can obtain an expansion locus of the Marginal Product of xj ; Alternatively, if a single measure
for the partial derivative is required, one could compute the average derivative across the sample:
n−1

∑n
i=1

∂E(Y |x)
∂xij

= n−1
∑n

i=1 βj exp (x′iβ).
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The Marginal Rate of Substitution (MRS) of regressor xj for regressor xk is defined as the ratio
MPk/MPj and s measures the rate at which xj and xk must be substituted to keep the production
function E (Y |x) constant. It follows that MRTS = βk

βj
, which does not depend on the scale used

to measure the regressors.
When any of the regressors enters logarithmically, so that E (Y |x) = x

βj

j exp
(
x′−jβ−j

)
-where

the subscript −j indicates removal of element j- then,

∂E (Y |x)
∂xj

= βjx
−1
j E (Y |x) ⇒ βj =

∂E (Y |x)
∂xj

xj

E (Y |x)

which is the change in the frontier E (Y |x) for a 1% change in xj .

3 Estimation of Efficiency

After maximum likelihood estimation, information about (β, η, δ)′ is contained in the vector of ML
estimators (β′, η′, δ′)′. Predicted values of the frontier can be based on Q̂ = exp

(
x′β̂

)
. Similarly,

mean inefficiency can be readily measured with η̂. However, the ultimate goal of the analysis of
technologies is to provide a measure of efficiency for each cross-sectional unit in the sample. From
this perspective, η̂ has very limited scope. Estimations of efficiency cannot be drawn from Y − Q̂
either. If the effect of heterogeneity more than offsets the effect of inefficiency, observations will
fall below the frontier, and one will end up with an embarrasing negative residual. In essence,
our problem is similar to that found in traditional stochastic frontiers as in Aigner et al, and not
surprisingly, the immediate solution rests on computation of the expected value of U given the
information in the sample -as in Jondrow et al [8].

To be more precise, all the information about U is encompassed by Y . All the relevant features
of Y are determined by its mass function, which is itself characterized by the vector of parameters
(β, δ, η)′, which can be estimated by consistent methods. Therefore, a way of extracting information
about Ui in the sample is to consider

E (Ui|Yi = yi) =
∞∑

ui=0

uiPUi|Yi
(ui|yi) =

yi∑
ui=0

ui

{
PY,U ({Yi = yi} ∩ {Ui = ui})

PY (yi)

}
Clearly, Yi = yi ⇔ Qi = yi − U , so that

E (Ui|Yi = yi) =
yi∑

ui=0

ui

{
PY,U ({Qi = yi − ui} ∩ {Ui = ui})

PY (yi)

}

=
yi∑

ui=0

ui

{
PQ (yi − ui) PU (ui)

PY (yi)

}

=
yi∑

ui=0

uiwi (9)

a weighted average resulting from equations (3) and (4) and where the weights equal to

wi =

Γ(yi−ui+δ)
Γ(δ)(yi−ui)!

(
δ

λi+δ

)δ (
λi

λi+δ

)yi−ui
e−ηη(ui)

ui!∑yi

ui=0
Γ(yi−ui+δ)
Γ(δ)(yi−ui)!

(
δ

λi+δ

)δ (
λi

λi+δ

)yi−ui
e−ηη(ui)

ui!

(10)
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A feasible estimator of the inefficiency can be based on

U∗
i =

yi∑
ui=0

uiŵi

where ŵi equals wi but with β, η and δ replaced by their Maximum Likelihood counterpart. Note,
once again, that this estimator will return the expected inefficiency given the information available
in the sample; as the expression of the estimator itself shows, we are smoothing across the feasible
values of the inefficiency term, and hence we do not expect to obtain the actual value of the
inefficiency. Secondly, this estimator does not produced integer valued estimations, but a vector
of real numbers; of course, U could then be approximated by taking the integer part of the the
produced estimation. In this case, intU may be understood as a class of inefficiency, so that all
observations with U∗ = u∗ would belong to such a class.

4 Monte Carlo

To study the finite sample behaviour of the model, we conducted two Monte Carlo experiments.
Version V.4.0.4 of Ox was used in order to generate observations from the following model:

Yi = Qi + Ui for

 Qi ∼ P (λ?
i ) λ?

i = λ (x′iβ) αi

Ui ∼ P (η)
αi ∼ Γ (δ, δ)

where P is a Poisson Distribution with mean represented by the term inside the brackets, Γ denotes
the gamma distribution and x′β = βo + β1X1i + β2X2i. Values of Xji where drawn from uniform
distributions on the interval [0, 5].

In our fist study, we analyze the relative merits of the model under a variety of data generating
processes. We fixed the valued of the parameters in the structural part of the frontier at βo = 0.5,
β1 = 0.3 and β2 = 0.4, while different combinations of δ and η were used in order control the
amount of heterogeneity and inefficiency in the sample. Small values of δ (so that var (α) is large)
and η leads to samples where heterogeneity dominates inefficiency, while increasing the value of δ
permits U , the inefficiency or technical hazard term to play a more significant role. The sample size
was kept constant at 5000 observation.

Table 1 presents the results obtained after applying our model to six different generation pro-
cesses. The first three models have common value of δ = 0.5, while the increasing value of the
parameter η represents increased levels of inefficiency in the sample. The last three models have
fixed (low) levels of inefficiency (η = 1) and increasing levels of heterogeneity.

Generally speaking, the method performs well, and we obtained estimated values close to the
true parameter values. Estimation of the interception, however, is subject to downward biases,
which in cases can be rather large (as it is the case with Model 4). However, a second experiment
was designed in order to shed some light on the consistency properties of the estimator, which we
conjectured would follow from standard Maximum Likelihood theory. We drew samples of varying
size (from 100 to 3200 observations), from a model such that βo = 0.2, β1 = 0.2, β2 = 0.3 η = 2
and δ = 1 (corresponding to Model 6 in the previous experiment). Each sample of size n was drawn
1000 times, and the sample Mean Squared Error of was computed for each of the parameters in the
model. A cross section of the results of this experiment are collected in Table 2. With a sample of
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Monte Carlo Experiment 1
(βo = 0.5, β1 = 0.3, β2 = 0.4)

Inefficiency/Heterogeneity In Brackets
(
η, δ−1

)
Sample Size N = 5000

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(.5, 2) (4, 2) (8, 2) (1, 0.25) (1, 1) (1, 2)

η 0.43834 3.9250 8.1271 1.4903 0.96096 0.95953
(0.043610) (0.092292 ) (0.1133 ) (0.16310 ) (0.08181 ) (0.056107 )

δ−1 1.8729 1.8718 2.1574 0.27246 1.0279 1.8899
(0.057140) (0.071097 ) ( 0.088935) ( 0.012275) (0.036168 ) (0.060773 )

βo 0.49939 0.45901 0.42819 0.38523 0.45042 0.51320
(0.056473) (0.064216) (0.069856) (0.06192 ) ( 0.050528) (0.057962 )

β1 0.29158 0.31488 0.30428 0.31349 0.30820 0.29619
( 0.013812 ) ( 0.014559) (0.015932 ) ( 0.0085434) (0.011072 ) (0.014202 )

β2 0.40775 0.40894 0.42704 0.41495 0.40933 0.40815
(0.014125 ) ( 0.014886) ( 0.015795) ( 0.010062) (0.011317 ) (0.014253 )

Table 1: Estimated parameters for a variety of models.β0, β1 and β2 were kept fixed at 0.5, 0.3 and
0.4 respectively, while η, δ varied in accordance to the patter explained under each Model’s heading.

just 1000 observations, the MSE of all the parameters in the model is relatively low (although there
is, of course, margin for improvement). The MSE decreases rapidly as the sample size doubles and,
with sample sizes of 400 observations, one already obtains dramatic gains in the accuracy of the
method. Our simulations show that with samples of 2 or 3 thousand observations small MSE are
expected, and therefore, this seems to confirm that the property of consistency is inherited from
the Maximum Likelihood method.

Overall, this simulation reveals that the proposed model is flexible, adapting to a wide variety
of generating process, while it exhibits a good performance even with relatively small sample and,
although there is margin for improvement, the results here obtained are similar to those reported
in many other articles introducing Maximum Likelihood Models.

5 Application: Infant Mortality and Income Deprivation

This section illustrates the empirical implementation of the model. We shall undertake a small
study regarding the potential relationship between the levels of deprivation the number of infant
deaths. Our study does not intend to be rigorous but illustrative of the type of problem our model
could be applied to. The final objective is to isolate the effect of environmental and economic
deprivation on the observed count of deaths.

Our data set was extracted from the website of the UK Office of National Statistics. Available
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Monte Carlo Experiment 2
Mean Square Error

Model Specification: (η, δ, βo, β1, β2) = (2, 1, 0.2, 0.2, 0.3)

Parameter
N η δ βo β1 β2

100 0.49443 0.18699 0.28340 0.0089427 0.10350
200 0.29158 0.094135 0.14647 0.0041765 0.0054366
400 0.14302 0.048145 0.070838 0.0020032 0.0025
800 0.068315 0.021977 0.031249 0.00092852 0.0011795
1600 0.033138 0.011838 0.016354 0.00046541 0.00058106

Table 2: Mean Square Error

to us were the counts of infant deaths in the UK during 2001 as well as a number of environmental,
social and economic variables. All the variables refer to Local Authorities (354 of them in England).

By definition infant deaths are deaths at ages under one year old. It is conjectured that the
mortality frontier would depend on a number of social, economic and environmental aspects of the
region. Firstly, the number of infant deaths will be correlated with the number of births at a given
area, itself determined by the size of the population in the area. We shall denote by (pi) the natural
logarithm of the number of inhabitants in area i, in accordance to the 2001 Census.

Environmental factors have been also associated to the overall health of the population (see, for
example, Tulchinsky and Varavikova [15], chapter 9). In particular high emissions of pollutants to
the atmosphere can induce respiratory diseases such as bronchitis, pneumonia, allergies or asthma,
as well as interfere with hemoglobin oxygen carrying capacity, which can seriously affect fetal
development. This is the case of Nitrogen Oxides (NO2, Nitrogen Dioxide, and NO, nitric oxide),
which are general a by product of fuel consumption (it is estimated that 50% of emisions of these
gases are due to road traffic, while another 20% is due to the production and consumption of
electricity. In our sample we collect the effects of these gases. by introducing the logarithm of the
Local Area Average of NOx emissions intensity score, denoted NOs

i . This score corresponds to
an 8 step scale, where each step represents an interval of emissions of NOx in tonnes per square
kilometer. Higher scores are associated to high levels of emissions.

In order to capture the levels of economic deprivation, the logarithm of the percentage of active
population claiming unemployment benefits, ui is introduced in order to capture levels and potential
impact of economic deprivation. One of the risk factors associated to infant mortality is the baby’s
weight at birth. Low birthweight (less than 2.5Kg) is an indicator of newborn’s chances of survival
(and later development in life); babies who were not properly fed during in the womb, face a higher
risk of dying in the earlier years of life, and thus, they are likelier to die in the first 12 months of life.
Therefore, our model includes the logarithm of regional percentage of underweight newborns in 2001,
denoted (wi). Note that NO emissions and economic deprivation are likely to affect the proportion
of underweight babies in a given area; hence, the estimated coefficient of the log percentage of
underweight newborns is likely to capture the effect of the environmental and economic deprivation
on the proportion of underweight babies, as well as a measure of the proportion of underweight
newborns who die within a year. Thus, we conjecture that after including wi in the model, the
estimated coefficient of NOs

i and ui should then measure the direct net effect of these variables on
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Estimated Model
N = 354

Parameter Estimate Std. Err. t-statistic MP Poisson NB
η 1.4482 0.79417 1.8236 −− −− −−
1/δ 0.045091 0.0077396 5.8260 −− −− 0.04158
βo -12.350 0.77290 15.979 −− -11.50016 -11.24123
Population 1.1161 0.057918 19.270 26.313 1.043059 1.046322
Weight 0.41722 0.11540 3.6156 9.8366 0.5555207 0.3501964
NO 0.40408 0.063642 6.3493 9.5268 0.3780584 0.356472
Benefits 0.32103 0.064347 4.9891 7.5687 0.2664801 0.321683

Table 3: Estimated Frontier

number of deaths.
The frontier model is therefore:

λi = exp (βo + β1pi + β2wi + β3NOs
i + β4ui)

The results are summarized in table 5 -results from Poisson and Negative Binomial fits are also
reproduced for comparison. The estimator of the expected inefficiency, 3, was computed for each
sample point. An estimator of the density of U∗ is given in Figure 1. The range of values we
obtained was [0, 2.6042], with an average value of 1.34, naturally close to the estimated value of
eta. The estimated standard deviation equals 0.29. The estimated coefficients of skewness and
kurtosis are 0.23 and 3.611 which are close to the values of the normal distribution. The mode of
the distribution is located at 1.19, while the median is at 1.33; the 75 percentile is located at 1.48.

The first aspect of interest in this type of study would be the levels of inefficiency and hetero-
geneity in the sample. In accordance to the estimations, the average estimated inefficiency is 1.4482,
while the estimated value of the variance of the heterogeneity term δ−1 is 0.045 which implies the
existence of moderate to low levels of heterogeneity in the sample. It seems as if discrepancies
across Local Authorities is mostly explained by inefficiency. Among the regressors, the percentage
of underweight babies, emissions of nitrogen oxides and economic deprivation are all statistically
significant in order to explain the absolute levels of infant mortality. Their positive coefficients
imply that all these are risk factors (as expected) and higher levels of any of these variables leads
to higher levels of expected deaths. In order to estimate the magnitude of expected change on the
expected count of deaths the average estimated marginal costs associated to each of the components
is calculated, and the results are shown in column 4 of the table. Ignoring the effect of wi for the
reasons outlined above, the most relevant risk factor is the level of NO emissions rather than levels
of economic deprivation. The marginal rate of substitution of NO emissions with respect to the
log count of underweight babies is of 1.2587, which would imply that policies oriented to cutting
emissions might contribute more effectively to reduction of deaths than policies oriented toward
reducing economic deprivation.

6 Conclusions

This article is a first attempt to construct a maximum likelihood based model for Stochastic (Cost)
Frontier Models when the dependent variable is a count. This type of model arises naturally in a
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Figure 1: Density Estimator of U∗ = E (U |Y ).

number of statistical scenarios, including Epidemiological studies. Our model, which inherits the
theoretical properties of maximum likelihood estimators, is capable of accurately estimating the
frontier function, and at the same time it effectively separates heterogeneity and inefficiency from
pure statistical noise. We also propose a measure of inefficiency. As in the paper by Jondrow et al,
our measure is based on the expected value of the inefficiency term, and it is therefore a smooth
function of the information in the sample. In our case, therefore, estimated inefficiency must be
understood more as a rank than as the actual value of the inefficiency in the sample. Alternative
model specifications to ours are possible; for example, one could have argued that the frontier is
likely to be common to all individuals in the sample, while heterogeneity would me more likely to
affect the inefficiency term. In such a case a more suitable specification would be a Poisson-Negative
Binomial, the latter characterizing the inefficiency term. One could, more generally, explore other
combinations of mixture models to allow heterogeneous frontiers and inefficiencies, but this is likely
to complicate the analysis, and therefore we leave it for future research.
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