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Abstract

A new procedure is developed for modelling and testing nonlinearity of a smooth transition
form, allowing the possibility that the transition variable is a weighted function of lagged ob-
servations. This is achieved through use of a beta function and requires specification of only
the maximum permissable lag. Nonlinearity testing uses a search over the beta function para-
meters, with inference explicitly reconising these are unidentified under the null hypothesis. A
wild boostrap procedure is recommended to allow for heteroscedasticity of unknown form, with
a Monte Carlo study showing this to perform well even for a homoscedastic DGP. Estimation
issues are also discussed. An application to the yield curve as a predictor of quarterly UK
growth illustrates the usefulness of the procedure for modelling data of mixed frequencies.
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1 Introduction

Nonlinear models play an increasingly important role in the analysis of observed economic and

financial time series. The state-dependence allowed by these models is an attractive feature, since

it is often plausible that the nature of economic responses may depend on underlying conditions,

such as the state of the business cycle, the monetary policy stance of the central bank or conditions

in financial markets. Indeed, the popular class of nonlinear threshold models exploits this state-

dependence through the use of regimes, with the regime applying in any specific time period defined

by the value of the (so-called) transition variable in relation to one or more thresholds. A popular

specification from this class is the smooth transition regression (STR) model, for which Teräsvirta

(1994) provides a coherent modelling strategy in the univariate smooth transition autoregression

(STAR) context which is generalized in Teräsvirta (1998) to the STR case. The many examples

of recent applications of STR models include Anderson and Vahid (2001), Fok, van Dijk and

Franses (2005), Sensier, Osborn and Öcal (2002) and Taylor, Peel and Sarno (2001), while van

Dijk, Teräsvirta and Franses (2002) review recent developments.

A crucial issue in applying threshold models, including those of the STR type, is the specification

of the transition variable whose value determines the regime applying in the current period. In

practice, the form employed is almost invariably either a single lag (often referred to as the delay)

or a simple transformation of lags (such as using an annual difference in a model for quarterly or

monthly fluctuations), with many STR applications following the recommendation of Teräsvirta

(1994) to select the delay based on linearity test statistics computed for a range of lags. On the

other hand, rather than selecting a single transition variable lag prior to estimation, a number of

potential STR models may be estimated and selection between them deferred to a later stage of

the analysis (van Dijk et al. 2002). Nevertheless, the retention of models based on a number of

candidate lags indicates that each potentially contains some information about the regimes and
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hence more general specifications for the transition variable might be appropriate. Medeiros and

Viega (2003, 2005) allow the possibility that the transition variable may be an unknown linear

function of multiple lags. However, the resulting procedure is fairly complicated and the "holes"

[gaps] that may result in the lags that enter the transition function could lead to regime-switching

behaviour that is implausible in contexts like the business cycle.

By employing a beta function over potential lags, our approach simplifies STR model spec-

ification because the only transition function lag that needs to be specified is the maximum lag

that can enter this function. The use of the beta function delivers a transition variable that is a

weighted function of past observations, which has the attractive implication that the current regime

is defined as a smooth function of these observations over time. Hence we refer to the model as

a WSTR (weighted STR) specification. Although the WSTR model requires estimation of one

additional parameter compared to procedures that estimate the (single lag) delay through a search

procedure, we believe that this cost is minimal in relation to the added flexibility it delivers1. Our

approach is also more parsiminous than that of Medeiros and Veiga (2003, 2005), while avoiding

their model specification procedure and the potentially implausible regime-switching behaviour the

model may imply. Although the Medeiros and Veiga specification allows different signs on lagged

values in the transition function whereas ours does not, our approach might be preferred in the

many situations in economics or finance where it is natural to consider a transition variable in

terms of a weighted average of lagged values.

Our WSTR specification is developed from the mixed data frequency MIDAS approach of

Ghysels, Santa-Clara and Valkanov (2005, 2006), which has also been used recently by Galvão (2006)

in a STR context. However, Galvão focuses on the use of high frequency data for forecasting a lower

frequency variable, whereas our context is the more general one of STR model specification and

nonlinearity testing. Nevertheless, the WSTR model is applicable in a mixed frequency context,

1This view is supported by the evaluation of forecasts produced fromWSTR models in Becker and Osborn (2007).
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as illustrated in our application of Section 5 that examines the relationship of quarterly UK GDP

growth to monthly yield curve information.

Nonlinearity testing prior to STR modelling is also a problematic issue. Although the smallest

p-value obtained from a search over potential transition variables cannot be readily interpreted in

terms of a test of the linearity null hypothesis, such p-values are widely reported. The approach

of Luukkonen, Saikkonen and Teräsvirta (1988) provides an asymptotically valid test, but this

is often claimed to suffer from lack of power due to the large number of additional coefficients

that typically enter the test. Overparameterization issues can also affect the related V23 test of

Teräsvirta, Lin and Granger (1993), which they propose as a test against a neural network model

and is also suggested by Medeiros and Veiga (2005) in their flexible lag STAR context. Accounting

for heteroscedasticity is a further issue for empirical modellers, which is important not only when

analyzing financial data but also for macroeconomic time series (see, for example, Sensier and van

Dijk, 2004). To date, however, accounting for heteroscedasticity when testing for STR nonlinearity

has been problematic, since Lundberg and Teräsvirta (1998) find that robustification can remove

most of the power of the test. Consequently, van Dijk et al. (2002), for example, recommend that

heteroscedasticity-robust nonlinearity tests should not be applied although Becker and Hurn (2007)

demonstrate that appropriate bootstrapping techniques can deliver reliable inference. Nevertheless,

the widespread failure to consider the oversizing of nonlinearity tests due to heteroscedasticity

indicates that many estimated nonlinear models may be spurious.

Based on ourWSTRmodel, we propose a test for the presence of possible nonlinearity through a

search over a plausible set of beta function parameters, with the consequences of searching explicitly

recognised using the procedures of Hansen (1996). However, rather than following Hansen (1996)

by allowing for heteroscedasticity through robust covariance estimation, we advocate the use of

the wild boostrap to account for possible heteroscedasticity of unknown form Our results indicate

that the wild bootstrap approach performs very well when testing for the presence of nonlinearity,
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delivering reliable finite sample size and power comparable to that achieved by tests that assume

homoscedasticity when the true data generating process is homoscedastic.

The structure of the paper is as follows. Section 2 discusses the WSTR model, with Section

3 then developing our nonlinearity test. Properties of the WSTR test are examined in Section 4

through a Monte Carlo analysis and Section 5 examines an empirical application to the relationship

between quarterly UK output (GDP) growth and monthly yield curve information. A concluding

section completes the paper, with model estimation issues discussed in an appendix.

2 The WSTR Model

This section briefly reviews STR models, before outlining our proposed WSTR generalisation and

the associated weighting functions we propose. Estimation issues are also briefly addressed, with

further details in the Appendix.

2.1 STR and WSTR models

For a given transition variable st, the STR model may be written as:

yt = α0 + xtα1 + f (st) (β0 + xtβ1) + εt (1)

= α̃0t + xtα̃1t + εt

where xt is a (1× n) vector of explanatory variables (typically including p lagged values of yt), α1

and β1 are (n× 1) parameter vectors and f (st) is a smooth function of its scalar argument st and

εt is a zero mean independent process, which is usually assumed to have constant variance σ2. By

defining α̃0t = α0+ f(st)β0 and α̃1t = α1+ f(st)β1 the second line of (1) emphasizes that α̃0t and

α̃1t change through time as a function of the transition variable st. The logistic transition function

f (st) = [1 + exp{−γ (st − c)}]−1 γ > 0 (2)
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is frequently used2, since this can represent two regimes measured by the value of st in relation

to the threshold c, with f(st) < 0.5 for st < c and f(st) > 0.5 for st > c. As the slope γ → ∞,

then (2) approaches the threshold model with binary regimes defined by st ≶ c; see, for example,

Teräsvirta (1998).

In the univariate STAR case, xt = (yt−1, yt−2, ..., yt−p) and st = yt−k. It is frequently

assumed that the delay k satisfies 1 ≤ k ≤ p, but in general k is unknown. Teräsvirta (1994)

proposes specifying this parameter through a sequence of tests for the null hypothesis of a linear

specification against the alternative of a logistic STAR (LSTAR) model for each value in the

pre-specified range for k. The lag which produces the strongest rejection of the null is then used

as k. This principle is easily extended to the STR case, in which xt contains relevant lags of

additional variables and the search for the transition variable st may extend over lags of more than

one variable.

Although f(st) is (in general) a smooth function of st, it is not necessarily a smooth function

over time. Hence when quarterly or monthly data are used, a single lag may be too noisy to

adequately capture regimes which have a duration of (say) a year or more, such as those associated

with the business cycle. This has sometimes led researchers to specify st in the LSTR specification

of (2) as a multi-period growth rate, as in van Dijk, Franses and Paap (2002) or Sensier, Osborn

and Öcal (2002). Although this smoothing of observations may lead to regimes that are more easily

interpretable in terms of the business cycle, the defintion of st is then essentially ad hoc.

Therefore, consider the straightforward generalization of (1) that allows the transition variable

to be a (q × 1) vector of lagged values st = (zt−1, zt−2, ..., zt−q) on an observed variable zt and

the logistic transition function (2) is generalized to

f(st) = [1 + exp {−γ (stδ − c)}]−1 γ > 0 (3)

2Much of our discussion can also be applied to other forms of the transition function, such as the widely-used
exponential STR specification. However, we focus on the logistic case for expositional purposes.
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and δ = (δ1, δ2, ..., δq) is a (q × 1) vector of parameters on which sufficient restrictions are applied

in order to ensure that the parameters are identified. The LSTR special case of (1) and (2) with

st = zt−k can be represented in this more general form with

δ = ek, (4)

where ek is the kth column of a q dimensional identity matrix. However, any linear transformation

is permitted through an appropriate definition of δ in (3); for example, a transition variable that

is the average of the first four lags of zt implies δ = (0.25, 0.25, 0.25, 0.25, 0, ..., 0).

Medeiros and Viega (2003, 2005) adopt the framework of (3) as the starting point for their

univariate NCSTAR (neuro coefficient STAR) model, assuming no a priori restrictions on δ

beyond the maximum lag order p and the identification conditions ||δi|| = 1 and δi > 0 for a

specific i. However, in practice not all elements of st = xt = (yt−1, yt−2, ..., yt−p)
′ are necessarily

included in the estimated transition function. In the spirit of Teräsvirta (1994), Medeiros and Veiga

(2003, 2005) propose that the relevant lags should be selected by applying linearity tests for all

possible subsets of the elements of st and choosing the subset which produces the strongest rejection

(according to the p-value). Then model estimation includes the implied nonzero coefficients of δ

entering (3), in addition to γ and c. Although they discuss a univariate model, the generalization

is straightforward to the case where the transition variable st is weakly exogenous. Their approach

adds substantial flexibility to the transition function compared to the more commonly used single

lag case, but it does not ensure that the resulting estimated f(st) is a smooth function of lagged

observations, and hence may lead to implausible implied regime changes for yt. Further, since

estimation of the transition function parameters γ and c in (1) has sometimes proved to be rather

difficult in practice for macroeconomic data, it is likely that only a very small number of parameters

could be estimated in δ in (3) with such data.

Our approach is also based on the model defined by (1) and (3), but we prefer to impose restric-
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tions on the values of the elements of δ at the outset of the analysis. The conditions
∑q
i=1 δi = 1

with δi � 0 (i = 1, ..., q) ensure identification of the parameters, while also giving the interpretation

of δ as a weighting function of the elements of st. The recent development of the MIDAS method-

ology to deal with data sampled at different frequencies has produced a resurgence of interest in

parsimonious weighting functions3 and Ghysels et al. (2005, 2006) propose the weighting function

δi (κ1, κ2) =
g (i |q;κ1, κ2 )∑q
j=1 g (j |q;κ1, κ2 )

, i = 1, 2, ..., q (5)

where g (i |q;κ1, κ2 ) is the density function of the beta distribution used to calculate the ith weight

δi, q is the maximum lag length considered and κ1, κ2 are parameters to be estimated. The weights

(5) computed from the beta distribution are well suited for this purpose, as they can take a range

of plausible shapes, as discussed in the next subsection. Although specification of a maximum lag

is required, this is common to all procedures in the realistic case where the delay in the STR model

is unknown.

An important advantage of our WSTR model based on (5) is that, by introducing one extra

parameter (κ1 and κ2 as compared to the selection of a single lag k), very flexible and parsiminous

weighting functions are obtained. Further, this avoids the step required in Teräsvirta (1994) for

specification of the single delay k or in Medeiros and Veiga (2003, 2005) for the selection of the

subset of variables whose coefficients are to be estimated in (3).

2.2 Weight distributions

As noted above, the usual STR modelling strategy imposes a weight vector δ in (3) that assigns

all weight to one lag and it is therefore important that an apparently more general function is

capable of reproducing this case. As a density function for a continuous random variable, the use

of a beta distribution in (5) cannot place unit weight on a single lag. Nevertheless, depending on

the parameter values κ1 and κ2, the weights derived from the distribution may be concentrated

3An early example of a parsimonious weighting function is the Koyck lag.
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around a single lag, and hence approximate a STR data generating process (DGP) with single-lag

transition function of the form f(zt−k).

Some applications choose the transition variable as an average of past values or, when the

observed variable is nonstationary, an m-period change when the dependent variable is the first

difference (as in Skalin and Teräsvirta, 2002, Teräsvirta et al., 2004, or Sensier et al., 2002)4. This

implies equal weights over the lags included in st and is reproduced by the beta distribution with

κ1 = κ2 = 1.

The shape of some possible weight distributions deriving from (5) is illustrated in Figures 1 and

2 for the case of quarterly data with q = 4 and q = 8 respectively; these shapes are obtained using

the parameters for the beta distribution as shown in Table 1. The upper panel of each figure shows

five weight distributions with weights distributed over all lags, either equally or with modal weight

at lag one or two. The weight distributions displayed in the lower panel in each case mimic the

restrictions in a traditional STR model where δ has the form of a single delay at one of k = 1, 2, 3, 4.

In these latter cases about 90% of the weight is attached to a single lag, hence providing a good

approximation in practice.

The shapes in Figures 1 and 2 are, of course, only for illustrative purposes. Different values of

the beta function parameters κ1 and κ2 give rise to different shapes; for example, the modal weight

could occur at a longer lag than in the cases illustrated. Nevertheless, these figures indicate that

the functions represented by (5) can capture the features of weight distributions likely to apply in

economic applications. In addition to this flexibility,WSTR models have the substantial advantage

over other STR specifications that the relevant lags are selected endogenously, constrained merely

by the weighting functions allowed by the beta distribution and the maximum lag specified by the

researcher.
4Note that the m-period change is merely a rescaled version of a simple average over m one-period changes.
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2.3 Estimation

For a given transition variable st = zt−k, the parameter vector θ =
(
α0, α

′
1, β0, β

′

1, γ, c
)′

of

the STR model in (1) and (2) is estimated by nonlinear least squares. However, since OLS can

be utilized conditional on γ and c (provided γ 	= 0), the parameter vector θ1 = (α0,α
′
1, β0,β

′

1)
′

can be concentrated out of the nonlinear criterion function. Therefore, nonlinear optimisation only

needs to be undertaken with respect to γ and c, with estimates of the remaining coefficients then

recovered by OLS conditional on the parameters of (2). A procedure of this type is also proposed

by Medeiros and Veiga (2005) for their NCSTAR model.

We also advocate estimating theWSTRmodel by optimising the criterion function (the residual

sum of squares) concentrated with respect to θ1, so that nonlinear optimisation is performed only

over the elements of θ2 = ( γ, c, κ1, κ2)
′ which are used in (5) to define the elements of the

weighting vector δ in (3). The required starting values for θ2 can be obtained as a by-product of

the nonlinear testing procedure outlined below or from an initial LSTR model grid search. Further

discussion can be found in the appendix.

3 Nonlinearity Testing

As nonlinear models are more difficult to estimate and use than linear ones, it is widely recognised

that appropriate tests should be performed to establish the presence of nonlinearity of the form

to be modelled prior to estimation. This section considers testing for nonlinearity of the WSTR

form, as a by-product also discussing appropriate testing in the context of the conventional single

lag STR special case. We first discuss general issues concerned with the application of tests based

on Taylor series approximations, before considering our approach that employs a range of plausible

weight functions. Heteroscedastic-consistent tests are discussed in the third subsection.
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3.1 Taylor series approximations

The testing procedure for smooth transition models based on Taylor series approximations is laid

out in Teräsvirta (1994) and Luukkonen, Saikkonen and Teräsvirta (1988). Although the model

may be univariate, our discussion of testing for STR nonlinearity in (1) considers the bivariate

case with xt = (yt−1, ..., yt−p, zt−1, ..., zt−r)′ and n = p+ r, since this is sufficient to illustrate more

general models. Further, we consider a leading indicator context and assume the transition variable

is a linear combination of the elements of st = (zt−1, zt−2, ..., zt−q); the modifications required

for st = (yt−1, yt−2, ..., yt−q), including the univariate case, are straightforward. Note that we do

not require r = q, so that the maximum lag q potentially entering the transition function can differ

from that for zt in (1).

The logistic smooth transition function of (3) requires definition of the vectors δ and st. For

the purpose of derivation, it is convenient to define the scalar s∗t = γ (stδ − c) and, without loss of

generality, centre the logistic function as

f(s∗t ) = [1 + {exp (−s∗t )}]−1 − 0.5 (6)

so that f(0) = 0. In their derivation, Luukkonen et al. (1988) do not specify a particular functional

form for f(s∗t ) but rather formulate a number of conditions this function needs to fulfill when it is

monotonically increasing5.

The null hypothesis of linearity can be represented by H0 : γ = 0 in (3), with the process

following a nonlinear path if HA : γ 	= 0. Standard distributions for common tests (like Wald, LR

and LM) do not apply as under this null hypothesis the parameters δ and c are unidentified. The

ingenious contribution by Luukkonen et al. (1988) is to replace the transition function by a Taylor

Series approximation around f (0). A third order approximation has frequently been used in the

5Although this rules out the possibility of an exponential STR specification, analogous results apply for this case;
see, for example, Teräsvirta (1994).
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literature, namely

fT3 (s
∗

t ) = f (0) + f ′ (0) s∗t +
1

2
f ′′ (0) (s∗t )

2 +
1

6
f ′′′ (0) (s∗t )

3.

The conditions imposed on the functional form of f (s∗t ) ensure that f (0) = f ′′ (0) = 0 and

consequently

fT3 (s
∗

t ) = f ′ (0) s∗t +
1

6
f ′′′ (0) (s∗t )

3.

Replacing f (st) in (1) with fT3 (s
∗
t ) yields the approximation

yt = α0 + xtα1 +

(
f ′ (0) s∗t +

1

6
f ′′′ (0) (s∗t )

3

)
(β0 + xtβ1) + εt (7)

where it should be noted that εt now also includes the approximation error due to fT3 (s∗t ) 	= f (s∗t )

and the values of the parameters in (α0, α
′

1)
′ in this last expression differ from those in (1) due to

the centering in (6)6.

Now, substituting s∗t = γ (stδ − c) in (7), then rearranging and collecting terms leads to

yt = φ0 + xtφ1 + φ2(stδ)xtβ1 + φ3 (stδ)
2
xtβ1 + φ4 (stδ)

3
xtβ1 + εt (8)

where the scalar parameters φi (i = 1, 2, 3, 4) are functions of α0,α1, β0, γ and δ, in addition to

scalar factors from the Taylor expansion and from the derivatives of the transition function at

s∗t = 0
7. Further, it is easy to demonstrate that γ enters φ0 and φ1 additively and φi for i = 2, 3, 4

multiplicatively. This implies that under H0 : γ = 0 all φi = 0 for i = 2, 3, 4, which indicates that

the null hypothesis can potentially be tested by testing the restriction φi = 0 for i = 2, 3, 4 in an

auxiliary regression. However, specifying the appropriate auxiliary regression requires investigation

of the nature of the terms (stδ)
2 and (stδ)

3 in (8). Further, since the vector β1 is unknown, the

tests apply to φiβ1 = 0 for i = 2, 3, 4.

Many researchers repeatedly apply this nonlinearity test for different possible delay parameters

k = 1, ..., q, in (4). The value of k which triggers the strongest rejection of the null hypothesis

6For notational ease we do not introduce different notations to reflect these changes.
7Note that terms in (stδ), (stδ)2, (stδ)3 contribute to xtφ1, (stδ)xtφ1, (stδ)

2
xtφ1 respectively.
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is selected as the delay used when estimating (1). However, if applied as a test for the existence

of nonlinearity, this procedure suffers from the multiple testing problem. In other words, if the

overall null hypothesis of linearity is rejected when (at least) one individual test for some delay k

is rejected, the true level of significance for the overall test may be considerably higher than the

nominal level8. In fact, Luukkonen et al. (1988) develop a joint test which does not suffer from

this problem and is also sufficiently general to cover the WSTR model introduced here.

Luukkonen et al. (1988) assume the specific form for the vector δ as in (4), so that scalar

st = zt−k, leading to the STR special case of (1). With the maximum value for the delay specified

to be q, this assumption simplifies higher order powers of (stδ) to

(stδ)
j =





q∑

i=1

δiz
j
t−i for unknown delay parameter k

zjt−k for known delay parameter k.

(9)

Therefore, when the transition variable is zt−k with delay k known, and eliminating redundant lags,

it is easy to see that an auxiliary regression for testing against STR nonlinearity has the form

yt = φ0 + xtφ1 + (xtzt−k)
′φ2 + (xtz

2
t−k)

′φ3 + (xtz
3
t−k)

′φ4 + εt (10)

where φ2,φ3,φ4 are each (n×1) vectors. The test statistic for the 3n restrictions φ2 = φ3 = φ4 = 0

can be computed using a conventional asymptotic χ2 distribution, or an F distribution which may

better take account of the finite sample size.

When the restriction (4) applies but the delay parameter k is unknown except for the maximum

permitted lag q, the zjt−k (j = 1, 2, 3) terms in (10) are replaced by sums, leading to the auxilliary

regression of the Luukkonen et al. (1988) test which is

yt = φ0 + xtφ1 +

q∑

k=1

(xtzt−k)φ2,k +

q∑

k=1

(xtz
2
t−k)φ3,k +

q∑

k=1

(xtz
3
t−k)φ4,k + εt (11)

When q = r, the number of null hypothesis restrictions φ2,k = φ3,k = φ4,k = 0 is 3qn− [q(q−1)/2],
8Teräsvirta (1994) is well aware that such a procedure results in a test statistic with a non-standard distribution.

Rather, he discusses this strategy only as a tool for model selection. Nevertheless, practitioners often apply this
strategy in a testing context and Section 4 investigates its statistical properties in this context.
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and it is evident that the number of restrictions can be large relative to the sample sizes often

available9.

If the transition variable is an unknown linear combination of lags of zt, then (stδ)
j in (9)

produces all possible cross products of order j between the lags zt−1, zt−2, ..., zt−q, namely

(stδ)
2 =

q∑

k=1

q∑

k′=k

λi,i′zt−k zt−k′ (12)

(stδ)
3 =

q∑

k=1

q∑

k′=k

q∑

k′′=k′

λk,k′,k′′zt−k zt−k′ zt−k′′ (13)

where the coefficients λk,k′ and λk,k′,k′′ are functions of the δi. For q = r = 4, for instance,

this generates 10 distinct terms of order 2. As in (8), these terms are multiplied with xtβ1 so

that the inflation of cross-product continues and it becomes apparent that without restricting the

parameter vector δ, no sensible testing strategy based on auxiliary regressions and full third-order

Taylor approximations appears to be feasible, except for very small values of q.

One way to mitigate this problem is to employ an "economy" version of the test, which is

suggested by Luukkonen et al. (1988) with the single-lag restriction of (4) and by Medeiros and

Veiga (2005) when these restrictions are not imposed. This economy version then employs the

terms of (12) and (13) arising from the Taylor series approximation of f(st)β0, but includes terms

from only a first order Taylor series approximation in the expansion of f(st)xtβ1 in (1). Thus, with

no restrictions on δ, the economy version amounts to using the auxiliary regression

yt = φ0 + xtφ1 +

q∑

k=1

(xtzt−k)φ2,k +

q∑

k=1

q∑

k′=k

q∑

k′′=k′

φ3,k,k′,k′′zt−k zt−k′ zt−k′′ + εt. (14)

with the null hypothesis involving a test of φ2,k = 0, φ3,k,k′,k′′ = 0. For the univariate case p = 2

considered in the Monte Carlo analysis of Medeiros and Veiga (2005), this economy version implies

testing only 7 restrictions, but (even in a univariate model) the number mushrooms to 30 should

p = q = 4 be contemplated and to 156 for p = q = 8! Although not mentioned by Medeiros and

9Note that q(q−1)/2 terms in
∑q

k=1(xtzt−k)
′φ2,k are then redundant as terms involving zt−kzt−k′ (k �= k

′) appear
twice in this sum. Also note that, in both (10) and (11), different numbers of restrictions apply when q �= r or when
st = (yt−1, ..., yt−q).
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Veiga, the test arising from (10) is the same as that referred to by Teräsvirta, Lin and Granger

(1993) as the V23 test and recommended by them as a test against nonlinearity of the neural

network type10.

Again in the neural network context, Lee, White and Granger (1993) devise a linearity test

where they solve the unidentified parameter problem by effectively taking repeated random draws

for possible δ, applying the test for each of these realisations and then obtaining significance

levels by means of Bonferroni or Hochberg bounds11. However, this test is not widely applied for

economic data, apparently for two reasons. Firstly, the parameter space of possible δ may not

be well defined and a large number of random draws may be required to have a good chance of

covering all directions against which the test should have power. Secondly, there is little evidence

on the empirical performance of the significance bounds using sample sizes typically available in

economics and the suspicion is that they are rather conservative. Consequently this strategy is

rarely applied in economics and neural network tests are usually conducted through the V23 test.

From this discussion it should be obvious that for most practical purposes, especially when the

possible maximum lag q of the transition function is not very small, restrictions are desirable for the

vector δ. Fortunately the WSTR model introduced above provides such a set of restrictions, while

being much more flexible than (4) at the cost of only one more parameter. Rather than applying a

Taylor series approximation to the transition function (3), our proposal is to make explicit use of

the restrictions implied by the model.

3.2 Inference using weight functions

As evident from (12) and (13), to develop a test for WSTR nonlinearity based on a Taylor series

approximation, the parameters κ1 and κ2 of the beta function (5) need to be specified. We believe

10The one layer neural network alternative considered there is a special case of the weighted STARmodel considered
here with β1 = 0.

11 If the test is performed m times then the Bonferroni bound is used in the following manner. Order the obtained
p-values in increasing order, p(1), p(2), ..., p(m). Assume that a significance level of α is to be applied, then the H0 is
rejected if the smallest of the m p-values, p(1), is smaller than α/m. When the Hochberg bound is applied then the
null hypothesis is rejected if for any j = 1, ...,m, p(j) < α/ (m− j + 1).
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that a range of combinations for κ1 and κ2 in (5) can be used to capture the features of weight

distributions relevant for modelling the responses of macroeconomic variables in a WSTR context.

Indeed, examples of such weight distributions have already been discussed in relation to Figures 1

and 2. Our proposal is that a set of plausible weight functions be defined a priori for a specific case

and a test for nonlinearity based on a Taylor series expansion be applied in relation to each pair

of κ1 and κ2 values. The overall nonlinearity hypothesis test is then conducted using a bootstrap

procedure. By initially defining plausible pairs of κ1, κ2, we avoid the overparameterization inherent

in the Luukkonen et al. (1988) and the V23 tests. On the other hand, our procedure does not

involve estimation of the nonlinear WSTR model until after rejection of linearity, thereby avoiding

the heavy computational burden of conducting bootstrap inference by estimating nonlinear models

when the linearity null hypothesis is true, as in Galvão (2006).

Given values for the beta function parameters, say κ1i, κ2i, yield a vector δi, from which the

scalar value for the transition variable st,i = stδi can be calculated for each time period t. Then

replacing stδ in (8) with st,i yields an auxiliary regression of the form:

yt = φ0 + xtφ1 + (st,ixt)φ2 + (s
2
t,ixt)φ3 + (s

3
t,ixt)φ4 + εt (15)

where each φj (j = 2, 3, 4) is (n×1). In deriving (15) we continue to assume that xt = (yt−1, ..., yt−p,

zt−1, ..., zt−r) with st = (zt−1, zt−2, ..., zt−q) or st = (yt−1, yt−2, ..., yt−q).

If one is willing to specify a discrete set ∆′, a subset of Rq which includes the potential δ

to be considered, the test statistic can be calculated for each element in ∆′. Utilizing weight

distributions constrained according to (5) reduces the dimensionality of the weight set to 2, namely

the length of the vector κ. While this still leaves the possibility of an infinite set on R2+ with all

κ = (κ1, κ2)
′ ∈ ∆, it is argued above that for many economic applications it may be reasonable

to restrict the potential weight vectors to a relatively small set which capture the characteristics a

priori considered to be plausible for the problem at hand.
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Under the null hypothesis of linearity κ = (κ1, κ2) are nuisance parameters. It has long been

recognised (Davies, 1987, Andrews and Ploberger, 1994, and Hansen, 1996, provide seminal contri-

butions) that the distributions of test statistics which depend on unidentified nuisance parameters

are nonstandard. Let LM (κ) be the lagrange multiplier test statistic12 for H0 given κ. Three

procedures to translate LM (κi) , for κi ∈ ∆′ and i = 1, ...,m, into a single test statistic have been

proposed in the literature (Davies, 1987, Andrews and Ploberger, 1994), namely

LMmax = sup
κi∈∆′

LM (κi) (16)

LMexp = ln

(
m−1

m∑

i=1

exp

(
LM (κi)

2

))
(17)

LMave = m−1
m∑

i=1

LM (κi) . (18)

While LM (κi) for fixed κi is asymptotically χ2 distributed under H0, none of LMmax, LMexp or

LMave follow a standard distribution. In particular the distribution of these test statistics depends

on E (LM (κi) , LM (κj)), i 	= j, which prevents the tabulation of critical values, except in limited

specific cases (see Andrews, 1993).

Therefore, distributions for the test statistics under the null hypothesis have to be simulated

for the specific problem under study. Hansen (1996) proposes such a procedure and applies it to a

special case of the STR model described above. With a null hypothesis of linearity, the alternative

model considered in Hansen is the self-exciting threshold autoregressive model, which arises when

δ is defined as in (4) and γ in (2) is such that the transition function acts like a step function,

γstep. The remaining unidentified parameters are the threshold c and the delay k of zt that defines

the transition variable. Hansen proposes specification of a set Γ from which τ = (c, k) arise. For

any given τ , f (st) = I [zt−k>c] = It, where I [·] is the indicator function and the auxilliary test

regression is

yt = α0 + xtα1 + β∗0It + Itxtβ
∗

1 + εt (19)

12This procedure is universally valid, not merely for the specific case of an LM test.
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from which the null hypothesis β∗= 0, with β∗=
(
β∗0 β

∗′

1

)′
, is tested. Let xt (τ) = (1, xt, It, Itxt)

and let capitalised matricesY andX (τ) represent the stacked matrices of observations yt and xt (τ)

respectively, with M (τ) = X (τ)′X (τ) /T 13. Define the nα = n+1 and nβ = 2(n+1) dimensional

parameter vectors α = (α0 α′1)
′ and θ =

(
α′ β∗′

)′
, with θ̂ (τ) =

(
X (τ)′X (τ)

)−1
X (τ)′Y. Also let

R = (0 I)′ with 0 being a (nβ × nα) matrix of zeros and I a (nβ × nβ) dimensional identity matrix.

Further let ẽ be the estimated residual vector for the model imposing the null hypothesis, with the

score function evaluated at the null hypothesis being w̃t (τ) = xt (τ) ẽt. Assuming homoscedasticity,

the LM test of H0 : β
∗= 0 is then calculated according to

LMT (τ) = T θ̂ (τ)′R
[
R′σ2ẽM (τ)−1R

]−1
R′θ̂ (τ)

= T θ̂ (τ)′R Ω̃−1 R′θ̂ (τ) (20)

where the T subscript indicates that the test statistic relates to a particular sample of size T

and Ω̃ is defined as the term in square brackets. These tests are easily modified for the present

problem by recognising that xt (τ) consists of xt in the auxiliary test regression (15), τ = κ and the

parameter vector β∗ contains all the coefficients appearing in φ2,φ3 and φ4 in (15). The maximum,

exponential and average statistics are computed over the set of all κ = (κ1, κ2)
′ ∈ ∆′, namely the

specific weight functions considered, with inference then conducted using p-values computed as in

Hansen (1996).

Hansen (1996) describes a methodology to generate draws from the asymptotic distribution of

LMmax, LM exp and LMave respectively, enabling hypothesis tests of the computed statistics to

be undertaken. Heuristically the procedure can be described as follows. Under the null hypothesis

√
TR′θ̂ (τ) is a (nβ × 1) vector which is asymptotically normally distributed with mean 0 and

covariance Ω. Under the assumptions presented in Hansen, this covariance is consistently estimated

by Ω̃. Recalling the standard regression result R′θ̂ (τ) = R′θ0 (τ) + R′
(
X (τ)′X (τ)

)−1
X (τ)′ ε

where θ0 (τ) is the true value of the vector θ and as under the null hypothesis R′θ0 (τ) = β
∗ = 0, it

13The notation is as close as possible to that in Hansen (1996).
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then follows that R′θ̂ (τ) = R′
(
X (τ)′X (τ)

)−1
X (τ)′ ε. Consequently, under the null hypothesis,

√
TR′θ̂ (τ) = R′M (τ)−1

(
X (τ)′ ε/

√
T
)
. (21)

The procedure proposed by Hansen involves making random draws of LM (τ) by resampling the

term in parentheses in (21) by means of Wj (τ) = X (τ)′ zj/
√
T , where zj is a (T × 1) vector

of standard normally distributed random variables, yielding the following realisation j from the

asymptotic null distribution of the LM test statistic:

LMj (τ) =W j (τ)′M (τ)−1R Ω̃−1 R′M (τ)−1W j (τ) . (22)

For a particular zj these statistics can be calculated for all τ i ∈ Γ and the maximum, exponential

or average test statistics for given T can then be created according to (16) to (18). By repeating

this procedure for J draws of zj , J draws from the asymptotic distribution are generated, with

approximations to the p-values of the maximum test statistic obtained by means of

p̂max = J−1
J∑

j=1

I
[
LMmax

j >LMmax
T

]
.

Clearly the same principle applies to p−values for the LMexp and LMave test statistics.

It is obvious that this procedure can also be applied as an alternative to the Luukkonen et al.

(1988) test if δ is restricted to the single lag form of (4) and the lag k is unknown. In this case,

the LMmax, LMexp and/or LMave statistics are computed over the potential lags 1, 2, ..., q rather

than over the set κ = (κ1, κ2)
′ ∈ ∆′.

3.3 Heteroscedasticity-consistent tests

In the presence of possible heteroscedasticity, the LM statistic (20) for testing H0 : β
∗= 0 for a

specific It in (19) becomes

LMT,hc (τ) = T θ̂ (τ)′R
[
R′M (τ)−1 Ṽ (τ)M (τ)−1R

]−1
R′θ̂ (τ)

= T θ̂ (τ)′R Ω̃−1hc R′θ̂ (τ) , (23)
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where Ω̃hc = R′M (τ)−1 Ṽ (τ)M (τ)−1R is a consistent estimator of the covariance Ωhc of
√
TR′θ̂ (τ)

in (21), with Ṽ (τ) = W̃ (τ)′ W̃ (τ) /T in which W̃ (τ) is obtained by stacking w̃t (τ) and w̃t (τ) =

xt (τ) ẽt is the score vector evaluated under the null hypothesis. In our case, the maximum, expo-

nential and average statistics from (23) are computed over the set of all κ = (κ1, κ2)
′ ∈ ∆′ to give

LMmax
hc , LMexp

hc and LMave
hc .

In order to conduct asymptotically valid tests that replicate the heteroscedasticity of unknown

form in the DGP, Hansen (1996) proposes resampling the term in brackets in (21) usingWj
hc (τ) =

W̃ (τ)′ zj/
√
T , where zj is again a (T × 1) vector of standard normally distributed random variables.

This leads to the realisation j from the asymptotic null distribution of (23) computed as

LMj,hc (τ) =W j
hc (τ)

′M (τ)−1R Ω̃−1hc R′M (τ)−1W j
hc (τ) .

Hence, using the resulting distribution for LMmax
T,hc, LM

exp
T,hc and LMave

T,hc, approximate p-values for

LMmax
hc , LMexp

hc and LMave
hc can be obtained.

In effect, the Hansen (1996) approach accounts for heteroscedasticity by considering the vec-

tor xt (τ) ẽt, namely the interaction between the values of the regressors in (19) and the resulting

residual, which is then randomized by multiplication by an iid standard normal variable. Asymptot-

ically this randomization preserves the observed heteroscedasticity, but will not exactly reproduce

the heteroscedastic pattern of the observed data in any given random draw j. Following the recent

bootstrapping literature (e.g. Gonçalves and Kilian, 2004), an alternative procedure to generate

random draws from the null distribution is to use a fixed design wild bootstrap procedure. Our

proposed procedure replaces w̃jt,hc (τ) = xt (τ) ẽtz
j
t where zjt is an independent standard normal

variate, with w̃jt,wb (τ) = xt (τ) ẽtη
j
t where η

j
t (j = 1, ..., J) are generated as independent draws from

the Rademacher distribution such that

ηjt =

{
+1 with probability 0.5
−1 with probability 0.5

. (24)

Thus, by using the observed residual (computed under the null hypothesis) but randomizing its
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sign, the fixed design wild bootstrap exactly replicates the heteroscedasticity observed for each t in

the finite sample under test. Since xt (τ) is held fixed over replications, any covariance between the

regressors and the heteroscedasticity is maintained. The remainder of the procedure is as above and

we refer to the test results obtained from this procedure, for a sample of size T , as LMmax
T,wb, LM

exp
T,wb

and LMave
T,wb.

Although originally developed in the context of a standard regression model with possibly

heteroscedastic disturbances (see Liu, 1988, and Mammen, 1993), Gonçalves and Kilian (2004)

establish (under certain assumptions) the validity of the wild bootstrap for testing for autocor-

relation in a dynamic model allowing for heteroscedasticity of unknown form. Becker and Hurn

(2007) demonstrate that a wild bootstrap procedure may be applied to the V23 test conditional on

the heteroskedastic innovation process meeting strict moment existence conditions. However, the

empirical properties appear to be satisfactory even when these formal conditions are not met. As

the V23 test also includes higher order terms as regressors, it is anticipated that similar conditions

on the transition variable st will be required here. In particular, if st is defined in terms of lagged

dependent variables, moment conditions will have to be imposed on the error process itself. Becker

and Hurn (2007) show how, in the case of heteroskedasticity of the GARCH type, the existence of

moments depends on the GARCH parameters and the conditional innovation process.

Different choices for the distribution of ηjt have been investigated in the literature. However, the

Monte Carlo analysis of Godfrey and Orme (2002) finds the randomization scheme in (24) using

the Rademacher distribution to perform well for a variety of regression misspecification tests, which

leads us to use it in our nonlinearity testing context.
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4 Empirical properties of the proposed test

This section examines the finite sample size and power properties of our proposed nonlinearity test

procedure, also comparing the latter properties to other tests used to detect nonlinearity of the

STR type.

4.1 Size

To investigate the empirical size with homoscedastic error terms, the univariate AR(1) process

yt = 0.4 yt−1 + εt with εt ∼ N (0, 1), is simulated. The same AR(1) process is also used in

a heteroskedastic setting, where εt ∼ N
(
0, σ2t

)
with σ2t = 1 for t = 1, ...., T2 − 1 and σ2t = 2

for t = T
2 , ..., T . Although it is common to employ GARCH processes to capture conditional

heteroscedasticity in financial variables, volatility changes for macroeconomic variables appear to

be characterized by occasional abrupt shifts; see Sensier and van Dijk (2004). With this in mind,

we adopt a simple break form of heteroscedasticity. The WSTR nonlinear test is applied, utilizing

the auxiliary regression (15). In all cases, the standard and heteroscedasticity-robust versions of

the LM statistics, (20) and (23), are computed. Significance is evaluated as described above where

we use hc and wb versions to evaluate the significance of the test statistic in (23) and J is set to

400. In all cases, 10, 000 replications are used to obtain the empirical characteristics of the test for

sample sizes T = 200, 500 and 1, 000.

Three different versions of the test are implemented, with these differing in the dimensions

allowed for the linear part xtφ1 in (15) and the number of lags considered for the transition vector,

st. In this univariate context we define xt = (yt−1, ..., yt−p) and st = (yt−1, ..., yt−q), so that the

same maximum lag does not necessarily apply in the linear part and the transition vector. Two

cases consider equal dimensions, with p = q = 4 and p = q = 8 used to replicate the (often

arbitrary) values used in applications with quarterly data. In addition a third case utilises p = 4

lags in the linear part of the equation, but allows up to eight lags of yt in the transition variable

22



(q = 8). The potential weight distributions included in the set ∆′ are those displayed in Figures 1

and 2 for 4 and 8 lags respectively in the transition function, and the corresponding values for κ1

and κ2 are shown in Table 1. In each case these consist of nine different weight distributions, some

of which put almost all weight on one particular lag to allow the possibility that the nonlinearity

follows the restricted DGP assumed by Teräsvirta (1994), while the remaining weight vectors put

substantial weight on recent observations and declining weight on observations with longer lags.

As already noted, a researcher can change these sets of weights and the number of different weight

structures utilized without any affecting the general procedure.

Size results are displayed in Table 2 for nominal significance levels of 1, 5 and 10 percent. To

avoid unnecessary repetition, the results for tests based on the exponential version of the LM

test (17) are not shown, since these are always very similar to those obtained using the average

and, more particularly, the max versions of the statistics. It is easily seen from Panel (a) that

the empirical size for the tests assuming homoscedasticity are fairly accurate when applied to the

homoscedastic AR(1) DGP, being only slightly conservative. On the other hand, the heteroscedas-

ticity robust versions of the Hansen (1996) procedure are very conservative, and this characteristic

is also observed by Hansen (1996). The sizes of both versions of this test generally improve with

the sample size and also generally improve when fewer parameters are estimated. Thus, although

the same number of parameters are subject to testing irrespective of the assumed linear AR order

(p) or the maximum order of transition variable (q), the empirical size results are very similar for

the cases of q = 4 and 8 when a common assumed AR order p = 4 is employed. Nevertheless,

for a realistic sample size with monthly data of T = 500, the empirical size for the Hansen (1996)

heteroscedastic-consistent procedure is around 0.02 in all cases when a nominal 0.05 level is used,

with this deteriorating to around 0.015 with p = 8.

Although it also allows for the possibility of heteroscedasticity that is not present in this DGP,

it is striking that the use of the wild bootstrap procedure delivers very good size for all cases in
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Table 2, irrespective of the sample size. Indeed, the finite sample size using this procedure is more

reliable than that delivered by the use of standard Hansen (1996) homoscedastic draws.

When the true DGP is heteroscedastic, panel (b) of Table 2 shows that tests assuming ho-

moscedasticity are badly oversized. For example, in all cases the use of a nominal significance

level of 0.05 results in an empirical size of around 0.40 or more, and exceeding 0.60 when p = 8 is

employed. Of course, this result does not inherently depend on the use of the maximal, average

or exponential statistics (16), (18) or (17), but is rather a function of the failure to account for

heteroscedasticity in the computation of the underlying LM statistic (20). Therefore, rejections of

linearity using tests based on (20) should be treated with extreme caution when heteroscedasticity

may be present. Due to the invalid asymptotic inference being employed, there is no evidence that

larger sample sizes yields better empirical size when such statistics are used with a heteroscedastic

DGP in panel (b) of Table 2.

In common with the homoscedastic DGP, the use of the heteroscedasticity consistent Hansen

(1996) approach results in conservative empirical size, although this is even more marked here than

in the homoscedastic DGP case. There is, however, a substantial improvement in size when moving

from T = 200 to T = 500 sample observations. In the latter case, and as a rule of thumb, the use

of a nominal significance level of 0.10 yields an empirical size around 0.05. Once again, however,

much more reliable size results are obtained when wild bootstrap inference is employed. Indeed,

although some oversizing is observed in these tests for the heteroscedastic DGP in panel (b), this

is very modest compared with the size distortions observed in the other two cases.

4.2 Comparison with related tests

We next compare our WSTR nonlinearity test to two related procedures, namely the minimum

p-value of the sequence of tests proposed in Teräsvirta (1994) for model specification and the overall

test developed by Luukkonen et al. (1988). Although all three procedures deal with the parameters
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γ and c through a third order Taylor series expansion of f (st) in (3), they differ in the handling

of δ. More specifically, the Teräsvirta and Luukkonen et al. tests restrict δ to the single lag form

in (4), whereas the WSTR procedure allows δ to follow the more flexible form in (5). As in the

previous subsection, the DGP is univariate.

As indicated in the discussion of Section 3, if the transition variable st = yt−k applies with k

known, the auxiliary regression (10) is relevant and the corresponding LM test statistic is asymp-

totically χ2 distributed with 3p degrees of freedom. Although proposed by Teräsvirta (1994) only

for model specification purposes, the literature abounds with examples of applying a strategy of

allowing k to vary from 1 to q and selecting the value of k that leads to the strongest rejection of

the null hypothesis, with the corresponding minimum p-value treated as applying in the context of

a test of nonlinearity. When used as a nonlinearity test, we refer to this as p−min. It is, however,

clear that the distribution of this test statistic will be nonstandard.

The Luukkonen et al. (1988) auxiliary regression of (11) reflects the treatment of the delay

parameter as unknown while maintaining the restriction on δ as in (4). In the univariate case

examined here, the test statistic is asymptotically χ2 distributed with 3qp − [p(p − 1)/2] degrees

of freedom, which can imply a large increase in restrictions tested compared to the Teräsvirta test

and it is consequently often conjectured that the Luukkonen et al. test may suffer from low power.

The Luukkonen et al. (1988) test is denoted LST in the table

Our comparison assumes p = q = 4 in all cases. Hence each of the individual LSTAR and

WSTAR auxiliary regressions of (10) and (15) respectively has 12 restrictions to be tested while the

Luukkonen et al. (1988) test in (15) has 42 such restrictions, but requires only a single regression.

The WSTAR test is implemented with two different weight sets. The first of these is the set shown

in Table 1 and displayed in Figure 1. The second set of weights is a restricted version of this set,

with only those weight distributions which effectively give unit weight to one particular lag (using

the weights in the bottom panel of Figure 1). This latter case, in combination with the maximal
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mapping in equation (16), emulates the p −min test for LSTAR nonlinearity, but should ensure

that this procedure is correctly sized. The procedure is labelled LMSTAR in the table.

The first DGP used is the linear homoscedastic AR(1) process used in Section 4.1, which facili-

tates the evaluation of the severity of size distortion when a multiple testing strategy is employed.

The second DGP is a nonlinear LSTAR model as in (1) and (3) with parameters α0 = β0 = 0,

α1 = (0.6 0 0 0)′, β1 = (−0.4 0 0 0)′, γ = 20 and c = 0, which provides information on power.

Two different sets of parameters are used for δ, namely the conventional LSTAR specification:

δ1 = (1 0 0 0)′ and the WSTAR weights δ2 = (1/3 1/3 1/3 0)′. The former corresponds to the

single-lag alternative on which the Teräsvirta (1994) and Luukkonen et al. (1988) tests are based,

whereas the latter uses an average of lagged observations to form the transition variable. It should,

however, be noted that although the latter weight distribution is an average, this average is over

three not four lags. Consequently none of the weight distributions included in ∆′ exactly cor-

responds to δ2 and hence we are investigating the power of our test procedure when the weight

distribution in the DGP is not precisely replicated in the weight functions considered14. All DGPs

used in these comparisons are homoscedastic, with decisions for all procedures except WSTAR

being based on the conventional χ2 distribution; 10, 000 replications are employed in each case.

The results for the AR(1) in Table 3 provide a size comparison for the Luukkonen et al. test

(denoted LST) and the p−min test in comparison to the procedures whose size has already been

discussed in relation to Table 2. (Note that the LMSTAR test is a special case of LMmax.) The LST

test is undersized, particularly at a sample size of T = 200, with this undersizing (not surprisingly)

becoming less severe as the sample size increases. On the other hand, the p − min procedure

is always badly oversized, for example having an empirical size of around 15% at a nominal 5%

significance level. This overrejection under the null is, of course, a consequence of using a multiple

testing procedure without taking this into account when computing the test statistic. However, this

14Clearly, the power obtained in the simulations could be artifically increased by choosing a weight vector for the
DGP that exactly matches one of the elements in ∆′.
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strategy is often employed as a nonlinearity test prior to building STR models, and the size results

for the linear AR(1) in Table 3 emphasize that apparent significance according to this statistic is

not a reliable indicator of the presence of such nonlinearity in the DGP.

Turning to the power results for the LSTAR andWSTAR DGPs, the LST test always has lower

power than the homoscedastic and wild bootstrap versions of the LM procedure15, due primarily

to the large number of parameter restrictions which need to be tested in LST . For example, in the

LSTAR specification with all weight at lag 1, the LST test has power of 0.18 with T = 500 and a

5 percent significance level, whereas the LMSTAR and WSTAR procedures in the corresponding

case each have power around 0.25, except when Hanson (1996) heteroscedastic-consistent draws are

used for the latter. Hence the higher power shown by these other tests can be explained by their

more economical use of degrees of freedom in the individual regressions. While the p − min test

has the largest nominal power it should be noted that this is merely the flip side of the test’s size

distortion.

When the weight distribution is of the WSTAR form, it is interesting that the LSTAR test

LMSTAR has very similar power to LMmax and LMmax
wb when T = 200, although the power for

the latter is increased when the average form of the statistic is used. Despite the power being

relatively modest for all these tests with this sample size, this finding indicates that the single-lag

LSTAR specification retains power even against this more general model. Indeed, this remains

true when the sample size increases to T = 500 or 1000. Although not included in our comparison,

this implies than an average form of the LM test based on single-lag weights may perform similarly

to LMave and LMave
wb in this context. It may also be noted that all tests gain power when applied

to the WSTAR DGP rather than the LSTAR one, nevertheless the advantages of the WSTAR

approach over the Luukkonen et al. test is even more marked when the DGP has this more general

15Results were also obtained for the exp form of all LM statistics. However, as for size (discussed in the preceding
subsection), these results were qualitatively very similar to those obtained using the max and ave versions. Indeed,
the empirical size and power for the exp form was typically intermediate between the max and ave results shown.
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form.

Given the undersizing exhibited by the Hansen (1996) heteroscedasticity-consistent procedure,

it is to be anticipated that this approach will have lower nominal power than the LMmax and

LMave tests that have more reliable size, and this is indeed borne out. However, it appears there

is no loss of power in using the wild bootstrap form allowing for possible heteroscedasticity, even

when no such heteroscedasticity is present in the DGP.

Although considered here only for p = 4, it is anticipated that the performance of the WSTAR

nonlinearity test will dominate the Luukkonen et al. (1988) test even more when higher potential

lag orders are considered, especially for realistic sample sizes in macroeconomics, such as T = 200

or T = 500. It is also very reassuring that robustification against heteroscedasticity using the wild

bootstrap form of the LM statistics does not lead to a deterioration of power. Indeed, this enables

us to overturn the recommendation of van Dijk et al. (2002, p.160) that robust procedures not be

used for nonlinearity testing. Indeed, our recommendation is to always apply the wild bootstrap

form of the test.

5 Empirical Application

This section applies the WSTR testing and modelling approach above to examine the leading

indicator properties of the yield curve for quarterly output (GDP) growth in the UK. There is an

extensive literature on this issue, particularly in relation to the US economy; see, among many

examples, Estrella and Hardouvelia (1991), Hamilton and Kim (2002), Stock and Watson (2003),

while international evidence is examined in Davis and Fagan (1997) and Bernard and Gerlach

(1998). Although much of the literature on this topic employs linear models, Galvão (2006) uses

higher frequency data on financial variables in a smooth transition MIDAS specification for US

GDP growth , while Anderson, Athanasopoulos and Vahid (2007) examine nonlinear interactions
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between quarterly GDP growth and the yield curve for the G7 countries.

In a similar way to Galvão (2006), our WSTR specification enables us to examine the leading

indicator properties of the yield curve for GDP growth, without restricting yield curve data to

match the quarterly frequency for which GDP data are available. This represents a generalisation

of the LSTR models examined in Anderson et al. (2007). We study the leading indicator properties

of the yield curve for the UK and, in order to be able to compare our results to those in Anderson

et al. (2007), we employ the same data period as in their study. To be specific, we employ monthly

data on the slope of the slope of the yield curve, constructed as end of month values of ten year bond

returns less the three month Treasury Bill yield, from January 1960 to December 1999, alongside

seasonally adjusted quarterly GDP growth (computed as the first difference of the logarithm) for

the same period.

If a researcher simply uses four quarterly lags on each of GDP growth and the yield curve (with

quarterly data for the latter constructed by taking the third month of the quarter), the application of

the usual nonlinearity test to (8) for known transition lag k produces strong evidence of nonlinearity

by the usual χ2 p-values, with those for the second to fourth lags of GDP being 0.0072, 0.0013 and

0.031 respectively and 0.024 and 0.00094 for the first and second lags, respectively, of the yield curve.

Anderson et al. (2007) similarly find evidence of STR nonlinearity for this relationship with lags of

either variable being the possible transition. However, as discussed in Sections 3 and 4 above, these

results are unreliable as a test for nonlinearity since the lag is unknown and heteroscedasticity may

be present. When our WSTR testing procedure is applied, using the quarterly weights shown in

Table 1 and 1,000 bootstrap replications, significant results are still obtained for a GDP transition

assuming homoscedasticity, but this result appears to be spurious since the wild bootstrap tests

yield LMmax
wb = 0.422, LMave

wb = 0.243 and LMexp
wb = 0.396 as the p-values. For a yield curve

transition, on the other hand, the corresponding results are LMmax
wb = 0.064, LMave

wb = 0.017 and

LMexp
wb = 0.062, providing compelling evidence that the yield curve is the more appropriate choice
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as transition variable16.

The selection of the yield curve as the transition variable implies that the use of higher fre-

quency data may provide more information on the appropriate transition. However, the inclusion of

unrestricted monthly lags in the linear part of the equation implies a highly parameterized model.

To obtain a more parsiminous specification, a preliminary linear analysis was undertaken using

quarterly GDP and monthly yield curve lags to a maximum of one year (that is, 4 and 12 lags re-

spectively). A dummy variable was also included for 1973Q1, which experienced abnormal quarter

to quarter growth of 5 percent and led to an outlier residual (greater than 3.5 standard deviations)

in all preliminary linear and nonlinear models. Selection of the maximum lag order by AIC leads to

the inclusion of three GDP lags and two yield curve lags17. Using an obvious notation for variables,

and with robust t-statistics in parentheses, the resulting estimated linear model is

ĜDP t = 0.45
(2.87)

+ 4.42
(18.2)

DUM73t − 0.099
(−1.02)

GDPt−1 + 0.076
(0.85)

GDPt−2 + 0.085
(1.09)

GDPt−3

− 0.080
(−0.47)

Y Cmt−1/3 + 0.164
(0.92)

Y Cmt−2/3, σ̂ = 0.975 (25)

where the superscript m indicates monthly data while the subscript t− 1/3 indicates a lag of one

third of a quarter, that is one month. While the GDP and yield curve slope lags prove insignificant

at this stage it is important to not prune the model further until after allowing for the inclusion

of nonlinear terms. Application of the WSTR nonlinearity test with the variables in this model

and maximum lag of the yield curve transition variable of 12 months yields strong evidence of

nonlinearity, with p-values of LMmax
wb = 0.049, LMave

wb = 0.006, and LMexp
wb = 0.032. The gamma

function parameters used in computing these tests, shown in Table 1, capture a variety of plausible

shapes for this monthly case.

16 In fact, Anderson et al. (2007) select GDP as the transition variable, although this is based on a number of
nonlinearity tests rather than the conventional STR specification test alone.

17Lag selection for a linear model as the basis of a potentially nonlinear model is not straightforward, as nonlinear
dependence may not show in linear dependency measures. The following ad-hoc procedure was applied. With a
maximum lag of 4 quarterly GDP lags and 12 monthly lags for the yield curve slope the AIC criterion was used
to find the 10 best linear models. The maximum GDP and yield curve slope lag amongst these models is 3 and 2
respectively.
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To move to a parsiminous model, the WSTR transition function is estimated and, conditional

on this f̂(ŝt), OLS is applied to the nonlinear model of (1) and AIC is used to select individual

lagged variables from the set (1, DUM73t xt, f̂(ŝt), f̂(ŝt)xt)18. Nonlinear least squares estimation

of the resulting model yields (robust t-statistics19)

ĜDP t = 0.25
(2.04)

+ 3.97
(9.94)

DUM73t − 0.13
(−1.99)

GDPt−2 + 0.39
(6.73)

GDPt−2 + 0.12
(1.67)

GDPt−3 + 0.15
(2.82)

Y Cmt−1/3

+f̂(ŝt)

{
0.77
(2.37)

− 0.72
(−6.56)

GDPt−2 − 0.45
(−1.33)

Y Cmt−1/3 + 0.23
(0.63)

Y Cmt−2/3

}
σ̂ = 0.885 (26)

where

f̂(ŝt) = {1 + exp−2379 [ŝt − 1.50]}−1

ŝt =
12∑

i=1

δi [18.51, 53.05] Y Cmt−i/3 (27)

As shown in Figure 3 (middle panel), the estimated weight function δ̂(κ̂1, κ̂2) implies that nonzero

weights apply to the yield curve slope at lags of two to five months, with around 90% of the total

weight applying at lags three and four. Such weights will not be well approximated by the use of

either quarterly yield curve data or by a conventional single lag LSTR specification, emphasizing

the usefulness of the flexibility provided by our WSTR approach.

As indicated by γ̂ = 2379 in (27), the estimated model implies an abrupt transition between

regimes, with these regimes effectively defined in terms of a threshold of 1.5 percentage points

for the yield curve slope. The time series properties of the transition function shown in Figure

3 (bottom panel) indicate that the upper yield curve regime is predominant during much of the

1970s, and also in the periods 1982-1985 and 1993-1997. Whereas the yield curve slope has a positive

impact on GDP growth in the lower regime (that is, when longterm interest rates are less than 1.5

percentage points above short-term ones), the estimates of (26) imply that this effect disappears

18A similar general to specific procedure is used by Sensier et al. (2002) for the specification of LSTR. models.
19The parameter estimates shown are the results of full nonlinear least squares, the t-statistics, however, are

conditional on θ̂2. Obtaining a full variance-covariance matrix for all parameter estimates is notoriously difficult in
smooth transition models. In the present case the estimated full Hessian matrix proved to be singular.
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in the upper regime. Nevertheless, the upper yield curve regime is associated with higher GDP

growth. For example, in a lower regime steady state and assuming an interest rate differential of

0.17 percentage points (the average yield curve slope conditional on being in the lower regime), the

implied mean growth is 0.44% per quarter, whereas an upper regime steady state with a differential

of 2.45 percentage points implies a mean growth of 0.63% per quarter20. Nevertheless, it should

be noted that these mean calculations depend not only on the assumed yield curve slope, but also

on the implausible assumption of a steady-state within a given regime. Perhaps a more important

difference between regimes occurs in the dynamics of growth, with persistence (as measured by the

sum of the autoregressive coefficients) being 0.38 in the lower regime and -0.34 in the higher regime.

Thus, shocks to growth will have persistent effects over time when the interest rate differential is

below 1.5, whereas GDP growth exhibits no persistence when the differential exceeds this value.

6 Conclusions

Establishing the nature any nonlinearity in the relationships between economic or financial variables

is an important issue for empirical modelling, especially in the presence of possible heteroscedastic-

ity. The smooth transition class of models promoted by Teräsvirta (1994, 1998) and his co-authors

(for example, van Dijk et al. 2002) provide an intuitively attractive and plausible form for such

nonlinearity, but the statistical basis for employing these models in practice is often weak due to

the failure to take account of the application of multiple tests when the appropriate lag of the

transition variable generating the nonlinearity is unknown and/or when heteroskedasticity may be

present. Further, the nonlinearity permitted in practice is restricted in that the regimes are (almost

always) assumed to be triggered by the value of a single lagged observation.

Inspired by the MIDAS methodology of Ghysels et al. (2005, 2006), the present paper gen-

20These mean values are computed using the estimated coefficients of (26), without any possible further restrictions
imposed.
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eralizes the smooth transition class of models by defining the transition function in terms of a

weighted average of lags of the transition variable. Our approach removes the need to specify

the appropriate individual lag of the transition variable in the nonlinear modelling process, while

also enabling a wide variety of weight functions to be considered. Further, using the approach

of Hansen (1996), we develop a testing procedure that delivers a correctly sized hypothesis test

for the presence of nonlinearity in the realistic situation that the appropriate weight function (or

individual lag) is unknown. Although Hansen also shows how an asymptotically valid test can be

undertaken when heteroscedasticity may be present, we propose the use of the fixed design wild

bootstrap (Gonçalves and Kilian, 2004) in this context, showing that it delivers well-sized inference

in finite samples. Indeed, our wild bootstrap test not only has has good size, but also has power

comparable to that shown by the homoscedastic-robust Hansen (1996) test when heteroscedasticity

is absent. Therefore, we recommend that this version of the test should always be used in practice,

whether heteroscedasticity is anticipated to be an issue or not.

Because both testing and modelling are based on flexible but parsiminous weighted functions

of the lagged values of the transition variable, our approach can be applied in the mixed frequency

context considered by Ghysels et al. (2005, 2006). Our application examines monthly values of

the yield curve slope as a leading indicator of quarterly GDP growth in the UK. In contrast to the

ambiguous results of Anderson et al. (2007) in terms of which variable is the appropriate transition

variable for this relationship, when heteroscedastity is permitted through the wild bootstrap version

of our test, the results clearly point to this being the yield curve. Further, our estimated WSTR

model places substantial weight on two (monthly) lags of this variable, so that values three and four

months prior to the current quarter are important in generating the transition between regimes.

Galvão (2006) has independently proposed a similar approach to ours in the context of prediction

using the smooth transition regression model with mixed frequency data. Although the focus of

the present paper is different, as we deal with modelling and (more particularly) nonlinearity
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testing, our companion paper Becker and Osborn (2007) examines WSTR models in a forecasting

context. Indeed, our results there indicate not only that the WSTR model is to be preferred over

conventional STR models for forecasting purposes even when all data are of the same frequency,

but also that no significant loss of accuracy occurs when a WTSR specification is used to forecast

a linear data generating process. Based on the results of the present paper and also Becker and

Osborn (2007), we believe that further development and application of the WSTR approach is

warrented..
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A Estimation

In this appendix a number of issues arising from estimating LSTR and WSTR models are dis-

cussed. The reported results use starting values for nonlinear least squares estimation of θwSTAR =

(
α0 α

′
1 β0 β

′

1 γ c κ1κ2
)′

for the WSTR model in equations (??) and (5) assuming δ = ek,that
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is, starting from the more restricted STR form. The STR starting values, denoted θSTAR,0, for

θSTAR =
(
α0 α

′
1 β0 β

′

1 γ c k
)′

are obtained from a grid search over γ ∈ [γ, γ], c ∈ [c, c] and

k ∈ [1, p]. This vector is then translated into a vector θWSTR,0 corresponding to the more general

WSTR model by mapping the LSTR delay parameter k0 into κ10 and κ20. This requires a para-

meter combination for (κ1 κ2)
′ that gives a weight of 1 for k and 0 for all i 	= k ∈ [1, p]. However,

as the resulting distribution has to fit only a finite number of points, it is possible that a range of

parameter combinations can fit this simple distribution.

In particular, a number of parameter combinations for (κ1 κ2)
′ will give almost unit weight on

lag k and little weight to other lags. Therefore, if the nonlinear optimisation is commenced from

such values, problems may be encountered because the objective function is extremely flat in the

neighbourhood of the starting values. For this reason it is convenient to alter the starting values

for κ10 and κ20 such that the resulting weight distribution gives nonzero weight to more than one

lag. In practice, we achieve this by premultiplying the starting values for κ10 and κ20 by a factor

smaller than one, which increases the variance of the weight distribution.

Thie above outlines an initialization of the optimisation procedure beginning from an LSTR

grid search, and this procedure is adopted in all results presented in the paper. An alternative

procedure might be to commence the optimisation from the weight combination (κ1 κ2)
′ that give

rises to the LMmax (or LMmax
wb in the case of possible heteroscedasticity) in the nonlinearity test.

Assuming that εt ∼ N
(
0, σ2

)
, the likelihood function can be maximised by minimising the sum

of squared residuals. The constrained maximum likelihood procedure of GAUSS 6.0 is then used

to minimise this function over the parameter vector θ =
(
α0 α

′
1 β0 β

′

1 γ c κ1κ2
)′
for the WSTR

or θ =
(
α0 α

′
1 β0 β

′

1 γ c k
)′
for the standard STR. The parameter vector can be decomposed into

θ =
(
θ′1 θ

′

2

)′
, where θ1 =

(
α0 α

′
1 β0 β

′

1

)′
and θ2 = ( γ c κ1κ2)

′ or θ2 = ( γ c k)′. This is convenient

as, given any estimate for parameter vector θ2, namely θ̂2, θ1 has an analytical representation and

therefore can be concentrated out of the criterion function. Consequently the nonlinear optimisation
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algorithm merely needs to search over the relevant parameter space for θ2. Since θ̂2 yields f̂(ŝ),

θ̂1(θ̂2) is merely the standard OLS estimate obtained by regressing yt on [1 xt f̂(ŝ) f̂(ŝ)xt]′. As

the information matrix is not block-diagonal in θ1 and θ2, however, the standard OLS V ar
(
θ̂1

)

obtained from the latter linear regression is not correct.

The variance-covariance matrix for the estimated parameters can be estimated by means of

gradient and Hessian estimates obtained through the unconcentrated likelihood functions (see for

example Hamilton, 1994).
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Figure 2: Nine weight distributions based on beta weights for a maximum lag of 4. The top panel

displays weight distributions that give substantial weight to more than one lag. The bottom panel

shows weight distributions that put almost all weight on one lag.
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Figure 2: Nine weight distributions based on beta weights for a maximum lag of 8. The top panel

displays weight distributions that give substantial weight to more than one lag. The bottom panel

shows weight distributions that put almost all weight to one lag.
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Figure 3: Top Panel: Optimal transition variable weights obtained from the testing procedure.

Middle Panel: Optimal transition variable weights obtained from nonlinear least squares

estimation. Bottom Panel: Transition variable and estimates threshold (dashed line).
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q = 4 q = 8 q = 12
κ1 κ2 κ1 κ2 κ1 κ2
0.04 3.00 0.04 3.00 1.00 1.00
4.00 18.0 4.00 15.0 8.00 45.0
6.00 10.0 4.00 10.0 16.0 45.0
0.14 0.89 0.14 0.89 16.0 25.0
1.00 1.00 1.00 1.00 15.0 15.0
0.04 10.0 0.04 16.0 65.0 65.0
14.0 22.0 17.0 60.0 25.0 16.0
22.0 14.0 40.0 80.0 45.0 16.0
10.0 0.04 60.0 80.0 45.0 8.00

Table 1: Parameters used to calculate the weight parameters in the wSTAR testing procedure.
Beta distributions in the left column are for a maximum lag length of pmax = 4 and in the right
column for pmax = 8.
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p = 4
q = 4

p = 8
q = 8

p = 4
q = 8

T Test 1% 5% 10% 1% 5% 10% 1% 5% 10%
(a) Homoscedastic DGP

200 LMmax 0.009 0.041 0.086 0.007 0.048 0.099 0.008 0.044 0.093
LMave 0.007 0.038 0.087 0.006 0.043 0.098 0.008 0.042 0.088
LMmax

hc 0.002 0.015 0.041 0.001 0.007 0.025 0.001 0.014 0.040
LMave

hc 0.002 0.016 0.046 0.000 0.005 0.020 0.002 0.014 0.044
LMmax

wb 0.012 0.048 0.094 0.011 0.048 0.099 0.012 0.049 0.099
LMave

wb 0.011 0.049 0.095 0.010 0.051 0.104 0.012 0.050 0.097

500 LMmax 0.010 0.046 0.093 0.008 0.046 0.097 0.010 0.042 0.088
LMave 0.010 0.041 0.089 0.009 0.043 0.090 0.009 0.040 0.082
LMmax

hc 0.002 0.021 0.058 0.002 0.015 0.043 0.003 0.019 0.054
LMave

hc 0.004 0.025 0.064 0.001 0.016 0.046 0.003 0.022 0.055
LMmax

wb 0.010 0.050 0.100 0.011 0.050 0.097 0.011 0.047 0.097
LMave

wb 0.012 0.051 0.102 0.012 0.050 0.096 0.011 0.045 0.095

1000 LMmax 0.010 0.046 0.091 0.012 0.049 0.096 0.010 0.044 0.091
LMave 0.011 0.045 0.091 0.011 0.045 0.095 0.009 0.045 0.088
LMmax

hc 0.003 0.026 0.063 0.003 0.023 0.055 0.004 0.028 0.064
LMave

hc 0.005 0.033 0.073 0.004 0.024 0.061 0.006 0.032 0.069
LMmax

wb 0.010 0.049 0.097 0.013 0.052 0.101 0.013 0.050 0.102
LMave

wb 0.013 0.051 0.096 0.012 0.049 0.101 0.013 0.051 0.098

(b) Heteroscedastic DGP

200 LMmax 0.165 0.379 0.522 0.348 0.631 0.768 0.183 0.401 0.544
LMave 0.159 0.370 0.510 0.368 0.651 0.784 0.171 0.386 0.526
LMmax

hc 0.001 0.009 0.033 0.000 0.005 0.019 0.000 0.008 0.031
LMave

hc 0.001 0.008 0.035 0.000 0.003 0.015 0.000 0.008 0.031
LMmax

wb 0.013 0.053 0.102 0.016 0.064 0.124 0.013 0.056 0.107
LMave

wb 0.014 0.055 0.110 0.016 0.068 0.132 0.012 0.055 0.106

500 LMmax 0.204 0.414 0.557 0.408 0.678 0.796 0.211 0.428 0.572
LMave 0.195 0.401 0.540 0.438 0.698 0.812 0.199 0.414 0.557
LMmax

hc 0.002 0.016 0.050 0.001 0.012 0.036 0.003 0.017 0.048
LMave

hc 0.002 0.018 0.054 0.001 0.010 0.034 0.001 0.020 0.053
LMmax

wb 0.012 0.057 0.106 0.015 0.057 0.106 0.013 0.057 0.108
LMave

wb 0.012 0.053 0.104 0.014 0.059 0.118 0.013 0.054 0.106

1000 LMmax 0.219 0.428 0.569 0.424 0.678 0.798 0.222 0.445 0.581
LMave 0.211 0.423 0.556 0.454 0.700 0.808 0.213 0.430 0.572
LMmax

hc 0.003 0.023 0.058 0.003 0.018 0.048 0.003 0.022 0.059
LMave

hc 0.004 0.026 0.069 0.002 0.022 0.057 0.004 0.026 0.068
LMmax

wb 0.013 0.055 0.107 0.014 0.060 0.113 0.012 0.055 0.112
LMave

wb 0.014 0.057 0.112 0.016 0.060 0.116 0.011 0.056 0.114

Table 2: Empirical size of the WSTR test based on the empirical p-values calculated according to
Hansen’s methodology assuming homoskedastic (no subscript) and heteroskedastic (subscript hc)
disturbances, and using a wild bootstrap (subscript wb). q is the number of lags used to calculated
the weighted transition variable. p is the lag length used for the linear part. All DGPs are AR(1)
processes with coefficient 0.4; the disturbance variance in the heteroskedastic DGP of panel (b)
doubles at the mid-point of the sample period.
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AR(1)
LSTAR

δ = (1 0 0 0)′
WSTAR

δ = (1/3 1/3 1/3 0)′

T Test 1% 5% 10% 1% 5% 10% 1% 5% 10%
200 LMmax 0.008 0.041 0.084 0.020 0.084 0.161 0.041 0.148 0.258

LMave 0.006 0.039 0.081 0.018 0.086 0.166 0.051 0.178 0.294
LMmax

hc 0.001 0.012 0.037 0.004 0.028 0.076 0.008 0.063 0.137
LMave

hc 0.001 0.012 0.041 0.003 0.034 0.095 0.010 0.085 0.186
LMmax

wb 0.008 0.044 0.094 0.022 0.086 0.163 0.049 0.154 0.257
LMave

wb 0.009 0.047 0.097 0.026 0.105 0.187 0.055 0.169 0.275
LMSTAR 0.010 0.042 0.089 0.023 0.087 0.160 0.044 0.142 0.240
p−min 0.028 0.152 0.301 0.056 0.248 0.427 0.104 0.342 0.531
LST 0.005 0.036 0.081 0.010 0.066 0.142 0.017 0.091 0.186

500 LMmax 0.007 0.044 0.086 0.094 0.247 0.368 0.254 0.479 0.609
LMave 0.008 0.044 0.090 0.087 0.243 0.368 0.294 0.531 0.659
LMmax

hc 0.003 0.022 0.058 0.040 0.153 0.270 0.150 0.368 0.523
LMave

hc 0.003 0.026 0.064 0.041 0.171 0.297 0.194 0.448 0.610
LMmax

wb 0.012 0.052 0.099 0.097 0.251 0.371 0.277 0.505 0.635
LMave

wb 0.012 0.051 0.101 0.108 0.272 0.391 0.338 0.574 0.690
LMLSTAR 0.011 0.045 0.093 0.109 0.249 0.359 0.239 0.448 0.581
p−min 0.031 0.156 0.296 0.201 0.468 0.639 0.387 0.683 0.817
LST 0.006 0.042 0.091 0.054 0.183 0.296 0.114 0.311 0.449

1000 LMmax 0.009 0.045 0.092 0.376 0.593 0.706 0.718 0.880 0.932
LMave 0.008 0.046 0.092 0.305 0.551 0.679 0.754 0.904 0.948
LMmax

hc 0.003 0.025 0.065 0.267 0.507 0.638 0.638 0.840 0.909
LMave

hc 0.004 0.031 0.078 0.228 0.490 0.633 0.693 0.881 0.941
LMmax

wb 0.010 0.050 0.101 0.381 0.598 0.709 0.747 0.892 0.939
LMave

wb 0.009 0.053 0.106 0.334 0.570 0.695 0.788 0.917 0.957
LMLSTAR 0.009 0.048 0.094 0.382 0.606 0.713 0.688 0.859 0.919
p−min 0.033 0.166 0.313 0.542 0.784 0.883 0.813 0.950 0.981
LST 0.008 0.045 0.095 0.210 0.444 0.579 0.452 0.696 0.810

Table 3: Empirical size and power comparisons. WSTAR tests are LMmax and LMave (sub-
scripts hc and wb indicate use of Hansen (1996) heteroskedasticity-consistent and wild bootstrap
draws, respectively). The LMLSTAR test is the LMmax test with the potential weight distributions
restricted to approximate those admissable under an LSTAR specification. p − min treats the
minimum p− value in the auxiliary regression for known lag k as a test for nonlinearity while LST
indicates the Luukkonen et al. (LST ) test. In all cases p=q=4 in the test regression.
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