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Abstract

In this paper we consider a linear, stochastic, univariate, forward look-

ing model with one lag under adaptive heterogeneous learning. The system

is populated by two different types of agents who learn through recursive

least squares techniques the parameter values in their forecasting models.

The two groups are constrained to have different information sets, one being

always a subset of the other. We analyze convergence of these two inter-

acting learning processes under different specifications of the forecasting

model, and in one case we find that an Heterogenous Expectations Equi-

librium emerges.
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1. Introduction

Literature on learning in macroeconomics often assumes that agents have a cor-

rectly specified perceived law of motion, i.e., that they include in their learning

model all and only those variables that actually play a role in determining the

dynamics of the economy. But as agents are considered as econometricians, they

face the same problem of choosing the most appropriate specification for their

model. Guided by their idiosyncratic beliefs, they will start by using a particular

model and will then change it only if rejected by data, but nothing assures that

this model will include all and only those variables that actually contribute to the

dynamics of the economy. If agents use an overparameterized model and include

more variables than necessary, they can learn over time to discard the irrelevant

ones. But if instead they use an underparameterized model, one that neglects

one or more variables that are actually relevant for the process to be forecast,

they might end up in what is called a restricted perception equilibrium (RPE),

where data do not reject their misspecified model because the forecast errors are

orthogonal to the variables included in their information set.

In this paper we use this idea to introduce heterogeneity in the learning pro-

cess implemented by two different groups of agents, with one group using only

a subset of the variables used by the other. The group with the smaller infor-

mation set might be underparameterizing its model with respect to the actual

process describing the evolution of the system. The reason why agents would use

an undeparameterized model in their learning activity is that, acting as econo-

metricians, they face the same problems of computational limits and degree of

freedom limitations that arise in econometrics (Branch and Evans, 2006). In this

perspective, the fact that different agents use different models can be interpreted

as them having different computational capabilities.

Agents that make use of an underparameterized perceived law of motion

(PLM) can not possibly learn the true process describing the evolution of the

endogenous variable and, as a consequence, the system can not converge towards
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a rational expectations equilibrium (REE). Nevertheless, we show that it can still

converge to an equilibrium in which all beliefs are confirmed by data, in the sense

that the errors agents are making in their forecasts are uncorrelated with the vari-

ables included in their own information set, though agents in the two groups have

different information sets. The equilibrium is named Heterogeneous Expectations

Equilibrium (HEE), and we provide conditions for its learnability.

It has been shown by Evans and McGough (2005) that the learnability of the

REE in an AR(1) model depends on its representation. We will thus consider

two different representations of the equilibrium we analyze: the general form rep-

resentation and the common factor representation. Since both representations

correspond to the equilibrium solution, agents could use either of them in their

learning process, and in the absence of coordination this could give rise to het-

erogeneity. When one group of agents uses a general form (GF) representation

and the other uses a common factor (CF) representation, a situation similar to

that in which part of the agents use a misspecified model arises, i.e., one group

is underparameterizing its PLM. In fact, while under rational expectations the

equilibrium can be represented in both ways, this is not true on the path towards

equilibrium: under learning dynamics, when some agents include in their learning

scheme the extra variables required by the GF representation these variables be-

come part of the system and are needed to fully characterize its dynamics. Agents

that neglect those variables, by using a CF representation, are therefore using an

underparameterized PLM.

It is worth pointing out that while in this work both groups of agents use

the same type of learning algorithm, namely recursive least squares (RLS), the

analysis could be easily generalized to allow for the learning algorithms to differ

between the two groups of agents. In addition, more than two groups of agents

could be considered, each using a different PLM. We leave these exercises to future

work.

The paper is organized as follows: section 2 outlines some background theory

for restricted perceptions and for heterogeneity in expectations; section 3 presents
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the model and solves it under RE; section 4 introduces heterogeneous learning into

the model, derives the HEE and considers alternative learning dynamics; section

5 concludes.

2. Some background theory

2.1. Restricted perceptions equilibria and other related concepts

The concept of rational expectations (RE) has come to play a central role in

macroeconomics over the last thirty years, as it imposes rigor on an otherwise

free component of modern macroeconomic models. Recent works have tried to

maintain the same rigor while relaxing some of the most stringent requirements

that RE impose on agents in terms of information and computational abilities.

We present here a brief exposition of the different equilibrium concepts that can

be obtained by departing from full rationality while preserving the original idea

of Muth (1961) that agents fully exploit the information available to them.

In the learning literature, the REE is interpreted as the limit point of the

learning process undertaken by agents. But for convergence to obtain, the model

used by agents, their PLM, must be correctly specified or possibly overparame-

terized, i.e., it must include at least all the variables that play a role in the actual

law of motion (ALM). If instead the learning activity is implemented by means of

an underparameterized PLM, one that neglects some variable(s) relevant for the

dynamics of the system, then the learning process can not possibly converge to the

REE but it may nevertheless converge to a different equilibrium, which is called

Restricted Perceptions Equilibrium (RPE) by Evans and Honkapohja (2001). This

equilibrium is the equivalent of an REE for models in which the PLM is restricted

to be of a particular (misspecified) form, as it imposes the same orthogonality

condition between the forecasting errors and the variables included into the in-

formation set of the agents. The fact that this information set is constrained to

exclude one or more variables means that expectations can not be rational in the

traditional sense, but they are nevertheless optimal given the restrictions imposed
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on the PLM: agents do the best they can given the model they are endowed with.

In Sargent (1999) a similar kind of equilibrium is called Self-Confirming Equi-

librium. The difference is that while in an RPE agents could in principle recognize

the non rationality of their expectations if they were to allow the neglected vari-

ables to play a role in their PLM, in Sargent’s self-confirming equilibrium agents

can realize that they are using a wrong model only along off equilibrium paths.

In equilibrium, both models are equally good.

An extension of the RPE concept is theMisspecification Equilibrium proposed

by Branch and Evans (2006), where the misspecification is endogenized: agents

choose the model that performs best in the set of all underparameterized models.

For cognitive and computational constraints, as well as for degrees of freedom

limitations, agents use a misspecified model, but they choose among the possible

functional forms the one that allows them to achieve higher profits.

A particular type of RPE is the Stochastic Consistent Expectations Equilib-

rium, developed by Hommes and Sorger (1998): in this case the true process

describing the dynamics of the economy is non-linear, but agents use a linear

model to form their forecasts. The equilibrium is reached when the mean and the

correlation coefficients in the actual data, generated by a non-linear stochastic

process, coincide with those predicted by the linear model employed by agents

(see also Branch and McGough, 2005).

The main feature of an RPE is the orthogonality condition between the forecast

errors and the variables included in the information set of the agents. Calling zt
the vector of variables used in forming expectations, xt the actual process for the

variable to be forecast and x̂t the value obtained using the PLM, in an RPE the

orthogonality condition

Ezt(xt − x̂t) = 0 (1)

gives the equilibrium least squares estimate for the parameters in the PLM. If zt
were to comprise all the variables determining xt, then the equilibrium obtained

would be an REE. When instead some relevant variables are left out from zt, if

an equilibrium obtains this is an RPE. The values of the coefficients in the PLM
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will depend in this case also on the covariances between the variables included

in zt and those excluded, as the ALM must be projected on the restricted PLM

in order to find the estimated values for the parameters. The fixed point of the

system formed by the ALM and the expectation formation algorithms represents

the equilibrium. If lagged endogenous variables play a role in determining the

dynamics of the system and are left out from the PLM, then the covariance terms

will not be exogenous but will depend on the value of the estimated parameters in

the PLM, as they are used to form expectations which then determine the actual

value of the endogenous variables. This endogeneity of the covariances makes the

problem more complicated than, for example, the cases presented in Evans and

Honkapohja (2001), ch. 13, where only exogenous variables affect the economy.

We will need to consider also this additional feature of the system in order to find

the equilibrium fixed point of our model.

2.2. Heterogenous expectations

The RE concept with full information requires homogeneity of expectations, as

subjective probabilities must coincide with the objective ones, and thus with each

other. There still can be structural heterogeneity in the economy, in the sense

that expectations of different groups of agents can enter the model differently

and affect the economy in different ways, but those expectations must be the

same. If instead we allow for some of the agents to depart from full rationality,

or to have limited information, then heterogeneity in expectations can arise even

in equilibrium. In this case not only expectations of different agents can affect

the economy differently, but those expectations can be different from each other.

Structural heterogeneity arises for example in the New Keynesian model when

closed with an expectations based policy rule in the case in which the central bank

(CB) responds to its own expectations. In this case, in fact, private expectations

affect the economy through the structural parameters in the IS equation and the

Phillips curve, while CB expectations impact on the economy through monetary

policy. If CB and private sector have the same expectations, the model features
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structural heterogeneity but homogeneity in expectations, while if the two parts

are allowed to have different beliefs then the model features also heterogeneity of

expectations. Honkapohja and Mitra (2006) and (2005) consider both types of

heterogeneity, but the heterogeneity in expectations vanishes as agents learn and

their beliefs converge to rationality, and to each other: the limit equilibrium point

is the usual REE.

Models have been studied in which there is structural homogeneity but expec-

tations are heterogenous: different groups of agents have different expectations,

but those expectations affect the economy through the same mechanism. In this

case the expectations that enter the structural equations are usually a weighted

average of the expectations held by different agents. See for example the models

presented in Branch and McGough (2004) and Giannitsarou (2001).

Branch and McGough (2004) define the concept of Heterogeneous Expectations

Equilibrium (HEE) in a way that is in some sense similar to the HEE that we are

going to define, but differs from it in a fundamental way. Apart from featuring

structural homogeneity, in their HEE one group of agents is rational, while the

other has adaptive (static) expectations with fixed parameters: there is no learn-

ing activity going on, and agents having adaptive expectations would see their

forecasts persistently falsified by data. This HEE could not represent the limit

point of a learning process, as our HEE instead is. In this sense, our definition

of equilibrium is a more rigorous refinement of their HEE, and it captures the

spirit of rational expectations: all agents use the information available to them

efficiently, and their beliefs are not falsified by experience.

3. The model

The structural model we are going to use in this study is a simple forward looking,

stochastic, univariate model in which the endogenous variable depends on current

expectations of its next period’s value, on its lagged value and on an exogenous

stationary AR(1) process. There are two different groups of agents populating
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the model, each forming its own expectations independently. The analysis could

be carried out in a multivariate model as well, but though the algebra would be

much more tedious, little would be gained in terms of insights. We thus choose to

keep things easy and go for the univariate case.

The structural equations are

xt = aE1
t xt+1 + bE2

t xt+1 + cxt−1 + dwt (2)

wt = ρwt−1 + vt, (3)

where xt is an endogenous variable, wt is exogenous and observable at time t

and vt is an i.i.d. random disturbance. Ei indicates expectations, not necessarily

rational. ρ is assumed to be between 0 and 1.

Note that structural heterogeneity arises for a 6= b. a and b can be decomposed

in two terms, one referring to the way in which expectations feed through on the

endogenous variable and one representing a weight on expectations that depends

on the proportion of agents sharing the same beliefs. Thus we could write

a = α1µ (4)

b = α2(1− µ) (5)

where µ is a measure of the relative size of the group of agents holding type 1

expectations. In particular, given a continuum of agents over the unit interval, µ

of them are of type 1, and the remaining (1 − µ) are of type 2. When there is

structural homogeneity, α1 = α2 = α, and if also expectational homogeneity holds

(i.e., E1 = E2 = EC), then (aE1 + bE2) = αEC , EC where stands for common

expectation.

Following Honkapohja and Mitra (2005) we can also define the concept of

average expectations:

xt = mEAV
t xt+1 + cxt−1 + dwt (6)
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where average expectations are

EAV
t xt+1 = m−1(aE1

t xt+1 + bE2
t xt+1) (7)

and

m = a+ b (8)

is the aggregate characteristics or average economy.

3.1. REE and its representations

To find the REE of this model, we impose E1 = E2 = E, where E is the rational

expectations operator. Moreover, we impose structural homogeneity. The model

becomes

xt = αEtxt+1 + cxt−1 + dwt (9)

wt = ρwt−1 + vt, (10)

In finding a solution, we must distinguish between the regular and the irregular

case.

We can rewrite (9) as

xt+1 =
1

α
xt − c

α
xt−1 − d

α
wt + εt+1 (11)

where

εt+1 = xt+1 − Etxt+1 (12)

is a martingale difference sequence (mds).

This is called by Evans and McGough (2005) general form representation:

every equilibrium satisfying (9) must also satisfy this equation. Rewrite the system
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in first order formÃ
xt+1

xt

!
=

Ã
1
α
− c

α

1 0

!Ã
xt

xt−1

!
+

Ã
d
α

0

!
wt +

Ã
1

0

!
εt, (13)

define

A =

Ã
1
α
− c

α

1 0

!
(14)

and call e1, e2 the two eigenvalues of A. We have the regular case when |e1| < 1 <
|e2|, the irregular case when |e1| < |e2| < 1 and the system is said to be explosive
if 1 < |e1| < |e2|. In this last case there are no stable solutions to the system,
while in the irregular case there are infinitely many of them.

We consider in this study only the regular case, where there is only one solution

to (9)-(10) that is stationary, and this is the minimum state variable (MSV)

solution that depends only on the fundamentals of the economy.1 This solution

nevertheless can be represented in different ways. The standard way, the one called

by Evans and McGough (2005) common factor representation, is to represent

the current endogenous variable as solely function of its lagged value and the

exogenous forcing variable

xt = e1xt−1 +
d

1− α(e1 + ρ)
wt, (15)

where

e1 =
1−√1− 4αc

2α
(16)

is the stable root of A.

But if we multiply both sides of (15) by (1 − ηL), ∀ η 6= 0, we obtain an

1The relationship between a determinate solution and the MSV solution has been analysed
by McCallum (2004). He shows that in the univariate case the two solutions coincide. For a
more general discussion of the MSV solution, see McCallum (1999).
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ARMA(2,1) representation of the same REE:2

xt = (e1 + η)xt−1 − (e1η)xt−2 + d

1− α(e1 + ρ)
wt − η

d

1− α(e1 + ρ)
wt−1. (17)

Note that the general form representation (11) can be obtained from this ARMA(2,1)

representation by imposing η = e2 and defining εt = d
1−α(e1+ρ)vt. This shows that

the equilibrium is determinate, as the expectational error εt is uniquely pinned

down by the fundamentals of the economy.

4. Introducing learning

We now step back from the rational expectations assumption and suppose agents

learn by extracting information from data through a RLS procedure. Moreover,

we allow for two different groups of agents that form expectations using different

models.

In evaluating learnability we will make use where possible of the E-stability

principle that establishes a direct link between learnability in real time through

techniques such as RLS and the stability of a differential equation derived by

mapping the PLM into the ALM.3

Agents, in their learning activity, use a reduced form model, one that is meant

to capture the form of the ALM for the endogenous variables of the system. But

as we have said, there is not a unique representation of the equilibrium process.

Therefore agents, when deciding what model to estimate, might choose either

the CF representation or the GF representation, as both correctly capture the

structure of the economy in equilibrium. Then, for any of the two cases, we con-

sider what happens when some agents underparameterize that model. Moreover,

it could also happen that at the same time part of the agents use the CF rep-

2We consider only the case of a doubly infinite REE. For an initialized process, appropriate
initial conditions need to be specified.

3For an extensive treatment of this and other related concepts, see Evans and Honkapohja
(2001).
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resentation and some the GF representation: this can be regarded as a lack of

coordination among agents. We address this case in section 4.3.

4.1. Learning through Common factor representation

4.1.1. Homogeneous case

We start by analyzing the standard case of homogeneity of expectations and struc-

tural homogeneity. All agents use the same model, the CF representation, in order

to form their expectations:

PLM1=PLM2 : xt = φ1xt−1 + φ2wt. (18)

In this case the PLM can be mapped into the ALM in the standard way,4 ob-

taining an ODE whose asymptotic behavior is the same as that of the original

RLS algorithm. Learnability of the REE can thus be assessed by analyzing local

stability of this ODE at the equilibrium point (φ̄1, φ̄2).

The E-stability condition reduces to

αφ̄1 + αρ < 1 (19)

which using

φ̄1 =
1−√1− 4αc

2α
(20)

becomes

αρ <
1 +
√
1− 4αc
2

. (21)

Proposition 1. The fundamental REE of the model (9)-(10), with all agents us-
ing the CF representation (18) in their learning process, is E-stable when condition

(21) is satisfied.

4See Evans and Honkapohja (2001) for a complete exposition of the techniques used here,
and in particular for the applicability of the E-stability principle.

12



4.1.2. Heterogeneous case

We turn now to analyze the learning properties of the equilibrium with the AR(1)

CF representation in case of heterogeneity of expectations. In order to introduce

heterogeneity, we constrain agents of group 2 to neglect the lagged endogenous

component xt−1 in their PLM.

Agents of group 1 have a correctly specified PLM, i.e., one that takes the same

form as the reduced form for the actual process:

xt = φ1xt−1 + φ2wt, (22)

while agents of group 2 use the underparameterized PLM

xt = θwt. (23)

All agents recurrently estimate the parameters in their model through recursive

least squares techniques. If we stack together the two recursive algorithms, we get

ξt = ξt−1 + t−1
Ã

P−1t zt
¡
xt−1 − x̂1t−1

¢
R−1t wt−1

¡
xt−1 − x̂2t−1

¢ ! (24)

where

ξ =

 φ1

φ2

θ

 (25)

zt =

Ã
xt−2
wt−1

!
(26)

Pt = Pt−1 + t−1(ztz
0
t − Pt−1) (27)

Rt = Rt−1 + t−1(wt−1wt−1 −Rt−1) (28)
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¡
xt−1 − x̂1t−1

¢
= (aφ21 + c− φ1)xt−2 − (aφ1φ2 + aρφ2 + bθρ+ d− φ2)wt−1(29)¡

xt−1 − x̂2t−1
¢
= (aφ21 + c)xt−2 − (aφ1φ2 + aρφ2 + bθρ+ d− θ)wt−1. (30)

This shows how the updating processes implemented by the two groups of agents

will jointly determine the equilibrium outcome for the economy. Once agents

have estimated their own model, they use it to make forecasts. Note that agents,

when updating the parameters in their PLM at time t and making forecasts for

time t+ 1, do not know the current value xt. This assumption is common in the

literature, and is justified by the fact that xt depends on the estimates for time

t+1, so when these are made the current endogenous variable can not be known.

The ensuing expectations for the two groups are

E1
t xt+1 = φ21xt−1 + (φ1φ2 + ρφ2)wt (31)

E2
t xt+1 = θρwt, (32)

where φ1, φ2, θ are the most recent estimates of those parameters.
5 Inserting these

expectations into (2) leads to the temporary equilibrium or ALM

xt = (aφ
2
1 + c)xt−1 + (aφ1φ2 + aρφ2 + bθρ+ d)wt. (33)

It is easy to find the map from the PLM to the ALM for agents in group 1:

φ1 → aφ21 + c (34)

φ2 → aφ1φ2 + aρφ2 + bθρ+ d, (35)

while things are more complicated for agents in group 2, as the ALM must be

projected on their restricted PLM. The relevant stochastic recursive algorithm

5For simplicity of exposition, we have dropped the subscript t from the parameters of the
PLMs.
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(SRA) in this case is

θt = θt−1 + t−1R−1t wt−1(xt−1 − x̂t−1) (36)

Rt = Rt−1 + t−1(wt−1wt−1 −Rt−1) (37)

where x̂t−1 = θt−1wt−1. In order to write this SRA in the standard form, we need

to perform the transformation Rt = St−1, as on the r.h.s. we can only have lagged

values of the parameters. The associated ordinary differential equation (ODE)

that governs stability of this SRA is

dΦ

dτ
= h(Φ) = lim

t→∞
EQ(t,Φ, zt) (38)

where Φ = (θ, S)0, zt = (xt−2,wt−1) and E denotes expectations of Q(t,Φ, zt)

taken over the invariant distribution of zt, for fixed Φ. Q(t,Φ, zt) comes from the

SRA and it is defined as

Q(t,Φ, zt) =

Ã
S−1wt−1(xt−1 − x̂t−1)

( t
t+1
)(wt−1wt−1 − S)

!
. (39)

Here we can see that the orthogonality condition (1) holds at the resting point of

the ODE for θ. By substituting in the first line the expressions for xt−1 and x̂t−1
we get:

Qθ(t,Φ, zt) = S−1wt−1((aφ21 + c)xt−2 + (aφ1φ2 + aρφ2 + bθρ+ d− θ)wt−1). (40)

It thus follows that

hθ(Φ) = lim
t→∞

ES−1wt−1((aφ21 + c)xt−2 + (aφ1φ2 + aρφ2+

bθρ+ d− θ)wt−1)
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and

hS(Φ) = lim
t→∞

(
t

t+ 1
)E(wt−1wt−1 − S) =M − S, (41)

whereM = Ewt−1wt−1 = Ewtwt. From (41) we have that S →M , which leads to

hθ(Φ) = aφ1φ2 + aρφ2 + bθρ+ d+ (aφ21 + c)Ewt−1xt−2M−1 − θ. (42)

M is here just the variance of the stochastic process w that for clarity we call now

σ2w = Ew2t and is given exogenously. Instead Ewt−1xt−2 is determined endoge-

nously and depends on the parameters in the PLMs:

Ewt−1xt−2 = E(ρwt−2+vt−1)((aφ21+c)xt−3+(aφ1φ2+aρφ2+bθρ+d)wt−2). (43)

Given that the variables are taken to be stationary, we have the asymptotic result

Ewt−1xt−2 = Ewt−2xt−3 = σ2wx. Moreover, given that vt−1 is an i.i.d. process, it

is uncorrelated with all the other variables. It then follows:

σ2wx = ρ(aφ1φ2 + aρφ2 + bθρ+ d)(1− ρ(aφ21 + c))−1σ2w (44)

which substituted in (42) gives

h(θ) = (aφ1φ2 + aρφ2 + bθρ+ d)

µ
1 +

(aφ21 + c)ρ

1− ρ(aφ21 + c)

¶
− θ. (45)

We can see that σ2w gets canceled out, as it enters also in the expression for

σ2wx: this happens because the variable relevant for the process but neglected in

the forecasts is the lag of the endogenous variable. If instead this variable was

exogenous, then both the variance of the included variable and the covariance

between the two exogenous variables would be part of the solution value for the

estimated parameter.

16



The ODE (45), together with (34) and (35) give the system

φ̇1 = aφ21 + c− φ1 (46)

φ̇2 = aφ1φ2 + aρφ2 + bθρ+ d− φ2 (47)

θ̇ =
aφ1φ2 + aρφ2 + bθρ+ d

1− ρ(aφ21 + c)
− θ. (48)

Any fixed point (φ̄1, φ̄2, θ̄) of this system represents an equilibrium. Equation (46)

is clearly independent from the other two’s, so it can be solved autonomously. It

is a quadratic equation, that has the two solutions

φ+,−1 =
1±√1− 4ac

2a
. (49)

The minimum state variable (MSV) solution, in the sense of McCallum (1983), is

given by φ−1 as it is the one that gives a coefficient equal to zero when c is zero.

This solution is real for ac < 1
4
, which is therefore taken to be a constraint for

the model to be sensible. Given φ̄1 = φ−1 , the values for φ̄2 and θ̄ are determined

uniquely by (47) and (48).

Equations (47) and (48) form a system, and must be considered simultaneously.

Using matrix form Ã
φ̇2

θ̇

!
= Γ

Ã
φ2

θ

!
+Ψ, (50)

where

Γ =

Ã
aφ̄1 + aρ− 1 bρ

aφ̄1+aρ

1−ρ(aφ̄21+c)
bρ

1−ρ(aφ̄21+c)
− 1

!
(51)

and

Ψ =

Ã
d
d

1−ρ(aφ̄21+c)

!
. (52)
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Convergence6 to the fix point (φ̄1, φ̄2, θ̄) requires that 2aφ̄1 − 1 < 0 and that all

the eigenvalues of the matrix Γ have negative real part. The first of the two

conditions is satisfied by any real solution for φ−1 from (49). The second, by

applying the Routh Theorem (see Chiang, 1984, p. 546), requires Γ11 + Γ22 < 0

and Γ11Γ22 − Γ12Γ21 > 0, which reduces to

aφ̄1 + aρ+
bρ

1− ρ(aφ̄
2
1 + c)

< 1. (53)

The equilibrium values for (φ̄2, θ̄) are given byÃ
φ̄2
θ̄

!
= −Γ−1Ψ, (54)

with Γ taken to be invertible.

At the fixed point (φ̄1, φ̄2, θ̄) expectations of agents in group 1 are rational,

while those of group two are restricted to be misspecified, but with optimally

tuned parameters. We thus call it heterogenous expectations equilibrium.

Definition 2. A heterogeneous expectations equilibrium (HEE) is a stationary

stochastic process for xt which solves the expectational difference equations (9)

and (10) given that (i.) E1 = E, the rational expectations operator, and (ii.) E2 is

formed using a misspecified model such as (23), with θ satisfying the equilibrium

condition (1).

We have just shown that the economy can actually converge locally towards

this equilibrium, provided a restriction on the parameters is satisfied:

Proposition 3. Provided that the φ̄1 obtained as MSV solution from (49) is real,
the economy represented by (2), (3), (31) and (32) will converge locally to the

heterogeneous expectations equilibrium (φ̄1, φ̄2, θ̄) iff condition (53) is satisfied.

6Here convergence is to be considered local, as there is more than one equilibrium point.
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We can consider the case of structural homogeneity (α1 = α2 = α), so as

to disentangle the effects on stability due to heterogeneity of expectations alone.

Rewrite condition (53) as

αµφ̄1 + αµρ+
α(1− µ)ρ

1− ρ(αµφ̄
2
1 + c)

< 1 (55)

and remember that

φ̄1 =
1−√1− 4αµc

2αµ
. (56)

We want to compare here the E-stability condition (19), derived for the homo-

geneous economy, with the condition (55), derived for the economy with hetero-

geneity of expectations.

Note first that

lim
µ→1
(55) = (19), (57)

that is, as the proportion of agents using the correct model increases, the E-

stability condition for the heterogeneous case resembles more and more that for

the homogeneous case, and in the limit the two coincide. Moreover

lim
µ→0
(55) =

·
αρ

1− ρc
< 1

¸
, (58)

which is the stability condition when all agents are of type 2, as can be seen from

(48). Note that in the limit case when µ = 0, the HEE becomes what is known

as RPE.

The way in which µ enters into the stability condition (55) is too complicated

to be analyzed analytically: we thus fix values for the structural parameters and

use numerical calculations in order to understand how heterogeneity affects the

E-stability of equilibrium. We plot a lattice on the space (α, c) for different values

of µ, fixing ρ at .5 and d = 0 (note that this last parameter doesn’t affect the

equilibrium solution and its properties in terms of stability). Figure 1 shows the

case for µ = 0 (all agents use the restricted model), Figure 2 is drawn for µ = .5
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(heterogeneity) and Figure 3 for µ = 1 (all agents use the correct model). In each

figure, the HEE with the specified µ is compared with the REE: each point on the

lattice is marked with a symbol indicating the properties of the two associated

equilibria: "x" means that both REE and HEE are E-stable, "o" means that

none is E-stable, "+" that only REE is E-stable and "*" means that only HEE is

E-stable.

When µ = 1, the two equilibria coincide, so either both are stable or both

unstable. In fact Figure 3 shows that both equilibria are E-stable in the lower

and left part of the graph, while unstable in the higher right part. As µ decreases

below 1 and the HEE becomes different from the REE, it arises a region in which

only the HEE is E-stable, and a region where only the REE is E-stable, with

both regions increasing in size as µ decreases towards zero and the two equilibria

become more and more different from each other. It is interesting to note the

region marked with "*": here heterogeneity helps agents’ learning and they can

converge towards an equilibrium.

These graphs show that the proportion of agents using each model affects the

possibility for the HEE to be learned. This equilibrium is E-stable in the regions

marked with "x" and "*": as µ goes from 1 to 0 a region that was previously

unstable (approximately, α greater than 1 and c positive) becomes progressively

more stable, while the region that was previously stable becomes partly unstable.

4.2. Learning through General form representation

4.2.1. Homogeneous case

We start again with the case of homogeneity, both structural and expectational,

so that the relevant structural model is given by (9)-(10). All agents employ now

a GF representation as their econometric model to be estimated, and use it to

make one-step-ahead forecasts. There is a technical problem in this case: if they

included the past value of the exogenous process wt−1 as forcing variable in their

PLM, as it should be in theory, then the current value wt would show up in the
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ALM, and the PLM would turn out to be misspecified (underparameterized). As

we want them to have a correctly specified model for now, we allow them to use

the current value wt, so that the PLM and the ALM are consistent with each

other;7 we consider then also the case in which agents include both wt and wt−1,

in which case the coefficient attached to wt−1 will turn out to be undetermined.

When agents use only wt as forcing variable, the PLM is

xt = γ1xt−1 + γ2xt−2 + γ3wt + εt. (59)

The RE values γ̄1 and γ̄2 are as in (11) while γ̄3 is − d
αρ
, i.e., the value in (11)

corrected to take into account the fact that the current value wt is used instead

of the lagged value.8 Constructing the map from the PLM to the ensuing ALM,

the relevant Jacobian for E-stability can be found to be2αγ1 − 1 α 0

αγ2 αγ1 − 1 0

αγ3 0 αγ1 + αρ− 1

 (60)

whose eigenvalues are

λ1 = αγ1 + αρ− 1 (61)

and

λ2,λ3 =
1

2

·
(3αγ1 − 2)±

q
(3αγ1 − 2)2 − 4(2α2γ21 − 3αγ1 − α2γ2 + 1)

¸
, (62)

to be evaluated at the RE equilibrium point (γ̄1, γ̄2, γ̄3). This gives λ1 = αρ,

λ2,3 =
1±√1−4αc

2
. E-stability requires all three eigenvalues to have negative real

part. The first would be negative for α < 0 (given the restriction 0 < ρ < 1),

7This is due to the fact that at time t, when agents form expectations for time t + 1, wt is
assumed to be observable, while wt+1 is not.

8Of course, there is another fixed point for the system of differential equations, and this is
the MSV/REE equilibrium, where γ2 is zero and γ1 and γ3 are the values in (15).
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but the second (the one obtained with plus sign) can not have negative real part.

Therefore the REE equilibrium is never E-stable under the GF representation.

If instead agents use both wt and wt−1 in their learning scheme, the equilibrium

values are γ̄1 =
1
α
, γ̄2 = − c

α
, γ̄3 = − d

ρα
, with γ̄4 undetermined, where γ̄1, γ̄2, γ̄3, γ̄4

correspond respectively to xt−1, xt−2, wt, wt−1.9

The Jacobian relevant for E-stability in this case is
2αγ1 − 1 α 0 0

αγ2 αγ1 − 1 0 0

αγ3 0 αγ1 + αρ− 1 α

αγ4 0 0 αγ1 − 1

 (63)

to be evaluated at the point (γ̄1, γ̄2, γ̄3, γ̄4). Eigenvalues are 0, αρ, 1±
√
1− 4αc,

and thus the equilibrium again is not E-stable.

Proposition 4. The fundamental REE of the model (9)-(10) with GF represen-
tation is never E-stable.

Simulations confirm that the GF/REE solution values are not locally stable

under learning: even when agents start offwith beliefs very close to the equilibrium

values, the learning algorithms do not converge towards them.

Moreover, it can be shown that the CF/MSV equilibrium values are strongly

E-stable in a subregion of the parameter space, i.e., they are locally stable even

when agents overparameterize their model using a GF representation. Computing

eigenvalues of (63) for the CF/MSV solution, it turns out that this solution is

learnable using the GF representation provided that

αc < 1 and (64)

αρ <
1 +
√
1− 4αc
2

. (65)

9Here, again, the MSV/REE values are also a fixed point of the differential equations, with
γ2 = γ4 = 0.
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Note that the first condition is always satisfied for real solutions, and the second

is the same as condition (21).

4.2.2. Heterogeneous case

We now consider the case where part of the agents use a GF representation and the

rest underparameterize their model with respect to this representation. Remember

that the GF representation for the REE takes the form

xt =
1

a+ b
xt−1 − c

a+ b
xt−2 − d

a+ b
wt−1 + εt. (66)

Agents with the correctly specified law of motion correctly recognize the need to

use both xt−1 and xt−2. They also recognize the need to include the exogenous

forcing process w. But again, if they were to include only wt−1 in their PLM, the

ALM would turn out to include also wt, so the PLM would be misspecified. As

we want to have only one group with misspecified PLM, we include also wt in

the PLMs: this ensures that part of the agents can in principle converge towards

the REE values. The rest of the agents neglect the twice lagged endogenous

component, but correctly recognize the importance of the exogenous variables.

The two PLMs are thus

PLM1 : xt = γ1xt−1 + γ2xt−2 + γ3wt + γ4wt−1 + εt (67)

and

PLM2 : xt = ζ1xt−1 + ζ3wt + ζ4wt−1 + εt. (68)

Deriving the ensuing expectations and plugging them into the structural model

we get the ALM. Direct maps can be derived for coefficients from PLM1 to ALM,
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which give the differential equations:

γ̇1 = a(γ21 + γ2) + bζ21 + c− γ1 (69)

γ̇2 = aγ1γ2 − γ2 (70)

γ̇3 = a(γ1γ3 + ργ3 + γ4) + b(ζ1ζ3 + ρζ3 + ζ4) + d− γ3 (71)

γ̇4 = aγ1γ4 + bζ1ζ4 − γ4. (72)

Note that these ODEs include also the parameters of the PLM2, so the solution

values for the two groups must be found together. But a direct map from PLM2

to ALM can not be derived: instead, we must project the ALM onto the space

of the PLM2. By projecting we get the following differential equations governing

the limiting dynamics for the parameters in the PLM2:

ζ̇1 = k1 + k2[(R
−1)11δσ2w + (R

−1)12ρ2ψσ2w + (R
−1)13ρψσ2w]− ζ1 (73)

ζ̇3 = k3 + k2[(R
−1)21δσ2w + (R

−1)22ρ2ψσ2w + (R
−1)23ρψσ2w]− ζ3 (74)

ζ̇4 = k4 + k2[(R
−1)31δσ2w + (R

−1)32ρ2ψσ2w + (R
−1)33ρψσ2w]− ζ4. (75)

The Appendix gives the expressions for the new parameters introduced here. Note

that these ODEs are the same as (69), (71), (72) plus a correction term for the

missing variable xt−2. This component prevents us from finding analytical solution

to the above system of seven ODEs, as the terms k0s, δ and ψ and the matrix R

all depend in a highly non linear way on the parameters being learned.

Since we can not solve this system analytically, we simulate the RLS algorithms

for the two groups of agents together. We find that the heterogeneous learning

processes have a locally stable equilibrium at the CF/MSV solution values. Both

groups of agents are using a model that is overparameterized with respect to

the CF representation but over time, as they learn from data, the parameters in

their models converge to those in the CF/MSV solution, and they discard the

extra variables in their model. This result extends the strong E-stability property

found in the homogeneous case to an heterogeneous setting.
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We also investigate through simulations the range of parameter configurations

(a, b) for which this convergence obtains, and results are shown in Figure 4:10

stars indicate stability, circles instability.11 We can see that for small values of a

and b the equilibrium is learnable, but as these values increase, an unstable region

emerges. Remember that in the homogeneous case, while the GF representation

of the equilibrium was never learnable, the CF solution was learnable when con-

dition (65) was satisfied: Figure 5 shows the stability/instability regions for this

condition in the (a, b) space.12 If we compare this to Figure 4, we can see that

when we introduce heterogeneity the stability region shrinks: in particular, for

a > 0.8 there is no value of b that can ensure convergence of the learning schemes.

4.3. General form and Common factor representations together

The last case we consider is slightly different from the others: heterogeneity now

does not arise because of some of the agents neglecting some of the relevant vari-

ables but because of a lack of coordination among agents. In fact, when more than

one model can represent well the equilibrium solution in equilibrium, as we have

seen to be the case for the two representations of the REE, heterogeneity can arise

because agents do not agree about which model to use in forming their expecta-

tions. Without coordination, it is possible that part of the agents will use one

model and part the other. In this case, those agents that are using the model that

includes a larger set of variables make the other model be underparameterized.

We thus use the analysis of the previous section to study the situation in which

one group of agents uses the GF representation (group 1) while the other group

uses the CF representation (group 2). With respect to the situation presented in

the previous section, the only difference is that ζ4 in (68) is now zero.

For agents using the GF representation, the ODEs (69)-(70) must be modified

10The other structural parameter values are fixed at c = .3, d = .5, ρ = .7
11In the unstable regions we have included also the regions where the REE parameters are

complex numbers.
12Here what really matters is the sum of a and b, which determines α. The rest of the

parameters are set as before: c = .3, d = .5, ρ = .7.
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to account for the fact that ζ4 ≡ 0. For the other group instead, we have to

project the ALM onto the smaller space of the PLM2. The matrix R is now the

2 by 2 matrix

R = E(xt−1 wt)
0(xt−1 wt) =

Ã
Extxt−1 σwx−1
σwx−1 σ2w

!
, (76)

where all the components have to be modified with respect to the previous case

by setting ζ4 ≡ 0.
The differential equations for ζ1 and ζ3 become

ζ̇1 = k1 + k2(R
−1Π)11 + k4(R

−1Π)12 − ζ1 (77)

ζ̇3 = k3 + k2(R
−1Π)21 + k4(R

−1Π)22 − ζ3, (78)

where

Π = σ2w =

Ã
δ ψ

ρ2ψ ρψ

!
. (79)

These ODEs are similar to those found before in (73)-(75), except that now

we have two correction terms, one for each of the two variables (xt−2 and wt−1)

appearing in the GF but not in the CF representation. Again, we can not find

an analytical solution, and we use simulations to investigate convergence of these

learning schemes.

Figures 6 and 7 show the evolution of the estimates for the parameters in

the GF and in the CF representation, respectively. Figures are drawn for the

parameter configuration: a = .2, b = .3, c = .3, d = .5, ρ = .7 (with structural

homogeneity this choice for a and b corresponds to α = .5, µ = .4). The estimates

tend to stabilize at fixed values, which are the CF/MSV solution values for the

homogeneous case. Parameters in PLM1 and PLM2 converge to each other and to

those in ALM: the economy reaches an equilibrium. As before, we then investigate

the parameter space for which convergence obtains: results are shown in Figure

8, which can be seen to be similar to Figure 4.

26



It is interesting to note that while a CF representation is correctly specified if

all agents use that representation, or even if some of the agents underparameterize

their PLM by using a smaller set of variables, the same CF representation becomes

underparameterized when some of the agents use a GF representation, which

includes a larger set of variables. But once the equilibrium has been reached, the

CF representation is again correctly specified. This can be seen by computing

the mean square errors for forecasts using the two models: on average, errors

are smaller with the PLM1 on the transition path, while they become the same

once convergence has been reached. This result shows that the fact that some

agents are overparameterizing their learning model can worsen the predictions of

the others, by making extra variables relevant for the dynamics of the economy.

5. Conclusions

In this paper we have considered an univariate forward looking stochastic model

under adaptive heterogeneous learning. Heterogeneity has been introduced by

forcing agents to use different forecasting models, an assumption that could be

justified by the fact that agents, when depicted as adaptive learners, face the

problem of selecting which set of variables to use in their model. We did not

analyze how this choice is made, but we considered what happens given the choice

made by agents. In particular, we wanted to see whether this choice, though

possibly not optimal, could lead to an equilibrium situation in which agents do not

change their model; in other words, we wanted to see whether the heterogeneous

learning algorithms can converge to a fixed point.

The specific form of the learning algorithm used is RLS, and where possible

we have applied the E-stability principle that establishes a connection between

learnability through such an algorithm and the E-stability property. When not

possible, we have resorted to stochastic simulations of the learning algorithms.

Heterogeneity has been introduced by underparameterizing the model used by

some agents, and we have considered two different representations of the equilib-
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rium, the CF and the GF representation.

The two homogeneous cases could be tackled analytically and the E-stability

conditions were found; the same was then done for the simpler heterogeneous

model, the one derived with the CF representation. In the other two heterogeneous

cases we could not derive an analytical solution and stochastic simulations were

employed to gain some insights about the properties of the learning processes.

In the first case, where all agents use a CF representation, a restriction on the

structural parameters defines the E-stability region: for parameter values inside

this region, agents can learn over time and their estimates converge towards the

CF/MSV solution values. Once heterogeneity is introduced in this system, the

equilibrium values for the parameters in the forecasting models change, but still

an equilibrium can be reached as estimates converge to a fixed point in which

the forecasting errors of each group are uncorrelated with the variables in their

own information set. We have called this equilibrium Heterogeneous Expectations

Equilibrium, in which part of the agents are rational, in the sense that variables

and parameter values in their PLM are the same as those in the ALM, and the

rest of the agents are using an underparameterized model, but with parameters

that are optimally tuned to those of the ALM. We have provided conditions for

this HEE to be learnable by least squares techniques, and in particular we have

shown the impact on learnability of the proportion of agents using each model.

In the second homogeneous case, where all agents use a GF representation,

the system has a locally stable equilibrium (the CF/MSV solution values) and

a locally unstable one (the GF solution values): agents can not learn the GF

representation of the equilibrium, but if their starting beliefs are not too far off

and the strong E-stability restriction on the structural parameters holds then they

can learn the CF/MSV solution. When heterogeneity is introduced in this setting,

a locally stable equilibrium is still present, and this corresponds to the CF/MSV

solution of the homogeneous case. This happens because the CF representation

is embedded in both models used by agents, and through learning agents are able

to identify the unnecessary variables and disregard them. Of course, through
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simulations we could not check for the existence of locally unstable equilibria.13

The last case is the one in which both CF and GF representations are used by

different groups of agents. As the REE can be represented equally well in both

ways, agents can use either model in their learning processes, but though these

models are equally good in equilibrium, they are not equivalent out of equilibrium,

when agents are learning. Agents using the model with a smaller information

set are actually underparameterizing their model on the learning path. For a

subregion of the parameter space considered, the learning process of both groups

of agents can converge: again this locally stable solution is the CF/MSV solution.

To summarize, four messages seem to emerge from this work: first, theMSV/CF

solution is quite robust under learning, even when heterogeneity is introduced, as

it remains the unique locally stable point for the learning algorithms when agents

overparameterize; second, the GF solution representation is not learnable, and het-

erogeneity does not change the result; third, when agents underparameterize their

model with respect to the CF representation a different equilibrium emerges, the

HEE, and this equilibrium can be learned by agents; and last, if some agents over-

parameterize their model, they can make an otherwise correctly specified model

be misspecified over the learning path.

6. Appendix

In order to project the ALM onto the PLM2 we need the variance-covariance

matrix for the regressors:

R = E(xt−1 wt wt−1)0(xt−1 wt wt−1) =

Extxt−1 σwx−1 σwx

σwx−1 σ2w ρσ2w
σwx ρσ2w σ2w

 (80)

13By looking at equations (69)-(72) and (73)-(75) we can see that more than one solution,
possibly non-real, should exist. These would be unstable equilibrium points of the learning
algorithms.
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where

Extxt−1 = δσ2w (81)

σwx = ψσ2w (82)

σwx−1 = ρψσ2w (83)

σwx−2 = ρ2ψσ2w (84)

and

ψ =
k3 + ρk4

1− ρk1 − ρ2k2
(85)

δ = f(k1, k2, k3, k4, ρ), (86)

with f a non linear function of its variables, and

k1 = a(γ21 + γ2) + bζ21 + c (87)

k2 = aγ1γ2 (88)

k3 = a(γ1γ3 + ργ3 + γ4) + b(ζ1ζ3 + ρζ3 + ζ4) + d (89)

k4 = aγ1γ4 + bζ1ζ4. (90)

30



References

[1] Branch, W.A., Evans, G.W., 2006. Intrinsic heterogeneity in expectation

formation. Journal of Economic Theory 127, 264-295.

[2] Branch, W.A., McGough, B., 2004. Multiple equilibria in heterogeneous ex-

pectations models. Contributions in Macroeconomics 4.

[3] Branch, W.A., McGough, B., 2005. Consistent expectations and misspeci-

fication in stochastic non-linear economies. Journal of Economic Dynamics

and Control 29, 659-676.

[4] Chiang, A.C., 1984. Fundamental Methods of Mathematical Economics.

McGraw-Hill.

[5] Evans, G.W., Honkapohja, S., 2001. Learning and Expectations in Macroe-

conomics. Princeton University Press, Princeton.

[6] Evans, G.W., McGough, B., 2005. Stable sunspot solutions in models with

predetermined variables. Journal of Economic Dynamics and Control 29, 601-

625.

[7] Giannitsarou, C., 2001. Stability analysis of heterogeneous learning in self-

referential linear stochastic models. Computing in Economics and Finance

2001 46.

[8] Hommes, C., Sorger, G., 1998. Consistent expectations equilibria. Macroeco-

nomic Dynamics 2, 287-321.

[9] Honkapohja, S., Mitra, K., 2005. Performance of monetary policy with inter-

nal central bank forecasting. Journal of Economic Dynamics and Control 29,

627-658.

[10] Honkapohja, S., Mitra, K., 2006. Learning stability in economics with het-

erogeneous agents. Review of Economic Dynamics 9, 284-309.

31



[11] McCallum, B.T., 1983. On non-uniqueness in rational expectations models:

an attempt at perspective. Journal of Monetary Economics 11, 139-168.

[12] McCallum, B.T., 1999. Role of the minimal state variable criterion in rational

expectations models. International Tax and Public Finance 6, 621-639.

[13] McCallum, B.T., 2004. On the relationship between determinate and MSV

solutions in linear RE models. Economics Letters 84, 55-60.

[14] Muth, J.F., 1961. Rational expectations and the theory of price movements.

Econometrica 29, 315-335.

32



-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

c

alpha

miu = 0

Figure 1: E-stability properties of HEE and REE; CF representation; µ = 0.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

c

alpha

miu = 0.5

Figure 2: E-stability properties of HEE and REE; CF representation; µ = .5.
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Figure 3: E-stability properties of HEE and REE; CF representation; µ = 1.
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Figure 4: Stability region (*) for the CF solution when agents use a GF represen-
tation with misspecifications.
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Figure 5: Strong E-stability condition for the CF/MSV solution. Stars represent
stable region, circles unstable region.
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Figure 6: HEE: convergence of parameters in GF representation. From top to
bottom, lines represent the evolution of estimates for γ3,γ1, γ2, γ4.
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Figure 7: HEE convergence of parameters in CF representation. From top to
bottom, lines represent the evolution of estimates for ζ3 and ζ1.
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Figure 8: Stable (stars) and unstable (circles) regions in the (a,b) space for the
HEE with CF and GF representations.
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