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Abstract

We show that the volatility of a price process, which is usually
regarded as an impediment to financial growth, can serve as an en-
dogenous factor in its acceleration.
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1 Introduction

Can volatility, which is present in virtually every financial market and usu-
ally thought of in terms of a risky investment’s downside, serve as an “en-
gine” for financial growth? Paradoxically, the answer to this question turns
out to be positive.

To demonstrate this paradox, we examine the long-run performance of
constant proportions investment strategies in a securities market. Such
strategies prescribe rebalancing the investor’s portfolio, depending on price
fluctuations, so as to keep fixed proportions of wealth in all the portfo-
lio positions. Assume that asset returns form a stationary ergodic process
and asset prices grow (or decrease) at a common asymptotic rate ρ. It is
shown in this paper that if an investor employs any constant proportions
strategy, then the value of his/her portfolio grows almost surely at a rate
strictly greater than ρ, provided that the investment proportions are strictly
positive and the stochastic price process is in a sense non-degenerate. The
very mild assumption of non-degeneracy we impose requires at least some
randomness, or volatility, of the price process. If this assumption is vio-
lated, then the market is essentially deterministic and the result ceases to
hold. Thus, in the present context, the price volatility may be viewed as
an endogenous source of acceleration of financial growth. This phenomenon
might seem counterintuitive, especially in stationary markets [7, 10], where
the asset prices themselves, and not only their returns, are stationary. In
this case, ρ = 0, i.e. each asset grows at zero rate, while any constant pro-
portions strategy exhibits growth at a strictly positive exponential rate with
probability one!

To begin with, we focus on the case where all the assets have the same
growth rate ρ. The results are then extended to a model with different
growth rates ρ1, ..., ρK . In this setting, a constant proportions strategy with
proportions λ1 > 0, ..., λK > 0 grows almost surely at a rate strictly greater
than

∑
k λkρk (see Theorem 1 in Section 2).

The phenomenon highlighted in this paper has been mentioned in the lit-
erature, but its analysis has been restricted to examples involving specialized
models. The terms “excess growth” (Fernholz and Shay [11]) and “volatil-
ity pumping” (Luenberger [21]) have been used to name similar effects to
those discussed here. Cover [6] used the mechanism of volatility pumping in
the construction of universal portfolios. These ideas have been discussed in
connection with financial market data in Mulvey [24], Mulvey and Ziemba
[25], and Dries et al. [8]. Such questions have typically been studied in
the context of maximization of expected logarithmic utilities—“log-optimal
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investments” (Kelly [18], Breiman [5], Algoet and Cover [2], MacLean at al.
[22], Hakansson and Ziemba [13], Li [20], Aurell et al. [3], and others). In
this paper we ignore questions of optimality of trading strategies and do not
use the related notion of expected utility involved in optimality criteria.1

Constant proportions strategies play an important role in various prac-
tical financial computations, see e.g. Perold and Sharpe [26]. The assump-
tion of stationarity of asset returns is widely accepted in financial theory
and practice allowing, as it does, expected exponential price growth and
mean reversion, volatility clustering and very general intertemporal depen-
dence, such as long memory effects, of returns. However, no general results
justifying and explaining the fact of volatility-induced growth have been
established up to now. In spite of the fundamental importance and gener-
ality of this fact, no results pertaining to an arbitrary constant proportions
strategy (regardless of its optimality) and any securities market with sta-
tionary non-degenerate asset returns have been available in the literature.
The purpose of this paper is to fill this gap.

Most of our results are rather easy consequences of some general mathe-
matical facts, and the mathematical aspects do not play a crucial role. The
main contribution of the present work is that we pose and analyze a num-
ber of questions that have not been systematically analyzed before. These
questions are especially interesting because the common intuition currently
prevailing in the mathematical finance community suggests wrong answers
to them (see the discussion in Section 4). Therefore it is important to clarify
the picture in order to reveal and correct misconceptions. This is a central
goal in this study.

The paper is organized as follows. In Section 2 we describe the model,
formulate the assumptions and state the main results. Section 3 contains
proofs of the results and a discussion of their intuitive meaning. In Sec-
tions 4 and 5 we analyze the phenomenon of volatility-induced growth from
various angles, focussing primarily on the case of stationary prices. We an-
swer a number of questions arising naturally in connection with the theory
developed. In Section 6, we show how this theory can be extended to mar-
kets with small transaction costs. Section 7 analyzes an example in which
estimates for the size of transaction cost rates allowing volatility-induced

1In connection with the discussion of relevant literature, we can mention a strand of
publications dealing with Parrondo games [14]. Models considered in those publications
are based on the analysis of lotteries whose odds depend on the investor’s wealth. It
is pointed out that losing lotteries, being played in a randomized alternating order, can
become winning. In spite of some similarity, there are no obvious direct links between this
phenomenon and that studied in the present paper.

3



growth can be established.

2 The model and the main results

Consider a financial market with K ≥ 2 securities (assets). Let St :=
(S1

t , ..., SK
t ) denote the vector of security prices at time t = 0, 1, 2, .... As-

sume that Sk
t > 0 for each t and k, and define by

Rk
t :=

Sk
t

Sk
t−1

(k = 1, 2, ...,K, t = 1, 2, ...) (1)

the (gross) return on asset k over the time period (t − 1, t]. Let Rt :=
(R1

t , ..., R
K
t ). At each time period t, an investor chooses a portfolio ht = (h1

t ,
..., hK

t ), where hk
t is the number of units of asset k in the portfolio ht. Gener-

ally, ht might depend on the observed values of the price vectors S0, S1, ..., St.
A sequence H = (h0, h1, ...) specifying a portfolio ht = ht(S0, ..., St) at each
time t as a measurable function of S0, S1, ..., St is called a trading strategy. If
not otherwise stated, we will consider only those trading strategies for which
hk

t ≥ 0, thus excluding short sales of assets (hk
t can take on all non-negative

real values).
One can specify trading strategies in terms of investment proportions (or

portfolio weights). Suppose that for each t = 1, 2, ..., we are given a vector
λt = (λ1

t , ..., λ
K
t ) in the unit simplex

∆ := {λ = (λ1, ..., λK) : λk ≥ 0,
K∑

k=1

λk = 1}.

The vector λt is assumed to be a measurable function of S0, ..., St. Given
an initial portfolio h0 (specified by a non-negative non-zero vector), we can
construct a trading strategy H recursively by the formula

hk
t = λk

t Stht−1/Sk
t (k = 1, 2, ..., K, t = 1, 2, ...). (2)

Here the scalar product Stht−1 =
∑K

k=1 Sk
t hk

t−1 expresses the value of the
portfolio ht−1 in terms of the prices Sk

t at time t. An investor following
the strategy (2) rebalances (without transaction costs) the portfolio ht−1 at
time t so that the available wealth Stht−1 is distributed across the assets
k = 1, 2, ..., K according to the proportions λ1

t , ..., λ
K
t . It is immediate from

(2) that
Stht = Stht−1, t = 1, 2, ..., (3)
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i.e., the strategy H is self-financing. If a strategy is self-financing, then the
relations (2) and

Sk
t hk

t = λk
t Stht, t = 1, 2, ..., (4)

are equivalent. If the vectors of proportions λt are fixed (do not depend on
time and on the price process), i.e. λt = λ = (λ1, ..., λK) ∈ ∆, then the
strategy H defined recursively by

hk
t = λkStht−1/Sk

t (k = 1, 2, ..., K, t = 1, 2, ...) (5)

is called a constant proportions strategy (or a fixed-mix strategy) with vector
of proportions λ = (λ1, ..., λK). If λk > 0 for each k, then H is said to be
completely mixed.

We will assume that the price vectors St, and hence the return vectors
Rt, are random, i.e., they change in time as stochastic processes. Then the
trading strategy ht, t = 0, 1, 2, ..., generated by the investment rule (2) and
the value Vt = Stht, t = 0, 1, 2, ..., of the portfolio ht are stochastic processes
as well. We are interested in the asymptotic behavior of Vt as t → ∞ for
constant proportions strategies.

We will assume:
(R) The vector stochastic process Rt, t = 1, 2, ..., is stationary and er-

godic. The expected values E| lnRk
t |, k = 1, 2, ..., K, are finite.

Recall that a stochastic process R1, R2, ... is called stationary if, for any
m = 0, 1, 2, ... and any measurable function φ(x0, x1, ..., xm), the distribu-
tion of the random variable φt := φ(Rt, Rt+1, ..., Rt+m) (t = 0, 1, ...) does
not depend on t. According to this definition, all probabilistic characteris-
tics of the process Rt are time-invariant. If Rt is stationary, then for any
measurable function φ for which E|φ(Rt, Rt+1, ..., Rt+m)| < ∞, the averages

φ1 + ... + φt

t
(6)

converge almost surely (a.s.) as t → ∞ (Birkhoff’s ergodic theorem—see,
e.g., Billingsley [4]). If the limit of all averages of the form (6) is non-random
(equal to a constant a.s.), then the process Rt is called ergodic. In this case,
the above limit is equal a.s. to the expectation Eφt, which does not depend
on t by virtue of stationarity of Rt.

An example of a stationary ergodic process is a sequence of indepen-
dent identically distributed (i.i.d.) random variables. To avoid misunder-
standings, we emphasize that Brownian motion and a random walk are not
stationary. According to the conventional probabilistic terminology, these
Markov processes are (time) homogeneous.
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We have Sk
t = Sk

0Rk
1 ...R

k
t , where (according to (R)) the random sequence

Rk
t is stationary. This assumption on the structure of the price process is a

fundamental hypothesis commonly accepted in finance. Moreover, it is quite
often assumed that the random variables Rk

t , t = 1, 2, ... are independent,
i.e., the price process Sk

t forms a geometric random walk. This postulate,
which is much stronger than the hypothesis of stationarity of Rk

t , lies at the
heart of the classical theory of asset pricing (Black, Scholes, Merton), see
e.g. Luenberger [21].

By virtue of Birkhoff’s ergodic theorem, we have

lim
t→∞

1
t

ln Sk
t = lim

t→∞
1
t

t∑

j=1

ln Rk
j = E ln Rk

t (a.s.) (7)

for each k = 1, 2, ...,K. This means that the price of each asset k has almost
surely a well-defined and finite (asymptotic, exponential) growth rate, which
turns out to be equal a.s. to the expectation ρk := E lnRk

t , the drift of this
asset’s price. The drift can be positive, zero or negative. It does not depend
on t in view of the stationarity of Rt. Let H = (h0, h1, ...) be a trading
strategy. If the limit

lim
t→∞

1
t

ln(Stht)

exists, it is called the (asymptotic, exponential) growth rate of the strategy
H.

We now formulate central results of this paper—Theorems 1 and 2. In
these theorems, H = (h0, h1, ...) is a constant proportions strategy with some
vector of proportions λ = (λ1, ..., λK) ∈ ∆ and a non-zero initial portfolio
h0 ≥ 0. In Theorems 1 and 2, we assume that the following condition holds:

(V) With strictly positive probability,

Sk
t /Sm

t 6= Sk
t−1/Sm

t−1 for some 1 ≤ k, m ≤ K and t ≥ 1.

Theorem 1. If all the coordinates λk of the vector λ are strictly positive,
i.e. the strategy H is completely mixed, then the growth rate of the strategy
H is almost surely equal to a constant which is strictly greater than

∑
k λkρk,

where ρk is the drift of asset k.
Condition (V) is a very mild assumption of volatility of the price process.

This condition does not hold if and only if, with probability one, the ratio
Sk

t /Sm
t of the prices of any two assets k and m does not depend on t. Thus

condition (V) fails to hold if and only if the relative prices of the assets are
constant in time (a.s.).
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We are primarily interested in the situation when all the assets under
consideration have the same drift and hence a.s. the same asymptotic growth
rate:

(R1) There exists a number ρ such that, for each k = 1, ..., K, we have
E ln Rk

t = ρ.
Assumption (R1) allows one to concentrate, for example, on those assets

in the market whose prices grow at the maximum rate. One may think that
all the others, growing more slowly, will eventually be driven out of the
market. As long as we deal with an infinite time horizon, we may exclude
such assets from consideration.

From Theorem 1, we immediately obtain the following result.
Theorem 2. Under assumption (R1), the growth rate of the strategy

H is almost surely strictly greater than the growth rate of each individual
asset.

In the context of Theorem 2, the volatility of the price process appears to
be the only cause for any completely mixed constant proportions strategy to
grow at a rate strictly greater than ρ, the growth rate of each particular asset.
This result contradicts conventional finance theory, where the volatility of
asset prices is usually regarded as an impediment to financial growth. The
result shows that in the present context volatility serves as an endogenous
source of its acceleration.

3 Proofs of the main results and their explanation

We first observe that if a strategy H is generated according to formula (2)
by a sequence λ1, λ2, ... of vectors of investment proportions, then

Vt = Stht =
K∑

m=1

Sm
t hm

t−1 =
K∑

m=1

Sm
t

Sm
t−1

Sm
t−1h

m
t−1 =

K∑

m=1

Sm
t

Sm
t−1

λm
t−1St−1ht−1 = Vt−1

K∑

m=1

Rm
t λm

t−1 = (Rtλt−1)Vt−1 (8)

for each t ≥ 2, and so

Vt = (Rtλt−1)(Rt−1λt−2)...(R2λ1)V1, t ≥ 2. (9)

Proof of Theorem 1. By virtue of (9), we have

Vt = [V1(R1λ)−1](R1λ)(R2λ)...(Rtλ), (10)
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and so

lim
t→∞

1
t

ln Vt = lim
t→∞

1
t

t∑

j=1

ln(Rjλ) = E ln(Rtλ) (a.s.) (11)

by virtue of Birkhoff’s ergodic theorem. It remains to show that if assump-
tion (V) holds, then E ln(Rtλ) >

∑K
k=1 λkρk. To this end observe that

condition (V) is equivalent to the following one:
(V1) For some t ≥ 1 (and hence, by virtue of stationarity, for each

t ≥ 1), the probability

P{Rk
t 6= Rm

t for some 1 ≤ k,m ≤ K}

is strictly positive.
Indeed, we have Sk

t /Sm
t 6= Sk

t−1/Sm
t−1 if and only if Sk

t /Sk
t−1 6= Sm

t /Sm
t−1,

which can be written as Rk
t 6= Rm

t . Denote by δt the random variable that
is equal to 1 if the event {Rk

t 6= Rm
t for some 1 ≤ k,m ≤ K} occurs and

0 otherwise. Condition (V) means that P{maxt≥1 δt = 1} > 0, while (V1)
states that, for some t (and hence for each t), P{δt = 1} > 0. The latter
property is equivalent to the former because

{max
t≥1

δt = 1} =
∞⋃

t=1

{δt = 1}.

By using Jensen’s inequality and (V1), we find that

ln
K∑

k=1

Rk
t λ

k >
K∑

k=1

λk(lnRk
t )

with strictly positive probability, while the non-strict inequality holds al-
ways. Consequently,

E ln(Rtλ) >
K∑

k=1

λkE(lnRk
t ) =

K∑

k=1

λkρk, (12)

which completes the proof. ¤
The above considerations yield a rigorous proof of the fact of volatility

induced growth. But what is the intuition, the underlying fundamental rea-
son for it? We have only one explanation, which is nothing but a repetition
in one phrase of the idea of the above proof. If R1

t , ..., R
K
t are random re-

turns of assets k = 1, 2, ..., K, then the asymptotic growth rates of these
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assets are E lnRk
t , while the asymptotic growth rate of a constant propor-

tions strategy is E ln(
∑

λkRk
t ), which is strictly greater than

∑
λkE ln(Rk

t )
by Jensen’s inequality—because the function lnx is strictly concave.

It would be nice, however, to give a general common-sense explanation
of volatility-induced growth, without using such terms as a “strictly convex
function,” “Jensen’s inequality,” etc. One can, indeed, find in the litera-
ture explanations of examples of volatility pumping based on the following
reasoning (see, e.g., Fernholz and Shay [11], Luenberger [21]). The reason
for growth lies allegedly in the fact that constant proportions always force
one to “buy low and sell high”—the common sense dictum of all trading.
Those assets whose prices have risen from the last rebalance date will be
overweighted in the portfolio, and their holdings must be reduced to meet
the required proportions and to be replaced in part by assets whose prices
have fallen and whose holdings must therefore be increased. Obviously, for
this mechanism to work the prices must change in time; if they are constant,
one cannot get any profit from trading.

We have, alas, repeated this reasoning ourselves (e.g. in [10] and in
an earlier version of the present paper), but somewhat deeper reflection on
this issue inevitably leads to the conclusion that the above argument does
not explain everything and raises more questions than gives answers. For
example, what is the meaning of “high” and “low”? If the price follows a
geometric random walk, the set of its values is generally unbounded, and
for every value there is a larger value. One can say that “high” and “low”
should be understood in relative terms, based on the comparison of the prices
today and yesterday. Fine, but what if the prices of all the assets increase
or decrease simultaneously? Thus, the above argument, to be made valid,
should be at least relativized, both with respect to time and the assets.

However, a more substantial lacuna in such reasoning is that it does not
reflect the assumption of constancy of investment proportions. This leads to
the question: what will happen if the “common sense dictum of all trading”
is pushed to the extreme and the portfolio is rebalanced so as to sell all those
assets that gain value and buy only those ones which lose it? Assume, for
example, that there are two assets, the price S1

t of the first (riskless) is always
1, and the price S2

t of the second (risky) follows a geometric random walk,
so that the gross return on it can be either 2 or 1/2 with equal probabilities.
Suppose the investor sells the second asset and invests all wealth in the first if
the price S2

t goes up and performs the converse operation, betting all wealth
on the risky asset, if S2

t goes down. Then the sequence λt = (λ1
t , λ

2
t ) of the

vectors of investment proportions will be i.i.d. with values (0, 1) and (1, 0)
taken on with equal probabilities. Furthermore, λt−1 will be independent of
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Rt. By virtue of (9), the growth rate of the portfolio value for this strategy
is equal to E ln(Rtλt−1) = [ln(0 · 1 + 1 · 2)+ ln(0 · 1+ 1 · 1

2)+ ln(1 · 1 + 0 · 2)+
ln(1 ·1+0 · 12)]/4 = 0, which is the same as the growth rate of each of the two
assets k = 1, 2 and is strictly less than the growth rate of any completely
mixed constant proportions strategy.

4 Stationary markets: puzzles and misconceptions

Consider a market where the price process St (and not only the process of
asset returns Rt) is ergodic and stationary and where E| ln Sk

t | < ∞. This
situation is a special case of stationary returns, because if the vector process
St is stationary, then the process Rt is stationary as well. In this case the
growth rate of each asset is zero,

E lnRk
t = E ln Sk

t − E ln Sk
t−1 = 0,

while, as we have seen, any completely mixed constant proportions strategy
grows at a strictly positive exponential rate. The assumption of stationarity
of asset prices, perhaps after some detrending, seems plausible when model-
ing currency markets [7, 16]. Then the “prices” are determined by exchange
rates of all the currencies with respect to some selected reference currency.

We performed a casual experiment, asking numerous colleagues (in pri-
vate, at seminars and at conferences) to promptly guess the correct answer
to the following question.

Question 1. Suppose vectors of asset prices St = (S1
t , ..., SK

t ) fluctuate
randomly, forming a stationary stochastic process (assume even that St are
i.i.d.). Consider a fixed-mix self-financing investment strategy prescribing
rebalancing one’s portfolio at each of the dates t = 1, 2, ... so as to keep equal
investment proportions of wealth in all the assets. What will happen with
the portfolio value in the long run, as t → ∞? What will be its tendency:
(a) to decrease; (b) to increase; or (c) to fluctuate randomly, converging in
one sense or another to a stationary process.

The audience of our respondents was quite broad and professional, but
practically nobody succeeded in guessing the correct answer, (b). Among
those who expressed a clear guess, nearly all selected (c). There were also
a couple of respondents who decided to bet on (a).

Common intuition suggests that if the market is stationary, then the
portfolio value Vt for a constant proportions strategy must converge in one
sense or another to a stationary process. The usual intuitive argument in
support of this conjecture appeals to the self-financing property (3). The
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self-financing constraint seems to exclude possibilities of unbounded growth.
This argument is also substantiated by the fact that in the deterministic case
both the prices and the portfolio value are constant. This way of reasoning
makes the answer (c) to the above question more plausible a priori than the
others.

It might seem surprising that the wrong guess (c) has been put forward
even by those who have known about examples of volatility pumping for a
long time. The reason for this might lie in the non-traditional character of
the setting where not only the asset returns but the prices themselves are
stationary. Moreover, the phenomenon of volatility-induced growth is more
paradoxical in the case of stationary prices, where growth emerges “from
nothing.” In the conventional setting of stationary returns, volatility serves
as the cause of an acceleration of growth, rather than its emergence from
prices with zero growth rates.

A typical way of understanding the correct answer to Question 1 is to
reduce it to something well-known that is apparently relevant. A good can-
didate for this is the concept of arbitrage. Getting something from nothing
as a result of an arbitrage opportunity seems to be similar to the emergence
of growth in a stationary setting where there are no obvious sources for
growth.

As long as we deal with an infinite time horizon, we would have to
consider some kind of asymptotic arbitrage (e.g. Ross [27], Huberman [15],
Kabanov and Kramkov [17], Klein and Schachermayer [19]). However, all
known concepts of this kind are much weaker than what we would need in
the present context. According to our results, growth is exponentially fast,
unbounded wealth is achieved with probability one, and the effect of growth
is demonstrated for specific (constant proportions) strategies. None of these
properties can be directly deduced from asymptotic arbitrage.

Thus there are no convincing arguments showing that volatility-induced
growth in stationary markets can be derived from, or explained by, asymp-
totic arbitrage over an infinite time horizon. But what can be said about
relations between stationarity and arbitrage over finite time intervals? As
is known, there are no arbitrage opportunities (over a finite time horizon)
if and only if there exists an equivalent martingale measure. A station-
ary process can be viewed as an “antipodal concept” to the notion of a
martingale. This might lead to the conjecture that in a stationary market
arbitrage is a typical situation. Is this true or not? Formally, the question
can be stated as follows.

Question 2. Suppose the process St = (S1
t , ..., SK

t ) of the vectors of
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asset prices is stationary, and moreover, assume that the vectors St are
i.i.d. Furthermore, suppose the first asset k = 1 is riskless and its price S1

t

is equal to one. Does this market have arbitrage opportunities over a finite
time horizon?

When asking this question, we assume that the market is frictionless
and that there are no portfolio constraints. In particular, all short sales
are allowed. An arbitrage opportunity over a time horizon t = 0, ..., T
is understood in the conventional sense. It means the existence of a self-
financing trading strategy (h0, ..., hT ) such that S0h0 = 0, ST hT ≥ 0 a.s.
and P{ST hT > 0} > 0.

The answer to this question, as well as to the previous one, is practi-
cally never guessed immediately. Surprisingly, the answer depends, roughly
speaking, on whether the distribution of the random vector S̃t := (S2

t , ..., SK
t )

of prices of the risky assets is continuous or discrete. For example, if S̃t takes
on a finite number of values, then an arbitrage opportunity exists. If the
distribution of S̃t is continuous, there are no arbitrage opportunities. More
precisely, the result is as follows. Let G be the support of the distribution
of the random vector S̃t (which is assumed to be non-degenerate) and let
F := cl co G be the closure of the convex hull of G. Denote by ∂rF the
relative boundary of F , i.e. the boundary of the convex set F in the smallest
linear manifold containing F .

Theorem 3. If P{S̃t ∈ ∂rF} = 0, then for any T there are no arbitrage
opportunities over the time horizon of length T . If P{S̃t ∈ ∂rF} > 0, then
for each T there is an arbitrage opportunity over the time horizon of length
T .

For a proof of this result see [9].

5 Growth acceleration, volatility reduction and
noise-induced stability

The questions we analyze in this section stem from an example of volatility
pumping considered originally by Fernholz and Shay [11] and later others
(e.g. Luenberger [21]). The framework for this example is the well-known
continuous-time model developed by Merton and others, in which the price
processes Sk

t (t ≥ 0) of two assets k = 1, 2 are supposed to be solutions to
the stochastic differential equations dSk

t /Sk
t = µkdt+σkdW k

t , where the W k
t

are independent (standard) Wiener processes and Sk
0 = 1. As is well-known,

these equations admit explicit solutions Sk
t = exp[µkt − (σ2

k/2)t + σkW
k
t ].
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Given some θ ∈ (0, 1), the value Vt of the constant proportions portfolio
prescribing investing the proportions θ and 1−θ of wealth into assets k = 1, 2
is the solution to the equation

dVt/Vt = [θµ1 + (1− θ)µ2]dt + θσ1dW 1
t + (1− θ)σ2dW 2

t .

Equivalently, Vt can be represented as the solution to the equation dVt/Vt =
µ̄dt + σ̄dWt, where µ̄ := θµ1 + (1− θ)µ2, σ̄2 := (θσ1)2 + [(1− θ)σ2]2 and Wt

is a standard Wiener process. Thus, Vt = exp[µ̄t − (σ̄2/2)t + σ̄Wt], and so
the growth rate and the volatility of the portfolio value process Vt are given
by µ̄ − (σ̄2/2) and σ̄. In particular, if µ1 = µ2 = µ and σ1 = σ2 = σ, then
the growth rate and the volatility of Vt are equal to

µ− (σ̄2/2) and σ̄ = σ
√

θ2 + (1− θ)2 < σ, (13)

while for each individual asset the growth rate and the volatility are µ −
(σ2/2) and σ, respectively.

Thus, in this example, the use of a constant proportions strategy pre-
scribing investing in a mixture of two assets leads (due to diversification)
to an increase of the growth rate and to a simultaneous decrease of the
volatility. When looking at the expressions in (13), the temptation arises
even to say that the volatility reduction is the cause of volatility-induced
growth. Indeed, the growth rate µ− (σ̄2/2) is greater than the growth rate
µ − (σ2/2) because σ̄ < σ. This suggests speculation along the follow-
ing lines. Volatility is something like energy. When constructing a mixed
portfolio, it converts into growth and therefore decreases. The greater the
volatility reduction, the higher the growth acceleration.

Do such speculations have any grounds in the general case, or do they
have a justification only in the above example? To formalize this question
and answer it, let us return to the discrete time-framework we deal with
in this paper. Suppose there are two assets with i.i.d. vectors of returns
Rt = (R1

t , R
2
t ). Let (ξ, η) := (R1

1, R
2
1) and assume, to avoid technicalities,

that the random vector (ξ, η) takes on a finite number of values and is strictly
positive. The value Vt of the portfolio generated by a fixed-mix strategy with
proportions x and 1− x (0 < x < 1) is computed according to the formula

Vt = V1

t∏

j=2

[xR1
j + (1− x)R2

j ], t ≥ 2

(see (9)). The growth rate of this process and its volatility are given, re-
spectively, by the expectation E ln ζx and the standard deviation

√
V ar ln ζx
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of the random variable ln ζx, where ζx := ln[xξ + (1− x)η]. We know from
the above analysis that the growth rate increases when mixing assets with
the same growth rate. What can be said about volatility? Specifically, let
us consider the following question.

Question 3. (a) Suppose V ar ln ξ = V ar ln η. Is it true that V ar ln[xξ+
(1 − x)η] ≤ V ar ln ξ when x ∈ (0, 1)? (b) More generally, is it true that
V ar ln[xξ + (1− x)η] ≤ max(V ar ln ξ, V ar ln η) for x ∈ (0, 1)?

Query (b) asks whether the logarithmic variance is a quasi-convex func-
tional. Questions (a) and (b) can also be stated for volatility defined as the
square root of logarithmic variance. They will have the same answers be-
cause the square root is a strictly monotone function. Positive answers
to these questions would substantiate the above conjecture of volatility
reduction—negative, refute it.

It turns out that in general (without additional assumptions on ξ and
η) the above questions 3(a) and 3(b) have negative answers. To show this
consider two i.i.d. random variables U and V with values 1 and a > 0
realized with equal probabilities. Consider the function

f(y) := V ar ln[yU + (1− y)V ], y ∈ [0, 1]. (14)

By evaluating the first and the second derivatives of this function at y = 1/2,
one can show the following. There exist some numbers 0 < a− < 1 and
a+ > 1 such that the function f(y) attains its minimum at the point y = 1/2
when a belongs to the closed interval [a−, a+] and it has a local maximum
(!) at y = 1/2 when a does not belong to this interval. The numbers a−
and a+ are given by

a± = 2e4 − 1±
√

(2e4 − 1)2 − 1,

where a− ≈ 0.0046 and a+ ≈ 216.388. If a ∈ [a−, a+], the function f(y) is
convex, but if a /∈ [a−, a+], its graph looks like then one depicted in Figure 1.

Fix any a for which the graph of f(y) is as in Figure 1. Consider any
number y0 < 1/2 which is greater than the smallest local minimum of f(y)
and define ξ := y0U + (1− y0)V and η := y0V + (1− y0)U . (U and V may
be interpreted as “factors” on which the returns ξ and η on the two assets
depend.) Then V ar ln[(ξ + η)/2] > V ar ln ξ = V ar ln η, which yields a neg-
ative answer both to (a) and (b). In this example ξ and η are dependent.
It would be of interest to investigate questions (a) and (b) for general inde-
pendent random variables ξ and η. It can be shown that the answer to (b)
is positive if one of the variables ξ and η is constant. But even in this case
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Figure 1: Graph of the function f(y) in eq. (14) for a = 104.

the function V ar ln[xξ + (1− x)η] is not necessarily convex: it may have an
inflection point in (0, 1), which can be easily shown by examples involving
two-valued random variables.

Thus it can happen that a mixed portfolio may have a greater volatility
than each of the assets from which it has been constructed. Consequently,
the above conjecture and the “energy interpretation” of volatility are gener-
ally not valid. It is interesting, however, to find additional conditions under
which assertions regarding volatility reduction hold true. In this connection,
we can assert the following fact.

Theorem 4. Let U and V be independent random variables bounded
above and below by strictly positive constants. If U is not constant, then
V ar ln[yU + (1− y)V ] < V ar ln U for all y ∈ (0, 1) sufficiently close to 1.

Volatility can be regarded as a quantitative measure of instability of
the portfolio value. The above result shows that small independent noise
can reduce volatility. This result is akin to a number of known facts about
noise-induced stability, e.g., Abbott [1] and Mielke [23]. An analysis of links
between the topic of the present work and results about stability under
random noise might constitute an interesting theme for further research.

Proof of Theorem 4 can be obtained by evaluating the derivative of the
function f(y) defined by (14) at y = 1. Basic computations show that

f ′(1) = 2(EV )(−Ee−ZZ + Ee−Z · EZ) (15)

where Z = lnU . The assertion of the theorem is valid because f ′(1) > 0.
The verification of this inequality is based on the following fact. If φ(z) is a
function on (−∞,+∞) with φ′(z) > 0, then

E[Zφ(Z)] > (EZ)Eφ(Z) (16)

15



for any non-constant bounded random variable Z. This fact follows from
Jensen’s inequality applied to the strictly convex function ψ(x) :=

∫ x
0 φ(z)dz

and from the relation ψ(y)−ψ(x) ≥ φ(x)(y−x) (to obtain (16) put x := Z,
y := EZ and take the expectation). By applying (16) to φ(z) := −e−z, we
find that the expression in (15) is positive. ¤

6 Volatility-induced growth under small transac-
tion costs

We now assume that, in the market under consideration (see Section 2),
there are transaction costs for buying and selling assets. When selling x
units of asset k at time t, one receives the amount (1− εk−)Sk

t x (rather than
Sk

t x as in the frictionless case). To buy x units of asset k, one has to pay
(1 + εk

+)Sk
t x. The numbers εk−, εk

+ ≥ 0, k = 1, 2, ..., K (the transaction cost
rates) are assumed given. In this market, a trading strategy H = (h0, h1, ...)
is self-financing if

K∑

k=1

(1 + εk
+)Sk

t (hk
t − hk

t−1)+ ≤
K∑

k=1

(1− εk
−)Sk

t (hk
t−1 − hk

t )+, t ≥ 1, (17)

where x+ = max{x, 0}. Inequality (17) means that asset purchases can be
made only at the expense of asset sales.

Relation (17) is equivalent to

K∑

k=1

Sk
t (hk

t − hk
t−1) ≤ −

K∑

k=1

εk
+Sk

t (hk
t − hk

t−1)+ −
K∑

k=1

εk
−Sk

t (hk
t−1 − hk

t )+

(which follows from the identity x+−(−x)+ = x). Therefore, if the portfolio
ht differs from the portfolio ht−1 in at least one position k for which εk

+ 6= 0
and εk− 6= 0, then Stht < Stht−1. Thus, under transaction costs, portfolio
rebalancing typically leads to a loss of wealth. The number Stht/Stht−1 ≤ 1
is called the loss coefficient (of the strategy H at time t).

We say that H = (h0, h1, ...) is a constant proportions strategy with
vector of proportions λ = (λ1, ..., λK) ∈ ∆ if Sk

t hk
t = λkStht for all k =

1, 2, ..., K and t = 1, 2, ... (cf. (4)). Let δ ∈ (0, 1) be a constant. Given a
vector of proportions λ = (λ1, ..., λK) ∈ ∆ and a non-zero initial portfolio
h0 ≥ 0, define recursively

hk
t = (1− δ)λkStht−1/Sk

t (k = 1, 2, ...,K, t = 1, 2, ...). (18)
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This rule defines a trading strategy with constant investment proportions
λ1, ..., λK and a constant loss coefficient 1 − δ. We will call it the (δ, λ)-
strategy.

Theorem 5 below extends the results of Theorems 1 and 2 to the model
with transaction costs. As before, we assume that hypotheses (R) and (V)
hold.

Theorem 5. Let λ = (λ1, ..., λK) ∈ ∆ be a strictly positive vector. If
δ ∈ (0, 1) is small enough, then the (δ, λ)-strategy H defined by (18) has
a growth rate strictly greater than

∑K
k=1 λkρk (a.s.), and so if ρ1 = ... =

ρK = ρ, then the growth rate of H is strictly greater than ρ (a.s.). Further,
if the transaction cost rates εk−, εk

+ ≥ 0, k = 1, 2, ..., K, are small enough (in
particular, if they do not exceed δ/2), then the strategy H is self-financing.

The purpose of this theorem is to demonstrate that the results on volatility-
induced growth remain valid under small transaction costs. In contrast with
a number of the questions we considered previously, the answer to the ques-
tion we pose here is quite predictable and does not contradict intuition. We
deal in Theorem 5 with constant proportions strategies of a special form—
those for which the loss rate is constant (and small enough). We are again
not concerned with the question of optimality of such strategies for one
criterion or another.

Proof of Theorem 5. We first observe that the growth rate of the strategy
H is equal to E ln[(1−δ)Rtλ]. This fact is proved exactly like (11) (multiply
the vectors of proportions in (8), (9), (10) and (11) by (1− δ)). According
to (12), we have E ln(Rtλ) >

∑K
k=1 λkρk. This inequality will remain valid

if λ is replaced by (1 − δ)λ, provided δ ∈ (0, 1) is small enough. Fix any
such δ ∈ (0, 1). Denote by ε the greatest of the numbers εk−, εk

+. It remains
to show that H is self-financing when ε ≤ δ/2. To this end we note that
inequality (17) is implied by

K∑

k=1

(1 + ε)Sk
t (hk

t − hk
t−1)+ ≤

K∑

k=1

(1− ε)Sk
t (hk

t−1 − hk
t )+,

which is equivalent to

ε
K∑

k=1

|Sk
t hk

t − Sk
t hk

t−1| ≤ St(ht−1 − ht). (19)

In view of (18), the right-hand side of the last inequality is equal to δStht−1,
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and the left-hand side can be estimated as follows:

ε
K∑

k=1

|(1− δ)λkStht−1 − Sk
t hk

t−1| ≤ ε
K∑

k=1

(1− δ)λkStht−1 + ε
K∑

k=1

Sk
t hk

t−1

= ε(1− δ)Stht−1 + εStht−1 ≤ 2εStht−1.

Consequently, if 0 ≤ ε ≤ δ/2, then the strategy H is self-financing. ¤

7 Growth under transaction costs: an example

In this section we consider an example (a binomial model) in which quanti-
tative estimates for the size of the transaction costs needed for the validity
of the result on volatility-induced growth can be provided. Suppose that
there are two assets k = 1, 2: one riskless and one risky. The price of the
former is constant and equal to 1. The price of the latter follows a geometric
random walk. It can either jump up by u > 1 or down by u−1 with equal
probabilities. Thus both securities have zero growth rates.

Suppose the investor pursues the constant proportions strategy prescrib-
ing to keep 50% of wealth in each of the securities. There are no transaction
costs for buying and selling the riskless asset, and the transaction cost rate
for buying and selling the risky asset is ε ∈ [0, 1). Assume the investor’s
portfolio at time t − 1 contains v units of cash; then the value of the risky
position of the portfolio must be also equal to v. At time t, the riskless
position of the portfolio will remain the same, and the value of the risky
position will become either uv or u−1v with equal probability. In the former
case, the investor rebalances his/her portfolio by selling an amount of the
risky asset worth A so that

v + (1− ε)A = vu−A. (20)

By selling an amount of the risky asset of value A in the current prices,
the investor receives (1− ε)A, and this sum of cash is added to the riskless
position of the portfolio. After rebalancing, the values of both portfolio
positions must be equal, which is expressed in (20). From (20) we obtain
A = v(u − 1)(2 − ε)−1. The positions of the new (rebalanced) portfolio,
measured in terms of their current values, are equal to v + (1− ε)A = v[1+
(1 − ε)(2 − ε)−1(u − 1)]. In the latter case (when the value of the risky
position becomes u−1v), the investor buys some amount of the risky asset
worth B, for which the amount of cash (1 + ε)B is needed, so that

v − (1 + ε)B = u−1v + B.
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From this, we find −B = v(u−1 − 1)(2 + ε)−1, and so v − (1 + ε)B =
v[1 + (1 + ε)(2 + ε)−1(u−1 − 1)].

Thus, the portfolio value at each time t is equal to its value at time t−1
multiplied by the random variable ξ such that P{ξ = g′} = P{ξ = g′′} =
1/2, where g′ := 1 + (1 + ε)(2 + ε)−1(u−1 − 1) and g′′ := 1 + (1 − ε)(2 −
ε)−1(u−1). Consequently, the asymptotic growth rate of the portfolio value,
E ln ξ = (1/2)(ln g′ + ln g′′), is equal to (1/2) ln φ(ε, u), where

φ(ε, u) :=
[
1 + (1 + ε)

u−1 − 1
2 + ε

] [
1 + (1− ε)

u− 1
2− ε

]
.

We have E ln ξ > 0, i.e., the phenomenon of volatility induced growth takes
place, if φ(ε, u) > 1. For ε ∈ [0, 1), this inequality turns out to be equivalent
to the following very simple relation: 0 ≤ ε < (u − 1)(u + 1)−1. Thus,
given u > 1, the asymptotic growth rate of the fixed-mix strategy under
consideration is greater than zero if the transaction cost rate ε is less than
ε∗(u) := (u− 1)(u + 1)−1. We call ε∗(u) the threshold transaction cost rate.
Volatility-induced growth takes place when 0 ≤ ε < ε∗(u).

The volatility σ of the risky asset under consideration (the standard devi-
ation of its logarithmic return) is equal to lnu. In the above considerations,
we assumed that σ—or equivalently, u—is fixed, and we examined φ(ε, u)
as a function of ε. Let us now examine φ(ε, u) as a function of u when the
transaction cost rate ε is fixed and strictly positive. For the derivative of
φ(ε, u) with respect to u, we have

φ′u(ε, u) =
1 + ε

4− ε2

[
1− ε

1 + ε
− u−2

]
.

If u = 1, then φ′u(ε, 1) < 0. Thus if the volatility of the risky asset is
small, the performance of the constant proportions strategy at hand is worse
than the performance of each individual asset. This fact refutes the possi-
ble conjecture that “the higher the volatility, the higher the induced growth
rate.” Further, the derivative φ′u(ε, u) is negative when u ∈ [0, u∗(ε)), where
u∗(ε) := (1− ε)−1/2(1 + ε)1/2. For u = u∗(ε) the asymptotic growth rate of
the constant proportions strategy at hand attains its minimum value. For
those values of u which are greater than u∗(ε), the growth rate increases,
and it tends to infinity as u →∞. Thus, although the assertion “the greater
the volatility, the greater the induced growth rate” is not valid always, it
is valid (in the present example) under the additional assumption that the
volatility is large enough.
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8 Conclusion

In this paper we have established the surprising result that when asset re-
turns are stationary ergodic, their volatility, together with any fixed-mix
trading strategy, generates a portfolio growth rate in excess of the individ-
ual asset growth rates. As a consequence, even if the growth rates of the
individual securities all have mean zero, the value of a fixed-mix portfolio
tends to infinity with probability one. By contrast with the twenty five years
in which the effects of “volatility pumping” have been investigated in the lit-
erature by example, our results are quite general. They are obtained under
assumptions which accommodate virtually all the empirical market return
properties discussed in the literature. We have in this paper also dispelled
the notion that the demonstrated acceleration of portfolio growth is simply
a matter of “buying lower and selling higher.” The example of Section 3
shows that our result depends critically on rebalancing to an arbitrary fixed
mix of portfolio proportions. Any such mix defines the relative magnitudes
of individual asset returns realized from volatility effects. This observation
and our analysis of links between growth, arbitrage and noise-induced stabil-
ity suggest that financial growth driven by volatility is a subtle and delicate
phenomenon.
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[12] Föllmer, H., and A. Schied (2002): Stochastic Finance – An Intro-
duction in Discrete Time. Walter de Gruyter, Berlin.

[13] Hakansson, N.H., and W.T. Ziemba (1995): “Capital growth the-
ory.” In Handbooks in Operations Research and Management Science,
Volume 9, Finance, R.A. Jarrow, V. Maksimovic and W.T. Ziemba,
eds., Elsevier, Amsterdam, pp. 65–86.

[14] Harmer, G.P., and D. Abbott, (1999): “Parrondo’s paradox,” Sta-
tistical Science, 14, 206–213.

[15] Huberman, G. (1982): “A simple approach to Arbitrage Pricing The-
ory,” Journal of Economic Theory, 28, 183–191.

[16] Kabanov, Yu.M. (1999): “Hedging and liquidation under transaction
costs in currency markets,” Finance and Stochastics, 3, 237–248.

[17] Kabanov, Yu.M. and D.A. Kramkov (1994): “Large financial mar-
kets: Asymptotic arbitrage and contiguity,” Theory of Probability and
its Applications, 39, 222–228.

[18] Kelly, J.L. (1956): A new interpretation of information rate, Bell
System Technical Journal, 35, 917–926.

21



[19] Klein, I., and W. Schachermayer (1996): “Asymptotic arbitrage
in non-complete large financial markets,” Theory of Probability and its
Applications, 41, 927–334.

[20] Li, Y. (1998): “Growth-security investment strategy for long and short
runs,” Management Science, 39, 915–924.

[21] Luenberger, D. (1998): Investment Science. Oxford University Press,
New York.

[22] MacLean, L.C., W.T. Ziemba, and G. Blazenko (1992): “Growth
versus security in dynamic investment analysis,” Management Science,
38, 1562–1585.

[23] Mielke, A. (2000): “Noise induced stability in fluctuating bistable
potentials,” Physical Review Letters, 84, 18–821.

[24] Mulvey, J.M. (2001): “Multi-period stochastic optimization models
for long-term investors.” In Quantitative Analysis in Financial Markets,
Vol. 3., M. Avellaneda, ed., World Scientific, Singapore, pp. 66–85.

[25] Mulvey, J.M., and W.T. Ziemba (eds.) 1998: Worldwide Asset and
Liability Modeling, Cambridge, UK, Cambridge University Press.

[26] Perold, A.F., and W.F. Sharpe (1995): “Dynamic strategies for
asset allocation,” Financial Analysts Journal, 51, 149–160.

[27] Ross, S.A. (1976): “The arbitrage theory of asset pricing,” Journal of
Economic Theory, 13, 341–360.

22




