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Abstract

We suggest an alternative way of analyzing the canonical Bergstrom-Blume-
Varian model of non-cooperative voluntary contributions to a public good
that avoids the proliferation of dimensions as the number of players is in-
creased. We exploit this approach to analyze models in which the aggregate
level of public good is determined as a more general social composition func-
tion of individual gifts �speci�cally, as a generalized CES form �rather than
as an unweighted sum as well as the the weakest-link and best-shot models
suggested by Hirshleifer. In each case, we characterize the set of equilibria,
in some cases establishing existence of a unique equilibrium as well as brie�y
pointing out some interesting comparative static properties. We also study
the weakest-link and best-shot limits of the CES composition function and
show how the former can be used for equilibrium selection and the latter to
show that equilibria of some better-shot games are identical to those of the
much simpler best-shot game.
Keywords: noncooperative games, public goods, weakest links, best shots.
JEL classi�cations: C72, H41.



1 Introduction

The canonical model of non-cooperative public good provision set out by
Bergstrom, Blume and Varian [2] �hereafter BBV �is a prominent example
of a noncooperative game with an aggregative structure. The common object
of all players�preferences is a simple aggregate, the unweighted sum of all
individual contributions gi, and each player�s preferences can be represented
by a payo¤ function of the form �i (gi; G), where G =

P
j gj.

We study a systematic way of exploiting its aggregative structure that
avoids the proliferation of dimensions as the number of players grows and
thereby simpli�es its analysis. This permits us to extend the model by al-
lowing G to be a more general (social composition) function of individual
contributions, rather than an unweighted sum. This extra generality allows
us to consider weaker link and better shot situations, of which Hirshleifer�s
[7] weakest link and best shot games are extreme cases. Social composition
functions involving weaker-link public goods exhibit a convex technology for
transforming individual contributions into the aggregate level of G, and im-
ply a unique equilibrium in pure strategies. Situations involving better-shot
public goods have non-convex social composition functions and, typically,
multiple equilibria. Our approach also elucidates structural properties of
equilibria and comparative statics properties. To avoid excessive length, we
avoid a full treatment of these topics, con�ning ourselves to passing remarks.
In Sections 2 and 3, we show how �replacement functions�o¤er a simple

and intuitive proof of existence, uniqueness and neutrality in the canonical
model of BBV. The main aim of these sections is to set the scene for exten-
sions of the canonical model which yield to modi�cations of this approach.
For example, in Section 4, we show how easily an appropriate rede�nition
of replacement functions shows that Hirshleifer�s weakest-link model has a
continuum of Pareto ranked equilibria. A more radical extension of the
replacement function can be used to analyze games in with a generalized
concave CES social composition function. In Section 5, we prove that such
games always have a unique equilibrium. The fact that the weakest link
composition function can be viewed as a limiting case of CES suggests us-
ing the limiting equilibrium to select from the continuum of equilibria un-
der weakest link. We show that this can indeed be done, but it does not
typically select the Pareto dominant equilibrium. A further extension of
replacement functions (to correspondences) allows us to handle non-concave
social composition functions and we illustrate this by discussing games with
convex CES composition functions and Cobb-Douglas preferences in Section
6. When the (negative) elasticity of substitution is close enough to zero,
we o¤er a complete characterization of the set of equilibria. In particular,
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we characterize all possible sets of players active in some equilibrium and
show that, given such a set, the equilibrium is uniquely determined. A �nal
extension (to �upper� replacement functions) allows us to characterize the
set of equilibria in best-shot games and to show that Pareto-improving and
coordination-resolving transfers may be available in such games. Finally, we
show that when the elasticity of substitution is negative and close enough to
zero in the better-shot game, the set of equilibria coincides with that in the
best-shot game.

2 The Canonical Model

We generally follow BBV�s notation and assumptions. Their model has four
elements:

1. Individual Preferences Player i , i = 1; :::; n, has preferences repre-
sented by the utility function ui (xi; G), where xi � 0 is the quantity of
a private good and G the total quantity of a pure public good. BBV do
not explicitly impose much structure directly on preferences. In par-
ticular, they assume that both goods are desirable and strictly normal.
For convenience, we shall assume, without explicit statement, that ui is
continuously di¤erentiable. Then, binormality implies that marginal
rates of substitution are is strictly decreasing in G and non-decreasing
in gi. Note that increasing, strictly binormal preferences preferences
are also strictly convex.

2. Individual Budget Constraints Player i�s budget constraint requires
that

xi + gi = wi

where gi = 0 is her contribution to a pure public good, or her gift, and
wi is her exogenous income.

3. The Social Composition Function The total public good provision is
the unweighted sum of individual gifts1:

G =

nX
i=1

gi:

4. The Behavioral Assumption The game is a static, or simultaneous,
noncooperative game in which the strategic choice variables are the
individual gifts, (g1; g2; :::; gn).

1The term �social composition function�was suggested by Hirshleifer [7].
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BBV demonstrate the existence of a unique Nash equilibrium in pure
strategies. Existence is established by appealing to Brouwer�s �xed point
theorem, and uniqueness by an argument tailored to the public good model.
Although there is no doubting its formal correctness, their uniqueness argu-
ment has not struck all readers as intuitively transparent2.
Their comparative static analysis proceeds by direct examination of the

budget set, and establishes the well-known neutrality result associated with
income redistributions amongst contributors, as well as the limits on redis-
tributions that maintain neutrality.

3 An Alternative Approach: The Replace-
ment Function

Cornes and Hartley [5] formally demonstrate the existence, and explore the
properties, of the replacement function ri of Player i, which expresses the
player�s best response as a function, not of the sum of best responses of all
other players, but of the total level of public good G. That is, gi = ri (G) if
and only if the strategy choice of Player i is gi in all Nash equilibria in which
aggregate public good provision is G. (This includes the player�s own choice
amongst the arguments of the function.) They use replacement functions
to provide simple analyses of existence, uniqueness and comparative static
properties of equilibrium in simple public good models.
We now brie�y sketch a derivation of replacement functions and their

properties from �rst principles. This proves a useful baseline for subsequent
discussions.
Denote player i�s marginal rates of substitution3 by MRSi =

@Ui
@G
=@Ui
@xi
.

Then, taking gi and G as arguments, her best response satis�es precisely one
of the following conditions:

MRSi (bgi; G) = 1 and 0 � bgi � wi,

MRSi (bgi; G) > 1 and bgi = wi,

MRSi (bgi; G) < 1 and bgi = 0.
We �rst establish that there is at most a single best reply by player i,bgi, consistent with a given value of G. To see this, �x G. An increase in gi
2Indeed, in [3] they tighten up their original uniqueness argument in response to con-

cerns voiced by Fraser [6].
3Note that our de�nition of MRSi presupposes di¤erentiability of ui (:). This assump-

tion can be dispensed with in much of what follows, and replaced with statements about
the support of ui (:).
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Figure 1:

implies a reduction in xi which, because of normality, implies a reduction in
MRSi. Hence MRSi (gi; G) is strictly decreasing in gi and there is a uniquebgi satisfying one of the three conditions above.
Now consider an increase in G. For any given value of gi, an increase

in G implies, again through normality, a lower value of MRSi. Hence, an
increase in G shifts the graph of MRSi against gi downwards. This implies
that, if initially wi > bgi > 0, then bgi decreases in response to the increase in
G.
Figure 1 graphs the replacement function whose existence and monotonic-

ity have been established. It also shows several further properties that we
have not explicitly discussed.
Cornes and Hartley [5] treat these matters more fully. For present pur-

poses, the following observations are su¢ cient:

Proposition 3.1 In the canonical public good model, player i has a replace-
ment function ri (G) with the following properties:

1. There exists a �nite value, Gi, at which ri
�
Gi
�
= Gi.

2. ri (G) is de�ned for all G = Gi.

3. ri (G) is continuous.
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4. ri (G) is everywhere non-increasing in G, and is strictly decreasing
wherever it is strictly positive.

Here, Gi is the level of the public good that Player i would prefer, if
that player were the sole contributor. Replacement functions can be used
to study equilibria via the following characterization, whose proof is trivial.

Characterization of a Nash equilibrium A strategy pro�le bg is a Nash
equilibrium if and only if

bgj = rj

� bG� for j = 1; : : : ; n,
where bG =Pn

j=1 bgj.
Note that bG is an equilibrium level of the public good if and only if it is

a �xed point of the aggregate replacement function R (G) =
Pn

j=1 rj (G). It
follows that, if R has a unique �xed point, the game has a unique equilibrium.
This will happen if R is continuous, strictly decreasing where positive and
has a graph that crosses the 45� line. Exactly these properties follow from
Proposition 3.1 which establishes the following result.

Theorem 3.1 In the canonical model, there exists a unique Nash equilibrium
in pure strategies.

Not only do existence and uniqueness follow directly from simple geo-
metric considerations. So, too, do other properties of equilibrium, including
comparative static responses. We draw attention to two such results. Knowl-
edge of the aggregate G uniquely determines the choice of private good con-
sumption of a positive contributor - this is determined as the point on the
income expansion path corresponding to the given value of G. The following
theorem follows immediately:

Theorem 3.2 Let players i and j be positive contributors at equilibrium in
the canonical model. Suppose further that they have identical preferences.
Then their equilibrium consumption bundles and utility levels are identical,
even if their initial incomes di¤er.

The second property is that of neutrality. At a given value of G, a change
in a contributors�s income brings about an equal change in her level of con-
tribution, as long as she remains at an interior solution:

bgi = wi � bxi (G)
5



=) �bgi = �wi:
It follows immediately that a transfer between two players who make positive
contributions both before and after the transfer leaves the equilibrium allo-
cation una¤ected. The upward shift in one replacement function precisely
cancels out the downward shift in the other, leaving the graph of the ag-
gregate replacement function una¤ected in the neighborhood of equilibrium.
This gives the neutrality property:

Theorem 3.3 In the canonical model, a pure redistribution of income among
a set of positive contributors that leaves that set unchanged has no e¤ect on
the equilibrium allocation.

Before our extension of the model in the following section, we introduce
an alternative function, and an alternative way of characterizing a Nash
equilibrium. This proves more convenient than the replacement function in
certain settings. Dividing both sides by G, the equilibrium characterization
becomes: bG is an equilibrium level of the public good if and only if

S
� bG� = nX

j=1

sj

� bG� = 1,
where si (G) = ri (G) =G is the share function of Player i and S (G) is the ag-

gregate share function. The equilibrium strategy of Player i is bgi = bGsi � bG�.
The advantage of using share functions is that a decreasing aggregate

share function is su¢ cient for uniqueness and, although a decreasing ag-
gregate replacement function entails this property, it is possible for share
functions to be decreasing even where replacement functions are increasing
or constant.

4 Weakest-link Public Goods

The approach of the previous section can be adapted to Hirshleifer�s weakest-
link and best-shot public good games. In this section, we discuss the weakest
link social composition function (SCF):

G = min
j=1;:::;n

gj,

deferring treatment of the best-shot case to Section 7. We approach equi-
libria through the replacement function ri of Player i, where ri (G) is the
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unique strategy of the player in all equilibria in which aggregate level of the
public good is G.
Let Gi denote the preferred level of the public good of Player i as sole

contributor and G�i = minj 6=i gj. For all contribution levels such that G�i �
Gi, Player i will want to match the smallest of the other contributions, since
her preferences are convex. In this event, her best response is bgi = G�i
and the total quantity of the public good is G = min fbgi; G�ig = bgi = G�i.
However, if G�i > Gi , Player i will only want to contribute up to the level
Gi, and no further. His contribution then determines the value of the weakest
link. In this event, G = min fbgi; G�ig = Gi. It follows that

(ri (G) ; G) = (G�i; G�i) if 0 � G�i � Gi

and
(ri (G) ; G) =

�
Gi; Gi

�
if G�i > Gi.

Proposition 4.1 If Player i has convex increasing preferences, her replace-
ment function has domain

�
0; Gi

�
and satis�es ri (G) = G in this domain.

Nash equilibrium levels of the public good are still �xed points of the
aggregate replacement function R, provided the de�nition of R is modi�ed
to R (G) = minj=1;:::;n rj (G). The domain of R is the intersection of the
domains of individual replacement functions, so

R (G) = G for 0 � G � min
j=1;:::;n

Gi.

We may conclude that any non-negative level of the public good not exceeding
any individually preferred level is an equilibrium.

Theorem 4.1 If all players have convex, increasing preferences, bg is an
equilibrium strategy pro�le if and only if bgj = bg for all j for some bg satisfying
0 � bg � minj=1;:::;nGi.
Thus, there is a continuum of Pareto ranked equilibria. Introspection has

suggested to students of this model that the salient equilibrium is precisely
the value bg = minj=1;:::;nGi, which Pareto-dominates all the others. Experi-
mental evidence has not o¤ered unquali�ed support to Pareto dominance as
a selection criterion4.
Vicary and Sandler [16], [13] and [17] explore weakest-link games in which

players are able to make income transfers.

4In Section 5.4, we will investigate explictly the limiting properties of the model as
� �! �1.
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5 More General Concave Social Composition
Functions

5.1 Properties of the social composition function

In this and the next sections, we revisit the extension of the canonical model
suggested by Cornes (1993) focussing on CES social composition functions.
Indeed, in this section, we analyze a generalization of this SCF, which takes
the following form:

G =

 
nX
j=1

�jg
�j
j

!1=�
, (1)

where �1; : : : ; �n > 0. In this section, we use share functions to show that,
under parameter restrictions implying that the SCF is concave, the voluntary
provision game has a unique equilibrium. In the next section we analyze
convex CES SCFs, where it is necessary to extend the concepts of replacement
and share functions to correspondences.
Throughout this section we consider two distinct parameter regimes that

imply a concave social composition function.

Parameter Set 1 We have

0 < �i � � � 1 and for i = 1; : : : ; n and max
j=1;:::;n

�j < 1. (2)

The left-hand inequality excludes � = 0. Of course, if �i = � for all i
and � �! 0, the function (1) approaches Cobb-Douglas (with parameters
�i=
Pn

j=1 �j): We do not explicitly study this case, but the principal quali-
tative conclusions (existence and uniqueness of an equilibrium) are the same
as those under Parameter Set 1.

Parameter Set 2 We have

� � �i < 0 for i = 1; : : : ; n.

Since all �i < 0 in Parameter Set 2, we cannot use (1) to calculate G
when some gi = 0; in this case we simply set G = 0, to ensure continuity.
Under either parameter set, G is a strictly increasing function of each

gi. Both parameter sets obviously include a CES SCF as a special case.
However, Parameter Set 1 also includes, for example, a sum of constant
elasticity production functions:

Pn
j=1 �jg

�j
j . We will show that, under both
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parameter sets, a unique equilibrium exists. However, the two sets imply
interestingly contrasting comparative static responses.
In our analysis, it will prove convenient to use the facts that

@G

@gi
=
�i�ig

�i�1
i

�G��1
(3)

and, when (3) holds,

@2G

@g2i
= ��i�

2
i

�

g
�i�2
i

G2��1

��
1

�i
� 1
�
G� �

�
1

�
� 1
�
�ig

�i
i

�
,

using (3) to obtain the second line. We can use the inequalityG� � �ig
�i
i � 0

(a consequence of g�i � 0) to deduce the following lemma:

Lemma 5.1 Marginal SCF: @G=@gi is non-increasing in gi and strictly de-
creasing unless we have Parameter Set 1 with �i = � and g�i = 0.

5.2 Preferences

We maintain the assumptions of increasing preferences and binormality as in
the canonical model of BBV. We �nd it convenient to write player i�s payo¤
function of strategy pro�le g = (g1; : : : ; gn) as �i (g) = ui (wi � gi; G).

5.3 Best responses, replacement and share functions

In this subsection, we show that under binormality and Parameter Sets 1 or
2, replacement functions and therefore share functions exist. We also show
that share functions are monotonic in G.

5.3.1 Characterizing best responses

The marginal payo¤ of Player i (holding g�i �xed) can be written

@ui
@xi

@G

@gi

(
MRSi (wi � gi; G)�

�
@G

@gi

��1)
.

Both terms outside the braces are positive (by binormality and (3)), so
@�i=@gi has the same sign as the term in braces. Furthermore, an increase
in gi leads to an increase in G and therefore a decrease in wi � gi and, by
binormality, a strict decrease in MRSi. Lemma 5.1 shows that an increase
in gi cannot cause an increase in @G=@gi and therefore � (@G=@gi)�1 can-
not decrease. Together, these observations show that the term in braces is
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strictly decreasing in gi. Hence �i is a concave function of gi, and the �rst
order conditions are necessary and su¢ cient for best responses.
Using (3), these conditions can be written: gi 2 (0; wi] and

MRSi (G;wi � gi) �
�G��1

�i�i
g
1��i
i with equality if gi < wi. (4)

Note that (@G=@gi)
�1 = 0 at gi = 0, so this boundary value can never be a

best response. For any g�i, de�ne

G�i =

0@X
j 6=i�i

�jg
�j
j

1A1=�

and observe that best responses to g�i only depend on G�i. We shall write
bi (G�i) for the best response to g�i and recall that bi is a continuous function.
In the case of Parameter Set 1, it is possible to have G�i = 0, in which

case BRi (0) maximizes ui
�
�
1=�
i g

�i=�
i ; wi � gi

�
and therefore satis�es (4) with

G = (�ig
�i
i )

1=�. We put Gi = (�i [BRi (0)]
�i)

1=� and note that this is the level
of the public good Player i would provide if she were the sole contributor.
Under Parameter Set 2, taking the limit of gj �!1 for all j 6= i in (1) gives
G = (�ig

�i
i )

1=� again and Gi is still the preferred level of the public good of
Player i.

5.3.2 Characterizing replacement functions

It follows from Assumption A that, if we hold G �xed, MRSi (G;wi � gi)
is non-increasing in gi. Furthermore, the right hand side of (4) is strictly
increasing in gi and has zero slope at gi = 0 (since �i < 1). We can deduce
that, for all G > 0, (4) has a unique solution. We record this result below
and illustrate it in Figure 2.

Lemma 5.2 Under increasing, binormal preferences and Parameter Set 1 or
2, there is a unique gi 2 (0; wi] satisfying (4). Furthermore, the feasibility
condition �ig

�i
i � G� is satis�ed for G � Gi under Parameter Set 1 and for

G � Gi under Parameter Set 2.

The proof of the second assertion is a little intricate and given in the
appendix
We shall write ri (G) for the unique gi satisfying (4), where ri is the

replacement function of Player i. The previous paragraph shows that ri is
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gigi wi

LHS of (4)

RHS of (4)

MRS (G, w g )i i i −

O

giwi

LHS of (4)

RHS of (4)

MRS (G, w g )i i i −

O
(b) Preferred g = wi i

(a) Preferred g < wi i

Figure 2:

de�ned for G � Gi under Parameter Set 1 and for G < Gi under Parameter
Set 2. The corresponding share function si is de�ned as

si (G) =
�i [ri (G)]

�i

G�
(5)

for all G > 0 and we note that
Pn

j=1 sj (G) = 1 is a necessary and su¢ -
cient condition for positive G to be a Nash equilibrium level of public good
provision.
It is convenient, when studying the share function, to rewrite the interior

�rst-order condition (4) with �i = si (G) as

MRSi

�
G;wi � �

�1=�i
i �

1=�i
i G�=�i

�
=
��

�1=�i
i �

(1��i)=�i
i

�i
G(�=�i)�1. (6)

Holding �i �xed, an increase in G leads to a strict decrease in MRSi and
no decrease G(�=�i)�1 [under the assumptions of either parameter set.] Thus,
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the graph of the left-hand side of (6) shifts up, whereas the right-hand side
shifts down or is unchanged. This is illustrated in Figure 3 and shows that
�
1=�i
i decreases. Under Parameter Set 1 this means that �i decreases, whereas,

σi
1/ρis (G )i '1/ρi s (G)i

1/ρi

LHS of (6): G

LHS of (6): G > G'

Figure 3:

under Parameter Set 2, �i increases.

Proposition 5.1 Under increasing, binormal preferences, the share function
si (G) of Player i is continuous and strictly positive.
Under Parameter Set 1, si has domain

�
Gi;1

�
, satis�es si

�
Gi
�
= 1, is

strictly decreasing and has the limit si (G) �! 0 as G �!1.
Under Parameter Set 2, si has domain

�
0; Gi

�
, is strictly increasing and

has the limits si (G) �! 0 as G �! 0 and si (G) �! 1 as G �! Gi .

Continuity of si follows from continuity of bothMRSi and the right-hand
side of (6). The limit si (G) �! 0 under Parameter Set 1 is a consequence
of the budget constraint: ri (G) � wi for all G. The two possible forms for
the share function are illustrated in Figure 4.
We can deduce from the proposition that, under Parameter Set 1, the

aggregate share function
Pn

j=1 sj (G) is at least one if G = maxj=1;:::;n
�
Gi
	
,

is continuous and strictly decreasing and approaches zero as G �! 1. It
follows that the game has a unique equilibrium. Under Parameter Set 2,
the aggregate share function is continuous and increases strictly from a value
less that unity to a value greater than unity. Again, the game has a unique
equilibrium. The following theorem records these results.
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1

Gi

(a) Parameter Set 1

1

Gi

(b) Parameter Set 2

si

si

O

G

G

Figure 4:

Theorem 5.1 If all players have increasing, binormal preferences and the
SCF (1) satis�es Parameter Set 1 or 2, there is a unique equilibrium.

5.4 Cobb-Douglas preferences and the weakest-link limit

In general it is not possible to derive analytical forms for replacement or share
functions. This is true even for Cobb-Douglas preferences and a CES SCF.
However, in this case we can �nd an explicit expression for the inverse of
the replacement function. This enables us to examine the properties of the
replacement function by studying the graph of this expression and re�ecting
it in the 45� line. In this subsection, we illustrate this procedure and apply
it to the study of the limit � �! �1, and comparison of the weaker link
and weakest link games. We shall assume that Player i has utility function

ui (xi; G) = x�ii G

13



where �i > 0 for all i and that the SCF takes the CES form:

G =

 
nX
j=1

�jg
�
j

!1=�
,

for some � < 1.
Since

MRSi (G;wi � gi) =
wi � gi
�iG

,

the �rst-order conditions (4) cannot be satis�ed at gi = wi. Hence, all
best responses are interior and the replacement function satis�es ri (G) = gi,
where gi is the unique solution of

G =  (gi)
def
=

�
�i
�i

�
wig

��1
i � g�i

��1=�
(7)

and G� � �ig
��1
i . That is, the graph of the replacement function is that

portion of the re�ection of the graph of  satisfying G� � �ig
��1
i . This is

illustrated in Figure 5.
A CES SCF with all �i = 1 approaches the weakest-link SCF as � �!

�1. Indeed, the CES SCF replacement function approaches the weakest
link replacement function (pointwise) as the elasticity of substitution in the
same limit. This follows by rewriting expression (7) as

G = wi

�
�i
�i

�1=��
1� gi

wi

�1=��
gi
wi

�1�1=�
and, noting that gi=wi 2 (0; 1), which implies that G �! gi as � �! �1.
One might hope that the limit (if it exists) of the unique equilibrium of the
weaker link game unambiguously selects the Pareto dominant pro�le from
the continuum of equilibria found in the weakest link case. This need not
be the case, however, as the following example illustrates.
Suppose there are n � 2 players and �i = � > 0; wi = w > 0; �i = 1

for all i. We shall write r for the (common) replacement function of all
players. Since the equilibrium is unique, it must be symmetric. This means
that the equilibrium strategy pro�le is bg = (bg; : : : ; bg), where bg = r

� bG� andbG� = nbg�. Substituting in (7), gives
bg = w

�n+ 1

and bG = n1=�
w

�n+ 1
�! w

�n+ 1
as � �! �1.
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(a)

(b)

ψ

ri

O

gi

G

βi i  w
α + 1

1/ρi

  wi

α + 1

  wi

α + 1

βi i  w
α + 1

1/ρi

Graph of  (Parameter sets 1 and 2)ψ

Replacement functions

Figure 5:

Recall that Gi = gi, where gi maximizes ui (gi; wi � gi). In the example,
this gives

Gi =
w

�+ 1
.

The Pareto dominant equilibrium of the weakest link game has gi = Gi for
all i and, since n � 2, this is not selected in the limit.

6 Convex CES SCF

6.1 Best responses and the replacement correspondence

When the SCF is not concave, even qualitative results are more sensitive to
the speci�c form of the SCF and preferences. However, the approach of the
preceding sections may still be adapted to handle such cases, provided we
extend replacement and share functions to correspondences. To justify this
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claim, we focus on Cobb-Douglas preferences:

ui (xi; G) = x�ii G,

with �i > 0 for all i and CES SCF

G =

 
nX
j=1

�jg
�
j

!1=�
.

with � > 1. In such a game, multiple equilibria are possible. However,
provided � is large enough, we can characterize sets of positive contributors
and, given such an equilibrium set, show that the equilibrium is unique. For
even larger �, all equilibrium sets consist of a single player. In the next
section, we will show that, for such �, the equilibria coincide with those for
the best-shot SCF.
Our approach uses a set-valued extension of replacement and share func-

tions and we start by examining best responses. The payo¤ function of
Player i is

�i (g) = (wi � gi)
�i G,

where g = (g1; : : : ; gn) and the strategy set is [0; wi]. Writing

G�i =

 X
j 6=i

�jg
�
j

!1=�
,

it is clear that the best response to g�i actually depends only on G�i and we
write Bi (G�i) for the set of best responses:

Bi (G�i) = arg max
0�gi�wi

n
(wi � gi)

�i
�
�ig

�
i +G��i

�1=�o
.

Intuitively, we might expect that, if the contributions of the other players
are su¢ ciently large, a given player will free ride by contributing nothing.
Indeed, we shall show that there is a critical value of G�i above which zero
is the unique best response for Player i. Below this value, there is a single
interior best response, which is a stationary point of �i: At the critical value,
both of the two strategies become alternative best responses.

Lemma 6.1 The following equations in (gi; G�i):

�iwig
��1
i � �i (1 + �i) g

�
i = �iG

�
�i, (8)

(wi � gi)
�i
�
�ig

�
i +G��i

�1=�
= w�ii G�i (9)
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have a unique positive solution g�i > 0; G��i > 0. The best response corre-
spondence satis�es

Bi (G�i) =

8<:
fbi (G�i)g if G�i < G��i,
f0; bi (G�i)g if G�i = G��i,
f0g if G�i > G��i,

where bi (G�i) is the unique gi 2 (0; wi) satisfying

�i
�
�ig

�
i +G��i

�
= (wi � gi) �ig

��1
i , (10)

w�ii G�i � (wi � gi)
�i
�
�ig

�
i +G��i

�1=�
. (11)

The intuition behind this result is displayed in Figure 6. As a function of

gi

gi

gi

πi

πi

πi

mi

mi

mi

O

O

O

m Gi i
α

−

m Gi i
α

−

m Gi i
α

−

Figure 6:

own strategy, each player�s payo¤ �i can take one of three forms. For large
enough G�i, the payo¤ decreases strictly as gi goes from 0 to wi, (see �rst
panel). For smaller G�i, as gi increases from 0 to wi, the payo¤ initially
decreases, then increases to a local maximum and �nally decreases to zero
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at gi = wi. The local maximum must be a stationary point: it satis�es (8).
At G�i = G��i, the value of the payo¤ at the local maximum is the same
as that at gi = 0. Equation (9) states this equality. For G�i < G��i, the
payo¤ at the local maximum exceeds that at gi = 0 and the local maximum
is therefore the global maximum (see second panel), whereas for G�i > G��i
the payo¤ is higher at gi = 0, which is the maximum in this case (see third
panel.) Formal proof of these assertions may be found in the Appendix.
We de�ne the replacement correspondence of Player i to be Ri (G), where

gi 2 Ri (G) if and only if gi is a best response to G�i, where

G��i = G� � �ig
�
i . (12)

Since G = G�i if gi = 0, the characterization of the replacement function
becomes a corollary of Lemma 6.1.

Proposition 6.1 We have gi 2 Ri (G) if and only if (i) gi = 0 and G � G��i
or (ii) gi > 0 and

�iG
� = �i (wi � gi) g

��1
i , (13)

�
1=�
i gi � G � �

1=�
i w�ii gi [w

�i�
i � (wi � gi)

�i�]
�1=� . (14)

Equation (13) and the right-hand inequality in (14) are simply restate-
ments of (10) and (11) using (12). The left-hand inequality is equivalent to
the requirement G�i � 0.

6.2 Properties of the replacement and share correspon-
dences

In this subsection, we explore the properties ofRi, noting that, if gi 2 Ri (G)
and gi > 0, then (gi; G) must satisfy (13). Proposition 6.1 allows us to
view the replacement correspondence as the re�ection in the 45� line of that
portion of the graph of the function

G = (�i=�i)
1=� �wig��1i � g�i

�1=�
, (15)

which also satis�es (14). Note that the right hand side of (15) vanishes
at gi = 0 and gi = wi and has a unique maximum at gi = (1� 1=�)wi. It
is clear from Lemma 6.1, that the boundary line of the left-hand inequality
in (14), G = �

1=�
i gi, crosses (15) at

�
gi; Gi

�
, where gi = wi= (1 + �i) and

Gi = �
1=�
i gi, whereas the boundary curve of the right-hand inequality in

(14) crosses (15) to the left of this point, at (gi; G) = (g�i ; G
�), where G�i =�

�ig
��
i +G���i

�1=�
.
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We shall initially analyze the case � � 1 + (1=�i), for then both
�
gi; Gi

�
and (g�i ; G

�
i ) lie to the left of (or at) the maximum of the function (15). This

puts both points on the increasing portion of this function and implies that
the positive portion of the replacement correspondence runs from Gi to G�i
and is increasing in this interval. This is the case illustrated in Figure 7
The share correspondence is de�ned as

Si (G) =
�
�ig

�

G�
: g 2 Ri (G)

�
and simple de�nition chasing veri�es that bG is an equilibrium level of the
public good if and only if there is b�i 2 Si � bG� for all i such thatPn

j=1 b�j = 1.
The associated equilibrium strategy pro�le is bg, where bgi = (b�i=�i)1=� bG.
Note that, if �i 2 Si (G) satis�es �i > 0, equation (13) can be written

�iG
� = �i

�
wi � �

1=�
i �

�1=�
i G

��
�
1=�
i �

�1=�
i G

���1
.

This can be solved for G as a function of �i:

G =
�
1=�
i wi�i

(��1)=�

�i + �i
(16)

and this function has derivative

�
1=�
i wi�i

�1=� [�i (�� 1)� �i]

� (�i + �i)
2 .

In the case that � � 1 + 1=�i, this derivative is positive, since we also have
�i < 1. Since the function on the right-hand side of (16) is continuous
and de�ned on a compact set, its inverse is also continuous. If we de�ne
��i = �ig

��
i =G

��
i , the following proposition summarizes these observations and

is illustrated in Figure 8.

Proposition 6.2 If � � 1+1=�i, the graph of Si is the disjoint union of two
sets:

�
(G; 0) : G � G��i

	
and

�
(G; si (G)) : G

�
i � G � Gi

	
. Furthermore, si

is continuous, strictly increasing and satis�es si (G�i ) = ��i > 0 and si
�
Gi
�
=

1.

Whenever the graph of a correspondence with domain a subset of the real
numbers is the disjoint union of a �nite family of connected sets, we refer
to each of the correspondences whose graphs are these sets as components.
When a component is singleton-valued, we also refer to the function de�ned
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by this correspondence as the component. The proposition says that Si has
two components: one is de�ned for G � G��i and is identically zero; the other
is a continuous, strictly increasing function si with domain

�
G�i ; Gi

�
.

In discussion of equilibria, it will prove convenient to refer to si as the
positive component of Si. Note that, if �i 2 si (G) satis�es �i > 0, then
�i � ��i and G � G�i . It follows that gi � (��i )

1=� �
�1=�
i G�i = g�i .

Corollary 6.1 If � � 1 + 1=�i and player i makes a positive contribution,
that contribution is at least g�i .

When � < 1 + 1=�i, the portion of the graph of (15) satisfying (14) need
not be increasing. Indeed, it may include increasing and decreasing sections
or even have no increasing section5. Re�ection in the 45� line shows that the
positive component of Si may not be single valued, or it may be a decreasing
function. Nevertheless, if g 2 Ri (G) satis�es g > 0, then g � g�i . Hence,
Corollary 6.1 holds for all � > 1. It can also be shown that g�i �! 0 as
� �! 1. This shows that the disconnected nature of the replacement and
share correspondences disappears as � �! 1. Furthermore, it remains true

5In the latter case, the positive component would be strictly decreasing. It can be
shown that this cannot happen if �i < 1.
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that gi 2 Ri

�
Gi
�
and that Ri (and Si) has two components. We must

modify Proposition 6.2 as follows.

Proposition 6.3 If � < 1 + 1=�i, the graph of Si is the (disjoint) union of
two sets:

�
(G; 0) : G � G��i

	
and a connected set S+i which satis�es (G

�
i ; �

�
i ) 2

S+i ,
�
Gi; 1

�
2 S+i and �i > 0 for all (�i; G) 2 S+i .

6.3 Equilibria

In this subsection, we characterize equilibria, starting with the case where
� � 1 + 1=�i for all i. If we let � = minj=1;:::;n �j, this is equivalent to
� � 1+ 1=�. First note that the domain of the replacement correspondence
of Player i is

�
G��i;1

�
. Hence, any equilibrium public good quantity must

satisfy G � G = maxj=1;:::;n
�
G��j

	
. For Player i to be active (that is make

a positive contribution), the equilibrium public good quantity must satisfy
G�i � G � Gi. If there is some equilibrium in which a player is active, we call
that player potentially active. It follows from Proposition 6.2 that Player i
is potentially active if and only if Gi � G. If this inequality is not satis�ed,
we call Player i always inactive. For each potentially active player, there is
an equilibrium in which that player is the sole contributor, but there may
also be equilibria with several contributors.

Theorem 6.1 Suppose that � � 1 + 1=� and J is a non-empty set of po-
tentially active players. There is a unique equilibrium with J as the set of
active players if and only if

G� = max
j2J

�
G�j
	
� min

j2J

�
Gj
	
, (17)X

j2J
sj (G

�) � 1. (18)

Furthermore, all equilibria are of this form.

The result is a corollary of Proposition 6.2. The �rst inequality is a
consequence of the requirement that the equilibrium value G must lie in the
domain of sj and therefore satis�es G�j � G � Gj for all j 2 J . The
proposition also implies that

P
j2J sj (G) is a continuous, strictly increasing

function satisfying X
j2J

sj

�
min
k2J

�
Gk
	�

� sk0
�
Gk0
�
= 1,
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where k0 2 argmink2J Gk. Therefore
P

j2J sj (G) takes the value 1 if and
only if (18) holds and, furthermore, does so for a single value of G. We refer
to any set J satisfying (17) and (18) as an equilibrium set and write bG (J)
for the corresponding equilibrium value of G.
The share correspondences also determine the strategies played by the

active players in an equilibrium set. Speci�cally, suppose j is a player in
equilibrium set J and Player j plays bgj in equilibrium. Then,

sj

� bG (J)� = �jbg�j bG (J)�� ,
which implies that

bgj = hsj � bG (J)� =�ji1=� bG (J) .
Of course, bgk = 0 for all k =2 J .
It is an immediate corollary of Theorem 6.1 that proper subsets of equi-

librium sets are themselves equilibrium sets.

Corollary 6.2 Suppose that � � 1 + 1=�, that J is an equilibrium set that
and non-empty K satis�es K � J (strict inclusion). If � � 1 + 1=�, then
K is an equilibrium set and bG (K) > bG (J).
Note that under the supposition of the corollary, if J and K are distinct

equilibrium sets satisfying K � J , all players not in K prefer this smaller
equilibrium (as they free ride on a larger quantity of the public good.)
In a symmetric game, in which all players have the same preferences, we

can be more precise in characterizing equilibrium sets. In such a game,
the inequality (17) is super�uous and the inequality (18) is equivalent to
jJ j�� � 1, where jJ j denotes the cardinality of J and �� = ��i for all i.

Corollary 6.3 If all players have the same preferences, a set of players is
an equilibrium set if and only if it is non-empty and has at most b1=��c
members, where bxc denotes the integer part of x.

When � < 1 + 1=�i for at least one i, we have seen that the positive
component of the share correspondence need no longer be strictly increasing
or even a function. This means that it is no longer possible to characterize
equilibria as fully. The best that can be done is to give a su¢ cient condition
related to Theorem 6.1. We need to extend our previous de�nition by
saying that Player i is potentially active if min

�
Gi; G

�
i

	
� G. (Recall that,

if � � 1+ 1=�i , then G�i � Gi, so this is just a generalization of our original
de�nition.) The following result follows directly from Proposition 6.3 and
continuity.
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Proposition 6.4 If J is a non-empty set of potentially active players such
that

P
j2J �j

� � 1, there exists an equilibrium with J as the set of active
players.

It follows that, for each potentially active player, there is an equilibrium
with that player as the sole contributor. However, we cannot conclude that
subsets of equilibrium sets are also equilibrium sets, since the condition in
the proposition is su¢ cient but not necessary.

7 Best-shot Public Goods

7.1 Equilibria

The best-shot SCF is
G = max

j=1;:::;n
gj.

With such an SCF, replacement correspondences need not be well-de�ned.
It is possible to have equilibrium strategy pro�les bg 6= bg0 satisfying Pj bgi =P

j bg0i. For example, suppose Gi denotes the preferred level of the public
good of Player i as sole contributor and G�i = maxj 6=i gj. Then gi = Gi
is the best response to G�i = 0, whereas gi = 0 is the best response to
G�i = Gi and in both cases G = max fgi; G�ig = Gi. This means that
there is no strategy that is a best response to all and every G�i satisfying
max fgi; G�ig = G. We can circumvent this di¢ culty by considering the
upper replacement correspondence Ri by putting gi 2 Ri (G) if and only if
there is some G�i such that gi is a best response to G�i and max fgi; G�ig =
G. It is straightforward to establish that, if bg is a Nash equilibrium, then

bgi 2 Ri

� bG� , where bG = nX
j=1

bgj: (19)

In contrast to the case of replacement correspondences, if (19) holds, bg need
not be an equilibrium. Thus, the solutions of (19) provide a superset of the
Nash equilibria and it is necessary to test each strategy pro�le in the superset
to eliminate spurious members. In the particular case analyzed here, it turns
out that there are no spurious members; (19) is necessary and su¢ cient for
equilibrium6.
To determine Ri, let G��i denote the level of G�i at which Player i is

indi¤erent between not contributing and being the sole contributor:

�i
�
0; G��i

�
= �i

�
Gi; Gi

�
.

6This need not be true for general upper replacement correspondences.
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If G�i < G��i, Player i will prefer to contribute Gi and G = Gi. However, if
G�i > G��i, Player i is better o¤ being a free rider and contributing nothing.
In this case, G = G�i. If G�i = G��i, the player is indi¤erent between the
two strategies and G = G�i = G��i. This is clear from Figure 9. The form of
the upper replacement correspondence is evident, described in the following
proposition.

Proposition 7.1 If Player i has convex, increasing preferences, her upper
replacement function Ri has domain

�
G��i;1

�
and satis�es

Ri (G) =

�
f0g if G 6= Gi,�
0; Gi

	
if G = Gi,

for all G � G��i.

This is graphed in Figure 9.

gi

O Gi
* Gi

G−i

Figure 9:

To �nd equilibria, we look for solutions of (19) and observe �rst that bG
must lie in the intersection of the domains of all Ri. From the proposition,
we must have, bG � maxj G��j. The proposition also implies that Ri (G) = G

for exactly one i. This implies G = Gi. If we label every player i for which
Gi � maxj G��j as potentially active, every solution of (19) has bgi = Gi and
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bgj = 0 for j 6= i each potentially active player. It is trivial to verify that each
such strategy pro�le is indeed a Nash equilibrium, so we have characterized
the set of Nash equilibria.

Theorem 7.1 If all players have convex, increasing preferences there is a
Nash equilibria are in 1� 1 correspondence with the set of potentially active
players. In each such equilibrium the potentially active player contributes
her preferred level of the public good and no other player contributes.

Note that for best-shot games the theorem implies that (19) is necessary
and su¢ cient for an equilibrium and therefore Ri acts just like a replacement
function.

7.1.1 An example

To illustrate the approach, consider two players with identical Cobb-Douglas
preferences: ui = xiG and incomes wi for i = 1; 2. Then, Gi = mi=2
and G��i = mi=4. If incomes do not di¤er too much, speci�cally m2 �
2m1 � 4m2, both players are potentially active and there are two equilibria
in each of which one player contributes half their income and the other free
rides. If m2 > 2m1, only Player 2 is potentially active and there is a unique
equilibrium in which only Player 2 contributesm2=2. Similarly, ifm1 > 2m2,
Player 1 is sole contributor. This raises the possibility of Pareto-improving
transfers.
If m1 = m2 = 8, there is an equilibrium bg = (4; 0) for which bG = 4 and

payo¤s are �1 = 16; �2 = 32, as well as an alternative equilibrium with Player
2 as sole contributor. If m1 = 4 and m2 = 12, there is a unique equilibrium:bg = (0; 6), in which bG = 6 and payo¤s are �1 = 24; �2 = 36. It follows that,
if Player 1 o¤ers a transfer of 4 units of income to Player 2, the latter does
better to accept and the former also bene�ts. Such a transfer also resolves
the coordination problem arising from multiple equilibria. It can be shown
further that, if m2 < 2m1 < 4m2, a player anticipating an equilibrium in
which they are sole contributor can �nd a transfer that results in a unique
equilibrium with the other player as contributor in which both players have
strictly greater payo¤s than the anticipated equilibrium. Indeed, in some
simple modi�cations of the two-player game with two equilibria, there will
be transfers such that the post-transfer game has a unique equilibrium which
strictly Pareto dominates both the equilibria in the original game. Clearly,
the topic of transfers in best-shot games deserves further investigation.
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7.2 Best-shot and better-shot games

In this subsection, we return to the better-shot game of Section 6 and consider
what happens as � �!1. In this limit, the CES SCF approaches the best-
shot SCF. The next result shows that the CES replacement correspondence
approaches that of the best-shot SCF and does so monotonically. First,
consider Player i and note that (G�i ; g

�
i ) satis�es (13) as well as equality in

(14). Recall that preferences are Cobb-Douglas, Gi is the level of public
good provision that Player i would provide if she were the sole contributor
and g�i is the minimal contribution that Player i will make in equilibrium.

Lemma 7.1 As � increases, so does g�i and G
�
i �! Gi as � �!1.

This shows that the positive component of the replacement correspon-
dence shrinks to the tangency point of the 45� line and the indi¤erence curve
in the (Gi; gi) plane. Thus Player i�s replacement correspondence approaches
the (upper) replacement correspondence of the best shot game. It follows
that ��i �! 1 as � �! 1. Since si (G) � ��i for G

�
i � G � Gi, the limit of

the left hand side of (18) as � �! 1 exceeds 1 for any J with two or more
members and therefore no such J can be an equilibrium set. All equilibrium
sets must be singletons and are therefore equilibria of the best shot game.

Corollary 7.1 Under Cobb-Douglas preferences and CES SCF, there is a b�
such that, if � > b�, the set of equilibria coincides with that of the best-shot
game.

Thus the best-shot game is more than just an approximation to the better-
shot game. Equilibria of the latter can be analyzed by studying the (simpler)
former game. It follows that the discussion of transfers in the previous
subsection is also applicable to better-shot games.

8 Conclusion

The pure public good provision model of BBV is an outstandingly tractable
model of reciprocal positive externalities. Its usefulness prompts one to
enquire whether, and in what ways, its scope can be extended with mini-
mal sacri�ce of tractability. The present paper has explored extensions that
modify the form of social composition function while retaining the game�s ag-
gregative structure. For reasons of space, we have concentrated on existence
and uniqueness and limited ourselves to a few observations on comparative
statics such as income redistribution. A more complete treatment of these
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issues is a subject for future research. Further extensions can also be en-
visaged that incorporate this aggregative structure �for example, the joint
characteristics model of Cornes and Sandler may be revisited. We have ex-
plored circumstances under which our approach can be exploited to �nesse
what Richard Bellman once called, in another context, the �curse of dimen-
sionality�. The time seems ripe for further consideration of the range of
interpretations and applications on which the model, and our method of
analysis, may shed useful light.
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APPENDIX
In this appendix, we state and prove a lemma which is used in several

other proofs. We then give several proofs displaced from the main text.

Lemma .1 For any i = 1; : : : ; n and � > 1, there is a unique x 2 (0; 1)
satisfying

'i (x; �) = (1 + �i)x+ (1� x)�i� = 1. (20)

Writing ex (�) for this solution, ex (�) is strictly increasing in � and ex (�) �!
(1 + �i)

�1 as � �!1.

Note that x = 0 is always a solution of (20), the lemma is concerned with
positive solutions.
Proof. It is straightforward to check, using simple di¤erentiation where

appropriate, that

� 'i (0) = 1;

� 'i (1) = 1 + �i;

� 'i is strictly decreasing
7 for all small enough x;

� 'i is strictly convex.

This is illustrated in Figure 10. It follows that there is a unique ex (�) 2
(0; 1) such that 'i (ex (�) ; �) = 1 and that 'i (x; �) is strictly increasing in x
in a neighborhood of ex (�). Since 'i (x; �) is strictly decreasing in � for all
x 2 (0; 1), we may deduce that ex (�) increases with �. Since ex (�) < 1 for
all � > 1 there is x 2 (0; 1] such that ex (�) �! x as � �! 1. Taking this
limit in (20) yields (1 + �i)x = 1, completing the proof.

Proof of second assertion in Lemma 5.2. .We start by de�ning

ei (G�i) = ��i [bi (G�i)]�i +G��i
�1=�

and observing that continuity of bi implies continuity of ei. Note also that,
if gi = ri (G) and G��i = G� � �ig

�i
i , then G = ei (G�i) In the case of

Parameter Set 1, suppose that we had a G0 satisfying (4) with 0 < G0 < Gi.
By Lemma 5.2, there is a unique g0i satisfying (4) and this implies a unique
G0�i and ei �G0�i� = G0 < Gi. Now choose any G00�i > Gi and note that G00 =ei �G00�i� � G00�i > Gi. By continuity, there would be a G000�i 2

�
G0�i; G

00
�i
�

7Its derivative approaches ��i (�� 1)m�i�
i < 0 as gi �! 0.
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Figure 10:

such that ei �G000�i� = Gi and G000�i > 0 giving two distinct solutions to (4)
with G = Gi and contradicting Lemma 5.2.
This argument requires some modi�cation with Parameter Set 2. Sup-

pose that G0 > Gi, let G0�i satisfy ei �G0�i� = G0 and note that, as gj �! 0
for some j 6= i, it follows from (1) that G �! 0. This means that we can
choose G00�i such that ei �G00�i� < Gi. We use the fact that, for any " > 0,
there is a G000�i > G00�i and a G

000 within " of Gi such that (4) holds, which
means that ei �G000�i� = G000. By continuity, there is a G0000 2

�
G0�i; G

00
�i
�
such

that ei �G000�i� = G000, giving two distinct solutions to (4) and contradicting
Lemma 5.2.

Proof of Lemma 6.1. The payo¤ �i takes the value w
�i
i G�i at gi = 0

and zero at gi = wi. A little algebraic manipulation shows that stationary
points of �i satisfy (8). Writing �i for the left-hand side of (8) it is straight-
forward to verify that �i (0) = 0 (since � > 1) and �i (wi) = ��i�iw

�
i < 0.

Further, �i has a unique stationary point g
0
i 2 (0; wi) satisfying �i (g0i) > 0.

We conclude that g0i maximizes �i over [0; wi], which means that (8) has
a solution if and only if �iG

�
�i � �i (g

0
i), so this is a necessary and su¢ -

cient condition for stationary points. Thus �i is a strictly decreasing in
[0; wi] for G�i � �i (g

0
i), has an interior local minimum and local maximum
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for 0 < G�i < �i (g
0
i) and just an interior local (and global) maximum for

G�i = 0. It follows that there are two cases.
A. A stationary point is the global maximum if the value of �i at that

point is not exceeded by that at gi = 0; these two conditions are expressed
in (10) and (11).
B. The global maximum is at gi = 0 if either �iG

�
�i � �i (g

0
i), or the

value of �i at all stationary points does not exceed that at gi = 0.
The proof is completed by showing that G��i is well-de�ned and Case A.

holds for G�i � G��i and Case B. for G�i � G��i. This can be achieved by
showing that there is a unique G�i = G��i for which bothA. and B. hold and
appealing to continuity8 together with the fact that Case B. holds for large
enough G�i. Note that both A. and B. hold if and only if marginal payo¤
is zero and the payo¤ equals that at gi = 0; these conditions are equivalent
to (8) and (9).
Raising (9) to the power �, multiplying by �i, substituting for G

�
�i from

(8) and dividing by w�i�+1i gives 'i (gi=wi; �) = 1, where ' is de�ned in
Lemma .1. Choose g�i = wiex (�) and G��i to satisfy

�iG
��
�i = �iwig

���1
i

�
1� (1 + �i)

g�i
wi

�
.

By construction,
�
g�i ; G

�
�i
�
satis�es (8) and (9). Lemma .1 implies that

0 < ex (�) < (1 + �i)�1 and therefore g�i > 0 and G��i > 0.
Proof of Lemma 7.1. In the proof immediately above we showed

that 'i [g
�
i =wi; �] = 1, where ' is de�ned in Lemma .1. Recalling that

gi = wi (1 + �i)
�1, this lemma implies that g�i " Gi as � �!1.
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