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Abstract

We analyse conditions for arbitrage in financial markets in which
asset price vectors change in time as stationary stochastic processes.
The main focus of the study is on the case where these vectors are
independent and identically distributed. In this case, we find condi-
tions (formulated in terms of the given price distribution) that are
necessary and sufficient for the absence of arbitrage opportunities.

1. Introduction. In this note, we examine questions of arbitrage in
financial markets where asset price vectors change in time as stationary
stochastic processes. The behaviour of self-financing trading strategies in
such markets might be at first glance counterintuitive—different from that
suggested by the conventional models where asset prices follow a geometric
random walk. In particular, Evstigneev and Schenk-Hoppé (2002) showed
that fixed-mix (constant proportions) investment strategies in such markets
exhibit exponential growth with probability one, provided that the stationary
price process satisfies some mild non-degeneracy assumptions. An analogous
result in the context of currency markets was obtained by Dempster et al.
(2003).

In connection with the above results, it is of interest to examine the ques-
tion of existence of arbitrage opportunities in stationary markets. Specifi-
cally, if the price vectors are independent and identically distributed, what
conditions guarantee the absence of arbitrage opportunities? Conversely,
under what conditions such opportunities exist? In this paper, we provide
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answers to these questions. The answers are formulated in terms of the given
probability distribution of the asset price vectors.

2. The Model. Let s0, s1, ... be a discrete-time stochastic process whose
value st ∈ S at each time t = 0, 1, ... describes the random ”state of the world”
at this time. We assume that the state space S is measurable (endowed with
a σ-algebra S). Consider a financial market, where K+1 assets k = 0, 1, ..., K
are traded. At each time t = 0, 1, 2, ..., the prices pk

t (s
t), k = 0, ..., K, of the

K+1 assets are random variables depending on the history st = (s0, s1, ..., st)
of the process {st}. We denote by

pt = pt(s
t) = (p0

t (s
t), p1

t (s
t), ..., pK

t (st))

the K + 1-dimensioned vector of these prices. The functions pk
t (s

t) (k =
0, ..., K) are assumed to be strictly positive and measurable with respect to
the product σ-algebra S × ...×S on the space S× ...×S whose elements are
sequences st = (s0, ..., st).

Any vector ht = (h0
t , h

1
t , ..., h

K
t ) represents a portfolio of the K + 1 assets

at time t. A measurable vector function ht (st) =
(
h0

t (st) , ..., hK
t (st)

)
(de-

pending on the present and past states of the world s0, ..., st−1, st) is called a
contingent portfolio. A sequence of contingent portfolios H = (h0, ..., hT ) is
called a trading strategy over the time period 0, 1, ..., T . Those trading strate-
gies H = (h0, ..., hT ) which satisfy 〈pt, ht−1〉 = 〈pt, ht〉 are called self-financing
(we denote by 〈·, ·〉 the scalar product of two vectors of the same finite dimen-
sion). An investor using a self-financing strategy rebalances his/her portfolio
from ht−1 to ht, so that the values of ht−1 and ht expressed in terms of the
prices pk

t prevailing at time t coincide:
∑K

i=1 pi
th

i
t−1 =

∑K
i=1 pi

th
i
t.

Fix some time period 0, 1, ..., T . We say that there is an arbitrage oppor-
tunity over this time period if there exists a self-financing trading strategy
H = (h0, ..., hT ) for which 〈p0, h0〉 ≤ 0 and 〈pT , hT 〉 ≥ 0 almost surely (a.s.)
and 〈pT , hT 〉 > 0 with strictly positive probability.

The following hypothesis is of fundamental importance in finance.
(NA) There are no arbitrage opportunities in the market.
Our goal in this paper is to examine conditions under which this hypoth-

esis holds in stationary markets. A financial market is called stationary if
the following two requirements are fulfilled:

(i) the given stochastic process s0, s1, ... is stationary1;

1A random process st is called stationary if for each m and each measurable function
φ, the distribution of the random variable φ(st, st+1, ..., st+m) does not depend on t.
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(ii) the price vector pt (st) does not explicitly depend on the time variable
t and depends only on the current state of the world st: pt (st) = p (st), where
p (·) is a measurable vector function on S.

Remark 1. There are versions of the model studied here (see, e.g.,
Dempster et al. 2003) where the process st is given for all t = 0,±1,±2, ....
Then stationarity is typically defined by the assumption that pt = p(st),
where st = (..., st−1, st) is an infinite history. That framework can be reduced
to the present one by setting σt = st and regarding σt as a new state of the
world.

The above cited papers dealt with quite general stationary processes de-
scribing states of the world and asset prices. In this article, we concentrate
on the case where the structure of the process st is as simple as possible: we
assume that the random elements s0, s1, ... are independent and identically
distributed. Further, as it is commonly supposed, we will assume that the
0th asset is riskless (numeraire, cash), having a non-random rate of return,
which in our stationary context implies that its price p0

t is a strictly positive
constant, which we will normalize to one. In view of this, we can represent
the price vector p (st) as p (st) = (1, γ (st)) = (1, γt), where

γt = γ (st) =
(
γ1 (st) , ..., γK (st)

)

is the K-dimensional price vector of risky assets. Analogously, we can repre-
sent any portfolio ht =

(
h0

t , h
1
t , ..., h

K
t

)
as ht = (h0

t , ξt), where ξt =
(
h1

t , ..., h
K
t

)
is the portfolio of risky assets.

In the analysis that follows, we will use another version of the no arbitrage
hypothesis which is formulated below (its equivalence to (NA) is proved, for
example, in Föllmer and Schied (2002), Proposition 5.11.

(NA′) For each t = 0, ..., T − 1, there is no measurable vector function
ξt(s

t) such that the two conditions

ξt(s
t)[γ(st+1)− γ(st)] ≥ 0 (a.s.), (1)

P{ξt(s
t)[γ(st+1)− γ(st)] > 0} > 0 (2)

hold simultaneously.
Here and in what follows, P denotes the underlying probability measure

P .

3. The Main Results. In this section we formulate and discuss the
main results of the paper. Let π be the probability distribution of the random
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vector γ (st). We will always assume that π is non-degenerate, i.e., it is not
concentrated at one point. Let W be the support of π and let V := cl co W
be the closure of the convex hull of W . Denote by ∂rV the relative boundary
of V , i.e. the boundary of the convex set V in the smallest linear manifold
containing V .

A central result is as follows.
Theorem 1. The absence of arbitrage opportunities in the market under

consideration is equivalent to the condition π (∂rV ) = 0.
Theorem 1 provides a no-arbitrage criterion for the stationary asset mar-

ket under consideration. This criterion is stated in terms of the closed convex
hull V of the support of the distribution π of the random price vector γ(st).
It turns out that if no mass of this distribution is concentrated on the rela-
tive boundary of V , then arbitrage opportunities do not exist. Conversely, if
π (∂rV ) > 0, then arbitrage opportunities exist.

The above result has the following immediate consequences.
Corollary 1. If the price vector γ (st) takes on a finite number of values,

then an arbitrage opportunity exists.
Corollary 2. If the distribution of γ (st) is absolutely continuous with

respect to the Lebesgue measure, then there are no arbitrage opportunities in
the market.

Thus, the answer to the question of arbitrage depends, roughly speaking,
on whether the distribution of the price vector γ(st) is continuous or dis-
crete. This answer seems somewhat unexpected, and although the result is
mathematically simple, we believe that it deserves attention. The question
of arbitrage in the stationary context was raised by W. Schachermayer at a
conference on Mathematical Finance (Paris, 2003) in the course of a discus-
sion of the paper by Dempster et al. (2003). The paper examined the phe-
nomenon of exponential growth of fixed-mix strategies in stationary markets.
W. Schachermayer put forward an intuitive explanation of this phenomenon,
by linking growth to asymptotic arbitrage (e.g. Klein and Schachermayer
1996). The informal reasoning was based on the fact that the class of sta-
tionary processes is in a sense ”opposite” to the class of martingales, whereas
the no-arbitrage hypothesis requires the existence of an equivalent martingale
measure. Our results show that this reasoning cannot be fully formalized.
In the context of stationary markets we consider, arbitrage properties over
finite time horizons are not determined by stationarity itself. They depend
on some (at first glance irrelevant) properties of the probability distribution
of the vector of asset prices.
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Relations between arbitrage and stationarity were examined in different
(deterministic) settings by Cantor and Lipmann (1995) and Adler and Gale
(1997).

We conclude this discussion with one more corollary dealing with the case
where there is only one risky asset, and so γ (st) is a scalar-valued random
variable.

Corollary 3. Let γ (st) be one-dimensional. Then the following asser-
tions are equivalent.

(a) There is an arbitrage opportunity in the market under consideration.
(b) There is a number r such that P {γ (st) = r} > 0 and either

P {γ (st) ≤ r} = 1 or P {γ (st) ≥ r} = 1.

4. Proofs. The proof of Theorem 1 is based on two propositions.
Proposition 1. If π (∂rV ) = 0, then the inequality

ξ
(
st

)
[γ (st+1)− γ (st)] ≥ 0 (a.s.) (3)

can hold for a measurable vector function ξ (st) only if

ξ
(
st

)
[γ (st+1)− γ (st)] = 0 (a.s.).

Proof. We will use the following fact:
(∗) a point x belongs to ∂rV if and only if there exists a linear function l

on Rn such that
(i) ly ≥ lx for all y ∈ V ;
(ii) ly0 > lx for some y0 ∈ V .
Suppose there is a measurable vector function ξ (st) such that inequality

(3) holds a.s. and is strict with strictly positive probability. Inequality (3)
implies that for almost all st, we have

ξ
(
st

)
[w − γ (st)] ≥ 0 (4)

for all w ∈ W and hence for all w ∈ V . Indeed, since st and st+1 are
independent, relation (3) implies that for almost all st, the affine function
f (st, x) := ξ(st)(x − γ (st)) is non-negative for π-almost all x and hence it
is non-negative for all x in the support W of the measure π, which yields
(4) for all w ∈ V . By using assertion (∗) with l := ξ(st), we conclude that
with positive probability, γ (st) ∈ ∂rV (when ξ (st) [γ (st+1)− γ (st)] > 0 and
γ (st+1) ∈ W ), and so π (∂rV ) > 0, which is a contradiction. ¤
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Proposition 2. If π (∂rV ) > 0, then there exists a measurable function
ξ (st) such that

ξ (st) [γ (st+1)− γ (st)] ≥ 0 (a.s.) (5)

and

P{ξ (st) [γ (st+1)− γ (st)] > 0} > 0. (6)

Proof. For each x ∈ ∂rV , consider a linear function lx (·) on Rn satisfying
conditions (i) and (ii) above. By virtue of Aumann’s measurable selection
theorem (see, e.g., Arkin and Evstigneev 1987, Appendix I, Section 5) we can
find a version of this function which is Borel measurable in x and satisfies (i)
and (ii) for π-almost all x ∈ ∂rV . Define

ξ (st) =

{
lγ(st) if γ (st) ∈ ∂rV,

0 otherwise.

Then the function ξ (st) will be measurable as a composition of two measur-
able functions γ (st) and lx. From its definition, we immediately obtain (5).
If (6) does not hold, then we can find some st = s̃t for which γ (s̃t) ∈ ∂rV ,
lγ(s̃t) satisfies conditions (i) and (ii), and we have ξ (s̃t) [γ (st+1)− γ (s̃t)] = 0
for almost all st+1. This implies that ξ (s̃t) [w − γ (s̃t)] = 0 for all w ∈ W
and hence for all w ∈ V . This contradicts property (ii) of ξ (st) = lγ(s̃t). ¤

Proof of Theorem 1. Immediate from Propositions 1, 2 and the equiva-
lence of hypotheses (NA) and (NA′). ¤

Proof of Corollary 1. In this case, the set V is a convex polyhedron and
each vertex of it carries a strictly positive mass of π. Consequently, π (∂rV ) >
0, and by virtue of Theorem 1, we conclude that arbitrage opportunities exist.
¤

Proof of Corollary 2. If the distribution π of γ (·) is continuous, we have
π (∂rV ) = 0 because the Lebesgue measure of the boundary of a closed convex
set is zero. ¤

(a) There is an arbitrage opportunity in the market under consideration.
(b) There is a number r such that P {γ (st) = r} > 0 and either

P {γ (st) ≤ r} = 1 or P {γ (st) ≥ r} = 1.
Proof of Corollary 3. Condition (b) implies (a) because r is on the bound-

ary of the closed convex hull of the support of the distribution π and r is
an atom of π. To prove that (a) implies (b), we observe that in the one-
dimensional case any closed convex set is either a segment [a, b], or a half
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line [a, +∞), or a half line (−∞, b], or the whole real line (−∞, +∞). Since
prices are non-negative, the last two cases can be excluded. If arbitrage op-
portunities exist in the first or the second case, then either a or b (or both)
can play the role of the number r described in assertion (b). ¤

Remark 2. Although in the case of a finite number of values of γ (st),
we always can construct an arbitrage opportunity, this is not necessarily
so for a random variable γ (·) taking on a countable number of values. The
following example illustrates this. Suppose γ (·) takes on with strictly positive
probabilities each of the following values: 1 + n−1, n = 2, 3, ...; 2 − n−1,
n = 2, 3, ....Then the closed convex hull of the support of this distribution is
[1, 2], but this distribution assigns zero mass to its boundary, {1} ∪ {2}.
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