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Abstract
This paper analyzes collective choices in a society with strategic

voters and single-crossing preferences. It shows that, in addition to
single-peakedness, single-crossingness is another meaningful domain
over the real line that guarantees the existence of non-manipulable
social choice functions. A social choice function is shown to be anony-
mous, unanimous and strategy-proof on single-crossing domains if and
only if it is an extended median rule with n−1 parameters distributed
on the end points of the feasible set of alternatives. Such rules are
known as positional dictators, and they include the median choice rule
as a particular case. As a by-product, the paper also provides an
strategic foundation for the so called “single-crossing version” of the
Median Voter Theorem, by showing that the median ideal point can
be implemented in dominant strategies through a simple mechanism
in which each agent honestly reveals his preferences.

JEL codes: D70, D71.

Keywords: Strategy-proofness; single-crossing; median voter; posi-
tional dictators.

1 Introduction

It is well known in economic theory that majority rule and other voting
rules may fail to produce acyclic social preferences if neither, the set of
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alternatives, nor individual preferences are suitably restricted. It is also
known that any voting method defined for all rational preferences over a
set of three or more alternatives may be subject to the misrepresentation of
individual preferences (Gibbard [18] and Satterthwaite [34]).

To study the validity of these results in more specific economic and
political environments, it is common in social choice theory to appropriately
restrict the set of individual preferences. If alternatives can be placed over
the real line, as for instance when different levels of a public good or different
tax rates are the subject of a collective choice, a natural preference restriction
is single-crossingness (SC). The other one is, of course, single-peakedness.

Single-crossingness makes sense in many political-economic settings. It
is technically useful, because it accommodates non-convexities that arise
in important applications of majority voting. And it has been extensively
used in the literature on political economy in areas such as income taxation
and redistribution (Roberts [28], Meltzer and Richard [23], Gans and Smart
[17]), local public goods and stratification (Westhoof [36], Epple et al. [13],
Epple and Platt [14], Epple et al. [15], Calabrese et al. [7]), coalition
stability (Demange [10], Kung [20]) and, more recently, to study policies in
the market for higher education (Epple et al. [16]) and the citizen candidate
model under uncertainty (Eguia [11]).

In words, a society possesses single-crossing preferences if, given any two
policies, one of them more to the right than the other, the more rightist the
individual is with respect to the other agents, the more he will be willing
to support the right-wing policy over the left-wing one. Thus, for example,
if alternatives represent income tax rates, and individuals are ordered ac-
cording to their incomes, this restriction simply means that, the richer the
individual is, the lower the tax rate he will be willing to support.

Like other domain conditions, single-crossingness establishes restrictions
across individual preferences, i.e. on the character of voters’ heterogeneity.
However, it does not impose any restriction on the shape of each individual
preference relation. The main idea behind SC is that, in some cases, in-
dividual preferences are determined by a single parameter, or type, such as
productivity, income, intertemporal preferences, ideology, etc. Then, agents’
preferences are restricted in such a way that, for any pair of alternatives,
say x and y, whenever two types, say θ′ and θ′′, agree to prefer x to y, so
do all agents with types in between, so that the set of types preferring one
of the alternatives all lie to one side of those who prefer the other.

Technically, SC not only guarantees the existence of majority voting
equilibria, but it also provides a simple characterization of the core of the
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majority rule.1 In effect, the core is simply the ideal point of the median
type agent, where the latter is defined over the ordering of individual types
that makes preferences single-crossing.2 This result appeared first in the
seminal works of Roberts [28] and Grandmont [19] and, more recently, in
Rothstein [30], Gans and Smart [17] and Austen-Smith and Banks [1]. It
is sometimes referred to as the Representative Voter Theorem (RVT) or,
alternatively, as “the second version” of the Median Voter Theorem (MVT).

The problem with this result is that, unlike the MVT over single-peaked
preferences, whose non-cooperative foundation was provided by Black [5],
first, and then by Moulin [24], the RVT is based on the assumption that
individuals honestly reveal their preferences. That is, it is derived assuming
sincere voting. Hence, a natural question about its legitimacy arises when
individual values are private information and voters can behave strategically.

This issue has been recently addressed by Saporiti and Tohmé [33]. In
that paper, we showed that SC is sufficient to ensure the existence of non-
manipulable social choice rules. In particular, this is true for the median
choice rule, which is strategy-proof and group strategy-proof over the full
set of alternatives and over every possible policy agenda.

Taking that work as the starting point, in this paper we characterize the
family of anonymous (A), unanimous (U) and strategy-proof (SP) social
choice functions on single-crossing domains. This family coincides with the
class of positional dictators, which are extended median rules with n − 1
parameters distributed on the end points of the feasible set of alternatives.
It includes the median choice rule as a particular case.

Although the word “dictator” may initially generate a negative feeling
toward our characterization, it is worth noting that the result is far from
being a negative one. Anonymity and unanimity are very weak conditions,
and strategy-proofness is a desirable incentive compatibility property that is
frequently demanded in social choice. On the other hand, as will be clear in
Section 2, a positional dictator is an anonymous social choice function that
only considers the ordering of the announced most preferred alternatives,
and always chooses one at a specified rank (e.g., the first ideal point, the
second, the median, etc.). The preselected position is a “dictator”. But,
since in different profiles different individuals may locate at that position,

1The core of a preference aggregation rule at any profile of individual preferences is the
set of top ranked alternatives of the social preference relation (Austen-Smith and Banks
[1], p. 99).

2By contrast, under single-peakedness, the core of the majority rule is given by the
median ideal point over the ordering of alternatives that makes preferences single-peaked.
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there is no such a thing as a dictator, as it is usually understood in social
choice.

In our model, positional dictators refer to the simple majority rule and
other qualified majorities. Hence, the main message coming out from the
analysis is that single-crossing is another simple example, besides single-
peakedness, where majority voting works with “maximal” incentives prop-
erties. The article explains the root of this good property of single-crossing
domains, and how far we can go in changing the majority rule.

To summarize the contribution of this article and to compare it with
other important results on the real line, namely, with Moulin’s [24] seminal
work, we draw a diagram below that shows the family of A, U and SP
social choice functions on single-peaked and single-crossing domains.3 As
the figure illustrates, since SC allows any shape in individual preferences, it
leads to a smaller (but still large) family of strategy-proof social choice rules.
Incidentally, the picture also points out that the class of non-manipulable
rules in the intersection of these two domains (whenever nonempty) is still an
open question. To the best of the author’s knowledge, this subdomain, which
contains preferences such as the Euclidean one, has not received enough
attention, and a full characterization is still missing.

In the rest of the paper we proceed as follows. In Section 2, we present the
model, the notation and definitions. We also restrict the domain of admis-
sible preferences, by introducing the formal definition of single-crossingness.
We briefly discuss its relation with single-peakedness, and we prove in Propo-
sition 1 an important property of single-crossing domains, which basically
means that, in theory, every agent has the possibility of misrepresenting his
preferences, so that strategy-proofness in this framework is not vacuous.

In Section 3, we reproduce, for completeness, the nonstrategic version
of the Representative Voter Theorem (Theorem 1), which is, until now, the
most important social choice result on single-crossing domains. Then, in Sec-
tion 4 we present the main results of the paper. We start by proving that
every positional dictator is group strategy-proof (GSP) on single-crossingness
(Proposition 2). Then, in Theorem 3, we show that, although single-crossing
does not satisfy Weymark’s [37] regularity, U and SP imply tops-onliness
(TO). Finally, using anonymity and unanimity as auxiliary conditions, we
prove that every strategy-proof social choice function is a positional dictator

3Moulin’s [24] original characterization on single-peaked preferences over the real line
has been extended in several directions by many authors. Some important references
within this literature are Border and Jordan [6], Zhou [38], Barberà et al. [2], Barberà
and Jackson [3], Ching [9], Berga [4], Schummer and Vohra [35], and Ehlers et al. [12],
but this list is by no means exhaustive.
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Figure 1:

(Theorem 2), with the natural corollary that in our framework U, A and SP
imply Pareto efficiency (Corollary 1). Final remarks and the main contri-
butions of the current research appear in Section 5. The Appendix at the
end of the paper contains missing proofs and auxiliary results.

2 Preliminaries

Consider a society I = {1, 2, . . . , n} with a finite number n ≥ 2 of indi-
viduals, who must choose an alternative (e.g. a tax rate) from a finite set
X = {x, y, . . .}, |X| > 2, of the nonnegative real line <+.4

Let P be the set of complete, transitive and antisymmetric binary rela-
tions over X. Assume each agent i ∈ I is endowed with a type θi ∈ Θ ⊂ <,
|Θ| ≥ |P|, which completely characterizes his preferences over X.5 That is,
suppose there exists a function p : Θ → P that assigns a unique binary rela-

4For every set A, |A| stands for the cardinality of the set.
5Abstract models of single-crossing and order-restricted preferences, such as Rothstein

[29] and [30], Gans and Smart [17] and Austen-Smith and Banks [1], do not usually
distinguish between individuals and types. Here, this simplification is not convenient,
because it can lead to the wrong conclusion that the only social choice function that is
not manipulable on single-crossing domains is the dictatorial one.
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tion p(θ) ∈ P to each type θ ∈ Θ. We interpret p(θi) as agent i’s preferences
over X, and we call τ(θi) his most preferred alternative on X according with
p(θi). The next example, taken from Persson and Tabellini [27], illustrates
how our abstract setup may naturally emerge in political economy.

Example 1 Consider the following version of Roberts’ [28] model on re-
distributive linear tax schemes. Suppose each agent i has preferences
u(ci, li) = ci + v(li), where ci denotes private consumption, li leisure time,
and v(li) a continuous and concave function. Let ci ≤ (1 − t)hi + f be
the individual budget constraint, where t ∈ (0, 1) is an income tax rate,
hi the individual labor supply, and f = (

∑
i∈I t hi)/n a lump-sum trans-

fer.6 Assume each agent is endowed with productivity θi ∈ <, and let
li + hi ≤ 1 − θi be his effective time constraint. If we solve the constrained
maximization problem of each individual and substitute the solution into his
utility function, then the indirect utility associated to a tax rate t is given by
w(t, θi) = u(c∗i (t, θi), l∗i (t, θi)) = h(t)+ v[1−h(t)− θ̄]− (1− t)(θi− θ̄), where
h(t) = 1 − θ̄ − v−1

l (1 − t) is the average labor supply, vl the first derivative
of v(li), and θ̄ the mean productivity. Hence, if there are for example three
possible tax rates, say t1, t2 and t3, and w(t2, θi) > w(t1, θi) > w(t3, θi),
then agent i’s induced preference relation p(θi) : t2t1t3 over tax rates is fully
determined by his productivity θi. 2

Like in the previous example, in our framework p is assumed to be
equal across agents. Hence, when there is no confusion, each prefer-
ence relation p(θi) and the profile of society’s preferences (p(θ1), . . . , p(θn))
are directly represented through their associated types. Abusing the
notation, θ will denote a single element of Θ, or a profile of types.
As usual, θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn); for each θ̂i, (θ̂i, θ−i) =
(θ1, . . . , θi−1, θ̂i, θi+1, . . . , θn); and, for every set S ⊆ I, (θS , θS̄) =
({θi}i∈S , {θj}j∈S̄), where S̄ = I\S is the complement of S.

Denote p(Θ) ⊆ P the set of all binary relations over X generated by p.
If individual preferences were not restricted, then p would be onto, and p(Θ)
would coincide with P. Instead, motivated by Roberts [28] and the rest of
the references listed in the Introduction, here we restrict society’s admissible
preferences to a subset of Pn. Specifically, we focus on a mapping p on Θ that
imposes the single-crossing property on preference profiles, but no particular
shape on each preference relation. Formally,

6The real wage is exogenous and normalized at 1.
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Definition 1 (SC) A function p : Θ → P generates single-crossing prefer-
ence profiles (p(θ1), . . . , p(θn)) on X if for all x, y ∈ X, and all i, j ∈ I, if
y > x, θj > θi, and y p(θi) x, then y p(θj) x.7

We call SC the set of all single-crossing preference profiles. Notice that,
when p is held fixed and is equal across agents, and individuals share the
same set Θ of possible types, this preference domain becomes a Cartesian
product of the form SC = p(Θ)n, (namely, the set of preference profiles
that can be built with preferences out of p(Θ)).8 This, of course, is no
longer true if the previous conditions are not satisfied. For more details,
see Saporiti and Tohmé [33] and, especially, Campbell and Kelly [8], who
analyze (a weaker version of) strategy-proofness in preference domains where
a Condorcet winner always exists, but that are not necessarily a product set.

The recent interest in single-crossingness is due to the fact that, like
single-peakedness, this domain restriction is sufficient to guarantee the exis-
tence of majority voting equilibria (see Theorem 1 below). However, apart
from this similarity, it should be clear that both conditions are totally inde-
pendent, in the sense that neither property is logically implied by the other.9

In Example 1, for instance, the profile of induced preferences is single-
crossing on the interval (0, 1), because for any two policies t′, t′′ ∈ (0, 1),
such that t′ > t′′, the difference w(t′, θ) − w(t′′, θ) is strictly increasing in
θ. Instead, for h(t) sufficiently convex, it might violate single-peakedness.
Examples 2 and 3 below provide other cases that also illustrate this point.10

Example 2 Assume that individual preferences are as in Table 1, where
x, y, z ∈ <++, x < y < z, and θ1 < θ2 < θ3. This profile is single-crossing
on {x, y, z}. However, for any ordering of the alternatives, it violates single-
peakedness, because every alternative is ranked bottom in one individual or-
dering. 2

7Other restrictions related with single-crossing are hierarchical adherence, intermedi-
ateness, order-restriction and unidimensional alignment. For more details, see Roberts
[28], Grandmont [19], Rothstein [29] and [30], Gans and Smart [17], Myerson [26], Austen-
Smith and Banks [1], List [21] and Saporiti and Tohmé [33].

8In Saporiti [32], we discuss how single-crossing and order-restriction are intimately
related with the possibility of linearly ordering the set P of preference relations.

9As Gans and Smart [17] showed, single-crossingness is equivalent to Rothstein’s
[29] and [30] order-restriction (OR), and OR (on triples) is strictly weaker than single-
peakedness and single-cavedness, but strictly stronger than Sen’s value-restriction, (see
Theorems 2 and 3 in Rothstein [29]).

10The interesting difference between single-crossing and single-peakness is that the latter
is a unique domain once alternatives are ordered, whereas there are still many different SC
domains compatible with a given ordering of X. On the other hand, unlike single-peaked
preferences, their union covers all preferences on X.
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Example 3 Consider the profile displayed in Table 2, where w, x, y, z ∈
<+. These preferences are single-peaked with respect to w < x < y < z.
On the contrary, for every ordering of the types, they violate single-crossing.
Moreover, they violate SC not only for w < x < y < z, but for every ordering
of them. 2

Table 1: Single-crossingness

p(θ1) : xyz
p(θ2) : xzy
p(θ3) : zyx

Table 2: Single-peakedness

p(θ1) : xyzw
p(θ2) : zyxw
p(θ3) : yxwz

Since we are interested in social choice functions that are not manipulable
over SC, in what follows we restrict our attention to maximal domains of
single-crossing preferences, in the sense that it would be impossible to add
another type in Θ and an associated preference relation in p(Θ) such that
every profile of the enlarged domain p(Θ)n still satisfies Definition 1. These
domains contain the largest number of possible deviations. Therefore, they
are the appropriate framework to analyze incentive compatibility.

In order to make social choices, individual preferences must be aggre-
gated. In this work, we suppose that p is commonly known, but that indi-
vidual types are private information. Thus, the input for the aggregation
process is the set of individuals’ reports about their preferences. These dec-
larations are intended to provide information about the profile of true types,
although agents’ sincerity cannot be ensured.

The aggregation process is represented by a social choice function. A
social choice function is a single-valued mapping f : SC → X that associates
to each profile θ ∈ SC a unique outcome f(θ) ∈ X. Denote rf = {x ∈ X :
∃ θ ∈ SC such that f(θ) = x} the range of f . Given f , S ⊂ I and θS̄ ∈
p(Θ)|S̄|, we call Of

S(θS̄) = {x ∈ X : ∃ θS ∈ p(Θ)|S| such that f(θS , θS̄) = x}
the option set of S, given that the rest, i.e. individuals in S̄ = I\S, have
reported θS̄ .

We are interested in social choice functions that satisfy the following
properties on SC. The main one is that agents, acting individually or in
groups, never have incentives to misrepresent their preferences. These prop-
erties are now formally stated in Definitions 2 and 3, respectively.

Definition 2 (SP) A social choice function f is strategy-proof on SC if for
all i ∈ I, and all (θi, θ−i) ∈ SC, there does not exist θ̂i ∈ p(Θ) such that
f(θ̂i, θ−i) p(θi) f(θi, θ−i).
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In words, a social choice function f is SP on SC if for any possible report
θ−i ∈ p(Θ)n−1 that the rest of the agents could make, no individual i ∈ I
would find profitable to make a declaration θ̂i ∈ p(Θ) different from his
own type θi. On the contrary, if f is not strategy-proof, then there must
exist at least one agent who would be strictly better off misrepresenting his
preferences. Therefore, we say that f is manipulable by this individual.

Proceeding in a similar way, we can also define group strategy-proofness,
to study the possibility of group deviations.

Definition 3 (GSP) A social choice function f is group strategy-proof on
SC if for all S ⊆ I, and all (θS , θS̄) ∈ SC, there does not exist θ̂S ∈ p(Θ)|S|

such that f(θ̂S , θS̄) p(θi) f(θS , θS̄) for all i ∈ S.

Another property that we may seek in a social choice function is unanim-
ity. This property ensures that, if all agents have the same most preferred
alternative, then that alternative is socially selected.

Definition 4 (U) A social choice function f is unanimous on SC if for all
x ∈ X, and all θ ∈ SC such that τ(θi) = x for all i ∈ I, f(θ) = x.

Let σ : I → I be a permutation of the set of individuals. A profile
θ ∈ SC is a σ-permutation of another profile θ∗ ∈ SC if for every individual
i ∈ I, θi = θ∗σ(i). That is, θ is a σ-permutation of θ∗ if the lists of preferences
under θ and θ∗ are identical up to a renaming of agents. We refer to such a
pair (θ, θ∗) as a σ-permutation.

Definition 5 (A) A social choice function f is anonymous on SC if for
each σ-permutation (θ, θ∗), f(θ) = f(θ∗).

In words, a social choice function is anonymous if the names of the
individuals holding particular preferences are immaterial in deriving social
choices.

One last property that a social choice function may satisfy is tops-
onliness. We say that f is tops-only on SC if for any preference profile,
the social choice is exclusively determined by individuals’ most preferred
alternatives on the range of the social choice function.

Definition 6 (TO) A social choice function f is tops-only on SC if, for
all θ, θ̂ ∈ SC such that τ |rf

(θi) = τ |rf
(θ̂i) for all i ∈ I, f(θ) = f(θ̂).
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Tops-onliness dramatically constrains the scope for manipulation. No
agent can expect to be able to affect the social outcome without modifying
the peak on rf of his reported ordering. However, as we show later in
Theorem 3, this condition is closely related to SP, in the sense that every U
and SP social choice function on single-crossing domains is also TO.

Now we define a class of social choice functions that plays a crucial
role in the characterization given in Section 4. To do that we introduce
the following notation. For any nonempty subset V ⊆ <, and any odd
positive integer k, we say that mk : V k → V is the k-median function on
V k if for each v = (v1, . . . , vk) ∈ V k, |{vi : mk(v) ≥ vi}| ≥ (k+1)

2 , and
|{vj : vj ≥ mk(v)}| ≥ (k+1)

2 . Since k is odd, mk(v) is always well defined.

Definition 7 (EMR) A social choice function f is an extended median
rule on SC if there exist n + 1 parameters αi ∈ X, i = 1, 2, . . . , n + 1, also
called fixed ballots or phantom voters, such that for all θ ∈ SC, f(θ) =
m2n+1(τ(θ1), . . . , τ(θn), α1, . . . , αn+1).

We denote by fe a social choice function that satisfies Definition 7, and
by EMR = {fe : (α1, . . . , αn+1) ∈ Xn+1} the family of all such functions,
obtained by reallocating the parameters α1, . . . , αn+1 in Xn+1. A particular
case of interest within this family is the well known median choice rule,
noted fm, which is obtained from fe by assigning (n + 1)/2 fixed ballots
at X ≡ minX and the rest at X ≡ maxX, if n is odd, and n/2 at X and
n/2 + 1 at X if n is even.

Proceeding in a similar way, we can derive other rules from EMR, by
restricting each αi to a particular value of X. For example, if αi = α for
all i = 1, 2, . . . , n + 1, then fe is completely insensitive to the preferences
reported by the individuals. We might want to exclude such undesirable
rules and, in particular, require Pareto efficiency.11 To do that, we eliminate
the possibility of inefficiency by setting αn = X and αn+1 = X. Then,
we obtain a social choice rule, noted f∗, with the property that for all
θ ∈ SC, f∗(θ) = m2n−1(τ(θ1), . . . , τ(θn), α1, . . . , αn−1). This rule is called
the efficient extended median rule, and it is characterized by n−1 parameters
distributed on Xn−1. The set of all such rules is denoted EMR∗ = {f∗ :
(α1, . . . , αn−1) ∈ Xn−1}.

Finally, we can also restrict each αi to take its value at either X or X,
so that each phantom voter is either a leftist or a rightist. The family of

11A social choice function f is Pareto efficient on SC if for all θ ∈ SC, there does not
exist y ∈ X such that y p(θi) f(θ) for all i ∈ I.
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social choice functions obtained in that way was first introduced by Moulin
[25], and it is known as positional dictators.

These rules select the j-th peak among the tops of the reported preference
orderings, for some j ∈ {1, . . . , n}. For example, if j = 1, we have the leftist
rule, which always chooses the smallest reported peak. The median choice
rule fm is also a particular case. We denote by f j the positional dictator
that selects, for all θ ∈ SC, the alternative of the sequence τ(θ1), . . . , τ(θn)
placed at the j-th position according with the order of X. This rule is
obtained from f∗ by distributing n− j fixed ballots at X and the remaining
j− 1 at X. The family of all such rules is denoted PD = {f j ; j = 1, . . . , n}.

In Section 4, we study how well these choice rules perform, according
with the manipulation criteria given above, on single-crossing domains.
Before doing that, however, we prove an important property of single-
crossingness, which says that (maximal) preference domains satisfying SC
are such that, in theory, every agent has the possibility of misrepresent-
ing his preferences, so that incentive compatibility in this framework is not
vacuous.

Proposition 1 For every agent i ∈ I, and each profile (p(θi), p(θ)−i) ∈ SC,
there exist at least two alternative orderings p(θ′i) and p(θ′′i ) such that the
resulting preference profiles (p(θ′i), p(θ)−i) and (p(θ′′i ), p(θ)−i) belong to SC.

Proof: Fix an agent i ∈ I and a profile p(θ) = (p(θ1), . . . , p(θi), . . . , p(θn)) ∈
SC. Let T (p(θ)) = {θ1, . . . , θi, . . . , θn} be the set of actual types associated
with p(θ), and T ∗(p(θ)) ⊆ T (p(θ)) the subset associated with different bi-
nary relations, in the sense that for all θj , θk ∈ T ∗(p(θ)), p(θj) 6= p(θk). If
|T ∗(p(θ))| > 2, then the result is immediately obtained.

On the other hand, if |T ∗(p(θ))| = 2, assume without loss of generality
that T ∗(p(θ)) = {θ−, θ+}, where θ− < θ+. Suppose p(θ−) and p(θ+) differ
in the pair (z, w), where w > z. By SC, z p(θ−) w and w p(θ+) z. Consider
an ordering p(θ′) that coincides with p(θ−) for every pair of alternatives,
except for (z, w), and rank w p(θ′) z. This ordering exists because p(Θ) is
maximal. Moreover, θ− < θ′ ≤ θ+, because p generates SC preferences on
X. If p(θ′) 6= p(θ+), we are done. Otherwise, if p(θ′) = p(θ+), then p(θ−)
and p(θ+) differ only in the pair (z, w). Consider (x, y) ⊂ X, such that
x 6= w or y 6= z. This pair exists because |X| > 2. Note that either x p(θ) y,
or y p(θ) x, for all θ = θ−, θ+. Then, the desired ordering is given by a
preference p(θ′) equal to p(θ−) (or equal to p(θ+)), but that ranks y over x,
if x p(θ−) y, and x over y otherwise. Thus, if θi = θ−, types θ+ and θ′ are
enough to prove the claim. Otherwise, we use θ− and θ′.
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Finally, if |T ∗(p(θ))| = 1, the desired result is obtained following the
same reasoning of the previous paragraph. 2

3 Representative voter theorem

The domain of single-crossing preferences has two useful properties for col-
lective decision making analysis. Firstly, as was already mentioned in other
parts of this paper, it guarantees the existence of majority voting equilibria.
Secondly, it offers a simple characterization of the core of the majority rule.

More precisely, let A(X) = {Y : Y ∈ 2X\∅} be the set of all possible
nonempty subsets, or agendas, of X. If society possesses single-crossing pref-
erences on X, then for all Y ∈ A(X), the agent endowed with the median
type on Θ is decisive for every pairwise majority contest among alternatives
of Y . This result is sometimes referred to as the Representative Voter The-
orem (RVT) or, alternatively, as the “second version” of the Median Voter
Theorem.

To formally obtain the RVT, let us now introduce the following addi-
tional notation. Given i ∈ I, θi ∈ p(Θ) and Y ∈ A(X), let p|Y (θi) be agent
i’s induced preferences over Y if, for all x, y ∈ Y , x p|Y (θi) y if and only if
x p(θi) y. Denote τ |Y (θi) agent i’s most preferred alternative on Y according
with p|Y (θi). Notice that SC is preserved in the induced preferences. That
is, if (p(θi))i∈I ∈ SC, then for all Y ∈ A(X), (p|Y (θi))i∈I ∈ SCY , where SCY

represents the set of single-crossing profiles on Y . Abusing the notation, let
f : SCY → Y be the restriction of the social choice function f on Y . The
nonstrategic version of the RVT is as follows:12

Theorem 1 For each profile θ ∈ SC and every agenda Y ∈ A(X),
fm(p|Y (θ)) = τ |Y (θr), where θr = mn(θ1, . . . , θn).

Proof: Fix p(θ) ∈ SC and Y ∈ A(X). Since induced preferences inherit
the single-crossing property, for all i, j ∈ I, θj > θi ⇒ τ |Y (θj) ≥ τ |Y (θi).
Suppose not. That is, assume there exist i, j ∈ I such that θj > θi and
τ |Y (θi) > τ |Y (θj). By SC, τ |Y (θi) p|Y (θi) τ |Y (θj) ⇒ τ |Y (θi) p|Y (θj) τ |Y (θj):
contradiction. Hence, mn(τ |Y (θ1), . . . , τ |Y (θn)) = τ |Y (θr), where θr =
mn(θ1, . . . , θn). And, by definition, fm(p|Y (θ)) = τ |Y (θr). 2

12Notice that we derive a different version of the RVT, since individual preferences are
strict, and we focus on choices instead of social orderings. For a complementary analysis,
see Rothstein [30], Gans and Smart [17] and Austen-Smith and Banks [1].
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In words, Theorem 1 predicts that, for every agenda Y ∈ A(X), the al-
ternative chosen through pairwise majority voting by a society with single-
crossing preferences on X will coincide with the median type agent’s most
preferred alternative on Y .13 This result is, of course, very useful in appli-
cations, because it allows to treat the electorate as a single representative
voter. However, is it robust to individual and group manipulation? That
is, can we expect that society will end up choosing in the way predicted by
Theorem 1 if voters behave strategically?

The RVT is a result derived under the assumption that individuals hon-
estly reveal their preferences. This is obviously very strong. However, as we
will see in the next section, if we relax this assumption, admitting strategic
voting and private information about individual values, it turns out that the
RVT still holds. As we explain, the reason for this is that each voter has a
dominant strategy on single-crossing domains, which is to honestly report
his true preferences. Now we derive this formally.

4 Strategic voting

In this section, we prove that positional dictators is the only family of social
choice functions that satisfies U, A and SP on single-crossing domains. At
the end, we also show that this is a tight characterization, in the sense
that relaxing any of the previous axioms enlarges the family of social choice
functions.

We start by proving that every positional dictator is GSP.

Proposition 2 Each positional dictator f j is group strategy-proof on SC.

Proof: Fix f j ∈ PD. Suppose, by contradiction, there exist a coalition
S ⊆ I, a profile (θS , θS̄) ∈ SC, and a joint deviation θ̂S ∈ p(Θ)|S| such that
f j(θ̂S , θS̄) p(θi) f j(θS , θS̄) for all i ∈ S. To simplify, denote f j(θS , θS̄) ≡ τ
and f j(θ̂S , θS̄) ≡ τ̂ , and let τ < τ̂ .

Note that f j ∈ PD ⇒ αi ∈ {X, X} for all i = 1, 2, . . . , n− 1. Hence, τ
and τ̂ must coincide with the tops reported by two real voters. Denote these
agents k and k′, and their types θk and θk′ , respectively. Then, for all i ∈ S,
τ(θi) > τ . Suppose not. That is, assume τ(θi) ≤ τ for some agent i ∈ S. If
τ(θi) = τ , then τ p(θi) τ̂ , which contradicts our initial hypothesis. Instead,

13Rothstein [30] also showed that, when preferences are antisymmetric and the number
of voters is odd, the majority preference relation coincides with the median type agent’s
ranking. Hence, it inherits all its properties, including transitivity. Gans and Smart [17]
found a similar result for non-strict preferences, but under strict single-crossingness.
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suppose τ(θi) < τ . Since τ̂ p(θi) τ and (θS , θS̄) ∈ SC, we have that τ̂ p(θ) τ
for all θ ≥ θi. Then, θk < θi. And again, since (θS , θS̄) ∈ SC, τ p(θk) τ(θi)
implies τ p(θi) τ(θi): contradiction. Hence, τ(θi) > τ for all i ∈ S.

Recall that, by definition, τ = m2n−1({τ(θi)}i∈S , {τ(θj)}j∈S̄ , α1, . . . , αn−1)
and τ̂ = m2n−1({τ(θ̂i)}i∈S , {τ(θj)}j∈S̄ , α1, . . . , αn−1). Thus, there
must exist i ∈ S such that τ(θ̂i) < τ . Otherwise, if τ(θ̂i) ≥ τ
for all i ∈ S, we would have that τ̂ = τ . Therefore, if we rename
({τ(θ̂i)}i∈S , {τ(θj)}j∈S̄ , α1, . . . , αn−1) as (y1, . . . , y2n−1), it follows that
| {j ∈ {1, . . . , (2n− 1)} : yj ≤ τ} | ≥ n. But then m2n−1(y1, . . . , y2n−1) ≤ τ .
That is, f j(θ̂S , θS̄) ≤ f j(θS , θS̄), contradicting that τ < τ̂ . Hence, f j is
GSP on SC. 2

Falling short of Moulin’s [24] results, Proposition 2 shows that every
extended median rule is GSP (and, consequently, SP) on single-crossing
domains, provided that each fixed ballot is placed at the end points of X,
(i.e., at either X or X).14 Instead, all other extended median rules, which
allow the collective outcome to be the top of a fictitious voter, are not
guaranteed to be SP on SC.

To see this, consider the profile of Table 1, and a rule f ∈ EMR∗,
such that α1 = y and α2 = z. Note that α1 coincides with neither voters’
most preferred alternatives nor the end points of X = {x, y, z}, (recall that
X = x and X = z). Furthermore, f(θ) = m5(x, x, z, α1, α2) = y. But, since
y is agent 2’s worst outcome on X, he could report θ̂2 = θ3, and generate
the outcome m5(x, z, z, α1, α2) = z. Agent 2’s deviation would be profitable,
because z p(θ2) y. Hence, individual manipulation cannot be excluded.15

As the example illustrates, SP is not ensured for extended median rules
other than positional dictators because the latter are the only one within
the class of anonymous social choice functions that guarantee that the social
choice always coincides with a type’s most preferred alternative. However, as
we showed in the proof of Proposition 2, without this information manipula-
tion on single-crossing domains cannot be ruled out, because the argument
exploits precisely the correlation among individual preferences together with
the fact that the outcome is the ideal point reported by a real voter.

14Note that placing some parameters of f∗ at peaks of actual types, in addition to at X
or X, yields the same result. However, we ruled out this to ensure that the social choice
function is independent of the particular preference profile under consideration.

15Interestingly, in the example, agent 2 would prefer to misrepresent his type even if the
other agents are reporting their true preferences. That means extended median rules other
than positional dictators not only fail to be SP over SC, but also Nash implementable.
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The point is that SC does not restrict the shape of individual prefer-
ences. Instead, it allows orderings that do not decrease monotonically to
both sides of the ideal point. In fact, this is one of the main reasons why SC
is an attractive restriction in certain problems of political economy (such as
majority voting on distortionary income tax rates). The price for this flex-
ibility, however, is that in general it is impossible to ensure that no agent
could be better off misrepresenting his values.

In Figure 2, for instance, f(θ̂i, θ−i) p(θi) f(θi, θ−i), so that in principle
agent i would like to manipulate f at (θi, θ−i) via θ̂i. However, this is not
possible if f is a positional dictator. In that case, SC is sufficient to rule out
any attempt of individual and group manipulation. For example, suppose
that f(θi, θ−i) is j’s most preferred alternative. If f(θ̂i, θ−i)p(θi)f(θi, θ−i),
like in Figure 2, SC would imply f(θ̂i, θ−i) p(θk) f(θi, θ−i) for all θk ≥ θi.
Thus, f(θi, θ−i) = τ(θj) ⇒ θj < θi. But then agent i’s preferences can-
not exhibit the shape displayed in the figure. Otherwise, (θi, θ−i) ∈ SC,
f(θi, θ−i) p(θj) τ(θi) and θj < θi would imply f(θi, θ−i) p(θi) τ(θi), contra-
dicting that τ(θi) is agent i’s ideal point.

Figure 2:

So, when the social choice function associates to each preference profile
an individual’s peak, like in the case of positional dictators, the ordering of
that agent together with the relation among preferences in single-crossing
domains is sufficient to reject any incentive for manipulation. Remarkably,
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no additional information about the shape of each preference relation is nec-
essary.

On the contrary, if social choices are not individual tops, we might think
that individuals’ preferences can still be inferred from the correlation with
other agents’ rankings. However, there are profiles on single-crossingness
where the way in which one agent orders alternatives bears no relation with
other orderings. In those cases, it is impossible to guarantee that all indi-
viduals will have the right incentives, (i.e., no one will hold an ordering like
Figure 2). So, manipulation cannot be excluded.

This conjecture stands in sharp contrast with the main result on single-
peaked domains, where extended median rules have been shown to be
strategy-proof without any restriction on the distribution of phantom voters.
Moreover, it suggests that the family of SP social choice functions on SC is
strictly smaller than the corresponding class on single-peakedness. This is
now formally stated and proved in Theorem 2.

Theorem 2 A social choice function f is unanimous, anonymous, and
strategy-proof on SC if and only if f is a positional dictator.

Proof: See the Appendix.

Corollary 1 If a social choice function f is unanimous, anonymous and
strategy-proof on SC, then it is Pareto efficient.

Proof: Suppose, by contradiction, that there exists a social choice function
f that satisfies all the hypotheses of Corollary 1, but that f is not Pareto
efficient on SC. Then, there must exist θ ∈ SC, and a pair x, y ∈ X, x 6= y,
such that f(θ) = x, while y p(θi) x for all i ∈ I. Thus, for all i = 1, . . . n,
f(θ) 6= τ(θi), contradicting that, by Theorem 2, f ∈ PD. 2

The proof of Theorem 2, carried out in the Appendix for expositional
convenience, rests on two main results. The first one, summarized in Theo-
rem 3 below, shows that on single-crossing domains tops-onlyness is implied
by strategy-proofness and unanimity. This result, which is the most im-
portant step in the current analysis, is consistent with other results in the
literature on strategy-proofness, and captures the intuitive idea that social
choice functions that use too much information from society are easier to
manipulate.

In our framework, the relationship between SP, U and TO is also in-
teresting because it highlights two important features of single-crossingness.
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The first one is that the peak of a preference relation on the entire set
X does not necessarily determine its peak on the range of f . This is
illustrated in Figure 3, where orderings θi and θ′′i share the same peak
τ(θi) = τ(θ′′i ) = w over X = {x, y, z, w}; but if, for example, rf = {z, x, y},
then τ |rf

(θi) = z 6= y = τ |rf
(θ′′i ).16

The second one is that single-crossing is not a regular domain. A social
choice function f has a regular domain if for any alternative x in the closure
of the range of f there is a continuous preference in the individual preference
domain that is uniquely maximized on cl(rf ) at x (Weymark [37]). As
Figure 3 illustrates, single-crossingness does not satisfy this property. In
effect, suppose that there exists x, y, z ∈ rf , and assume like in the picture
that z < x < y and z p(θi) x and y p(θi) x for some i ∈ I and θi ∈ p(Θ).
Then, it is easy to see that there is no preference relation p(θ′i) on cl(rf ) such
that τ |rf

(θ′i) = x. On the contrary, suppose that such an ordering exists. If
θ′i < θi, then SC implies z p(θ′i) x, contradicting that τ |rf

(θ′i) = x. On the
other hand, if θ′i > θi, then again, by SC, y p(θ′i) x, and we get the same
contradiction.

Figure 3:

For the main purpose of this article, the most important implication of
the previous two comments is that, in the case of single-crossing, the rela-
tionship between strategy-proofness and tops-onliness cannot be examined

16Clearly, this cannot happen when preferences are single-peaked and |rf | > 2.
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using the general approach proposed by Weymark [37]. That methodology
is applicable only if the preference domain is regular and individual ideal
points uniquely determine the most preferred alternatives over the range of
the social choice function.

Instead, we circumvent this difficulty by following a different approach,
which encompasses three main steps: (i) Firstly, we directly prove that, in
a two-person society, SP and U implies TO (Proposition 5); (ii) Secondly,
using the previous result, we extend the tops-only property to the option
sets generated by a unanimous and strategy-proof social choice function
(Proposition 3); and, (iii) Finally, invoking (ii), we show that (i) also holds
in an n-person society (Theorem 3). To simplify the presentation, we state
below only Proposition 3, Theorem 3 and the proof of Theorem 3. The
Appendix contains the rest of the analysis.

Proposition 3 If f is unanimous and strategy-proof on SC, then ∀S ⊂ I,
and ∀ θ′, θ′′ ∈ SC such that τ(θ′i) = τ(θ′′i ) ∀ i ∈ S, Of

S̄
(θ′S) = Of

S̄
(θ′′S).

Proof: See the Appendix.

Theorem 3 A social choice function f is unanimous and strategy-proof on
SC only if f is tops-only on SC.

Proof: Suppose, by contradiction, there exists (θ′i, θ
′
−i) ∈ SC, and θ′′i ∈

p(Θ) such that τ(θ′i) = τ(θ′′i ) and f(θ′i, θ
′
−i) = x 6= y = f(θ′′i , θ′−i). Fix

j 6= i. Since preferences are strict, x 6= y implies that either x p(θ′j) y or
y p(θ′j) x. Without loss of generality, assume that y p(θ′j) x. By Proposition
3, Of

j (θ′i, θ
′
−{i,j}) = Of

j (θ′′i , θ′−{i,j}) ⇒ y ∈ Of
j (θ′i, θ

′
−{i,j}). That is, there

exists θ̂j ∈ p(Θ) such that f(θ̂j , θ
′
i, θ

′
−{i,j}) = y. However, since y p(θ′j) x, this

means that j would like to manipulate f at (θ′i, θ
′
−i) via θ̂j : contradiction.

Hence, f is TO on SC. 2

As we said above, the proof of Theorem 2 rests on Theorem 3 and on
another crucial result, summarized in Lemma 1 below. This lemma, which
also appears in the context of single-peaked preferences, points out that if
a social choice function is SP and U (and therefore TO), then no individ-
ual must be able to profit by reporting extreme ideal points, unless such
extreme preferences constitute the individual’s true ordering. This “median
property” at the individual level must simultaneously hold for every agent.
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To present this more formally, in the sequel we use p(θi) (respectively,
p(θi)) to denote agent i’s most leftist (respectively, rightist) preference re-
lation on X, so that for all x, y ∈ X, x p(θi) y (respectively, y p(θi) x) if and
only if x < y. Clearly, τ(θi) = X and τ(θi) = X. Moreover, it is easy to
check that, for any mapping p on Θ that generates (maximal) single-crossing
domains, these rankings always belong to p(Θ).

Lemma 1 A social choice function f is unanimous and strategy-proof on
SC only if, for all i ∈ I, and all θ ∈ SC,

f(θ) = m3(τ(θi), f(θi, θ−i), f(θi, θ−i)).

Proof: Let f be U and SP on SC.17 By Theorem 3, f is TO on SC.
Fix a profile θ ∈ SC and an agent i ∈ I. If f(θi, θ−i) > f(θi, θ−i), then
f(θi, θ−i) p(θi) f(θi, θ−i). Thus, i would like to manipulate f at (θi, θ−i) via
θi: contradiction. Hence, f(θi, θ−i) ≤ f(θi, θ−i). Two cases are possible:

Case 1: f(θi, θ−i) < τ(θi) < f(θi, θ−i). Then,
m3(τ(θi), f(θi, θ−i), f(θi, θ−i)) = τ(θi). Assume, by contradiction,
f(θ) 6= τ(θi). Without loss of generality, suppose f(θ) < τ(θi) ⇒ f(θ) <
f(θi, θ−i). By SP, f(θi, θ−i) p(θi) f(θi, θ−i) and f(θi, θ−i) p(θi) f(θi, θ−i).
Define a preference relation p(θ′i) such that (i) τ(θ′i) = τ(θi), and (ii)
f(θi, θ−i) p(θ′i) f(θi, θ−i) (see Figure 4 below). Since p(θ′i) is between p(θi)
and p(θi), p(θ′i) ∈ p(Θ) and θi < θ′i < θi. By TO, f(θ′i, θ−i) = f(θi, θ−i).
Thus, f(θi, θ−i) p(θ′i) f(θ′i, θ−i): contradiction.

Case 2: τ(θi) ≤ f(θi, θ−i).18 Then, m3(τ(θi), f(θi, θ−i), f(θi, θ−i)) =
f(θi, θ−i). Assume, by contradiction, f(θ) 6= f(θi, θ−i). First, suppose that
f(θ) < f(θi, θ−i). Then, θi ≤ θi. Otherwise, if θi > θi, SC would imply
that f(θi, θ−i) p(θi) f(θi, θ−i), which contradicts SP. However, since p(θi) is
agent i’s most leftist preference relation, θi ≤ θi implies τ(θi) = τ(θi) =
X. Hence, by TO, f(θi, θ−i) = f(θi, θ−i): contradiction. Thus, f(θ) >
f(θi, θ−i) ⇒ τ(θi) ≤ f(θi, θ−i) < f(θi, θ−i). Note that τ(θi) 6= f(θi, θ−i).
Otherwise, if τ(θi) = f(θi, θ−i), then f(θi, θ−i) 6= f(θi, θ−i) would imply
that i would like to manipulate f at (θi, θ−i) via θi. On the other hand, SP
⇒ f(θi, θ−i) p(θi) f(θi, θ−i). And, f(θi, θ−i) 6= τ(θi), because X = τ(θi) ≤
τ(θi) < f(θi, θ−i).

In fact, as it can be inferred from Figure 5 below, f(θi, θ−i) 6= τ(θj) for
all j 6= i. Otherwise, if f(θi, θ−i) = τ(θj) for some j ∈ I, j 6= i, then θj > θi,
because τ(θi) < f(θi, θ−i). However, by SC, θj > θi, f(θi, θ−i) < f(θi, θ−i),

17Notice that U implies that individual peaks on X determine the top on rf .
18The remaining case where τ(θi) ≥ f(θi, θ−i) is similar.
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Figure 4:

and f(θi, θ−i) p(θj) f(θi, θ−i) would imply f(θi, θ−i) p(θi) f(θi, θ−i): contra-
diction. Hence, there exists a type θ′i ∈ p(Θ) such that (i) τ(θ′i) = τ(θi),
and (ii) f(θi, θ−i) p(θ′i) f(θi, θ−i). By TO, f(θ′i, θ−i) = f(θi, θ−i). Therefore,
f(θi, θ−i) p(θ′i) f(θ′i, θ−i): contradiction.

Thus, since θ ∈ SC and i ∈ I were arbitrarily chosen, Cases 1 and 2
prove the claim. 2

We close this section showing the independence of the axioms used in
Theorem 2. First, consider the consequence of relaxing SP. As we explained
before, any efficient extended median rule that it is not a positional dicta-
tor may be subject to individual manipulation on single-crossing domains.
However, all of them are U and A. Thus, the family that satisfies U and A
on SC is larger than PD.

Next consider the consequences of relaxing U. Define a social choice
function f on SC in such a way that, for each θ ∈ SC,

f(θ) =

{
a if |{θi : a p(θi) b}| > |{θi : b p(θi) a}|,
b otherwise.

where a, b ∈ X, and a < b. It is clear that f is A, and that it violates U,
since rf = {a, b}. Hence, f 6∈ PD. Let us prove that f is SP on SC.
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Figure 5:

First, given any profile θ ∈ SC, denote θr = mn(θ1, . . . , θn) the median
type in θ. Notice that, if b p(θr) a, then by SC for all θk ≥ θr, b p(θk) a.
Thus, f(θ) = b if and only if θr ∈ {θk : b p(θk) a}, and f(θ) = a otherwise.

Second, assume by contradiction that f is manipulable on SC. That is,
suppose there exist i ∈ I and θ ∈ SC such that f(θ′i, θ−i) p(θi) f(θi, θ−i),
for some θ′i ∈ p(Θ). Without loss of generality, let f(θi, θ−i) = a and
f(θ′i, θ−i) = b. The other case is similar. Hence, θi 6= θr, since by hypothesis
b p(θi) a and f(θi, θ−i) = a. There are two cases to consider.

If θi < θr, then a < b and a p(θr) b implies that a p(θi) b: contradiction.
Thus, θi > θr. But then θ′i < θr. Otherwise, if θ′i ≥ θr, mn(θ′i, θ−i) =
mn(θi, θ−i) = θr and, therefore, we would have f(θ′i, θ−i) = a. However,
since θ′i ∈ p(Θ), θ′i < θr, a < b and a p(θr) b, it follows that a p(θ′i) b. That
is, the number of agents supporting a against b doesn’t decrease in going
from (θi, θ−i) to (θ′i, θ−i). Therefore, by the way in which the social choice
function has been defined, we would have that f(θ′i, θ−i) = a: contradiction.
Hence, f is SP on SC.

Finally, regarding anonymity, note that replacing it by, for instance, non-
dictatorship enlarges indeed the set of social choice functions satisfying U
and SP.19 More precisely, suppose |I| > 2. For a given coalition S ⊂ I,
|S| ≥ 2, define a social choice function f̂ on SC in such a way that, for

19A social choice function f is non-dictatorial (ND) on SC if for each i ∈ I, there exists
θ ∈ SC, such that f(θ) 6= τ |rf (θi).
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all θ ∈ SC, f̂(θ) = m2|S|−1({τ(θi)}i∈S , α1, . . . , α|S|−1). It is immediate to
see that f̂ is ND and U. Moreover, following a reasoning analogous to the
proof of Proposition 2, it is also easy to prove that f̂ is SP on SC, provided
that for all i = 1, . . . , |S| − 1, αi ∈ {X, X}. However, f̂ violates A, since
the preferences of all agents in the set S̄ = I\S are ignored to make social
choices.

5 Final remarks

This paper studies collective choices in a society with strategic voters and
single-crossing preferences. While this preference domain ensures that the
core of the majority rule is nonempty, this result has been derived assuming
sincere voting. This naturally raises the issue of potential individual and
group manipulation, motivating the current research.

The main contributions of the paper are the following. First of all,
it shows that, in addition to single-peakedness, single-crossingness is an-
other meaningful domain over the real line that guarantees the existence of
strategy-proof social choice functions. More precisely, it proves that each
positional dictator is group strategy-proof on single-crossing domains. Con-
versely, every social choice function that satisfies anonymity, unanimity and
strategy-proofness is shown to be a member of this family, with the natural
consequence that A, U and SP imply Pareto efficiency and tops-onliness.

As we argue in the text, strategy-proofness on single-crossing preferences
requires that the social choice be always an individual’s most preferred alter-
native. This is necessary to rule out orderings that might produce incentives
for manipulation, because the argument exploits (i) that the outcome is an
individual’s ideal point, (ii) the ordering of that agent, and (iii) the correla-
tion among individual preferences in single-crossing domains. Remarkably,
no additional information about the shape of each preference relation is nec-
essary to guarantee strategy-proofness.

To put it in other terms, the results of this paper show that, in the case of
public goods, convexity of individual preferences is not necessary to prevent
manipulation, provided that a “certain amount of correlation” among prefer-
ences is simultaneously imposed. Unfortunately, this is no longer true when
the collective choice problem refers to the allocation of a private good among
a finite number of agents. In that case, Saporiti [31] have shown that inter-
mediateness, a preference restriction closely related to single-crossingness,
is not sufficient to ensure the existence of Pareto efficient, anonymous and
strategy-proof allocation rules.
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Furthermore, even in the case of public goods relaxing convexity is costly,
because any extended median rule is A, U and SP on single-peaked prefer-
ences, without any restriction on the distribution of fixed ballots. However,
in our framework, the family characterized by A, U and SP coincides with
the class of positional dictators, which is a subset of extended median rules.

Finally, the paper also shows that the Representative Voter Theorem,
i.e. “the single-crossing version” of the Median Voter Theorem, has a well
defined strategic foundation, in the sense that its prediction can be imple-
mented in dominant strategies. However, this result only holds on a subdo-
main of single-crossing preferences, the rectangular one. So, relaxing sincere
voting is not free either. Moreover, the implementation itself may demand a
substantial amount of information from the planner.20 Thus, it also follows
that the RVT would not probably have the same appeal as its counterpart
on single-peakedness.

6 Appendix: Missing proofs and auxiliary results

In order to prove the main result of this paper, namely that a social choice
function is anonymous, unanimous and strategy-proof on single-crossing do-
mains if and only if it is an extended median rule with n − 1 parameters
distributed on the end points of the feasible set of alternatives, we first show
that unanimity and strategy-proofness imply tops-onliness. To do this, the
following preliminary result will be useful.

Proposition 4 If a social choice function f is strategy-proof on SC, then
∀S ⊂ I, and ∀ (θS , θS̄) ∈ SC such that τ |

Of
S(θS̄)

(θi) = x ∀ i ∈ S, f(θ) = x.

Proof: The proof is domain independent, and it is based on Le Breton and
Weymark [22]. Assume f is SP on SC, and consider any coalition S ⊂ I,
and any profile (θS , θS̄) ∈ SC such that τ |

Of
S(θS̄)

(θi) = x for all i ∈ S.
Suppose, by contradiction, f(θS , θS̄) = y 6= x. Define the social choice
function g : p(Θ)|S| → X, where for all θ′S ∈ p(Θ)|S|, g(θ′S) = f(θ′S , θS̄). It
is easy to show that g is SP on p(Θ)|S|, with rg = Of

S(θS̄).
Since x ∈ Of

S(θS̄), there exists a subprofile θ̃S ∈ p(Θ)|S| such that g(θ̃S) =
f(θ̃S , θS̄) = x. Consider the sequence

θ0
S = (θ1, . . . , θ|S|) = θS ,

20Recall that the function p that produces single-crossing profiles is assumed to be
commonly known.
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θ1
S = (θ̃1, θ2, . . . , θ|S|),
...

...
θ
|S|−1
S = (θ̃1, . . . , θ̃|S|−1, θ|S|),

θ
|S|
S = (θ̃1, . . . , θ̃|S|) = θ̃S .

For all k = 0, 1, . . . , |S|, let zk = g(θk
S) = f(θk

S , θS̄). Suppose j =
inf{1, . . . , |S|} such that g(θj

S) = f(θj
S , θS̄) = x. Such a j exists because

g(θ|S|S ) = f(θ|S|S , θS̄) = f(θ̃S , θS̄) = x. Moreover, j 6= 0, because by hypothe-
sis g(θ0

S) = f(θ0
S , θS̄) = f(θS , θS̄) = y 6= x. Hence, person j can manipulate

g at θj−1
S via θ̃j , which contradicts SP. 2

Corollary 2 If a social choice function f is strategy-proof on SC, then for
all i ∈ I, and all (θi, θ−i) ∈ SC such that τ |

Of
i (θ−i)

(θi) = x, f(θi, θ−i) = x.

Proof: Immediate from Proposition 4, by setting S = {i}. 2

To prove Proposition 5 below, we also use the following remark:

Remark 1 If f is tops-only on SC, then the next statements are equivalent:

(A) For all θ, θ̄ ∈ SC such that τ |rf
(θi) = τ |rf

(θ̄i) for all i ∈ I, f(θ) = f(θ̄);

(B) For all i ∈ I, all (θi, θ−i) ∈ SC, and all θ̄i ∈ p(Θ) such that τ |rf
(θ̄i) =

τ |rf
(θi), f(θi, θ−i) = f(θ̄i, θ−i).

Proof:
(A) ⇒ (B): On the contrary, assume ∃ i ∈ I, (θi, θ−i) ∈ SC, and θ̄i ∈

p(Θ) such that τ |rf
(θ̄i) = τ |rf

(θi) and f(θi, θ−i) 6= f(θ̄i, θ−i). It is immediate
to see that this contradicts (A).

(B) ⇒ (A): Assume ∃ θ, θ′ ∈ SC such that τ |rf
(θi) = τ |rf

(θ′i) for all i ∈ I,
and f(θ) 6= f(θ′). Then, ∃ j ∈ I such that, f(θ′1, . . . , θ′j−1, θj , θj+1, . . . , θn) =
f(θ), while f(θ′1, . . . , θ′j−1, θ

′
j , θj+1, . . . , θn) 6= f(θ). Denote θ′′−j =

(θ′1, . . . , θ′j−1, θj+1, . . . , θn). Note that f(θj , θ
′′
−j) = f(θ) and f(θ′j , θ

′′
−j) 6=

f(θ). However, this contradicts (B), since τ |rf
(θj) = τ |rf

(θ′j). 2

Proposition 5 Suppose |I| = 2. A social choice function f is unanimous
and strategy-proof on SC only if it satisfies tops-only on SC.
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Proof: Assume, by contradiction, there exists a social choice function f
that is U and SP on SC, but not TO. Then, using Remark 1, there must
exist (θ1, θ2) ∈ SC and θ̄1 ∈ p(Θ) such that τ(θ̄1) = τ(θ1) and f(θ̄1, θ2) =
y 6= x = f(θ1, θ2).21 Without loss of generality, assume x < y. By SP,
x p(θ1) y and y p(θ̄1) x. Hence, τ(θ1) 6= x and τ(θ̄1) 6= y. Moreover, note
that x p(θ2) τ(θ1). Otherwise, 2 might manipulate f at (θ1, θ2) via θ̂2 = θ1,
generating by U τ(θ1). Using a similar argument, y p(θ2) τ(θ1).

Two cases are possible, depending on the location of x, y and τ(θ1):22

Case 1: x < τ(θ1) < y. Then, if θ2 > θ1, we have that x < τ(θ1) and
x p(θ2) τ(θ1) imply x p(θ1) τ(θ1): contradiction. Thus, θ2 < θ1. But then
τ(θ1) < y and y p(θ2) τ(θ1) imply, by SC, that y p(θ1) τ(θ1): contradiction.

Case 2: τ(θ1) < x < y. Suppose τ(θ2) = x. Then, θ2 > θ1. Otherwise,
θ2 < θ1, τ(θ1) < x and x p(θ2) τ(θ1) would imply, by SC, x p(θ1) τ(θ1). Sim-
ilarly, θ̄1 > θ2, since x p(θ2) y implies x p(θ) y for all θ ≤ θ2, and y p(θ̄1) x by
hypothesis. But, τ(θ1) p(θ̄1) x implies τ(θ1) p(θ) x for all θ ≤ θ̄1, contradict-
ing the fact that τ(θ2) = x. Therefore, x 6= τ(θj) for all j = 1, 2.

Next, suppose that θ2 < θ1. Then, τ(θ1) p(θ1) x implies τ(θ1) p(θ2) x:
contradiction. Thus, θ2 > θ1, and τ(θ2) > τ(θ1). Furthermore, θ2 > θ̄1:
(i) If θ2 = θ̄1, by U, f(θ̄1, θ2) = τ(θ1): contradiction; (ii) If θ2 < θ̄1,
τ(θ1) p(θ̄1) τ(θ2) implies τ(θ1) p(θ2) τ(θ2): contradiction. But then y p(θ2) x.
Otherwise, x p(θ2) y implies x p(θ̄1) y. And, τ(θ2) ≥ y. Otherwise, τ(θ2) < y
and τ(θ2) p(θ2) y would imply τ(θ2) p(θ̄1) y, contradicting again SP, because
1 would manipulate f at (θ̄1, θ2) via θ̂1 = θ2. So, we have a situation like in
Figure 6.

Note that y 6∈ Of
2 (θ1). Otherwise, ∃ θ′2 such that f(θ1, θ

′
2) = y. And

because y p(θ2) x, it follows that 2 would manipulate f at (θ1, θ2) via θ′2.
Now define a preference ordering θ̄2 “between” θ̄1 and θ2, such that (i)
τ |

Of
2 (θ̄1)

(θ̄2) = y, and (ii) τ |
Of

2 (θ1)
(θ̄2) = τ(θ1) (see Figure 7). By Corollary

2, f(θ̄1, θ̄2) = y and f(θ1, θ̄2) = τ(θ1). But then 1 would manipulate f at
(θ̄1, θ̄2) via θ1, contradicting that f is SP.

Therefore, using Cases 1 and 2, it follows that, if |I| = 2 and f is U and
SP, then f is also TO on SC. 2

Now, before generalizing Proposition 5 to |I| > 2, we first prove Proposi-
tion 3 of the main text, which extends the tops-only property to the option
sets generated by a unanimous and strategy-proof social choice function.

21Note that, under unanimity, τ |rf (θ̄1) = τ(θ̄1) and τ |rf (θ1) = τ(θ1). In the rest of the
paper, we use a similar argument on several occasions.

22The remaining situation, where x < y < τ(θ1), is similar to Case 2.
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Figure 6:

Proof of Proposition 3: We make the proof in five steps:

Step 1: Fix any i ∈ I and two subprofiles θ−i, θ−i ∈ p(Θ)n−1,

θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn), and
θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn),

such that for all j, k ∈ I\{i}, j 6= k, θj = θk and θj = θk, and for all
j ∈ I\{i}, τ(θj) = τ(θj) ≡ z. We want to show that Of

i (θ−i) = Of
i (θ−i).

To simplify the notation, let us write

θ−i = ( θ, . . . , θ︸ ︷︷ ︸
n−1 times

), and

θ−i = ( θ, . . . , θ︸ ︷︷ ︸
n−1 times

).

Define the sequence

θ0
−i = (θ, . . . , θ) = θ−i,

θ1
−i = (θ, θ, . . . , θ),

θ2
−i = (θ, θ, θ, . . . , θ),

...
...

θn−1
−i = (θ, . . . , θ) = θ−i.
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Figure 7:

To establish the result, it is enough to prove that, for all j = 1, . . . , n−1,
Of

i (θj
−i) = Of

i (θj−1
−i ). Assume, by contradiction, there exists x ∈ X such

that for some 1 ≤ j∗ ≤ n − 1, x ∈ Of
i (θj∗−1

−i ) and x 6∈ Of
i (θj∗

−i). By U,
z ∈ Of

i (θj∗−1
−i ) ∩Of

i (θj∗
−i), since θi can always be chosen as being either θ or

θ. Therefore z 6= x.
Let θ∗i be such that τ |

Of
i (θj∗−1

−i )
(θ∗i ) = x and τ |

Of
i (θj∗

−i)
(θ∗i ) = z. This type

belongs to p(Θ). Suppose not. That is, assume there exists a type θ̂i ∈ p(Θ)
with a dip at x on Of

i (θj∗−1
−i ), so that for some v, w ∈ Of

i (θj∗−1
−i ), v < x < w,

v p(θ̂i) x and w p(θ̂i) x. Since x ∈ Of
i (θj∗−1

−i ), there exists θ̃i ∈ p(Θ) such that
f(θ̃i, θ

j∗−1
−i ) = x. Thus, τ |

Of
i (θj∗−1

−i )
(θ̃i) = x and, therefore, θ̃i 6= θ̂i. If θ̃i < θ̂i,

SC implies v p(θ̃i) x. Instead, if θ̂i < θ̃i, again SC ⇒ w p(θ̃i) x. However,
since v, w ∈ Of

i (θj∗−1
−i ), this means that i can manipulate f at (θ̃i, θ

j∗−1
−i ):

contradiction. Hence, θ∗i ∈ p(Θ).
By Corollary 2, f(θ∗i , θ

j∗−1
−i ) = x and f(θ∗i , θ

j∗
−i) = z. However, since

z p(θ) x, the agent of type θ who deviates at round j∗ can manipulate f at
(θ∗i , θ

j∗−1
−i ) by reporting a type θ, which contradicts that f is SP. Therefore,

Of
i (θ−i) = Of

i (θ−i).
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Step 2: Fix j 6= i and θ′j , θ
′′
j ∈ p(Θ), such that τ(θ′j) = τ(θ′′j ). We

want to show that Of
i (θ′j , θ−{i,j}) = Of

i (θ′′j , θ−{i,j}). Define the two-person
social choice function g : p(Θ)2 → X, such that for all (θi, θj) ∈ p(Θ)2,
g(θi, θj) = f(θi, θj , θ−{i,j}). Since f is SP on SC, g is SP on p(Θ)2 and, by
Proposition 4, unanimous over rg = Of

{i,j}(θ−{i,j}). Two cases are possible.

Case 1: If τ |rg(θ′j) = τ |rg(θ′′j ), Step 1 implies Og
i (θ

′
j) = Og

i (θ
′′
j ). By con-

struction, Og
i (θ

′
j) = Of

i (θ′j , θ−{i,j}) and Og
i (θ

′′
j ) = Of

i (θ′′j , θ−{i,j}). Therefore,
Of

i (θ′j , θ−{i,j}) = Of
i (θ′′j , θ−{i,j}).

Case 2: If τ |rg(θ′j) = a 6= b = τ |rg(θ′′j ), Step 1 cannot be applied, because
this step rests on the existence of a common peak on the range of the social
choice function for the whole subprofile θk−1

−i , k = 1, . . . , n. Assume, by
contradiction, Og

i (θ
′
j) 6= Og

i (θ
′′
j ). Without loss of generality, suppose there

exists c ∈ rg such that c ∈ Og
i (θ

′
j) and c 6∈ Og

i (θ
′′
j ). Then, ∃ θ̃i ∈ p(Θ) such

that g(θ̃i, θ
′
j) = c. Let g(θ̃i, θ

′′
j ) = d 6= c (because c 6∈ Og

i (θ
′′
j )). Consider

θ̂j ∈ p(Θ) such that τ(θ̂j) = z and τ |rg(θ̂j) = a.23 This type exists because
τ(θ) = z and τ |rg(θ′j) = a. By Proposition 5, g is TO ⇒ g(θ̃i, θ̂j) = c.
By U of f , z ∈ Og

i (θ̂j). From Step 1, τ |rg(θ̂j) = τ |rg(θ′j) ⇒ Og
i (θ̂j) =

Og
i (θ

′
j) ⇒ z ∈ Og

i (θ
′
j). Repeating the argument, let θ+

j ∈ p(Θ) be such that
τ(θ+

j ) = z and τ |rg(θ
+
j ) = b.24 This type exists in p(Θ) because τ(θ) = z

and τ |rg(θ′′j ) = b. By TO, g(θ̃i, θ
+
j ) = d. By U, z ∈ Og

i (θ
+
j ). From Step 1,

Og
i (θ

+
j ) = Og

i (θ
′′
j ), meaning that z ∈ Og

i (θ
′′
j ). Therefore, z ∈ Og

i (θ
′
j)∩Og

i (θ
′′
j )

⇒ z 6= c. Moreover, z 6= d. Otherwise, j would manipulate g at (θ̃i, θ̂j) via
θ′′j . Note that τ |rg(θ̃i) 6= z. Otherwise, g(θ̃i, θ̂j) = z 6= c. Furthermore, since
c 6= d, either τ |rg(θ̃i) 6= c or τ |rg(θ̃i) 6= d. Suppose the latter, i.e. τ |rg(θ̃i) 6= d.
Consider θ+

i ∈ p(Θ) such that τ |rg(θ
+
i ) = τ |rg(θ̃i), and z p(θ+

i ) d. By TO,
g(θ+

i , θ+
j ) = d. Thus, i can manipulate g at (θ+

i , θ+
j ) via θ: contradiction.

Hence, using Cases 1 and 2 above, we conclude that Of
i (θ′j , θ−{i,j}) =

Of
i (θ′′j , θ−{i,j}). And, following a similar reasoning, we also have that

Of
i (θ′j , θ−{i,j}) = Of

i (θ′′j , θ−{i,j}).

Step 3: Next we prove that Of
i (θ′j , θ−{i,j}) = Of

i (θ′′j , θ−{i,j}). From Step
2, we know that Of

i (θ′′j , θ−{i,j}) = Of
i (θ′j , θ−{i,j}). Hence, it is enough to

show that Of
i (θ′j , θ−{i,j}) = Of

i (θ′j , θ−{i,j}). Proceeding as in Step 1, define

23Note that we are not assuming that z 6= a.
24Again we are not assuming z 6= b.
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the sequence

θ0
−{i,j} = (θ, . . . , θ) = θ−{i,j},

θ1
−{i,j} = (θ, θ, . . . , θ),

...
...

θn−2
−{i,j} = (θ, . . . , θ) = θ−{i,j}.

To show that Of
i (θ′j , θ−{i,j}) = Of

i (θ′j , θ−{i,j}), it is enough to prove
that for all k = 1, . . . , n − 2, Of

i (θ′j , θ
k−1
−{i,j}) = Of

i (θ′j , θ
k
−{i,j}). Suppose,

by contradiction, there exists 1 ≤ k∗ ≤ n − 2 such that Of
i (θ′j , θ

k∗−1
−{i,j}) 6=

Of
i (θ′j , θ

k∗
−{i,j}). Without loss of generality, let x ∈ X be such that,

x ∈ Of
i (θ′j , θ

k∗−1
−{i,j}) and x 6∈ Of

i (θ′j , θ
k∗
−{i,j}) (1)

Recall that

θk∗−1
−{i,j} = ( θ, . . . , θ︸ ︷︷ ︸

k∗−1

, θ, . . . , θ︸ ︷︷ ︸
n−k∗−1

), and

θk∗
−{i,j} = ( θ, . . . , θ, θ︸ ︷︷ ︸

k∗

, θ, . . . , θ︸ ︷︷ ︸
n−k∗−2

).

That is, profiles θk∗−1
−{i,j} and θk∗

−{i,j} differ only in one preference relation
(but both rankings have the same peak, because τ(θ) = τ(θ) = z). Abusing
a bit the notation, we assume this ordering corresponds to agent k∗. Now
fix the preferences of everybody, except i and k∗, at (θ′j , θ

k∗−1
−{i,j,k∗}), and

define the two-person social choice function g : p(Θ)2 → X, such that for
all (θi, θk∗) ∈ p(Θ)2, g(θi, θk∗) = f(θi, θk∗ , θ

′
j , θ

k∗−1
−{i,j,k∗}). Note that g is SP

on p(Θ)2 and unanimous over rg = Of
{i,k∗}(θ

′
j , θ

k∗−1
−{i,j,k∗}). By Proposition

5, g is TO on p(Θ)2. By definition, τ(θk∗) = τ(θk∗) = z. From (1), there
exists θ̃i ∈ p(Θ) such that g(θ̃i, θk∗) = x and g(θ̃i, θk∗) 6= x. Thus, repeating
the argument of Step 2, we get the desired contradiction with SP. Hence,
Of

i (θ′j , θ−{i,j}) = Of
i (θ′′j , θ−{i,j}).

Step 4: Suppose Of
i (θ′K , θK\{i}) = Of

i (θ′′K , θK\{i}) for some K ⊂ I\{i}
and θ′K , θ′′K ∈ p(Θ)K such that τ(θ′j) = τ(θ′′j ) for all j ∈ K.25 Fix

25Note that Step 3 deals with the particular case where K = {j}.
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any k ∈ K, and θ′k, θ′′k ∈ p(Θ) such that τ(θ′k) = τ(θ′′k). We want
to show that Of

i (θ′K∪{k}, θK\{i,k}) = Of
i (θ′′K∪{k}, θK\{i,k}), which is equiv-

alent to prove that Of
i (θ′K∪{k}, θK\{i,k}) = Of

i (θ′′K∪{k}, θK\{i,k}). Define
the (|K| + 2)-person social choice function g : p(Θ)|K|+2 → X, such
that for all (θi, θK∪{k}) ∈ p(Θ)|K|+2, g(θi, θK∪{k}) = f(θi, θK∪{k}, θK\{i,k}).

By Step 3, Og
i (θ

′
K , θ′k) = Og

i (θ
′′
K , θ′′k). Hence, Of

i (θ′K∪{k}, θK\{i,k}) =

Of
i (θ′′K∪{k}, θK\{i,k}). In particular, since this is true for any K ⊂ I\{i},

we have that Of
i (θ′1, . . . , θ′i−1, θ

′
i+1, . . . , θ

′
n) = Of

i (θ′′1 , . . . , θ′′i−1, θ
′′
i+1, . . . , θ

′′
n)

or, more compactly, Of
i (θ′−i) = Of

i (θ′′−i).

Step 5: Finally, assume Of
S(θ′̄

S
) = Of

S(θ′′̄
S
) for some S ⊂ I, where

τ(θ′j) = τ(θ′′j ) for all j ∈ S̄. Notice that, if S = {i}, then we
have the previous result, i.e. Of

i (θ′−i) = Of
i (θ′′−i). Fix h ∈ S̄.

We want to show that Of
S∪{h}(θ

′̄
S\{h}) = Of

S∪{h}(θ
′′̄
S\{h}). Suppose

not. Without loss of generality, assume there exists x ∈ X such that
x ∈ Of

S∪{h}(θ
′̄
S\{h}) and x 6∈ Of

S∪{h}(θ
′′̄
S\{h}). Then, ∃ θ̃S∪{h} ∈ p(Θ)|S|+1

such that f(θ̃S∪{h}, θ′̄S\{h}) = x. Fix θ̃S ∈ p(Θ)|S| and define the

|S̄|-person social choice function g : p(Θ)|S̄| → X, such that for all
θS̄ ∈ p(Θ)|S̄|, g(θS̄) = f(θ̃S , θS̄). Since g is SP and U over rg, from
Step 4 it follows that Og

h(θ′̄
S\{h}) = Og

h(θ′′̄
S\{h}). Hence, by definition,

Of
h(θ̃S , θ′̄

S\{h}) = Of
h(θ̃S , θ′′̄

S\{h}) ⇒ x ∈ Of
h(θ̃S , θ′′̄

S\{h}). That is, ∃θ̂h ∈ p(Θ)

such that f(θ̂h, θ̃S , θ′′̄
S\{h}) = x ⇒ x ∈ Of

S∪{h}(θ
′′̄
S\{h}): contradiction.

Therefore, for all h ∈ S̄, Of
S∪{h}(θ

′̄
S\{h}) = Of

S∪{h}(θ
′′̄
S\{h}). And, since

S ⊂ I and θ′, θ′′ ∈ SC were arbitrarily chosen, this completes the proof. 2

Finally, before proving Theorem 2, we show that a U and SP social choice
function must also satisfy top-monotonicity on SC. Roughly speaking, this
property ensures that collective choices do not respond perversely to changes
in individuals’ ideal points.

Definition 8 (TM) A social choice function f is top-monotonic on SC if
for all i ∈ I, all (θi, θ−i) ∈ SC, and all θ′i ∈ p(Θ) such that τ |rf

(θ′i) ≥
τ |rf

(θi), f(θ′i, θ−i) ≥ f(θi, θ−i).

Like in the text, now let us assume until the end of the Appendix that
p(θi) (respectively, p(θi)) denote agent i’s most leftist (respectively, rightist)
preference relation on X.

30



Lemma 2 If a social choice function f is unanimous and strategy-proof on
SC, then f is top-monotonic.

Proof: Let f be U and SP on SC. Consider any individual i ∈ I, any
profile (θi, θ−i) ∈ SC and any admissible deviation θ′i ∈ p(Θ), such that
τ(θ′i) ≥ τ(θi). We want to show that f(θ′i, θ−i) ≥ f(θi, θ−i). Three cases are
possible:

1. If τ(θi) ≥ f(θi, θ−i) ⇒ m3(τ(θi), f(θi, θ−i), f(θi, θ−i)) =
m3(τ(θ′i), f(θi, θ−i), f(θi, θ−i)), because SP implies that
f(θi, θ−i) ≤ f(θi, θ−i), and τ(θi) ≤ τ(θ′i) by hypothesis. There-
fore, by Lemma 1, f(θ′i, θ−i) = f(θi, θ−i);

2. If f(θi, θ−i) < τ(θi) < f(θi, θ−i), then m3(τ(θi), f(θi, θ−i), f(θi, θ−i))
= τ(θi) and, given that τ(θ′i) ≥ τ(θi), m3(τ(θ′i), f(θi, θ−i), f(θi, θ−i)) ≥
τ(θi). Therefore, by Lemma 1, f(θ′i, θ−i) ≥ f(θi, θ−i);

3. Finally, if τ(θi) ≤ f(θi, θ−i), then m3(τ(θi), f(θi, θ−i), f(θi, θ−i)) =
f(θi, θ−i) ≤ m3(τ(θ′i), f(θi, θ−i), f(θi, θ−i)). Hence, by Lemma 1,
f(θ′i, θ−i) ≥ f(θi, θ−i). 2

We are now ready to prove Theorem 2.

Proof of Theorem 2: (Sufficiency) Immediate from Proposition 2 and
the definition of positional dictators.

(Necessity) Suppose f is U, A and SP on SC. We want to show
that f ∈ PD. By Theorem 3, f is TO on SC. Consider first the case
where |I| = 2. Fix a profile θ ∈ SC. Without loss of generality, assume
τ(θ1) ≤ τ(θ2). By Lemma 1, f(θ1, θ2) = m3(τ(θ1), f(θ1, θ2), f(θ1, θ2)). Ap-
plying Lemma 1 once again, f(θ1, θ2) = m3(τ(θ2), f(θ1, θ2), f(θ1, θ2)), and
f(θ1, θ2) = m3(τ(θ2), f(θ1, θ2), f(θ1, θ2)). By unanimity, f(θ1, θ2) = X and
f(θ1, θ2) = X. By anonymity, f(θ1, θ2) = f(θ1, θ2). Furthermore, by SP,
f(θ1, θ2), f(θ1, θ2) ∈ {X, X}. Suppose not. That is, assume for instance
that f(θ1, θ2) = z ∈ X\{X, X}.

Then, as we show in Figure 8 below, there must exist a type θ′1 ∈ p(Θ)
such that τ(θ′1) = τ(θ1), and X p(θ′1) z. By TO, f(θ′1, θ2) = f(θ1, θ2) = z
⇒ agent 1 would manipulate f at (θ′1, θ2) via θ1: contradiction. Thus,
f(θ1, θ2), f(θ1, θ2) ∈ {X,X}. Furthermore, if f(θ1, θ2) = f(θ1, θ2) = X,
f(θ1, θ2) = m3(τ(θ2), X,X) = X, and f(θ1, θ2) = m3(τ(θ2), X, X) =
τ(θ2). Thus, f(θ1, θ2) = m3(τ(θ1), X, τ(θ2)) = τ(θ1). Instead, if
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Figure 8:

f(θ1, θ2) = f(θ1, θ2) = X, then a similar reasoning shows that f(θ1, θ2) =
m3(τ(θ1), τ(θ2), X) = τ(θ2).

Thus, if |I| = 2 and f satisfies the hypotheses of Theorem 2, (i.e. f
is U, A and SP), the previous paragraphs show that there exists a pa-
rameter (or fixed ballot) α ∈ {X, X} such that, for all θ ∈ SC, f(θ) =
m3(τ(θ1), τ(θ2), α). Hence, f ∈ PD.

Now, suppose |I| = 3. Take any profile θ ∈ SC. Without loss of gener-
ality, relabel I if necessary so that τ(θ1) ≤ τ(θ2) ≤ τ(θ3). Using Lemma 1,
it is easy to see that,

f(θ) = m3
[
τ(θ1), m3

(
τ(θ2), m3(τ(θ3), a3, a2), m3(τ(θ3), a2, a1)

)
,

m3
(
τ(θ2), m3(τ(θ3), a2, a1), m3(τ(θ3), a1, a0)

)]
, (2)

where a3 = f(θ1, θ2, θ3), a0 = f(θ1, θ2, θ3), and

a2 = f(θ1, θ2, θ3) = f(θ1, θ2, θ3) = f(θ1, θ2, θ3), (3)

and
a1 = f(θ1, θ2, θ3) = f(θ1, θ2, θ3) = f(θ1, θ2, θ3), (4)

where the equalities in (3) and in (4), respectively, follow from the fact that
f is A on SC. By U and TM, we have that X = a0 ≥ a1 ≥ a2 ≥ a3 = X.
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By SP, a1, a2 ∈ {X, X}. Otherwise, if for example f(θ1, θ2, θ3) = z ∈
X\{X, X}, we can define an ordering θ′1 ∈ p(Θ) such that τ(θ′1) = τ(θ) = X
and X p(θ′1) z. By TO, f(θ′1, θ2, θ3) = f(θ1, θ2, θ3) ⇒ agent 1 would like to
manipulate f at (θ′1, θ2, θ3) via θ1. Then,

i If τ(θ1) ≥ a0, then ∀ i = 1, 2, 3, τ(θi) = X. Thus, independently of
the distribution of a1 and a2, it follows from (2) that f(θ) = X;

ii Similarly, if τ(θ3) ≤ a3, then ∀ i = 1, 2, 3, τ(θi) = X, and f(θ) = X;

iii If a1 = X, then a2 = X, because, by TM, a1 ≥ a2. Therefore, (2) can
be rewritten as f(θ) = m3(τ(θ1), X, τ(θ2)) = τ(θ1);

iv Similarly, if a2 = X, then a1 = X, and f(θ) = m3(τ(θ1), τ(θ3), X) =
τ(θ3);

v Finally, if a1 = X and a2 = X, then (2) can be rewritten as f(θ) =
m3(τ(θ1), τ(θ2), τ(θ3)) = τ(θ2).

Thus, since θ was arbitrarily chosen, (i)-(v) imply that, if |I| = 3 and f
is A, U and SP, then there exists α1, α2 ∈ {X, X} such that, for all θ ∈ SC,
f(θ) = m5(τ(θ1), τ(θ2), τ(θ3), α1, α2). Hence, f ∈ PD.

Now let us extend the proof to |I| = n > 3. For all K ⊆ I, let
a|K| = f(θK , θK̄), where K̄ = I\K. By unanimity, K = ∅ implies
a0 = f(θ1, . . . , θn) = X. Similarly, if K = I, then an = f(θ1, . . . , θn) = X.
By anonymity,

a1 = f(θi, θ−i), ∀ {i} ⊂ I,

a2 = f(θ{i,j}, θ−{i,j}), ∀ {i, j} ⊆ I,

...
...

an−1 = f(θ−j , θj), ∀ {j} ⊂ I.

Thus, by top-monotonicity, a0 ≥ a1 ≥ a2 ≥ . . . ≥ an−1 ≥ an. More-
over, for all k = 0, 1, . . . , n, ak ∈ {X, X}. In effect, if either k = 0
or k = n, then the result follows immediately from U. So, assume that
ak ∈ {X, X} for some k = 0, 1, . . . , n − 2, and let us prove the claim
for ak+1. On the contrary, suppose ak+1 6∈ {X, X}. Specifically, assume
ak+1 = f(θ1, . . . , θk+1, θk+2, . . . , θn) = z ∈ X\{X,X}. Without loss of gen-
erality, let ak = f(θ1, . . . , θk, θk+1, . . . , θn) = X. Consider θ′k+1 ∈ p(Θ) such
that τ(θ′k+1) = τ(θk+1) and X p(θ′k+1) z (recall Figure 8 above). By TO,
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f(θ1, . . . , θk, θ
′
k+1, θk+2, . . . , θn) = z ⇒ agent k + 1 would like to manipulate

f at (θ1, . . . , θk, θ
′
k+1, θk+2, . . . , θn) via θk+1: contradiction.

Now, fix any profile θ ∈ SC, and relabel I if necessary, so that τ(θ1) ≤
τ(θ2) ≤ . . . ≤ τ(θn). By repeated application of Lemma 1, for all n > 3,

f(θ) = m3
[
τ(θ1),m3

(
τ(θ2), . . . ,m3

(
τ(θn−1),m3 (τ(θn), an, an−1) ,m3 (τ(θn), an−1, an−2)

)
,

, . . . , m3
(
τ(θn−1), m3 (τ(θn), a3, a2) ,m3 (τ(θn), a2, a1)

)
, . . . ,

m3
(
τ(θ2), . . . , m3

(
τ(θn−1),m3 (τ(θn), a2, a1) ,m3 (τ(θn), a1, a0)

))]
. (5)

The following cases are possible:

i If τ(θ1) ≥ a0, then ∀ i = 1, . . . , n, τ(θi) = X, and it follows from (5)
that f(θ) = m3(τ(θ1), a1, a0) = X;

ii If τ(θn) ≤ an, then ∀ i = 1, . . . , n, τ(θi) = X, and we have from (5)
that f(θ) = m3(τ(θ1), an, an−1) = X;

iii If ∀ k = 1, . . . , n−1, ak = X, then f(θ) = m3(τ(θ1), τ(θn), X) = τ(θn);

iv If ∀ k = 1, . . . , n−1, ak = X, then f(θ) = m3(τ(θ1), X, τ(θ2)) = τ(θ1);

v Finally, if for some k = 1, 2, . . . , n − 2, a1 = . . . = ak = X
and ak+1 = . . . = an−1 = X, then (5) implies that f(θ) =
m3(τ(θ1), τ(θk+1), τ(θk+2)) = τ(θk+1).

Therefore, since θ ∈ SC was arbitrarily chosen and, for every k =
0, 1 . . . , n, ak is independent of θ, if f is A, U and SP, then items (i)-(v)
imply that there exist n − 1 parameters α1, α2, . . . , αn−1 on {X, X} such
that, for all θ ∈ SC, f(θ) = m2n−1(τ(θ1), τ(θ2), . . . , τ(θn), α1, . . . , αn−1).
Hence, f ∈ PD. 2
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[3] Barberà, S., and M. Jackson, (1994), A characterization of social choice func-
tions for economies with pure public goods, Social Choice and Welfare 11,
241-52.

34



[4] Berga, D., (1998), Strategy-proofness and single-plateaued preferences, Math-
ematical Social Sciences 35, 105-20.

[5] Black, D., (1948), On the rationale of group decision making, Journal of Po-
litical Economy 56, 23-34.

[6] Border, K., and J. Jordan, (1983), Straightforward elections, unanimity and
phantom voters, Review of Economic Studies 50, 153-70.

[7] Calabrese, S., Epple, D., Romer, T., and H. Sieg, (2006), Local public good
provision: voting, peer effects, and mobility, Journal of Public Economics 90,
959-81.

[8] Campbell, D., and J. Kelly, (2003b), A strategy-proofness characterization of
majority rule, Economic Theory 22, 557-68.

[9] Ching, S., (1997), Strategy-proofness and “median voters”, International
Journal of Game Theory 26, 473-90.

[10] Demange, G., (1994), Intermediate preferences and stable coalition structures,
Journal of Mathematical Economics 23, 45-58.

[11] Eguia, J., (2007), Citizen candidates under uncertainty, Social Choice and
Welfare 29, 317-31.

[12] Ehlers, L., Peters, H., and T. Storcken, (2002), Strategy-proof probabilis-
tic decision schemes for one-dimensional single-peaked preferences, Journal of
Economic Theory 105, 408-34.

[13] Epple, D., Filimon, R., and T. Romer, (1993), Existence of voting and housing
equilibrium in a system of communities with property taxes, Regional Science
and Urban Economics 23, 585-610.

[14] Epple, D., and G. Platt, (1998), Equilibrium among jurisdictions when house-
holds differ by preferences and income, Journal of Urban Economics 43, 23-51.

[15] Epple, D., Romer, T., and H. Sieg, (2001), Interjurisdictional sorting and
majority rule: an empirical analysis, Econometrica 69, 1437-65.

[16] Epple, D., Romano, R., and H. Sieg, (2006), Admission, tuition and financial
aid policies in the market for higher education, Econometrica 74, 885-928.

[17] Gans, J., and M. Smart, (1996), Majority voting with single-crossing prefer-
ences, Journal of Public Economics 59, 219-37.

[18] Gibbard, A., (1973), Manipulation of voting schemes: a general result, Econo-
metrica 41, 587-601.

35



[19] Grandmont, J., (1978), Intermediate preferences and the majority rule, Econo-
metrica 46, 317-30.

[20] Kung, F., (2006), An algorithm for stable and equitable coalition structures
with public goods, Journal of Public Economic Theory 8, 345-55.

[21] List, C., (2001), A possibility theorem on aggregation over multiple intercon-
nected propositions, Mathematical Social Sciences 45, 1-13.

[22] Le Breton, M., and J. Weymark, (1999), Strategy-proof social choice with
continuous separable preferences, Journal of Mathematical Economics 32, 47-
85.

[23] Meltzer, A., and S. Richard, (1981), A rational theory of the size of govern-
ment, Journal of Political Economy 89, 914-27.

[24] Moulin, H., (1980), On strategy-proofness and single-peakedness, Public
Choice 35, 437-55.

[25] Moulin, H., (1988), Axioms of Cooperative Decision Making, Cambridge:
Cambridge University Press.

[26] Myerson, R., (1996), Fundamentals of social choice theory, Discussion Paper
No 1162, Math Center, Northwestern University.

[27] Persson, T., and G. Tabellini, (2000), Political Economics: Explaining Eco-
nomic Policy, Cambridge, MA: MIT Press.

[28] Roberts, K., (1977), Voting over income tax schedules, Journal of Public Eco-
nomics 8, 329-40.

[29] Rothstein, P., (1990), Order-restricted preferences and majority rule, Social
Choice and Welfare 7, 331-42.

[30] Rothstein, P., (1991), Representative voter theorems, Public Choice 72, 193-
212.

[31] Saporiti, A., (2005), Allocation rules on intermediate preference domains,
manuscript.

[32] Saporiti, A., (2007), On single-crossing and order-restriction, manuscript.
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