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Abstract

In the empirical literature on the estimation of firm and worker heterogeneity using
linked employer-employee data, it appears that unobserved worker quality appears
to be negatively correlated with unobserved firm quality. Following a suggestion
made by Barth & Dale-Olsen (2003) and Abowd, Kramarz, Lengermann & Perez-
Duarte (2004), we investigate the possibility that this is simply caused by standard
estimation error. We develop formulae that show that the estimated correlation
is biased downwards if there is true positive assortative matching and when any
conditioning covariates are uncorrelated with the firm- and worker- fixed-effects.
This result applies to any two-way (or higher) error-components model estimated
by fixed-effects methods. We apply these bias corrections to a large German linked
employer-employee dataset. We find that although the biases can be considerable,
they are not sufficiently large to remove the negative correlation entirely.
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1 Introduction

There is a rapidly-growing empirical literature which uses linked employer-employee

data to estimate the contribution of worker and firm heterogeneity to outcomes in

the labour market. Much of this literature stems from Abowd, Kramarz & Margolis

(1999) (henceforth AKM) and related papers.1 An important issue in the literature

is the relationship between the unobserved worker- and firm-components of wages.

Models of assignment imply positive assortative matching and therefore a positive

correlation between worker and firm productivities. In the words of AKM: “high-

wage workers and high-wage firms” match together.

However, a puzzle has emerged, in that the unobserved component of workers’ wages

appears to be negatively correlated with the unobserved component of firms’ aver-

age wages. Apart from AKM’s original study, which reported a positive correlation,

all subsequent work has reported negative correlations. Abowd, Creecy & Kramarz

(2002) report correlations of −0.28 for French data and −0.03 for data from Wash-

ington State, whereas Goux & Maurin (1999), using French different data, find a

correlation ranging from +0.01 to −0.32 depending on the time period chosen.2

Gruetter & Lalive (2004) report a correlation of −0.27 for Austrian data. All of

these are weaker than Barth & Dale-Olsen’s (2003) correlations of between −0.47

and −0.55 for Norwegian data. In other words, when focussing on unobserved com-

ponents, low wage workers tend to work in high wage firms, and vice versa. This

seems counter-intuitive in the light of theories of assortative matching.

There are two possible explanations for this emerging stylised fact. The first, sug-

gested by Barth & Dale-Olsen (2003) and Abowd et al. (2004), is that the observed

negative correlation is simply the result of using standard econometric techniques.

Because the estimates of the worker and firm dummies are estimated with error,

it is possible that the estimated correlation between them is biased downwards. It

is not immediately obvious why this is so, but an over-estimate of a worker effect

leads to, on average, to an under-estimate of a firm effect. The second explanation

focuses on whether there any genuine economic explanations for why there might be

negative assortative matching. Again, see Abowd et al. (2004).

In this paper, we focus on the first explanation. We derive formulae for the bias

1See also Abowd & Kramarz (1999) and Haltiwanger, Lane, Spletzer, Theeuwes & Troske (1999)
for early surveys of the wide range of issues covered in this literature.

2AKM originally used an approximation to the LSDV estimator. Abowd et al. (2002) re-
estimated these models using the exact solution they developed subsequently. This is why AKM’s
results look like outliers.
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in the sampling distribution of the covariance between the unobserved worker- and

firm-components of wages, and the biases in the variances of both components.

When there are no conditioning covariates in the model, or when these covariates

are not correlated with the worker and firm dummies, we show that the bias in the

correlation is unambiguously negative when there is positive assortative matching.

However, it is possible, but unlikely, that the bias can become positive when there

is a strong correlation between the observed covariates and the worker and firm

dummies. Subject to possible size constraints, the bias can be computed for any

given dataset.

We also show that the extent of the bias depends on how much worker mobility

each firm experiences, which itself depends on the key features of a given dataset.

These include the length of the panel, the average size of firms (more generally, the

firm-size distribution), and the error variance of the model. To analyse the impact

of these features, we simulate a data generation process which creates an artificial

linked employer-employee dataset which exhibits positive assortative matching; with

this we estimate the parameters of the model using standard methods, and compute

the biases using the formulae we have developed.

Ultimately, the size of the bias is an empirical issue, and should be computed for

every application of linked employee-employer data. More importantly, this result

applies to any two-way (or higher) error-components model estimated by fixed-effects

methods. For example, an estimate of a true positive correlation between unobserv-

ably good schools and unobservably good pupils would be biased downwards.

Because it is possible that all of the negative estimates obtained thus far in the

literature are consistent with positive assortative matching, we give an example us-

ing German linked data, from the Institut für Arbeitsmarkt– und Berufsforschung,

Nürnberg (hereafter IAB).3 It turns out that our bias correction moves the estimate

of the correlation from −0.19 to −0.15, and so the econometric explanation—the sta-

tistical artefact of the title—is not sufficient to explain negative assortative matching

on its own. We then find that the choice of sample is also important, namely whether

small plants are excluded from the analysis and whether movers and analysed sep-

arately from non-movers. Then our bias-corrected estimate of the correlation is

0.23.

The structure of the paper is as follows. In Section 2 we outline the generic model

3Like us, Abowd et al. (2004) investigate the same issue, but conclude that the zero or negative
correlation between person and firm effects is not explained by estimation biases due to lack of
mobility in their data. This is probably because their data have many movers or because they
assume that the true correlation is zero.
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used in most of the literature and we explain the methods that are used to estimate

the parameters of this model. In Section 3 we derive expressions for the biases in

the correlation. In Section 4, we generate simulated data that are used to determine

those features of the data which cause the bias; Section 5 presents the results of

these simulations. In Section 6 we report what happens with our example using

German linked data, and Section 7 concludes.

2 The generic model

Consider a model of wages with both employer and employee unobserved hetero-

geneity and employer and employee observed covariates:

yit = µ+ xitβ1 + wjtβ2 + uiη + qjρ+ αi + φj + εit. (1)

There are i = 1, . . . , N workers, j = 1, . . . , J firms and t = 1. . . . , T years. yit is the

dependent variable (in this case wages); xit and ui are vectors of observable i-level

covariates; wjt and qj are vectors of observable j-level covariates.4 αi and φj are

(scalar) unobserved heterogeneities. It is usual to assume that both are correlated

with the observable components of wages. Models of positive assortative matching

would also imply that they are positively correlated with each other. Note that

both αi and ui are variables that are time-invariant for workers. Similarly, φj and

qj are fixed over time for firms. xit, on the other hand, varies across i and t, and

wjt varies across j and t. Equation (1) therefore contains all four possible types of

information which a researcher might have about workers and firms. There are K

observed covariates in total.

Both workers and firms are assumed to enter and exit the panel, which means we

have an unbalanced panel with Ti observations per worker. There are N∗ =
∑N

i=1 Ti

observations (worker-years) in total. Individuals also change firms. This is crucial,

as the parameters in fixed-effects models are identified by changers. Throughout we

assume strict exogeneity, namely that

E(εit|xi1, . . . , xiT , wj1, . . . , wjT , αi, φj) = 0. (2)

This implies that workers’ mobility decisions are independent of εit. However, it is

4A more precise notation would be to write wj(it)t, where the function j(it) maps worker i at
time t to firm j. This emphasises the point that the unit of observation is an worker/year, but it
is more cumbersome.
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worth noting that mobility may be a function of the observables αi and φj. Indeed,

positive assortative matching requires that worker mobility is non-random with re-

spect to αi and φj.

As shown by AKM, in the presence of any correlations across the two sides of the

market, that is correlations between unobserved/observed worker characteristics and

unobserved/observed firm characteristics, there are omitted-variables biases which

arise when estimating Equation (1) using data from only one side of the market.

It is usual to assume that the heterogeneity terms αi and φj are correlated with

the observables from the same side of the market. This means that random effects

methods are biased and inconsistent, and so fixed effects methods are needed to

estimate the parameters of interest. This means that [η, ρ], the parameter vector

associated with the time-invariant variables, is not identified. Rather than dropping

[ui, qj], it is usual to define θi ≡ αi + uiη and ψj ≡ φj + qjρ giving

yit = µ+ xitβ1 + wjtβ2 + θi + ψj + εit. (3)

This is because estimates of [η, ρ] can be recovered by making the additional random

effects assumptions if the investigator so requires (as AKM do). Equation (3) is the

generic model that represents most of the existing literature. The particular focus

of this paper is on the estimation of the worker and firm fixed effects, θi and ψj, and

their correlation with each other.

We now write the model in matrix notation:

y = Zγ +Dθ + Fψ + ε (4)

where y and ε are N∗ × 1 vectors, D is a N∗ × N matrix of worker dummies, F

is a N∗ × J matrix of firm dummies, and Z = [X,W ], where X represents worker

covariates and W represents firm covariates. Z is a N∗ ×K matrix. θ is a N × 1

parameter vector, ψ is a J × 1 parameter vector, and γ is a K× 1 parameter vector.

Because one firm dummy is dropped, J is redefined accordingly, and note that Z

does not contain a constant.

If one is not interested in the estimates of θi and ψj themselves, a consistent estimate

of γ from Equation (4) is straightforward to obtain by time-demeaning within each

unique worker-firm combination (or “spell”). This is because for each spell of a

worker within a firm neither θi nor ψj vary, and so time-demeaning removes both

terms. However, we are interested in the estimates of θi and ψj themselves, so this

solution is not useful because it allows us to recover only the sum θi + ψj after
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estimation, and not the worker components (see AKM). It is worth noting, however,

that for many researchers this “spell fixed effects” (Spell FE) method is a practical

and simple solution which does not present any computational difficulty.

As noted by AKM, the Least Squares Dummy Variable (LSDV) estimator of Equa-

tion (3) requires the estimation of N worker effects and (approximately) J firm

effects. N is often in the order of millions, and J is often in the order of thousands,

or tens of thousands. For most realistic values of N and J this is not a practical

solution. In standard linear panel data models—that is, where the firm effects are

absent—the LSDV estimator gives identical results to models where the heterogene-

ity is removed algebraically, by taking deviations from the mean of all variables in

Equation (4). However, there appears to be no algebraic transformation of the ob-

servables that sweeps away both firm and worker effects, nor which allows them to

be recovered subsequently. This is because of the lack of patterning between workers

and their employers.5

To circumvent this problem, AKM note that explicitly including dummy variables

for the firm heterogeneity, but sweeping out the worker heterogeneity algebraically,

gives exactly the same solution as the LSDV estimator. In other words, Equation (4)

is transformed by sweeping out the matrix of worker dummies D using MD ≡ IN∗ −

D(DTD)−1DT :

MDy = MDZγ +MDFψ +MDε. (5)

In words, yit − ȳi is regressed on the vector of covariates zit − z̄i and on J mean-

deviated firm dummies F j
it − F̄ j

i , where F j
it is the j-th column of F , and r̄i =

(
∑

t rit)/Ti for any variable r.

To distinguish this estimator from the standard LSDV estimator, hereafter we label

this estimator as “FEiLSDVj”. They are identical estimators, but differ in how they

are computed. The covariance matrix for FEiLSDVj needs the standard degrees-of-

freedom adjustment.

To obtain estimates of the worker heterogeneity, note that

Dθ̂ = PDy − PDZγ̂ − PDFψ̂, (6)

where PD ≡ D(DTD)−1DT . This equation gives the intuition as to why there is

an observed negative correlation between θ̂ and ψ̂ (as noted by Barth & Dale-Olsen

(2003) and Abowd et al. (2004)). To see this, write out Equation (6) explicitly for

5More precisely, sort the data by workers, and the firm dummies are unpatterned; sort the data
by firms, and the worker dummies are unpatterned.
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each worker:

θ̂i = ȳi − ψ̂i − z̄iγ̂, (7)

where ψ̂i averages ψ̂j(it) over t. As the ψj are estimated by LSDV, they are sub-

ject to the usual sampling variation (the firm dummies are no different from any

other observed covariate). Once estimated, each ψ̂j generates a number of θ̂i, via

Equation (7). If a ψj is over-estimated, then, on average, the corresponding θi are

under-estimated, and vice versa. This implies that the estimated correlation be-

tween θi and ψj is biased downwards. An expression for this bias is formulated in

the next section.

3 The bias

After estimation, one computes the sample variance over all N∗ estimates of θi (N

of which are distinct), the sample variance over all N∗ estimates of ψj (J of which

are distinct, if all are identified)6, and the sample covariance between these two

unobserved components:

Sψ̂ψ̂ =
1

N∗ − 1

∑

it

(ψ̂j −
¯̂
ψ)2 =

1

N∗ − 1
ψ̂TF TAFψ̂, (8)

Sθ̂θ̂ =
1

N∗ − 1

∑

it

(θ̂i −
¯̂
θ)2 =

1

N∗ − 1
θ̂TDTADθ̂ (9)

Sθ̂ψ̂ =
1

N∗ − 1

∑

it

(θ̂i −
¯̂
θ)(ψ̂j −

¯̂
ψ) =

1

N∗ − 1
θ̂TDTAFψ̂. (10)

The it-th element of the N∗ × 1 vector Dθ̂ comprises θ̂i and the it-th element of the

N∗× 1 vector Fψ̂ comprises ψ̂j.
¯̂
θ averages θ̂i over all of worker i’s observations and

similarly
¯̂
ψ averages ψ̂j over all of firm j’s observations. Because these averages are

non-zero, this gives rise to A in these expressions, where A = IN∗ − 1
(
1T1

)
−1

1T is

the projection matrix producing mean deviations, and 1 is a N∗ × 1 vector of ones.

We emphasise that each of Sψ̂ψ̂, Sθ̂θ̂ and Sψ̂θ̂ is computed over N∗ observations, that

is, a given θ̂i is summed over Ti observations and a given ψ̂j is summed over as many

worker-periods the firm is observed in the data. These could be computed over N

worker-level observations or J firm-level observations, but it seems sensible to use

weighted averages, and so we do not develop these formulae here.

The vectors θ̂ and ψ̂ suffer standard least-squares estimation error, and so we com-

6A ψj for a firm with no movement is not identified.
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pare the means of the sampling distributions of Sψ̂ψ̂, Sθ̂θ̂ and Sψ̂θ̂ with their respective

true values Sψψ, Sθθ and Sψθ:

Sψψ =
1

N∗ − 1
ψTF TAFψ, Sθθ =

1

N∗ − 1
θTDTADθ, Sθψ =

1

N∗ − 1
θTDTAFψ.

In the Appendix, we show that the resulting biases are as follows:

Bias[Sψ̂ψ̂] =
σ2
ε

N∗ − 1
tr

{
F TAF

[
F TMV F

]
−1

}
(11)

Bias[Sθ̂θ̂] =
σ2
ε

N∗ − 1
tr

{
DTAD

[
DTM[Z,F ]D

]
−1

}
(12)

Bias[Sθ̂ψ̂] = −
σ2
ε

N∗ − 1
tr

{
F TMZD

[
DTMZD

]
−1
DTAF

[
F TMV F

]
−1

}
. (13)

where σ2
ε is the variance of εit, and V = (Z,D).

We also show that, when the columns of Z are orthogonal to [D,F ], each trace can be

unambiguously signed as positive. Thus, both Sθ̂ and Sψ̂ are overestimated whereas,

as expected at the end of Section 2, Sθ̂ψ̂ is underestimated. It is well-known that Sψ̂,

in the absence of worker dummies, is biased upwards (Krueger & Summers 1988).7

Our analysis here emphasises the downwards bias in the covariance. In other words,

if the true covariance is positive, that is, there is positive assortative matching, the

estimated correlation will always be too small, and could be negative. On the other

hand, if the true covariance is negative, the estimated correlation could either be

more or less negative.

It is difficult to make clear-cut predictions about what happens when the columns

of Z are not orthogonal to [D,F ]. However, as a particular column of Z becomes

less orthogonal to [D,F ], loosely speaking, the smaller the bias becomes, but, at

the same time, the influence of that variable becomes less important. Ultimately,

the sign and the size of the bias is an empirical issue, using the formulae presented

immediately above.

The estimated correlation between ψ̂ and θ̂ is given by

Rθ̂ψ̂ =
θ̂TDTAFψ̂√

ψ̂TF TAFψ̂
√
θ̂TDTADθ̂

. (14)

7Goux & Maurin (1999) give expressions for these biases, all of which are positive. This is
because they use Spell FE, which is only an approximation to LSDV, and does not separately
identify θ̂ and ψ̂.
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All three biases can be estimated, since each depends on only σ2
ε/(N

∗ − 1) and

the data matrices X, D and F . Thus one can adjust the estimates of the three

components by using estimates of the bias, and recompute the correlation. As

already noted, linked employee-employer datasets can be very large. As the software

has already computed (F TMDF )−1 to produce LSDV estimates, the number of firms

is not an issue. The only potential computational problem is that the expression for

Bias[Sθ̂θ̂] involves inverting the N ×N matrix [DTM[Z,F ]D]. The number of workers

N might to be too large for the software at hand, in which case one has to assume

that Z is orthogonal to D and F and use the formulae given in Appendix A.2. See

also Appendix A.3 for further details on how to compute the biases.

We now need to establish some properties of these three bias terms, especially for

the covariance. This is easier if one assumes there are no covariates Z. Intuition

suggests that the three biases, in absolute terms, are a (complicated) decreasing

function of the number of movers between firms, a property of the matrix F TD,

which appears a number of times in Equation (A.6). In particular, F TD is a J ×N

matrix that records the number of periods worker i is employed at firm j. In the

next section, we use simulated data to show how large these biases might be for the

type of datasets used in this literature. In particular, we attempt to uncover the

non-linear relationship that links the bias in the correlation (or its components) to

the number of movers and other features of these datasets, such as the number of

firms and the number of time periods.

4 The simulation design

The simulated data mimics the generic model outlined in Section 2. J firms are

created indexed j = 1, . . . , J , each with a random number of employees Nj drawn

from a Uniform distribution with mean µN . In this section, and the next, we have

a balanced panel where each employee is observed for T periods. Each firm is given

a realisation of wjt and ψj; each worker is given a realisation of xit and θi.
8 These

realisations are drawn from a joint Normal distribution with the following means

and covariance structure for any period t:

8We use one variable of each type, hence wjt and xit are scalars rather than vectors as in
Equation (3).
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



ψj

wjt

θi

xit




∼ N





0

;

Sψψ

0 Swψ Sww

0 Sθψ Sθw Sθθ

0 Sxψ 0 Sxθ Sxx




(15)

The structure above focuses on the correlation between the unobservables and the

observables, and the correlation between the unobservables themselves.9 We assume

that the observed firm and worker effects (wjt and xit) are uncorrelated with each

other, but we allow for non-zero covariance between the unobserved components

(Sθψ 6= 0), as well as between the unobserved components and both firm and worker

time-varying effects.

The draw of [ψj, wjt, θi, xit] initially ensures that workers with certain characteristics

are matched with firms with certain characteristics. For example, if Sθψ > 0 then

high wage workers tend, on average, to be matched with high wage firms. This gives

the distribution of workers across firms in period t = 1.

We now generate the movement of workers between firms. As noted, this is crucial

for the identification of the fixed effects. For each worker we draw a potential new

firm j′ from the list of currently existing firms. This new firm has its own set of

characteristics [ψj′ , wj′t].
10

The probability of movement from j to j′, denoted m∗

it, is determined by a random

draw from a Normal distribution. A move occurs if m∗ is greater than some critical

percentile of the distribution of m∗, denoted m∗

c , such that the probability of move-

ment p ≡ Pr(m∗ > m∗

c) is set at 0.1. Altering p allows us to alter the number of

workers who move each period. If a move occurs, the value of j′ is copied to j in that

period and for all future periods, as are ψj′ , qj′ and wj′t. The potential matching of

workers and firms occurs once per period t. The number of periods T can be varied

to mimic real data. Typically T is small because linked data are recorded annually,

and have become available only recently.

It is important to emphasise that the assumption of random mobility is innocuous.

So long as Equation (2) holds, any model of mobility will generate simulations with

9For clarity, we write out the correlation structure at time t. In addition, there are correlations
across periods. Both variables xit and wjt are autocorrelated, with parameter 0.9. All xit and wjt

pairs are uncorrelated.
10In order to ensure that a new match is drawn with a probability proportional to firm size, the

list of new firms is weighted by the size of the firm.
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similar properties. We choose random mobility because it means that we do not

have to choose specific models about how movement occurs; for example, whether

matches are “experience” or “search” goods.

Once the identity of each firm is established for every worker in all T rows of the

data, the dependent variable yit is generated according to Equation (3). As already

noted, the resulting dataset is balanced for workers, unlike real data. It is not

however necessarily balanced in terms of firms, because small firms who experience

worker exits may disappear.

5 Simulation Results

5.1 Baseline simulation

We now repeatedly generate a synthetic dataset using the methods outlined in Sec-

tion 4. Table 1 reports the baseline values chosen for the synthetic data and sum-

marises the outcomes of the key parameters for 100 replications.

Table 1: Baseline parameter values and realisations: random mobility

Population Realisation (100 reps.)
Mean s.d.

Number of firms J 100 100 −
Number of time periods T 5 5 −
Average number of workers per firm µN 50 50.401 1.683
Total number of observations N∗ 25, 000 24, 907.55 1, 594.87
Probability of movement per period p 0.1 0.1 −

Number of movers M 1997.18 138.04
Total number of groups G 1.66 0.844
Number of observations in largest group 24, 902.05 1, 595.29

Variance of idiosyncratic error σ2
ε 1 1.001 0.0099

Parameter on xit, β1 0 0 −
Parameter on wjt, β2 0 0 −

Variance of worker effects Sθθ 0.3 0.309 0.0087
Variance of firm effects Sψψ 0.3 0.295 0.0490
Covariance firm and worker effects Sθψ 0.0737 0.0730 0.0133
Correlation firm and worker effects Rθψ 0.246 0.241 0.0244

Because the number of workers per firm, Nj, is drawn randomly from a Uniform
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distribution with mean µN , this varies across simulations, as does the total number of

workers who change firm each period, denoted M . The total number of observations,

T
∑J

j=1Nj, varies across simulations for the same reason, even though the number

of firms remains fixed. (The population number of observations is TJµN = 25, 000.)

Each replication involves a completely new set of worker movements from firm to

firm, and so the number of groups G (and hence the number of estimable effects)

varies slightly between replications.11 In fact, in about half the replications there

is only one group (all workers and firms are connected); moreover, the size of the

largest group is only slightly smaller than the total sample size. This is the usual

finding in real linked data (Abowd et al. 2002). It is important to emphasise that

in the base simulation, the parameters J , T , µN , p and σ2
ε are held fixed, but will

vary when we make departures from the base simulation.

The crucial parameter is the correlation between θ and ψ, which is chosen to be

positive (Rθψ = 0.246): unobservably high wage workers work for unobservably

high wage firms. We also assume positive correlation between each unobservable

and both time-varying observables: the other four correlations in Equation (15) are

Rθx = 0.295, Rθw = 0.160, Rψx = 0.082, and Rψw = 0.299. High wage workers work

for firms with observably better characteristics, and high wage firms employ workers

with observably better characteristics. The latter assumption is supported by much

evidence from real linked employer-employee data.

For each dataset we estimate Equation (3) using FEiLSDVj. Note that we include

xit and wjt in the regression, even though β1 = β2 = 0 in the data generation

process. We then compute θ̂ using Equation (7), from which we compute Sθ̂θ̂, Sψ̂ψ̂,

Sθ̂ψ̂, using Equations (8–10), and Rθ̂ψ̂ using Equation (14). In Table 2 we report

the baseline estimation results. The reader is reminded that Table 1 reports true

simulated values of ψ and θ, whereas Table 2 reports estimated values ψ̂ and θ̂.

First note, as expected, that the FEiLSDVj method produces unbiased estimates

of β1 = 0 and β2 = 0: β1 = 0 lies within two s.d.s about the mean value of

β̂1 = −0.00128, and the same is true for β2 = 0. However, the resulting estimate

of the correlation of the worker and firm effects is significantly downwards biased;

the 95% confidence interval about the mean estimate of 0.118 does not contain the

true value of 0.246. This result illustrates the key finding of this paper. In fact,

as shown algebraically in Section 3, all three components of the correlation are

biased, when the observed covariates xit and wjt are absent from the model. The

11Identification of firm effects is only possible within a group, where a group is defined by the
movement of workers between firms (Abowd et al. 2002).
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Table 2: Baseline parameter estimates, 100 reps., random mobility
Population Simulation

Mean s.d.

Parameter on xit, β1 0 −0.00128 0.00822
Parameter on wjt, β2 0 0.00022 0.0074

Variance of worker effects S
θ̂θ̂

0.3 0.534 0.0148
Variance of firm effects S

ψ̂ψ̂
0.3 0.323 0.0572

Covariance firm and worker effects S
θ̂ψ̂

0.0737 0.0492 0.0157

Correlation firm and worker effects R
θ̂ψ̂

0.246 0.118 0.0317

variance of the estimated worker unobservables is almost twice as big as the variance

of the true worker unobservables: Sψ̂ψ̂ = 0.534 whereas Sψψ = 0.3. However, the

variance of the estimated firm unobservables is not biased by much: Sθ̂θ̂ = 0.323

whereas Sθθ = 0.3. Finally, the covariance is biased downwards, thereby estimating

a positive covariance too close to zero. Here Sθ̂ψ̂ = 0.0492, whereas Sθψ = 0.0737.

As we know from Section 3, these three biases, taken together, imply that a true

positive correlation is always biased downwards. This is clearly being illustrated

here.

5.2 Departures from the baseline simulation

We now vary the simulation in single dimensions away from the baseline. We then

compute the three biases for each replication. Note that we use Equations (A.4–

A.6) because we know that the true model does not contain observable covariates.

This allows us to examine the cause of the bias, that is, estimation error in ψ̂ and

θ̂ in isolation of the estimation error in the parameters on the covariates. In what

follows, we seek to quantify the extent of the bias as a function of the characteristics

of particular data. In other words, we vary one of the parameters J , T , µN , p and

σ2
ε , but keep the others fixed.

Varying the probability of movement. The easiest way to illustrate the basic

relationship between the bias in the covariance term, given in Equation (A.6),

and the number of movers M is to vary the probability of a match dissolving

(p). Simulations for three departures, for p = 0.05, p = 0.15 and p = 0.20 are

plotted in Figure 1, together with the baseline replication p = 0.10. It is quite

clear that the bias in the covariance tends to zero as the number of movers
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endogenously increases. This basic result recurs throughout.
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Figure 1: Varying p: bias in covariance

One cannot write down an algebraic expression for the bias in the correlation.

All we can do is calculate the estimated correlation for each replication and

subtract from it the true correlation. In Figure 2, we plot this difference against

M for the same four sets of replications. The plot can be used to assess the

probable bias in the correlation for a real dataset that has the same features as

our simulated data. There is much more vertical variation in clusters compared

with the first plot because the two variance terms in the denominator are also

biased. In other words, for the same bias in the covariance, there are lots of

possible biases in the product of the variances, each giving a different bias in

the correlation.

Varying average firm size. Larger firms tend to have more workers joining and

leaving them, and so varying µN provides another way of endogenously varying

the number of movers M . We simulated various datasets for µN = 25, 50, 75,

with p = 0.10. All that happens is that each cluster of 100 replications lies on

the curve plotted in Figure 1, with low values of µN located to the left (not

reported). The same happens if we use different values of p.

Varying the number of time periods. The third dimension over which the num-

ber of movers can be endogenously increased is to lengthen the panel. The

longer the panel, the more accurately ψ can be estimated because, once again,

each firm has on average more movers, and so the bias in the covariance/correlation

13
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Figure 2: Varying p: bias in correlation

should lessen. Also, the bias in the correlation will get smaller as the bias in

the two variances falls as T goes up. This is confirmed in Figure 3. We first re-

plot the four clouds in Figure 1 (labelled T = 5). Below them are four clouds

for which p = 0.05, 0.10, 0.15, 0.20, but now T = 3. One can see that holding

p constant, but reducing T from 5 to 3, increases the bias in the estimated

covariance (as predicted) by shifting the relationship in Figure 1 downwards.

We finally plot a cluster p = 0.1 and T = 7. Thus the reader can see the

effect of holding p constant at 0.10, and letting T = 3, T = 5 and T = 7. The

number of movers gets bigger (there are more periods in which to move) and

the bias gets smaller.

Varying the number of firms. In contrast, varying the number of firms for a

given p has no effect on the bias of the estimated correlation (nor the true cor-

relation). This is because every new firm requires a new estimated parameter

ψ, and no improvement in sampling variability. Figure 4 illustrates this result,

where one can see three clusters for p = 0.10, for J = 50, 100, 150, which lie to

left and right of each other.

Varying overall error variance. In Figure 5 we illustrate the effect of increasing

the overall error variance of Equation (3). As σ2
ε increases the sampling vari-

ability of ψ̂ increases, which decreases the estimated correlation of ψ and θ,

and therefore the absolute value of the bias increases. This plot is different

from the others because altering σ2
ε has no effect on the number of movers.
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Figure 3: Varying T : bias in covariance
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Figure 4: Varying J : bias in covariance
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Figure 5: Varying σ2
ε : bias in correlation

5.3 Conclusions

The relationship between the bias in the covariance and the number of movers M

is very clear, being negative and asymptoting towards zero as M increases. All

combinations of µN and p lie on this same ‘curve’. The curve shifts upwards towards

zero as T increases, J decreases and σ2
ε decreases. The bias in the correlation,

which is also affected by positive biases in both variances, shows the same basic

pattern, but is much more affected by the noise in the data generation process, from

simulation to simulation. Averaging over this noise, we can conclude that the bias

in the correlation is decreasing in T , µN , and p, increasing in σ2
ε , and is unaffected

by J , because all of these parameters can be thought of as exogenously altering the

number of movers in any given dataset.

Notice that Figures 2 and 5 show that the bias in the correlation can be quite

substantial when the numbers of movers is relatively low. In fact, very occasion-

ally in the simulations, Bias[Rθ̂ψ̂] < −0.246, showing that it is possible for there

to be negative estimates of the correlation even when there is positive assortative

matching.
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6 An example using German linked data

To illustrate how a downwards-biased estimate of Rθ̂ψ̂ can be corrected, we use

data from a linked worker-firm dataset made available by the IAB.12 The firm data

comprise a panel of 4,376 establishments (or “plants”) from the former West Ger-

many observed over the period 1993–1997. The worker data comprise a panel of

1,930,260 workers who are employed in these plants. A common establishment iden-

tifier is available in both datasets, allowing them to be linked.13 After eliminating

observations with missing or incomplete information, the resulting linked dataset

has 5,145,098 worker-year observations (the it level). For each row in the data the

identity j of the plant is recorded.

Firm effects are identified by the number of movers in each plant; most plants in

the IAB data have few or no movers between other plants in the data. This is

because the plant data is a survey, and because the dataset is relatively small in the

T dimension. There are 1,821 plants (out of the total of 4,376) who have positive

turnover.

Notice that N is approximately two million, and so we cannot compute the biases

given in Equations (11–13) because of having to invert DTM[Z,F ]D in Equation (12).

We therefore must assume that Z is orthogonal to D and F , and instead compute

the biases given in Equations (A.4–A.6).

We estimate a standard earnings equation with K = 53 covariates, including marital

status, age, education thresholds, occupation, union recognition, investment, concen-

tration, plant size, age of plant, and profitability. Because we estimate Equation (3),

not Equation (1), time-invariant covariates cannot be included (for example gender

and industry). The model is estimated by a Classical Minimum Distance method

that very closely approximates FEiLSDVj (see Andrews, Schank & Upward (2006)

for further details and how the method is implemented in Stata). This model is

reported in full in Andrews, Schank & Upward (2005); here we are only concerned

with the estimated correlation between θi and ψj.

When the model is estimated with a full set of plant dummies, ie for the 1821

plants who have turnover, the estimated correlation between θi and ψj is −0.191

(see the first column of Table 3). This is consistent with the existing literature (see

the Introduction). Applying the bias correction, the correlation moves to −0.148,

12Hereafter we refer to the data as LIAB: Linked IAB data.
13Kölling (2000) provides more information on the IAB establishment panel, Bender, Haas &

Klose (2000) has details on the worker data and Alda, Bender & Gartner (2005) has details on the
linked data.
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Table 3: Bias correction, wage regressions, LIAB data
All plants High turnover plants

Whole Movers Whole Movers
sample sub-sample sample sub-sample

No. observations N∗ 4, 883, 331 72, 253 5, 145, 098 62, 668
No. workers N 1, 816, 368 23, 393 1, 930, 260 20, 313
No. plants J 1, 821 1, 821 212 212
No. movers M 23, 393 23, 393 20, 313 20, 313

Error variance σ2
ε 0.00459 0.00720 0.00461 0.00742

Uncorrected estimates

Variance of worker effects S
θ̂θ̂

0.05381 0.05747 0.10231 0.20250
Variance of plant effects S

ψ̂ψ̂
0.01339 0.01513 0.00290 0.00562

Cov. plant/worker effects S
θ̂ψ̂

−0.00512 −0.00389 −0.00030 0.00597

Corrn. plant/worker effects R
θ̂ψ̂

−0.191 −0.132 −0.017 0.177

Correction to bias

Bias[S
θ̂θ̂

] (Equation (A.5)) 0.00320 0.00450 0.00180 0.00330
Bias[S

ψ̂ψ̂
] (Equation (A.4)) 0.00149 0.00235 0.00008 0.00092

Bias[S
θ̂ψ̂

] (Equation (A.6)) −0.00149 −0.00217 −0.00008 −0.00089

Corrected estimates

Variance of worker effects S
θ̂θ̂

0.05061 0.05297 0.10050 0.19921
Variance of plant effects S

ψ̂ψ̂
0.01190 0.01278 0.00283 0.00470

Cov. plant/worker effects S
θ̂ψ̂

−0.00363 −0.00171 −0.00022 0.00686

Corrn. plant/worker effects R
θ̂ψ̂

−0.148 −0.066 −0.013 0.224

Correction to bias

Bias[R
θ̂θ̂

] −0.043 −0.066 −0.004 −0.047
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primarily because the covariance term moves from −0.00512 to −0.00363. Of the two

explanations discussed in the Introduction, clearly the econometric explanation, on

its own, does not explain why there is not positive assortative matching. Nonetheless,

a 25% movement in the correlation represents a sizeable bias. The actual correction

to the bias, namely 0.043, is given in the bottom row of the table.

This is the main message of the paper. However, we still need to investigate two

modelling issues that recur in these analyses. The first concerns the size of the bias,

and whether it can be ameliorated by pooling “small” plants into a single small

“super plant”. This often happens in the literature because the number of plants

can be too many for the FEiLSDVj estimator. The second is whether we should

model movers and non-movers separately.

One possible explanation for why there is a large bias is that the estimates of ψj

are noisy for plants that experience low turnover. Equation (7) suggests that the

more imprecise the estimates of ψj, the more biased is the correlation. Of the 1,821

plants who experience turnover, only 211 plants have 30 or more workers who move

to other plants in the sample. In what follows, we group together all plants who

have fewer than 30 movers into one super-plant, and estimate a model with just 212

identifiable plant effects.

When we re-estimate the model with only 212 plant effects (column 3), the estimated

correlation increases to −0.017 and the bias-corrected estimate is −0.013. The

absolute size of the bias in the estimated correlation therefore falls substantially

from column 1 to column 3 (bottom row), which is what we would expect if the bias

is caused by noisy estimates of ψ. However, there may be another reason for the fall

in the bias, which is that we are restricting more than 3 million rows of the dataset

(about 60% of the sample) to have the same value of ψ̂. One should also note that

in this case the restriction implied by moving from column 1 to column 3 is easily

rejected (the standard F -test is 10.5).

The second issue that recurs with any type of fixed-effects model is that the sub-

sample of movers (who effectively identify the parameters of the model) may be a

non-random sub-sample. Workers and plants who choose to separate for whatever

reason are not necessarily the same as those worker-pairs who tend to stay together.

In particular, the correlation of worker and firm effects may not be the same for

movers and non-movers. In column (2) we therefore report estimates separately

for movers. That is, we use the 72,253 observations for those workers who move

between the 1,821 plants. An F -test of parameter equality between movers and

non-movers sub-samples rejects the null hypothesis easily (p-value zero). There is
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also evidence that movers have a different degree of assortative matching than non-

movers. The bias-corrected correlation of plant and worker effects increases from

−0.148 to −0.066.

Since the separation of movers and non-movers appears to be important (column

2), and since the pooling of low-turnover plants also reduces the bias (column 3),

it seems logical to look at the results for movers in high turnover plants (column

4). When we do this we actually estimate a positive correlation of plant and worker

effects (0.224, bias corrected). As before, the pooling of low-turnover plants reduces

the size of the bias (compare column 4 with column 2). However, once again, we

reject the implied restriction (the standard F -test is 6.6). And also, as before, the

correlation for movers is larger than for the whole sample (compare column 4 with

column 3).

The lesson from all this is that estimates of the correlation of worker and plant

effects are sensitive to modelling decisions as well as the statistical bias highlighted

in Sections 3 and 4. The bias may be as large as 50% of the size of the uncorrected

correlation. But in our example, looking at movers and non-movers separately,

resulted in even larger movements in the correlation. Finally, our preferred estimate

of the correlation of −0.066 (column 2) is still negative though somewhat closer to

zero than others in the literature. This estimate is much closer to zero than our

uncorrected estimate (−0.191), partly because of the bias correction, and partly

because the correlation is less negative for movers than non-movers.

7 Conclusion

In this paper, we show that estimates of the correlation between firm- and worker-

fixed-effects are biased downwards if there is true positive assortative matching and

when any conditioning covariates are uncorrelated with the firm- and worker- fixed-

effects. We develop formulae for the biases for the components of the estimated

correlation. Ultimately, the size of the bias is an empirical issue, and should be

computed for every application of linked employee-employer data. More importantly,

this result applies to any two-way (or higher) error-components model estimated by

fixed-effects methods.

Using simulations, we show that the extent of the bias depends on how much worker

mobility each firm experiences, which itself depends on the propensity to move,

the length of the panel, the average size of firms (more generally, the firm-size
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distribution) and the error variance of the model. It is, however, unaffected by the

number of firms. We apply these bias corrections to a large German linked employer-

employee dataset. We find that although the biases can be considerable, they are

not sufficiently large to remove the negative correlation entirely. We also show

that modelling choices regarding the separation of movers and non-movers and the

grouping of small plants can have significant impacts on the estimated correlation.

Appendix A Algebraic details

A.1 Deriving the three biases

From Equation (4) of the main text,

y = Zγ +Dθ + Fψ + ε,

by combining Z and D into a matrix V, the Frisch-Waugh (FW hereafter) argument

can be used to calculate ψ̂ and θ̂ as

ψ̂ =
[
F TMV F

]
−1
F TMV y,

θ̂ =
[
DTMZD

]
−1
DTMZ(y − Fψ̂).

The sampling errors of θ̂ and ψ̂ are calculated from substitution of y:

ψ̂ = ψ +
[
F TMV F

]
−1
F TMV ε, (A.1)

and similarly,

θ̂ = θ +
[
DTMZD

]
−1
DTMZ

[
ε− F (ψ̂ − ψ)

]
. (A.2)

Using an alternative organisation of the regressors, the FW argument also gives:

θ̂ =
[
DTM[Z,F ]D

]
−1
DTM[Z,F ]y

= θ +
[
DTM[Z,F ]D

]
−1
DTM[Z,F ]ε.

The sample variance of the elements of ψ̂ is

Sψ̂ψ̂ =
1

N∗ − 1
ψ̂TF TAFψ̂,
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where A = IN∗ − 1
(
1T1

)
−1

1T is the projection matrix producing mean deviations,

and 1 is a N∗ × 1 vector of ones.

The expected value of Sψ̂ψ̂ is

E[Sψ̂ψ̂] =
1

N∗ − 1

{
ψ +

[
F TMV F

]
−1
F TMV ε

}T

F TAF
{
ψ +

[
F TMV F

]
−1
F TMV ε

}

=
1

N∗ − 1

(
ψTF TAFψ + E

{
εTMV F

[
F TMV F

]
−1
F TAF

[
F TMV F

]
−1
F TMV ε

})

=
1

N∗ − 1

(
ψTF TAFψ + σ2

ε tr
{
MV F

[
F TMV F

]
−1
F TAF

[
F TMV F

]
−1
F TMV

})

=
1

N∗ − 1

(
ψTF TAFψ + σ2

ε tr
{
F TAF

[
F TMV F

]
−1

})

= Sψ +
σ2
ε

N∗ − 1
tr

{
F TAF

[
F TMV F

]
−1

}
.

The penultimate line comes from the cyclical property of traces.

Thus the bias in estimating Sψ̂ψ̂ is

Bias[Sψ̂ψ̂] =
σ2
ε

N∗ − 1
tr

{
F TAF

[
F TMV F

]
−1

}

This is Equation (11) of the main text. Because both A and MV are positive semi-

definite, the matrices F TAF and F TMV F are positive semi-definite, and will be

positive definite in practice. The result that tr[AB−1] > 0 if both A and B are

positive definite completes the proof that the bias is unambiguously positive.14 This

is because each ψj is estimated with error, the square of which is added into the

expression for the variance.

For θ̂, the sample variance is

Sθ̂θ̂ =
1

N∗ − 1
θ̂TDTADθ̂ (A.3)

Using the symmetry between D and F in Equation (3) of the main text,

Bias[Sθ̂θ̂] =
σ2
ε

N∗ − 1
tr

{
DTAD

[
DTM[Z,F ]D

]
−1

}
.

This is Equation (12) of the main text. Again, this bias is unambiguously positive,

for the same reasons as for Bias[Sψ̂ψ̂].

14If A and B are symmetric and psd, write both matrices in terms of their symmetric pos-
itive square root matrices: tr(AB) = tr[(A1/2A1/2)(B1/2B1/2)] = tr[(A1/2B1/2)(B1/2A1/2)] =
tr(CTC) ≥ 0.
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For the sample covariance between θ̂ and ψ̂, we get

E[Sθ̂ψ̂] = Sθψ +
σ2
ε

N∗ − 1
tr

{
M[Z,F ]D

[
DTM[Z,F ]D

]
−1
DTAF

[
F TMV F

]
−1
F TMV

}
.

There is a “well-known” projection identity (Baltagi 2005, Eqns(9.29, 9.30)) which

says that

PV = PZ +MZD
[
DTMZD

]
−1
DTMZ

which translates into an identity for MV :

MV = MZ −MZD
[
DTMZD

]
−1
DTMZ ,

with a corresponding result for

M[Z,F ] = MZ −MZF
[
F TMZF

]
−1
F TMZ .

Also note that

MVM[Z,F ] =
{
MZ −MZD

[
DTMZD

]
−1
DTMZ

}
M[Z,F ]

= M[Z,F ] −MZD
[
DTMZD

]
−1
DTM[Z,F ]

since MZM[Z,F ] = M[Z,F ].

Plugging this result into the bias expression for E[Sθ̂ψ̂], one obtains

tr
{
DTAF

[
F TMV F

]
−1
F TMVM[Z,F ]D

[
DTM[Z,F ]D

]
−1

}

= tr
{
DTAF

[
F TMV F

]
−1
F TM[Z,F ]D

[
DTM[Z,F ]D

]
−1

− DTAF
[
F TMV F

]
−1
F TMZD

[
DTMZD

]
−1
DTM[Z,F ]D

[
DTM[Z,F ]D

]
−1

}

= − tr
{
DTAF

[
F TMV F

]
−1
F TMZD

[
DTMZD

]
−1

}

since F TM[Z,F ] = 0. This is Equation (13) of the main text.

Signing the trace requires that GTA ≡ MZD
[
DTMZD

]
−1
DTA is symmetric. In

general this is not so, but is symmetric when Z is absent, or when Z is orthogonal

to D and F . In this case, it can shown that the trace is positive, an algebraic proof

of which is given in the following subsection. It can be shown, using numerical

examples, that the less orthogonal each column of Z is to D,F , (in the sense that

a regression of a column of Z on D,F has a higher R2), then the less symmetric

GTA becomes, and the less positive the trace becomes. In pathological cases, the
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trace can become negative, for example when a column of Z is collinear with D,F ;

however, this case is no interest as D,F contain no extra information, and so the

parameter on this column of Z would not be identified.

In short, the essence of why there is a negative bias between worker and firm unob-

servables is seen in the case where Z is orthogonal to D and F , or, equivalently, when

Z is absent. However, given that this is not going to happen in practice, ultimately

computing the bias is an empirical issue, using the formulae presented immediately

above.

A.2 What happens with no Zs?

When Z is absent, substitute MZ = IN∗ and MV = MD:

Bias[Sψ̂ψ̂] =
σ2
ε

N∗ − 1
tr

{
F TAF

[
F TMDF

]
−1

}
. (A.4)

Bias[Sθ̂θ̂] =
σ2
ε

N∗ − 1

(
tr {PDA} + tr

{
F TPDAPDF

[
F TMDF

]
−1

})

=
σ2
ε

N∗ − 1

(
N − 1 + tr

{
F TAPDF

[
F TMDF

]
−1

})
. (A.5)

Bias[Sθ̂ψ̂] = −
σ2
ε

N∗ − 1
tr

{
F TD

[
DTD

]
−1
DTAF

[
F TMDF

]
−1

}

= −
σ2
ε

N∗ − 1
tr

{
F TPDAF

[
F TMDF

]
−1

}
. (A.6)

The first line of (A.5) comes from substituting (A.1) into (A.2), and using MV = MD

and DTMZ = DT :

θ̂ = θ +
[
DTD

]
−1
DT

(
IN∗ − F

[
F TMDF

]
−1
F TMD

)
ε.

Substituting into (A.3), and taking expectations as with E[Sθ̂θ̂] above gives the

expression shown in the second line of (A.5).

Exactly the same results occur when Z orthogonal to D and F .

To show that the trace in Equation (A.6) is positive requires showing that the double

projection matrix PDA is positive semi-definite. Three properties of the matrix D

are used: (a) that the rows sum to unity, Di = 1; (b) that the columns sum to T

and (c) that DTD = diag{Ti}. (b) and (c) imply that

(DTD)−1DT1 = i
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where i is a N × 1 vector of ones. Hence

PDA = PD(IN∗ − 1
(
1T1

)
−1

1T )

= PD −D(DTD)−1DT1
(
1T1

)
−1

1T

= PD −Di
(
1T1

)
−1

1T using (b,c)

= PD − 1
(
1T1

)
−1

1T using (a)

= PD − P1

Hence PDA is psd, with trace(PDA) = trace(PD) − trace(P1) = N − 1.

Also note that F TMDF is a strictly positive definite matrix except when MDF = 0.

This can only occur when there is no movement between firms, in which the firm

dummy effects ψ cannot be identified.

Without the covariates, the intuition as to why there is a negative bias can be easily

seen. Substitute MZ = IN∗ into Equation (A.2), and writing out for worker i:

θ̂i − θi = −(ψ̂i − ψi) + εi,

where ψ̂i averages ψ̂j(it) over t, where ψi averages ψj(it) over t, and εi averages εit

over t. This is the equation that shows that, on average, an under-estimate of ψj

leads to an over-estimate of θi, and vice versa. This is the cause of the downwards

bias that this paper seeks to establish.

Finally note that Sθ̂ is over-estimated for the same reason that Sθ̂ψ̂ is underestimated,

as both have the same bias term. There is an extra bias term in Sθ̂, which is

≈ (N/N∗)σ2
ε , or σ2

ε/T in a balanced panel. This term comes about because each

worker-effect θi is estimated on T observations, a bias effect that disappears as T

goes to infinity. All the other bias terms disappear as N∗ goes to infinity. It is

this term that Krueger & Summers (1988) and Haisken-DeNew & Schmidt (1997)

use to adjust the variance of the estimates of a set of industry dummies in their

analysis of inter-industry wage differentials. If one drops Dθ from Equation (4), it

is easy to show, using the same properties of D above applied to F , that the bias of

Sψ̂ is σ2
ε
J−1
N∗

−1
. This is the same as Haisken-Denew & Schmidt, who use a different

parameterisation.
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A.3 Computation and size constraints

Linked employee-employer datasets can be very large. N is often in the order of

millions, and J is often in the order of thousands, or tens of thousands. In the text,

where we discuss estimation of the generic model, it is assumed that the software

can invert J × J matrices, but not N × N or N∗ × N∗ matrices. With these

constraints, one cannot compute Bias[Sθ̂θ̂] in Equation (12), which requires inverting
[
DTM[Z,F ]D

]
. As with the existing literature (Krueger & Summers 1988, Haisken-

DeNew & Schmidt 1997), one is therefore forced to ignore the fact that most models

will be estimated with observable (worker and firm) covariates, ie assume that Z is

orthogonal to D and F . All the other traces can be computed by running auxiliary

regressions that do not involve inverting matrices larger than J ×J . It is also useful

to have software, such as Stata, that “accumulates” data matrices with N∗ rows into

cross-product matrices of dimension J × J .15

In Equations (11–13), suppose that one can invert
[
DTM[Z,F ]D

]
. There are two

more inversions required in the three biases. The first is
[
F TMV F

]
−1

. Here one

takes each column of F , denoted fj, form mean-deviations for worker i, and repeat

for all the columns of Z. Regress fj in mean-deviations on Z in mean-deviations,

and form residuals. Denote this as Regression (Rj). After j = 1, . . . , J loops, stack

the J vectors of residuals, form the inner product, and invert.

The second inversion is F TMZD
[
DTMZD

]
−1

. Consider the j-th regression

fj = Zβ1j +Dβ2j + uj.

Using FW, β̂2j can be computed in 2 ways:

β̂2j = [DTMZD]−1DTMZfj (A.7)

or

β̂2j = [DTD]−1DT (fj − Zβ̂1j) with β̂1j = [ZTMDZ]−1ZTMDfj. (A.8)

Equation (A.7) is what is required; Equation (A.8) gives how to compute it without

inverting N × N matrices. In other words, run Regression (Rj) above and form

“residuals” fj−Zβ̂1j. Take the average for each worker i and save as a N×1 vector.

After looping over j = 1, . . . , J firms, form the N × J matrix, as required.

15Stata code that computes all the biases given above is available on request.
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