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Expectations Hypothesis Tests in the Presence of  

Model Uncertainty 

 

 

Abstract 

 

We extend vector autoregressive (VAR) model based expectations hypothesis tests of the 

term structure by relaxing some specification assumptions in order to reflect model 

uncertainty. Firstly, the wild bootstrap is used to allow for conditional heteroskedasticity 

in the VAR residuals without imposing any parameterization on this heteroskedasticity. 

Secondly, the model selection procedure is endogenized in the bootstrap replications and 

supplemented with a multivariate autocorrelation test robust to conditional 

heteroskedasticity to reflect true uncertainty about the VAR order and to ensure the 

absence of residual serial correlation. Finally, a stationarity correction is introduced to 

prevent the finite-sample bias adjusted VAR coefficients from becoming explosive. 

When this new methodology is applied to extensive US structure data ranging from 1 

month to 10 years, we find rejection of the theory occurs primarily at the short end of the 

maturity spectrum in line with the literature, however less often than previously 

documented. 

 

JEL classification: G10; E43. 

Keywords: expectations hypothesis; term structure; wild bootstrap; conditional 

heteroskedasticity  
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I. Introduction 

The interrelationship between interest rates of various maturities is a fundamental topic in 

economics and finance. One of the main theories put forward to explain this relationship 

is the expectations hypothesis (EH). The EH of the term structure implies that, in 

equilibrium, investing in a succession of short-term bonds gives the same expected return 

as investing in a long-term bond, when adjustment is made for the (assumed constant) 

term premium. Various implications of the theory have been tested, e.g. in Sargent (1979), 

Shiller, Campbell and Schoenholtz (1983), Hall, Anderson and Granger (1992), Evans 

and Lewis (1994), Lanne (1999) and Bekaert, Hodrick and Marshall (1997, 2001) for the 

US and in Taylor (1992), Dahlquist and Jonsson (1995), Gerlach and Smets (1997) for 

other countries, leading to mixed results with perhaps more evidence against the theory in 

the US data than for the latter group.1  

Moreover, if one considers multiple maturity pairs and the predictive ability of the 

spread between long and short rates for future short rate changes, previous studies such as 

Campbell and Shiller (1991) and Sarno, Thornton and Valente (2006) comfortably reject 

the EH at the shortest end of the maturity spectrum while Campbell (1995), Rudebusch 

(1995) and Roberds and Whiteman (1999) note the predictive ability of the spread is 

better at the short and long ends of the maturity spectrum and less good in the 

intermediate maturity range for a given short rate, thus creating a “U” shaped pattern. 

However, Thornton (2006) argues that the slope coefficient used to measure predictive 

power is not of primary concern, as data generating processes (DGPs) where the EH does 

not hold are capable of generating the same slope coefficient as that predicted by the EH.  

                                                 
1 The evidence against the EH is much less severe if high frequency data are used (Longstaff, 2000) and 

also if expectations are taken from surveys (Froot, 1989). 
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Thus, empirical results offer mixed support for the EH. However, Mankiw and 

Miron (1986) argue that the poor performance of the EH over certain periods is related to 

the monetary policy pursued by the US Fed, with the EH performing better in periods of 

monetary targeting than in periods of interest rate targeting (and even better before the 

foundation of the Fed). Rudebusch (1995), Roberds, Runkle and Whiteman (1996), and 

Balduzzi, Bertola and Foresi (1997) provide models that accommodate Fed behaviour 

and confirm Mankiw and Miron’s finding.  

Rather than a failure of the EH, conclusions inconsistent with the theory have 

sometimes been attributed to the small sample properties of the tests. Early studies use a 

conventional regression framework (e.g. Mankiw and Miron 1986), volatility tests 

(Shiller 1979) and VAR-based Likelihood Ratio (Sargent 1979) and Wald (Campbell and 

Shiller 1987) tests. In their recent seminal paper, Bekaert and Hodrick (2001, B & H 

thereafter) suggest a Lagrange Multiplier (LM) test and show it has better finite sample 

properties than Wald and Likelihood Ratio based Distance Metric tests, the former of 

which had been used almost exclusively in the previous literature. The B & H 

methodology is fast gaining popularity and is adopted, for example, in Bekaert, Wei and 

Xing (2006), and Sarno, Thornton and Valente (2006).  

The present paper extends the B & H methodology by recognising model 

uncertainty in the specification of the VAR, and then applies it to re-examine the EH for 

US term structure data. Finite sample inferences drawn to date from the LM test rely on 

either an i.i.d. bootstrap or a GARCH model of the VAR residuals. Goncalves and Kilian 

(2004) argue that i.i.d. re-sampling is inaccurate in the presence of conditional 

heteroskedasticity, which characterizes many financial time series, while GARCH 

models can suffer from misspecification problems, see e.g. Wolf (2000) and Belsley 

(2002). To avoid these problems, we propose the application of a wild bootstrap scheme, 
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which permits heteroskedasticity of unknown form while retaining the contemporaneous 

error correlation. Further, applications of the i.i.d. bootstrap assume a known VAR order, 

which does not reflect true uncertainty. We not only endogenize the VAR lag length 

selection using an information criterion, but also supplement this with an application of a 

multivariate extension of the Godfrey and Tremayne (2005) autocorrelation test, as the 

performance of the former may not be reliable in the presence of conditional 

heteroskedasticity.2 In addition, we introduce a stationarity correction in the VAR and 

randomize the initial condition.  

Our extended method is applied to US term structure data for January 1952 to 

December 2003. Following Sarno, et al. (2006), who report a regime shift around 1982, 

we consider not only the whole period but also two sub-samples, before and after the 

monetary targeting period of 1979-1982. These sub-samples allow us to reassess if 

Campbell and Shiller’s (1991) claim that the EH performs better prior to 1978 than in the 

whole sample applies only because the latter includes potentially different regimes. While 

the existence of cheap communications and financial market competition may have 

reduced transactions costs (whose presence may be a factor against the EH) for the recent 

period, our empirical results do not indicate any noticeable difference in the performance 

of the theory across the sub-samples. Moreover, we find that the EH tends to be rejected 

at the short end of the maturity spectrum, in line with much of the previous literature. 

Nevertheless, the number of rejections is fewer in our analysis, as a result of the greater 

recognition of uncertainty in our testing methodology. 

The paper has five sections. Section 2 outlines the implications of the EH theory 

for interest rates and discusses tests of the theory in a VAR framework, focusing on the  
                                                 
2 See Monte Carlo evidence of Backus and Zaman (1998), Kyriazidou (1998) and Ng and Perron (2005) on 

the performance of various model selection criteria in this situation. 
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B & H methodology. Our methodological extensions are discussed in Section 3 and 

applied in Section 4, while Section 5 concludes.  

 

II. Expectations hypothesis theory and tests 

According to the EH, a long term interest rate equals the sum of a constant term premium 

and an average of current and expected future short term interest rates over the life of the 

long term interest rate. That is, in a linearized version of the EH (see Shiller, 1979) 

∑
−

=
+ +=

1

0
,,,

1 k

i
mnmitmttn RE

k
R π ; (1) 

where Rn,t and Rm,t are long and short rates at time t respectively, EtRm,t+mi , i = 0 , 1, 2,… 

k-1, is the expectation formed at time t of short rates at t+mi and mn,π  is the term 

premium which can vary across maturities but is assumed constant through time. Since 

the EH places no restriction on mn,π , this term can be ignored by working with demeaned 

series. In (1), k = n/m, the maturity multiple, is defined to be an integer, with m the 

maturity of a shorter rate and n the maturity of a longer rate. 

  This section first discusses single equation and vector approaches to testing the 

EH, before considering the B & H methodology. 

 

A. Single equation tests 

Equation (1) is rarely tested directly, probably due to the empirical results that imply the 

series are integrated, in which case conventional statistical theory is not appropriate. 

Rather, another implication of (1) is usually tested, which is based on the ability of the 
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spread between long and short rates to predict future short rate changes after imposing 

rationality on the expectations. Rationality requires  

Rm,t+mi = EtRm,t+mi + vt+mi, (2) 

where vt+mi has zero mean and is orthogonal to the information available at time t. 

Subtracting Rm,t from both sides of equation (1) and imposing rational expectations as in 

(2) yields probably the most commonly tested equation of the EH, which, after some 

rearrangement and parameterization, can be written as 

  tmntmnmn
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m wSR
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i
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+ απ  (3) 

where ∆mRm,t+m= Rm,t+m- Rm,t,   S(n,m),t = Rn,t - Rm,t and w(n,m),t is a moving average process 

of order (n-m). Equation (3) says that the current spread between long and short term 

rates predicts a cumulative change in shorter term (m-period) interest rate over n periods, 

and under the null hypothesis of the EH, α should be unity. 3  

However, as Campbell, Lo and MacKinlay (1997) point out, there are several 

econometric difficulties with the conventional regression approach in this context. Firstly, 

we lose n-m observations at the end of the sample period. This may be quite serious, as 

the data available for analysis may be relatively small and n can, for example, be as large 

as 10 years. Secondly, the error term η(n,m),t, is a moving average process, so standard 

errors have to be corrected, for example using the method described in Hansen and 

Hodrick (1980), Hansen (1982) or Newey and West (1987). But these adjustments do not 

work well when n-m is not small relative to the sample size (see e.g. Richardson and 

                                                 
3 Another implication of (1), which is less empirically supported, is that the yield spread predicts the m-

period change in the longer-term yield. This is tested (see e.g. Campbell and Shiller, 1991) using 

ttmntnmtmn vS
mn

mRR +
−

+=−+− ),,(,, βγ  under the null β is unity.  
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Stock, 1989, and Hodrick, 1992). Thirdly, the regressor is serially correlated and 

correlated with lags of the dependent variable, and this can cause finite sample problems 

as well (see e.g. Mankiw and Shapiro 1986). Moreover, as Thornton (2006) argues, α can 

be very close to one even under the alternative hypothesis where the EH does not hold.  

 

B. The VAR approach 

Problems associated with the single equation method can be avoided using a VAR 

framework, as suggested in e.g. Sargent (1979) and Campbell and Shiller (1987, 1991).  

Assuming that there exists a stationary vector stochastic process for [ ]′Δ= tmntmt SR ),,(, ,y   

in (3), then the demeaned process for ty  can be represented as a VAR of order p,4 

t

p

i
itit uyAy += ∑

=
−

1
. (4) 

Further, (4) can be written as a first order VAR in companion form such that 

ttt vAzz += −1 , where the companion matrix A, of dimension 2p×2p, has the form: 
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While zt has 2p elements, [ ]′′′′= +−− 11,...,, ptttt yyyz , vt is the 2p vector [ ]′′ 0,...,0,0,tu  which 

is uncorrelated over time. Thus zt summarizes the whole history of yt.  

                                                 
4 We avoid using interest rates in levels as that leads to a further stationarity restriction on the VAR 

parameters and/or the computational time was very long.   
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Now define vectors ei, i = 1, 2, each of dimension 2p, with unity in the ith position  

and zeros everywhere else such that tmt R ,1 Δ=′ze  and tmnt S ),,(2 =′ ze . Using these 

definitions, the spread predicted by the EH and its restrictions on VAR parameters can be 

shown to be, respectively, 

tp
m

p
n

pptmn n
mS zAIAIAIIAe 1

2
1

2221),,( )]())(([ −−∗ −−−−′≡  (5) 

1
2

1
22212 )]())(([ −− −−−−′=′ AIAIAIIAee p

m
p

n
pp n

m . (6) 

The restrictions in (6) are highly non-linear and are predominantly tested by asymptotic 

Wald tests, even though these have some undesirable properties in finite samples (see e.g. 

Gregory and Veall, 1985, Dagenais and Dufour, 1991). In particular, the Wald statistic is 

not invariant to how one specifies the null hypothesis and, potentially, to units of 

measurement; Shea (1992) provides a numerical example of how one can reach different 

conclusions on testing algebraically equivalent EH restrictions using Wald tests.  

The next two sub-sections describe the B & H methodology, which is designed to 

avoid the problems of asymptotic Wald tests.  

 

C. B & H methodology: asymptotic inference 

B & H (2001) suggest a Lagrange Multiplier (LM) test based on the restricted VAR 

parameters. On the basis of a Monte Carlo study, they find that the LM test has much 

better small sample properties than the Wald test in terms of size and power. They also 

consider the Likelihood Ratio based Distance Metric (DM) test, but prefer the LM test. 

Since this methodology is relatively new, and is an important part of this study, we now 

summarize the methodology.  
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The LM statistic of B & H is based on Hansen’s (1982) Generalized Method of 

Moments (GMM) estimator, which uses the orthogonality condition implied by (2). 

Defining ],...,[ 1 ′= pAAA& , and assuming that the DGP is represented by (4), the vector of 

nonlinear orthogonality conditions can be written as  

[ ] 0θ),g(x =tE , where )z,y(x ′′′≡ −1ttt , )(Aθ &vecr= . 

Estimation uses the corresponding sample moment conditions for a sample of size T, 

namely 

∑
=

≡
T

t
tT T 1

1) θ),g(x(θg . 

It proceeds by selecting θ to minimize the GMM criterion function  

 ))) 1 (θgΩ(θgθ TTTT(J −′≡ , (7) 

where, assuming the VAR of (4) is correctly specified with tu  uncorrelated, the 

weighting matrix, TΩ , is a consistent estimate of5  

[ ])θ,θ)g(x,g(xΩ ′≡ ttE . (8) 

Writing the null hypothesis of (6) as 

0)c(θ =00 :H , (9) 

                                                 
5  Notice that, in their equation (15), B & H use the more general GMM expression 

[ ]∑∞

−∞= − ′≡
h httE )θ,θ)g(x,g(xΩ . This collapses to (8), due to the assumption of uncorrelated VAR 

disturbances, which can be consistently estimated using a multivariate version of White’s (1980) 

heteroskedasticity consistent covariance matrix, as given in equation (A4) of Appendix A. Defining tη  as 

the VAR residual vector, then we estimate Ω  as 

∑∑∑
=

−−
=

−−
=
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T

t
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T
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T

t
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)1))((11 zzηηzηzη)θ,θ)g(x,g(xΩ , which is (A4). 
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where c(θ0) is a 2p dimensional vector, the Lagrangian for the constrained GMM 

maximization problem is 

γc(θ(θgΩ(θgγθ, )))
2
1)( 1 ′−′−= −

TTTL  (10) 

where γ is a vector of Lagrange multipliers and TΩ  is obtained from (8) using the sample 

mean in place of the expectation and replacing unknown parameters by their estimates. 

Since direct maximization of (10) is difficult, B & H (2001) adopt the approach of Newey 

and McFadden (1994) to derive a constrained consistent estimator starting from an initial 

unconstrained consistent one.  

Denoting an estimate of the matrix of restricted parameters satisfying (6) as A  

and )(Aθ vecr= , a Taylor series expansion to the non-linear first order conditions for 

(10) yields 

)θθ(G)(θg)θ(g 00 −+≈ TTT TTT ; (11) 

)θθ(C)(θc)θ(c 00 −+≈ TTT TTT , (12) 

where cT(θ) is the sample (mean) counterpart of c(θ), and TG  and TC  are gradients, with 

respect to θ, of the sample orthogonality conditions and the vector of constraints, 

respectively. Using cT(θ0) = 0 under the null hypothesis and substituting (11) and (12) 

into the first-order conditions, B & H obtain 

)(θc)CD(CCD)(θgΩGDMDθθ //
0

111
0

12121
0

ˆ
TTTTTTTTTTTT

−−−−−− ′′−′−≈ , (13) 

)(θc)CD(C)(θgΩGDC)CD(Cγ 0
11

0
1111 ˆ

TTTTTTTTTTTT
−−−−−− ′+′′−≈ , (14) 

where TTTT GΩGD 1ˆ −′≡  and the idempotent matrix MT is defined as 

211121 // DC)CD(CCDIM −−−− ′′−≡ TTTTTTTT .  
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To use these results for estimation, let θ~  represent an initial consistent 

unconstrained estimate. Then constrained estimates, θ and γ , are obtained by iterating 

(13) and (14), substituting θ~  for 0θ  to derive a second constrained estimate, and so forth 

until the constraint is satisfied, i.e. 0θc =)(T . 6  This yields the constrained estimate, 

together with the Lagrange Multipliers, which under the null hypothesis of EH has 

asymptotic distribution 

[ ]1)CD(C0,Nγ −− ′→ TTTT 1 . (15) 

The constrained parameter estimate is not equal to the unconstrained one when the 

constraints in (9) significantly affect the value of the GMM objective function (7). From 

(15), under the null hypothesis the LM test statistic is 

p)(χT TTT 221 →′′ − γ)CD(Cγ , (16) 

where p is the lag length of the VAR.  

B & H (2001) also consider the DM test statistic p)(χT TTT 2)()( 21 →′ − θgΩθg  and 

the Wald statistic p)(χT TTTTT 2)~()~( 211 →′′ −− θc)CD(Cθc . Note that the Wald test is based 

on the unrestricted estimates, the LM on the restricted estimates and the DM on both. 

 

D. B & H methodology: finite sample inference 

It is well known that estimated VAR parameters, although consistent, are biased in finite 

samples (see e.g. Tjostheim and Paulsen, 1983, Bekaert, Hodrick and Marshall, 1997). B 

                                                 
6 Note that we update TTT GDC ,,  and TΩ  at each iteration step to speed up the convergence. Preliminary 

results show doing that does not alter much the final conclusion. In our application the tolerance for 

convergence is set to 10-8. 
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& H suggest correcting for this bias using the bootstrap. More specifically, having 

specified the appropriate VAR order p and obtained the estimated unconstrained VAR 

parameter matrix, Â , they use Â  and an i.i.d bootstrap of the estimated residuals to 

generate b samples of artificial data. Each of these yields an unconstrained estimate iM ,Â , 

i = 1, …, b, and the bias, B , is estimated as ∑
=

−=
b

i
iMb 1
,

ˆ1ˆˆ AAB . Finally, bias-corrected 

estimates are obtained as BAA ˆˆˆ +=c .  

 To obtain bias-corrected parameter estimate that satisfies the null hypothesis, they 

use the bias corrected unconstrained VAR parameter estimate and an i.i.d. bootstrap of 

the residuals to simulate a very long series (70,000 observations plus 1,000 starting 

values that are discarded), which is then subjected to the iterative estimation scheme of 

(13) and (14). This bias corrected and constrained estimate of A is then used to calculate 

the LM test statistic and to conduct inference through the asymptotic result in (16). 

B & H also apply finite sample inference directly. Indeed, it is well documented 

that large sample inference can be misleading for finite samples (see e.g. Mankiw and 

Miron, 1986, or Horowitz, 2001). The estimate of the bias-corrected constrained 

parameter matrix, cA , obtained from (13), combined with an i.i.d bootstrap of the 

unrestricted residuals, is used as the bootstrap DGP to generate artificial null data sets of 

the actual sample size, plus 1000 observations that are discarded to attenuate the start-up 

effect. Using the same VAR order p as obtained from the actual data, iterations are 

performed on (13) and (14) for each bootstrap data set to obtain an LM statistic from (16). 

This is repeated a large number of times, with the empirical p-value then computed as the 
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proportion of bootstrap LM test statistics that are larger than or equal to the sample 

statistic obtained from the observed data.7  

B & H recognise the limitations of the i.i.d. bootstrap, and also examine test 

statistics obtained where conditional heteroskedasticity is allowed in the VAR residuals 

through a specific parametric factor GARCH model. In this case, the observed LM test 

statistic is compared to percentiles of the null distribution obtained using the estimated 

GARCH  model rather than i.i.d. bootstrap of the residuals. 

 

III. Extensions to B & H Methodology 

In this section we suggest several extensions, motivated by recent developments in the 

model specification and bootstrap literature, to the B & H methodology in order to 

encompass more general situations. Our three principal extensions are: i) the use of wild 

bootstrap to allow for conditional heteroskedasticity in the residuals of the estimated 

model, which does not require any a priori parameterization, ii) imposition of a 

stationarity correction and randomizing the initial condition in the bias correction 

procedure, iii) interactive use of an endogenous lag order selection rule and a vector 

autocorrelation test, with the restricted residuals used for finite sample inference.  

After outlining the wild bootstrap procedure, we discuss how our extensions are 

employed to improve the bias correction method of B & H and to conduct finite sample 

inference. 

 

                                                 
7 Finite sample inferences from DM and Wald tests follow the same procedure, except the latter does not 

require iterations of (13) and (14). 
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A. The wild bootstrap 

The EH itself places no restriction on the distribution of the VAR disturbances. It 

is, however, common that the residuals from estimated models exhibit volatility 

clustering, especially when financial time series are used (see e.g. Bollerslev, Chou and 

Kroner, 1992). As discussed above, the bias correction method in B & H (2001) relies on 

i.i.d. residuals, thus assuming away the presence of heteroskedasticity, whether of the 

unconditional or conditional form. However, they acknowledge possible conditional 

heteroskedasticity in the residuals for the purpose of finite sample inference, through the 

use of a VAR-GARCH model in addition to using i.i.d. bootstrap. But there is no solid 

reasoning behind why this specific form of volatility clustering model is used (Goncalves 

and Kilian, 2004), and even if this class of GARCH models is appropriate the precise 

form of the GARCH model is unknown, leading to the possibility of different results for 

different specifications (Wolf 2000 and Belsley, 2002). In contrast, we avoid these 

problems through using the wild bootstrap for both bias correction and to obtain 

empirical p-values. 8 

The wild bootstrap we use was developed in Liu (1988) following 

recommendations in Wu (1986) and Beran (1986). The particular form we employ is the 

recursive design wild bootstrap, which has better small sample properties than several 

other resampling schemes and is comparable with the i.i.d. bootstrap when the errors are 

indeed i.i.d.; see, e.g., Goncalves and Kilian (2004). Therefore, there appears to be 

minimal cost in applying the wild bootstrap when the disturbances satisfy the i.i.d. 

assumption.  

                                                 
8 By this we mean that the wild bootstrap allows the possibility of structural breaks in the disturbance 

variance-covariance matrix, as well as allowing for conditional heteroscedasticity of the multivariate 

GARCH form. 
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For given VAR parameter matrices iA , i=1…p, and corresponding disturbance 

vector tu , a recursive design wild bootstrap sample is generated as *** uyAy t

p

i
itit += ∑

=
−

1
, 

ttt uu* ω= , t = 1,…, T, in which the scalar random variable ωt satisfies 0)( =tE ω  and 

1)( 2 =tE ω . Following the evidence of performance in recent Monte Carlo studies of the 

wild bootstrap (Davidson and Flachaire, 2001, Godfrey and Orme, 2004, Godfrey and 

Tremayne, 2005), we specify tω  as having the Rademacher distribution, which takes the 

possible values of negative and positive unity with equal probabilities.  

 

B. Bias correction 

The bias correction of the VAR coefficient estimates is an important part of the B & H 

methodology. We develop B & H bias correction procedure in three ways.  

Firstly, we introduce a stationarity correction, which is important because the 

asymptotic validity of B & H methodology relies on it. Interest rates are assumed to be 

I(0) in B & H (2001) and Sarno, Thornton and Valente (2006), the latter of which 

provides some unit root test results that support this assumption, and they include the 

level of interest rates in their VAR. Nevertheless, even if they are differenced, as in this 

study, the random nature of the bias correction does not guarantee that the bias-corrected, 

companion-form VAR coefficient matrix is stable.  

Our procedure ensures 1)ˆ(max <cAλ ,  where maxλ  is the largest eigenvalue of the 

estimated companion matrix after bias correction, through an additional step suggested by 

Kilian (1998b). This step computes )ˆ(max cAλ  after bias adjustment. If  1)ˆ(max ≥cAλ , we  

set BB ˆˆ =i , δi = 1 and i = 1, then define iii BB ˆˆ
1 δ=+  with 001.01 −=+ ii δδ . Finally, we set 
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icc ,
ˆˆ AA =  after iterating on iic BAA ˆˆˆ

, +=  i = 1, 2,… until 1)ˆ( ,max <icAλ . The adjustment 

has no effect asymptotically and does not restrict the parameter space of the OLS 

estimator, since it does not shrink the OLS estimate Â  itself, but only its bias estimate. 

Secondly, we randomize the initial conditions. B & H discard the first p 

observations in each of the 100000 bootstrap replications in order to attenuate the start-up 

effect. However, as p can be one, this may not fully account for the uncertainty associated 

with the initial conditions. We therefore follow the suggestion of Stine (1987), by 

splitting the observed data into T – p + 1 overlapping blocks of length p and one of these 

is selected randomly as the starting point.  

Finally, to bias correct the constrained VAR coefficient matrix used to generate 

empirical distribution of the test statistics, B & H (2001) use the i.i.d. bootstrap of the 

residuals and the bias corrected unconstrained VAR coefficients to generate a large 

sample of 70000 observations, which is subjected to the iterative process. This procedure 

seems ad hoc, and it is unclear whether any advantage can be gained by the artificial 

generation of a long time series using an i.i.d. bootstrap in the presence of conditional 

heteroskedasticity. Instead, we subject the actual data and the bias corrected 

unconstrained coefficient estimates to the iterative process directly, since Newey and 

McFadden (1994) show that consistency of the estimator is sufficient for the validity of 

their expansion.  

 

C. Finite sample inference 

In addition to employing the wild bootstrap rather than an i.i.d. bootstrap, our finite 

sample inference procedure differs from B & H in a number of respects. 
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Firstly, the B & H methodology assumes the lag order is unknown when the VAR 

of (4) is specified, but when obtaining an empirical p value the lag order is treated as 

known to be that specified from the actual data. However, it is often emphasized that the 

bootstrap world should reflect the actual world (see, e.g., Li and Maddala, 1996), and 

ignoring the uncertainty involved in determining the true lag order in finite samples 

might lead to spurious inference. Therefore, our procedure separately estimates the lag 

order for every bootstrap dataset generated, employing the same lag selection criterion as 

that used for the actual dataset. Although there is no difference asymptotically between 

endogenizing lag selection or not, since every consistent model selection criterion will 

then choose the right lag length almost surely, Kilian (1998a) shows that endogenous lag 

selection improves finite sample inference for impulse response analysis.  

By the same argument, when estimating (4) on the artificial restricted data, the 

resulting estimated VAR coefficients should be bias corrected.  

Secondly, we employ a more flexible approach in choosing the appropriate lag 

length p of the assumed VAR-DGP, which is important not only because the asymptotic 

distributions of test statistics depend on it, but also because a necessary condition for the 

validity of the bootstrap is the absence of autocorrelation in the VAR residuals. Although 

B & H (2001) provide residual-autocorrelation test results after choosing the VAR lag 

length by SIC to argue that autocorrelation is not a concern, the test they use is univariate, 

applied to each individual equation of the VAR. Thus, their test potentially leads to the 

problem of mass significance, as discussed in Edgerton and Shukur (1999), and also 

omits the possibility of cross-equation residual autocorrelation. Moreover, the SIC model 

selection rule, like many others, implicitly relies on conditional homoskedasticity and is 

typically derived under conditional normality. The Monte Carlo studies of Backus and 

Zaman (1998), Kyriazidou (1998) and Ng and Perron (2005), examining the performance 
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of various model selection criteria, greatly reduces our confidence that we can rely on 

SIC to choose appropriate lag lengths in all 48 models we examine, representing the full 

spectrum of the term structure, in contrast to only two in B & H (2001).9 We therefore 

employ a multivariate extension of the autocorrelation test robust to conditional 

heteroskedasticity of Godfrey and Tremayne (2005), some details of which are provided 

in Appendix A, to the residuals of the model, the first of which is specified by SIC, and 

increase the lag length by one if there is any evidence of autocorrelation. This is repeated 

until that lag length which ensures the absence of autocorrelation up to 12th order. 

Finally, since studies of Davidson and MacKinnon (1985) and Godfrey and Orme 

(2004) find that the use of the restricted residuals provide improvements in finite sample 

properties compare with unrestricted ones, we use the former. That is, the bootstrap 

employs the residuals ∑
=

−−=
p

i
ititt

1
yAyu . Sarno et al. (2006) also use the restricted 

VAR residuals in their study. 

As the computational costs of bias correction, model identification and 

application of autocorrelation tests at each bootstrap iteration is high, the number of 

iterations is 1000 for the bias correction (that is b) and 5000 for the empirical distribution 

of LM statistics (that is d) in this context, not 100000 and 25000 respectively as in B & H 

(2001), and Sarno et al. (2006). 

 

                                                 
9 Campbell and Shiller (1991) and Hardouvellis (1994) assume that the data is known to be generated by 

VAR(4), Thornton (2006) use SIC, while Shea (1992), and Sarno et al (2006) use AIC. Basci and Zaman 

(1998), Kyriazidou (1998) recommend using SIC when the VAR residuals are suspected to be 

contaminated with conditional heteroskedasticity. 
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IV. Empirical Results10 

In this section we describe the data we use and provide empirical results from our 

extended B & H methodology. All inferences are made at a 5% significance level. 

 

A. Data and preliminary results 

We use the continuously compounded zero coupon yield curve dataset of Sarno et al. 

(2006).  This is an update of the McCulloch and Kwon (1993) dataset, which is used in 

many studies, including Campbell and Shiller (1991), Campbell (1995) and Thornton 

(2006). The full coverage is from January 1952 to December 2003. However, as there is 

evidence that the EH performed better prior to 1978 (Campbell and Shiller, 1991) and of 

a structural break in the VAR parameters around 1982 ( Sarno, et al., 2006), with these 

dates roughly coinciding with the introduction and abandonment of the Fed’s reserve 

targeting policy, respectively, we consider not only the whole, but also two sub-samples, 

January 1952 to December 1978 and January 1982 to Dec 2003. This sample splitting can 

also be motivated by the hypothesis that cheaper communication technology and 

competition in the financial market implies shrinking transaction costs over time, 

favouring the EH in the second sub-period. The maturities considered range from one 

month to a maximum of 20 months (10 years). 

Panel A of Table 1 shows the VAR lag orders chosen by SIC, separately selected 

for the entire sample and for the two sub-samples, for all maturity pairs considered11. 

                                                 
10 The authors would like to thank Dick van Dijk, Ruud Koning, Markus Kraetzig and especially Daniel 

Thornton for making their computer codes available on the Internet, modifications of which are used in this 

study. We also thank Daniel Thornton for providing the dataset.  
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Tests were conducted for the presence of first order conditional heteroskedasticity in the 

VAR residuals using the multivariate ARCH-LM test statistic described in Doornik and 

Hendry (1997). Strong evidence of conditional heteroskedasticity was found in almost all 

cases, both in the unrestricted VAR residuals and also in the residuals after imposition of 

the EH restriction, pointing to the need to take account of conditional heteroskedasticity 

for valid inference.12 Since Goncalves and Killian (2004) show that the wild bootstrap 

has performance that is little inferior to than that of the standard bootstrap even if the 

errors are indeed i.i.d., all subsequent analyses are based on the wild bootstrap.  

 

Table 1 here 

Table 2 provides LM test statistics for the null of no autocorrelation against the 

first order autocorrelation in the VAR residuals and their asymptotic and empirical p-

values, when applied with the VAR order indicated by SIC.13  It is notable that the 

discrepancy between the asymptotic and empirical p-values is relatively small and the 

rejections of the null tend to occur almost exclusively in the first sub-period, rather than 

the second sub- or the whole samples. However, when the null is tested against higher 

order (up to 12th order) autocorrelation, the adequacy of SIC in ensuring that all dynamic 

                                                                                                                                                  
11 The maximum lag length considered for the VAR order is ( ) 41

max 100/12 Tp = which is supported in the 

Monte Carlo study of Schwert (1989). 

12 The p-value for this test was almost always 0.00. The only exceptions to significance at 5% occurred for 

some maturity pairs at the longest end of the maturity spectrum, namely for maturity pair 12 and 120 

months in the first sub-sample and 60 and 120 months in the second sub-sample. Full results are available 

from the authors on request. 

13 See Appendix A for the description of the test and Godfrey and Tremayne (2005) for the use of wild 

bootstrap in estimating empirical p values. 
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mean relationships are captured by the VAR becomes more suspect. The result of 

increasing the lag length of the VAR chosen by SIC when there is any evidence of 

autocorrelation is reported in Panel B of Table 1, with the cases highlighted where the 

final lag lengths are different from the initial SIC choice. 14 The fewest discrepancies are 

found over the whole sample, as one would expect given that SIC is consistent, but it is 

also notable across all samples that the lag length indicated by SIC often does not account 

for all autocorrelation when the longer maturity considered is relatively short.  

Overall, the results indicate the danger of solely relying on SIC as the single lag 

selection rule across these models. Therefore, our empirical results in sub-section 4.3 are 

based on the augmented lag lengths.  

Table 2 here 

The importance of the stability correction we employ is shown in Table 3, where 

Panel A reports the number of iterations required to ensure stability for the unrestricted 

bias-corrected companion-form VAR parameters and Panel B gives the average number 

of iterations for the restricted bias-corrected parameters.15 It is clear that, without this 

correction, many bias-corrected estimates would have produced unstable models, 

invalidating inference based on the assumption of stability. There is also a marked pattern 

across the different sample periods. The modification has almost no effect in the second 

sub-sample, but the stability correction is employed much more often in other periods, 

especially in the first sub-sample. 

 
                                                 
14  This is a conservative strategy with respect to autocorrelation as the overall level of significance is less 

than 5% we use for individual tests. 

15 It may be noted that the bias corrected restricted VAR parameter in Panel A of Table IV in B & H (2001) 

is unstable, i.e. the maximum eigenvalue is 1.078. 
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Table 3 here 

B. Effect of lag length selection in the bootstrap 

As discussed above, our bootstrap inference is designed to capture the uncertainty faced 

in the specification of the lag order in a VAR, while ensuring that the disturbances are 

uncorrelated. To indicate the effects of the various lag length treatments, Figure 1 shows 

the empirical distributions obtained for the various LM test statistic for the maturity pair 

of 1 and 3 years using data from January 1952 to December 1978. The asymptotic χ2(6) 

distribution is also included for comparative purpose.16 When the VAR lag length is 

exogenous in the bootstrap world (that is, set equal to that estimated from the actual data) 

the empirical distribution closely matches the asymptotic one, implying there is little gain 

from the bootstrap in improving finite sample inference. However, as discussed above, 

Kilian (1998a) and others argue this lag treatment does not reflect the true uncertainty 

associated with choosing the lag length, which implies that this is not the appropriate 

finite sample distribution.  

As can be seen from the right-hand panel of Figure 1, when the lag length 

selection is endogenized using SIC, the empirical distribution of the lag lengths in the 

bootstrap never extends beyond the lag estimated from the observed data. More 

specifically, although only 50% of the lags are estimated as 3, in contrast to 100% in the 

exogenous lag length procedure, the remaining half in the former case cluster on either 1 

or 2 lags and no case exceeds 3. This is not specific to this maturity pair; indeed, the lag 

distributions for all maturity pairs either cluster at the one estimated from the actual 

observed data or extend only to that lag length. This reduction in uncertainty in the 

                                                 
16 The results for all maturity pairs can be obtained from the authors. The degrees of freedom is 6 as the lag 

is estimated to be 3, see Panel B, Table 1. 
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bootstrap has the consequence that the empirical distribution of the resulting LM statistic 

lies closer to the origin than that of the exogenous lag distribution. Thus, this procedure 

would reduce the number of rejections of the EH, compared to the use of either the 

asymptotic distribution or an exogenous lag length bootstrap. 

Figure 1 here 

However, applying our sequential lag ordering strategy, i.e. first choosing the lag 

order by SIC and modifying it when the autocorrelation test detects any evidence of 

autocorrelation up to 12th order, the lag distribution in the right-hand pane of Figure 1 

becomes more symmetric around the actual lag in the bootstrap DGP. This increases the 

uncertainty associated with LM statistic and shifts its distribution to the right compared 

with the use of SIC alone.  

Different lag length treatments in the bootstrap have important empirical 

consequences. In general, the proposed lag selection method will produce more 

favourable results for the EH than others we consider. For the specific maturity pair 

example illustrated in the distributions of Figure 1, the LM statistic estimated from the 

data is 13.29, with the corresponding 95% quantiles for the four graphed distributions 

being 12.14, 11.56, 15.08 and 12.59. In this case, the EH would be rejected using all 

distributions, except when the endogenous lag length selection rule is supplemented with 

the autocorrelation test. Nevertheless, we believe that our extended procedure is to be 

preferred because it replicates the procedure applied in analysis of the observed data and 

hence better captures the uncertainty associated with the value of the test statistic. This is 

also consistent with Hansen (2005) who emphasizes the importance of model uncertainty 

in empirical inference. 
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C. Results for EH tests 

Finally, we turn to the results of our extended LM test of the EH for the US term 

structure, which are provided in Table 4, with cases of rejection of the EH highlighted.17 

As can be seen from the table, the LM test does not always work, sometimes leading to 

non-convergence of the iterative procedure or instability of the restricted VAR coefficient 

matrix. The former problem is also reported in Sarno et al. (2006) and the latter is found 

in Bekaert et al. (2006). In our case, most non-convergences occur at the shortest end of 

the term structure and when the VAR lag lengths resulting from the application of the 

autocorrelation test are particularly large, such as 13 and 9 (see Panel B of Table 1). To 

obtain convergence in such cases, a restriction of maximum lag length of 5 is imposed.18   

Table 4 here 

The first substantive conclusion emerging from the finite sample LM test is that 

the EH tends to be rejected at the short end of the term structure, consistent with 

Campbell and Shiller (1991) and Sarno et al. (2006), but the number of rejections are 

much less often. In particular, the former study rejects the EH whenever the maturity n of 

the longer-term rate is below 3 or 4 years using data from January 1952 to February 1987 

and the latter study, which uses exactly the same data and sample periods, provides 

rejections whenever n is less than 2 years in most recent sub-period.  

Finally, it should be noted that the use of the asymptotic distribution would result 

in substantially more rejections of the EH than the finite sample distribution, particularly 

over the whole sample period. Figure 1 also implies that this would also be true in 

                                                 
17 Results from DM and Wald tests are not reported to conserve space but available from the authors upon 

request. 

18 Using a 1% level for the autocorrelation test results in lower lag lengths. 
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relation to the use of exogenously specified lags, emphasizing again the importance of 

our extensions to the B & H methodology when testing the expectations hypothesis for 

the term structure. 

 

V. Conclusion 

This paper extends the vector autoregressive model (VAR) based expectations hypothesis 

tests of term structure considered in Bakaert and Hodrick (2001) by relaxing certain 

assumptions on the VAR model specification. Firstly, we use the wild bootstrap to allow 

for conditional heteroskedasticity in the VAR residuals without imposing any strict 

parameterization. Secondly, when making finite sample inferences, we not only 

endogenize the model selection procedure but also supplement this with an 

autocorrelation test, employ the restricted not the unrestricted VAR residuals and 

randomize the initial condition in the bootstrap replications to reflect the true uncertainty. 

Finally, a stationarity correction is introduced in order to take account of the possibility 

of obtaining explosive VAR parameter estimates after adjustment for finite sample bias.  

When the modified B & H methodology is applied to an extensive US zero 

coupon term structure data ranging from 1 month to 10 years, we do not find that the EH 

performs noticeably differently across the sub-samples, namely before and after the Fed’s 

monetary policy change.  Nevertheless, we do find the EH is rejected at the short end of 

the maturity spectrum, in line with Campbell and Shiller (1991) and Sarno et al. (2006), 

although the rejections are less frequent, and also, interestingly, we reject the EH at the 

longest end over the January 1952 to December 1978 sub-sample. However, overall, our 

results indicate that the EH provides a reasonable description of the term structure 

relationship in the US from the period since 1952, provided that separate pre-1979 and 
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post-1982 sub-samples are employed and also provided that the shorter maturity of 

interest is at least three months.  
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Table 1. Selected VAR lag orders  

 
 Panel A Panel B 
 Jan 52- Dec 03 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 2         2         
3 2         13         
4 2 2        13 8        
6 2 1 1       8 1 1       
9 2  1       5  1       

12 2 1 1 1 1     3 1 1 1 1     
24 2 2 2 1 1  2   2 2 2 1 1  2   
36 2 2 1 1 1 1 1   2 2 1 1 1 1 1   
48 2 2 1 1 1  1 1  2 2 1 1 1  1 5  
60 2 2 1 1 1  1   2 2 1 1 1  8   

120 2 1 1 1 1  1 1 2 2 1 1 1 1  1 1 2 
 Jan 52- Dec 78 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 1         2         
3 1         3         
4 1 1        9 3        
6 1 1 1       9 2 2       
9 1  1       9  2       

12 1 1 1 1 1     9 2 1 3 3     
24 1 1 2 1 1  3   2 3 2 1 3  3   
36 2 2 2 2 1 3 3   2 2 2 2 3 3 3   
48 1 2 2 2 1  3 1  2 2 2 2 3  3 3  
60 1 2 2 2 1  3   2 2 2 2 3  3   

120 1 1 1 1 1  2 1 2 3 2 2 3 3  3 3 2 
 Jan 82- Dec 03 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 1         10         
3 1         6         
4 1 1        5 7        
6 1 1 1       5 4 1       
9 1  1       5  1       

12 1 1 1 1 1     3 8 1 1 1     
24 1 1 1 1 1  1   2 2 2 2 1  2   
36 1 1 1 1 1 1 1   1 1 1 1 1 1 1   
48 1 1 1 1 1  1 1  1 1 1 1 1  1 1  
60 1 1 1 1 1  1   1 1 1 1 1  1   

120 1 1 1 1 1  1 1 1 1 1 1 1 1  1 1 1 

Note: Panel A reports the VAR lag orders chosen by SIC for various maturity pairs. Maturities of longer 
rates are in the first column and those of the shorter rates are in the first rows of the sub-tables 
corresponding to three samples. The maximum lag length considered is ( ) 41

max 100/12 Tp = which is 
supported in the Monte Carlo study of Schwert (1989). Panel B provides lag lengths that result from 
application of the autocorrelation test after SIC, with the highlighting indicating cases where these differ 
from the SIC results.  
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Table 2. Multivariate autocorrelation test  

 Jan 52- Dec 03 Jan 52- Dec 78 Jan 82- Dec 03 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 4.36         11.74         1.80         
 0.36         0.02         0.77         
 0.44         0.02         0.86         

3 3.24         8.83         1.44         
 0.52         0.07         0.84         
 0.51         0.06         0.90         

4 2.80 1.30        7.35 0.83        1.01 2.14        
 0.59 0.86        0.12 0.93        0.91 0.71        
 0.59 0.90        0.12 0.94        0.97 0.84        

6 3.29 7.03 5.05       9.27 3.55 12.68       0.89 1.75 2.72       
 0.51 0.13 0.28       0.05 0.47 0.01       0.93 0.78 0.61       
 0.53 0.11 0.31       0.04 0.53 0.01       0.97 0.88 0.74       

9 2.92  5.16       9.61  8.40       2.40  3.93       
 0.57  0.27       0.05  0.08       0.66  0.42       
 0.57  0.28       0.02  0.08       0.79  0.46       

12 3.37 7.79 5.98 4.86 2.77     9.89 5.78 6.87 5.35 1.19     4.51 5.16 5.27 4.08 1.56     
 0.50 0.10 0.20 0.30 0.60     0.04 0.22 0.14 0.25 0.88     0.34 0.27 0.26 0.39 0.82     
 0.55 0.09 0.18 0.30 0.64     0.04 0.21 0.16 0.28 0.88     0.38 0.27 0.26 0.42 0.84     

24 2.41 4.19 6.62 5.44 3.41  7.91   14.26 8.93 3.97 6.97 5.83  2.87   8.16 10.23 11.35 10.67 8.69  6.93   
 0.66 0.38 0.16 0.24 0.49  0.10   0.01 0.06 0.41 0.14 0.21  0.58   0.09 0.04 0.02 0.03 0.07  0.14   
 0.71 0.42 0.15 0.25 0.53  0.09   0.01 0.06 0.38 0.16 0.19  0.63   0.09 0.02 0.02 0.03 0.07  0.16   

36 2.70 4.42 5.53 4.42 3.16 4.30 5.76   5.49 4.57 4.30 4.46 8.00 3.50 0.45   7.79 8.55 8.84 8.53 6.73 5.23 6.20   
 0.61 0.35 0.24 0.35 0.53 0.37 0.22   0.24 0.33 0.37 0.35 0.09 0.48 0.98   0.10 0.07 0.07 0.07 0.15 0.26 0.18   
 0.63 0.32 0.28 0.34 0.58 0.37 0.21   0.23 0.37 0.40 0.39 0.09 0.54 0.98   0.09 0.06 0.06 0.06 0.22 0.33 0.20   

48 2.76 4.63 5.72 4.53 3.04  3.83 7.79  12.92 3.69 3.87 4.56 8.77  0.85 10.71  5.80 6.46 6.59 5.90 4.42  4.27 7.63  
 0.60 0.33 0.22 0.34 0.55  0.43 0.10  0.01 0.45 0.42 0.34 0.07  0.93 0.03  0.21 0.17 0.16 0.21 0.35  0.37 0.11  
 0.65 0.35 0.23 0.37 0.61  0.46 0.09  0.00 0.44 0.43 0.35 0.08  0.93 0.02  0.27 0.15 0.13 0.24 0.41  0.45 0.11  

60 2.88 2.61 5.49 4.32 2.90  3.17   12.77 3.40 4.44 5.90 9.70  1.65   4.72 5.25 5.37 4.69 3.41  3.06   
 0.58 0.62 0.24 0.36 0.57  0.53   0.01 0.49 0.35 0.21 0.05  0.80   0.32 0.26 0.25 0.32 0.49  0.55   
 0.64 0.64 0.27 0.36 0.60  0.61   0.01 0.48 0.42 0.21 0.03  0.81   0.33 0.31 0.25 0.33 0.58  0.59   

120 2.38 7.79 5.19 3.99 3.09  5.12 7.97 2.88 12.61 10.66 12.18 12.41 13.45  11.54 12.00 8.89 1.93 1.65 1.46 1.12 0.90  1.29 3.29 3.42
 0.67 0.10 0.27 0.41 0.54  0.27 0.09 0.58 0.01 0.03 0.02 0.01 0.01  0.02 0.02 0.06 0.75 0.80 0.83 0.89 0.92  0.86 0.51 0.49
 0.72 0.09 0.31 0.43 0.57  0.28 0.07 0.60 0.01 0.03 0.01 0.01 0.00  0.01 0.01 0.08 0.81 0.85 0.89 0.91 0.94  0.89 0.52 0.52

Note: Table provides first order autocorrelation test results for the VAR residuals. The first number, given in bold is the test statistic followed by the corresponding 
asymptotic and wild bootstrapped p values (respectively) that there is no autocorrelation. The VAR lag length is given in Panel A of Table 1 and the test is described in the 
Appendix A. The cases where the first order serial correlation is detected are highlighted. 
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Table 3. Number of iterations required in stationarity correction 

 Jan 52- Dec 03 Jan 52- Dec 78 Jan 82- Dec 03 
 Panel A. Unrestricted Model 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 0         0         68         
3 N.C.         0         N.C.         
4 N.C. 55        65 0        N.C. 58        
6 58 0 0       66 0        34 35 0       
9 40  0       N.C.  0       29  0       
12 0 0 0 0 0     62 0 0 13 0     0 0 0 0 0     
24 40 33 27 0 0  42   39 48 42 0 49  57   0 0 0 0 0  0   
36 46 40 0 0 0 0 0   48 50 50 49 56 59 60   0 0 0 0 0 0 0   
48 50 46 0 0 0  0 65  52 54 54 54 59  61 55  0 0 0 0 0  0 0  
60 52 49 0 0 0  N.C.   55 56 56 55 60  61   0 0 0 0 0  N.C.   

120 57 0 0 0 0  0 0 52 62 56 57 62 62  60 56 26 0 0 0 0 0  0 0 0 
 Panel B. Restricted Model 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 

2 2.88         1.16         47.81         
3 N.C.         5.97         N.C.         
4 N.C. 22.79        38.47 3.43        N.C. 37.16        
6 69.78 1.21 1.39       30.59 4.69        57.94 35.13 1.70       
9 32.25  1.25       N.C.  1.99       23.75  2.09       
12 16.44 1.53 1.61 1.60 2.35     56.40 6.99 1.22 10.90 12.07     12.17 7.19 1.91 1.98 1.66     
24 34.58 24.50 15.64 2.47 3.36  25.08   33.84 30.74 22.34 1.76 34.94  42.55   2.17 4.07 10.82 8.65 2.44  2.91   
36 42.46 31.45 2.37 2.34 3.21 2.86 2.54   40.41 35.20 32.84 30.24 43.37 50.86 47.41   2.07 2.09 2.00 2.04 2.51 2.45 2.84   
48 46.74 37.85 2.59 2.53 3.22  2.62 46.78  43.17 39.43 39.37 38.57 48.83  55.87 57.02  2.19 2.19 2.36 2.45 2.69  3.15 3.32  
60 48.12 40.82 2.68 2.89 3.31     43.38 40.43 41.87 40.80 51.53  58.84   2.36 2.11 2.65 2.54 2.68  N.C.   

120 52.38 2.57 2.53 2.64 2.85  3.03 2.92 31.10 45.27 36.12 39.82 52.40 56.27  58.78 55.19 3.26 2.48 2.19 2.74 2.70 3.32  4.47 4.69 2.89

Note: Panel A reports the number of iterations required to make the bias corrected VAR parameters stable for the unrestricted model. Panel B reports the average number of 
iterations required in the bootstrap simulations that generate empirical p values. Details of the procedure are given in Section III.B. NC means non-convergence of the 
iterative procedure. 
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Figure 1. Effect of lag uncertainty on empirical distributions of LM statistic 

 

 
Note: The left-hand panel shows the empirical bootstrap distributions of the LM test statistic for different treatments of the lag uncertainty for the period of January 
1952- December 1978, together with the asymptotic distribution χ2(6). The distributions of the lag lengths are provided in the right-hand panel. The estimated LM 
statistic for this maturity pair is 13.29 and corresponding 95% quantiles of the 4 distributions graphed are 12.14, 11.56, 15.08 and 12.59. 
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Table 4. LM test of the EH of term structure 

 Jan 52- Dec 03 Jan 52- Dec 78 Jan 82- Dec 03 
 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 1 2 3 4 6 9 12 24 60 
2 28.28         36.59         56.17         
 0.00         0.00         0.00         
 0.00         0.00         0.00         
3 27.14*         35.56         26.45*         
 0.00         0.00         0.00         
 0.00         0.00         0.00         
4 23.47* 32.18        45.64 21.16        23.42* 17.24        
 0.01 0.01        0.00 0.00        0.01 0.24        
 0.00 0.01        0.00 0.01        0.00 0.08        
6 22.37 16.03 18.00       46.40 21.16 N.S.       14.15 12.48 7.86       
 0.13 0.00 0.00       0.00 0.00        0.17 0.13 0.02       
 0.14 0.01 0.01       0.00 0.00        0.22 0.10 0.05       
9 22.12  15.66       25.30*  8.09       11.11  6.17       
 0.01  0.00       0.00  0.02       0.35  0.05       
 0.02  0.01       0.00  0.08       0.16  0.08       

12 17.12 9.95 11.49 11.51 4.94     32.62 8.16 6.17 8.59 9.03     12.39 11.13 5.88 5.66 5.83     
 0.01 0.01 0.00 0.00 0.08     0.02 0.09 0.05 0.20 0.17     0.05 0.08 0.05 0.06 0.05     
 0.02 0.05 0.04 0.03 0.21     0.02 0.09 0.10 0.14 0.19     0.04 0.05 0.10 0.11 0.11     

24 16.98 16.00 15.67 6.30 3.21  13.03   5.64 8.09 4.69 4.09 7.63  16.92   10.32 11.82 13.07 13.69 4.99  13.97   
 0.00 0.00 0.00 0.04 0.20  0.01   0.23 0.23 0.32 0.13 0.27  0.01   0.04 0.02 0.01 0.01 0.08  0.01   
 0.02 0.02 0.02 0.13 0.35  0.04   0.28 0.21 0.32 0.22 0.30  0.03   0.05 0.05 0.05 0.03 0.16  0.03   

36 13.45 12.34 5.64 5.45 3.18 2.63 3.34   3.77 3.20 3.55 4.03 7.06 10.37 13.29   6.25 6.35 6.27 6.15 5.89 5.81 5.98   
 0.01 0.02 0.06 0.07 0.20 0.27 0.19   0.44 0.53 0.47 0.40 0.32 0.11 0.04   0.04 0.04 0.04 0.05 0.05 0.05 0.05   
 0.04 0.05 0.14 0.14 0.31 0.40 0.29   0.50 0.54 0.48 0.41 0.35 0.16 0.07   0.10 0.09 0.10 0.10 0.12 0.13 0.14   

48 11.39 10.28 5.71 5.41 3.35  2.83 11.33  3.25 2.73 3.03 3.50 5.41  8.74 9.37  5.67 5.81 5.62 5.32 4.74  4.34 5.42  
 0.02 0.04 0.06 0.07 0.19  0.24 0.33  0.52 0.60 0.55 0.48 0.49  0.19 0.15  0.06 0.05 0.06 0.07 0.09  0.11 0.07  
 0.06 0.08 0.14 0.15 0.30  0.35 0.20  0.56 0.62 0.55 0.50 0.52  0.25 0.20  0.11 0.10 0.12 0.15 0.18  0.22 0.18  

60 10.54 9.45 6.05 5.67 3.69  11.91*   3.27 2.84 3.13 3.54 4.68  7.13   5.51 5.51 5.21 4.84 4.14  3.46*   
 0.03 0.05 0.05 0.06 0.16  0.29   0.51 0.59 0.54 0.47 0.58  0.31   0.06 0.06 0.07 0.09 0.13  0.18   
 0.08 0.10 0.13 0.14 0.28  0.14   0.54 0.59 0.56 0.49 0.58  0.37   0.12 0.13 0.15 0.17 0.22  0.29   

120 9.88 7.53 7.38 6.90 4.95  3.87 3.62 12.10 7.49 4.77 5.52 7.69 7.97  9.18 11.39 17.77 4.28 3.86 3.25 2.67 1.64  0.63 0.41 0.43 
 0.04 0.02 0.03 0.03 0.08  0.14 0.16 0.02 0.28 0.31 0.24 0.26 0.24  0.16 0.08 0.00 0.12 0.14 0.20 0.26 0.44  0.73 0.81 0.81 
 0.10 0.08 0.09 0.10 0.17  0.23 0.26 0.06 0.21 0.33 0.29 0.27 0.27  0.20 0.12 0.01 0.19 0.22 0.28 0.36 0.53  0.79 0.86 0.84 

Note: First number in each set is the LM test statistic and second and third numbers are asymptotic and finite sample p-values, respectively. The cells highlighted indicate the 
rejection of the EH at the 5% significance level according to the empirical finite sample distribution. N.S. indicates the restricted VAR is unstable.  

* indicates cases where the maximum VAR lag length is restricted to be 5 as the iterative procedure did not converge.  
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Appendix A. Multivariate autocorrelation test robust to  

conditional heteroskedasticity 

In this appendix we describe the vector autocorrelation test of Godfrey and Tremayne 

(2005) robust to conditional heteroskedasticity. Consider a general dynamic system of n 

stochastic equations, the residuals of which are suspected to have autocorrelation,  

0000 UBZY +=        (A1) 

where [ ]′= ++
×

iTi
nT
i yyY ,...,1 , 

[ ]
[ ]′=

×+
ΠAAB ,,...,10 p

nmnp
,  [ ]′=

× TmT
xxX ,...,1 ,  [ ]′= ++

×
iTi

nT
i uuU ,...,1 , 

[ ]
[ ]XYYZ ,,...,10 p

mnpT
−−

+×
= , yt and tu  are (n×1), xt is (m×1), Ai is (n×n) and Π is (n×m), and 

this system reduces to a VAR(p) without an intercept when Π=0 and to a static system 

when Ai=0, i=1,..,p. We assume all values of z satisfying 0...2
21 =−−− p

p zzz AAAI  

lie outside the Argond diagram and that observations y1-p to y0 are available for the 

lagged variables, leaving T number of observations to estimate (A1).   

With autocorrelation of order g in 0U ,  

 ∑
=

− +=
g

j
jj

1
0 ECUU , 

where E has typical rows te′ , and et and el  are uncorrelated for l ≠ t. A model dependent 

autocorrelation test is based on the null hypothesis that 0...1 === gCC  in an auxiliary 

system that includes the lagged least squares residuals from (A1), namely 

EZBY +=0         (A2)  
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where
[ ]

[ ]gpmpgnT −−−−++×
= UUXYYZ ˆ,...,ˆ,,,..., 11)(

,   
[ ]

[ ]′=
×++

gpnmgpn
CCΠAAB ,...,,,,..., 11)(

 

The least squares estimator of (A2) is YZZZB ′′= −1)(ˆ  as in the familiar univariate case 

and if we let )ˆ(ˆ Bβ vec=  then it can be shown,  

),()ˆ( 11 −−⎯→⎯− WVV0Nββ dT ,     (A3) 

with ΓIV ⊗= n  and Tp /lim ZZΓ ′=  under suitable regularity conditions, see Hafner 

& Herwartz (2002). Under conditional homoskedasticity ΓΣW ⊗= e , where 

)( tte E eeΣ ′= .The null hypothesis of no autocorrelation can be expressed as 

H0: Rβ = 0 against Rβ ≠ 0,  

where R is a n2p× n2(p+g) nonstochastic selection matrix of zeros except a unity in each 

row that picks up the parameters of the lagged residuals in β one by one. 

Under the heteroskedasticity eΣ  is no longer constant, but multivariate extension 

of White’s (1980) heteroskedsticity consistent covariance matrix estimator can be used. It 

is consistently estimated as 

∑
=

′⊗′=
T

t
ttttT 1

ˆˆ1ˆ zzeeW ,       (A4) 

where zt is tth row of Z. In our application we replace tê  by tû , which is found to 

improve the finite sample inference in the univariate framework as discussed in Davidson 

and MacKinnon (1985) and Godfrey and Orme (2004). From (A3) and (A4), the 

multivariate GT test has the asymptotic distribution   

[ ] )()ˆ()ˆˆˆ()ˆ( 22111 knTGT d χ⎯→⎯′′=
−−− βRRVWVRβR . 
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