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Abstract

This paper studies the optimal allocation of government spend-
ing between health, education, and infrastructure in an endogenous
growth framework. In the model, infrastructure affects not only the
production of goods but also the supply of health and education ser-
vices. The production of health (education) services depends also on
the stock of educated labor (health spending). Transitional dynamics
associated with budget-neutral shifts in the composition of expen-
diture are analyzed, and growth- and welfare-maximizing allocation
rules are derived and compared. The discussion highlights the key
role played by the parameters that characterize the health and educa-
tion technologies.
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1 Introduction

Much of the literature on how health and nutrition affect economic growth

has focused on labor productivity effects (see Strauss and Thomas (1998)

and Hoddinott, Alderman, and Behrman (2005)). A common argument is

that the chronically undernourished may be too weak to perform up to their

physical potential; as a result, they do not get hired at any wage. Inadequate

nutrition may thus engender poor health, low productivity, and continued low

incomes and growth rates–in effect, preventing countries from escaping from

persistent poverty (see, for instance, Mayer-Foulkes (2005)).

Other contributions have emphasized the indirect effects of health on

growth. For instance, inadequate consumption of protein and energy, as

well as deficiencies in key micronutrients (such as iodine, vitamin A, and

iron), have been found to be key factors in the morbidity and mortality of

children and adults.1 Iron deficiency is also associated with malaria, intesti-

nal parasitic infestations and chronic infections. By reducing life expectancy,

malnutrition (or, more generally, poor health) may have an adverse, indi-

rect effect on growth, by discouraging savings and investment. Conversely,

healthy individuals both expect to live longer, which gives them an incentive

to save, and more often than not do indeed end up living longer, which gives

them more time to save and enjoy the fruits of their savings. In turn, higher

savings rates tend to stimulate growth.2

Moreover, healthier children tend to do better in school–just like health-

ier workers perform their tasks better–thereby enhancing intellectual capac-

ity and ultimately the quality of the labor force. Put differently, improve-

ments in the health of individuals tend to increase also the effectiveness of
1The United Nations estimate that 55 percent of the nearly 12 million deaths each year

among under five-year-old children in the developing world are associated with malnutri-
tion; see Broca and Stamoulis (2003).

2See Chakraborty (2004) and Hashimoto and Tabata (2005) for an analysis–based on
overlapping-generations models–of how health capital affects the probability of surviving
across periods, and thus savings and growth.
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education, as in the “food for thought” model of Galor and Meyer (2004).

In addition, to the extent that spending on health increases an individual’s

lifespan, it may also raise the return (as measured by the discounted present

value of wages) associated with greater expenditure on education. The in-

creased incentive to accumulate human capital may spur economic growth.

Conversely, poor health can have a significant adverse effect on educational

attainment. When parents become ill for instance, children are often pulled

out of school to care for them, take on other responsibilities (including menial

tasks) in the household, or work to support their siblings. Thus, intra-family

allocations regarding school and work time of children tend to be adjusted

in the face of disease within the family (see Corrigan, Glomm, and Mendez

(2005)) or when receiving foster children (see Deininger, Crommelynck, and

Kempaka (2005)). In turn, these adjustments may influence the accumula-

tion of both physical and human capital, and thus the growth rate.

At the same time, one line of research has shown that higher education

levels can improve health. More educated mothers have greater awareness of

health hazards and tend to take better care of their children. Another line of

research has emphasized the positive impact that infrastructure (roads, elec-

tricity, clean water, telecommunications, and so on) may have on both health

and education. Regarding the relationship between infrastructure and health,

microeconomic studies have found that access to safe water and sanitation

helps to improve health, particularly among children. By reducing the cost

of boiling water, access to electricity helps to improve hygiene and health.

Infrastructure may also have a sizable impact on educational outcomes; there

is much evidence, for instance, of a direct linkage between education and ac-

cess to roads. Electricity allows for more studying and access to computers,

which may enhance the quality and depth of learning.

The foregoing discussion suggests that, at the microeconomic level, the

relationship between health, education, and infrastructure services is largely

complementary. At the macroeconomic level, however, potential trade-offs
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may emerge between the provision of various categories of services, which

often falls under the responsibility of the state (at least in most low- and

middle-income developing countries). With limited resources, governments

must choose what services need to be provided in priority, whether it is to

maximize the rate of economic growth or individual welfare.

The contribution of this paper is to examine the optimal allocation of gov-

ernment spending between health, education, and infrastructure, in a unified

endogenous growth framework that accounts for both the complementari-

ties emphasized by the microeconomic evidence and the aggregate budget

constraint faced by policymakers.3 To begin with, we assume that the econ-

omy is endowed only with “raw” labor, and raw labor must be educated

to become productive. All public services are provided free of charge and

are financed by a distortionary tax. Most importantly, and in line with the

foregoing discussion, infrastructure services are assumed to affect simultane-

ously the production of goods, educated labor, and the provision of health

services. In addition, the rate of human capital accumulation depends on

the existing stock of educated labor (the number of “teachers”) as well as

the provision of health services, whereas the production of health services

depends on the stock of educated labor (or “medical workers”). By impos-

ing gross complementarity between production inputs, the model captures

the positive externalities highlighted earlier between health, education, and

infrastructure.

Our distinction between raw and educated labor dwells on the fact that,

unlike Uzawa-Lucas type models, we assume that knowledge is (quite liter-

ally) embodied in individuals, as in Ehrlich and Lui (1991) and van Zon and

Muysken (2005).4 In addition, individuals can provide effective services from

3This paper draws on several earlier contributions by Agénor (2005a, 2005b, 2005d,
2005e), in which aspects of this issue were considered. But the present paper is (as
far as we know) the first to provide a unified treatment of the links between education,
health, and infrastructure and to compare systematically growth- and welfare-maximizing
allocations.

4However, as indicated later, all of our results can be “recast” in the context of the
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human capital only if they are healthy. Thus, by enhancing labor produc-

tivity, health influences growth directly, in addition to affecting individual

welfare. It is “effective” labor (defined as a composite factor in educated

labor and public health services) that is used in production. A lower flow of

health services would therefore reduce the ability of each worker to produce.

From that perspective, then, public spending on health and education are

complementary. But from the point of view of the production of “effective”

labor (through the schooling technology), the provision of health services is a

substitute for the formation of educated labor, because it may reduce (every-

thing else equal) government spending on education–as well as, possibly,

spending on infrastructure services. At the same time, health services enter

in the representative household’s utility function and therefore affect welfare

directly. Potential trade-offs imposed by the government budget constraint

imply therefore that there is an optimal allocation of expenditure between

education, health, and infrastructure, which in general depends on the tech-

nology for producing goods, human capital, and health services, as well as

household preferences.

The remainder of the paper is organized as follows. Section II provides

a brief overview of some of the recent empirical literature on the interac-

tions between health, education, and infrastructure. Section III presents our

framework. Section IV derives the balanced growth path (BGP) and dis-

cusses the dynamic properties of the model. Section V examines the short-

and long-run effects of revenue-neutral increases in spending shares on in-

frastructure, health, and education. The issue that we address is whether

(given that the production of educated labor and health services depends

on infrastructure services) an increase in public spending on infrastructure

is the most efficient way to stimulate long-run growth. As noted earlier,

the provision of each category of services requires resources and this (given

Uzawa-Lucas framework of disembodied knowledge, by using the concept of “effective”
human capital.
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the overall constraint on tax revenues) creates trade-offs. The growth- and

welfare-maximizing allocations of public expenditure are determined in Sec-

tions V and VI. We consider the optimal allocation of spending between any

two categories of public services, assuming that the tax rate and the third

spending category are arbitrarily set. The last section of the paper offers

some concluding remarks.

2 Recent Evidence

This section provides a brief review of the recent evidence on the impact

of health on economic growth, interactions between health and education

outcomes, and the impact of infrastructure on health and education. In

doing so, we dwell on both the micro and macro evidence.

2.1 Health and Economic Growth

Several recent studies have documented a sizable effect of nutrition and health

outcomes on economic growth. Arcand (2001) and Wang and Taniguchi

(2003) found that better nutrition enhances growth directly, through its im-

pact on labor productivity, as well as indirectly, through improvements in

life expectancy and possibly by speeding up the adoption of new production

techniques.5 Lorentzen, McMillan and Wacziarg (2005) found that coun-

tries with a high rate of adult mortality also tend to experience low rates

of growth–possibly because when the risk of premature death is relatively

high, incentives to save and invest in human capital are weakened.6 More

specifically, McCarthy, Wolf, and Wu (1999) found that malaria morbidity is

5Jamison, Lau and Wang (2004), however, conluded that differences in the impact of
health on growth across countries were unlikely to be the result of differences in the effect
of health on the rate of technical progress.

6They also found that the estimated effect of high adult mortality on growth is large
enough to explain sub-Saharan Africa’s poor economic performance between 1960 and
2000. Indeed, in the 40 countries with the highest adult mortality rates in their sample of
98 countries, all are in Sub-Saharan Africa, except three.
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negatively correlated with the growth rate of output per capita across coun-

tries. Countries with a high incidence of malaria grew by 1.3 percent less per

annum compared to unaffected countries during the period 1965-90, resulting

in an income level 33 percent lower than that of countries without malaria.

A 10% reduction in malaria was associated with a 0.3% increase in annual

growth. In Sub-Saharan Africa alone, a one-percentage point increase in the

morbidity rate associated with the disease tends to reduce the annual growth

rate per capita by an average of 0.55 percent.

The direct impact of life expectancy (as an indicator of good health) on

growth has been documented by Bloom, Canning, and Sevilla (2004) and

Sala-i-Martin, Doppelhofer, and Miller (2004). The former study, based on

a sample consisting of both developing and industrial countries, found that

good health (proxied by life expectancy) has a sizable, positive effect on eco-

nomic growth. A one-year improvement in the population’s life expectancy

contributes to an increase in the long-run growth rate of up to 4 percentage

points.7 Sala-i-Martin, Doppelhofer, and Miller (2004) also found that ini-

tial life expectancy has a positive effect on growth, whereas the prevalence

of malaria, as well the fraction of tropical area (which may act as a proxy

for exposure to tropical diseases) are both negatively correlated with growth.

Using instead adult survival rates as an indicator of health, both Bhargava

et al. (2001) and Weil (2005) found robust evidence that health has a strong

effect on growth in low-income countries.

2.2 Interactions between Health and Education

Empirical studies have also found evidence of a strong impact of health

on both the quantity and quality of human capital–and thus indirectly on

growth. As noted earlier, healthier children tend to do better in school. In

7Using a production function approach, Bloom and Canning (2005) found that a one
percentage point in adult survival rates raises labor productivity by 2.8 percent. Weil
(2005), by contrast, found a calibrated value of 1.7 percent.
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Tanzania, for instance, the use of insecticide-treated bednets reduced malaria

increased attendance rates in schools (Bundy and others (2005, p. 2)). In

Western Kenya, deworming treatment improved primary school participation

by 9.3 percent, with an estimated 0.14 additional years of education per pupil

treated (see Miguel and Kremer (2004)). McCarthy, Wolf, and Wu (1999)

found that malaria morbidity (viewed as a proxy for the overall incidence of

malaria among children) has a negative effect on secondary enrollment ratios.

Bundy et al. (2005), in their overview of experience on the content and con-

sequences of school health programs (which include for instance treatment for

intestinal worm infections), have emphasized that these programs can raise

productivity in adult life not only through higher levels of cognitive ability,

but also through their effect on school participation and years of schooling

attained. At the aggregate level, the cross-country regressions of Baldacci et

al. (2004) show that health capital (as proxied by the under-5 child mortality

rate) has a statistically significant effect on school enrollment rates. Finally,

Bloom, Canning and Weston (2005) found that children vaccinated (against

a range of diseases, including measles, polio and tuberculosis) as infants in

the Philippines performed better in language and IQ scores at the age of ten

than unvaccinated children–even within similar social groups. Thus, early

vaccination may have a sizable effect on education outcomes (by enabling the

accumulation of knowledge) and economic growth.

At the same time, several empirical studies have found that higher ed-

ucation levels can improve health.8 Both micro and macro studies have

found that where mothers are better educated infant mortality rates are

lower, and attendance rates in school are higher (see Glewwe (1999) and the

cross-country regressions of Baldacci et al. (2004) and Wagstaff and Claes-

son (2004)). Better-educated women tend, on average, to have more health

knowledge and be more aware of the myriad of health risks that their chil-

8Glewwe (2002) provides a review of the evidence on the impact of schooling on adult
and child health.
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dren face. Paxson and Schady (2005), in a study of Ecuador, found that the

cognitive development of children aged 3 to 6 years varies inversely with the

level of education of their mother. More generally, during the period 1970—

95, improvements in female secondary school enrollment rates are estimated

to be responsible for 43 percent of the total 15.5 percent reduction in the

child underweight rate of developing countries (Smith and Haddad (2001)).

In sub-Saharan Africa alone, Summers (1994) estimated that five additional

years of education for women could reduce infant mortality rates by up to 40

percent.

2.3 Infrastructure, Health and Education

A number of case studies (many of them summarized by Brenneman and

Kerf (2002)) have found that infrastructure may have a very large impact

on health and education outcomes. According to World Bank estimates,

more than half of the population in the developing world still relies on tra-

ditional biomass fuels (such as wood and charcoal) for cooking and heating,

which represent serious health hazards (see Saghir (2005)); improved and

more efficient stoves would reduce indoor air pollution and harmful health

effects. Access to clean energy for cooking and better transport (particu-

larly in rural areas) may also contribute to better health. In another study,

the World Bank (2005, p. 144) found that the dramatic drop in the ma-

ternal mortality ratio observed in recent years in Malaysia and Sri Lanka

(from 2,136 in 1930 to 24 in 1996 in Sri Lanka, and from 1,085 in 1933 to

19 in 1997 in Malaysia) was due not only to a sharp increase in medical

workers in rural and disadvantaged communities, but also to improved com-

munication and transportation services–which helped to reduce geographic

barriers. Transportation (in Malaysia) and transportation subsidies (in Sri

Lanka) were provided for emergency visits to health care centers. Moreover,

in Malaysia, health programs were part of integrated rural development ef-

forts that included investment in clinics, rural roads, and rural schools. A
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similar approach was followed in Sri Lanka–better roads make it easier to

get to rural health facilities. At a cross-country level, McCarthy, Wolf, and

Wu (1999) found that access to clean water and sanitation has a significant

effect on the incidence of malaria.

Regarding the relationship between infrastructure and education, there

is also evidence of direct linkages between education, electricity, roads, and

sanitation. As noted earlier, electricity allows for more studying and access

to technology. Studies have shown that the quality of education tends to im-

prove with better transportation networks in rural areas, whereas attendance

rates for girls tend to increase with access to sanitation in schools. In the

Philippines, for instance, after rural roads were built, school enrollment went

up by 10 percent and drop-out rates fell by 55 percent. A similar project

in Morocco raised girls’ enrollments from 28 percent to 68 percent (see Levy

(2004)). A study of Bangladesh shows also a correlation between access to

water and sanitation facilities and increases in girls’ attendance. Indeed, in

most developing countries, the sanitary and hygienic conditions in schools

are often appalling, characterized by the absence of proper functioning water

supply, sanitation and hand washing facilities. Schools that lack access to

basic water supply and sanitation services tend to have a higher incidence of

major childhood illnesses among their students. In turn, as discussed earlier,

poor health is an important underlying factor for low school enrollment, ab-

senteeism (often the result of respiratory infections, as noted by Bundy et al.

(2005)), poor classroom performance, and early school dropout. Inadequate

nutrition, which often takes the form of deficiencies in micronutrients, also

reduces the ability to learn and study. Thus, improving hygiene, sanitation,

and access to food and safe water in schools can create an enabling learn-

ing environment that contributes to children’s improved health and learning

ability. In turn, these improvements may have a sizable impact on growth.
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3 The Model

Our starting point is an economy with a single, infinitely-lived household

who produces and consumes a single traded good. The good (whose price

is fixed on world markets) can be used for consumption or investment. The

economy’s endowment consists of raw labor, which must be educated to be

used in market activity. Raw labor is supplied inelastically. The government

provides infrastructure services, as well as health and education services,

all free of charge. It finances these expenditures by levying a flat tax on

marketed output.

3.1 Market Production of Goods

Aggregate marketed output, Y , is produced with private physical capital,KP ,

public infrastructure services, GI , and effective labor. In turn, effective labor,

Q, is defined as a composite input produced by combining the economy’s flow

supply of health services,H, and the share of educated workers in production,

χPE, under constant returns to scale:
9

Q = Hε(χPE)
1−ε, (1)

where E is the total number of educated workers in the economy, χP ∈ (0, 1)
the share of educated workers in production, and ε ∈ (0, 1) a share parameter.
Production exhibits constant returns to scale in all factors:

Y = Gα
IQ

βK1−α−β
P , (2)

where α, β ∈ (0, 1). Substituting (1) in (2) yields

Y = AP (
GI

KP
)α[(

H

KP
)ε(

E

KP
)1−ε]βKP , (3)

where AP ≡ χ
(1−ε)β
P > 0.

9Throughout the paper, the time subscript t is omitted whenever doing so does not
result in confusion. A dot over a variable is used to denote its time derivative.
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3.2 Household Preferences

The household maximizes the discounted stream of future utility

max
C

V =

Z ∞

0

(CHκ)1−1/σ

1− 1/σ exp(−ρt)dt, (4)

where C is aggregate consumption and κ > 0 measures the contribution of

health to utility and σ is the intertemporal elasticity of substitution. Thus,

health services affect welfare directly and are included in the instantaneous

utility function, together with consumption, in a non-separable manner. At

first sight, specification (4) is similar to the one used by Corsetti and Roubini

(1996) and Turnovsky (1996), among others.10 In those papers, however, it is

utility-enhancing public spending that enters directly in the utility function,

whereas in the present case what matters is the supply of health services.

The household’s resource constraint is

C + K̇P = (1− τ)Y + (1− χP )wGE, (5)

where τ ∈ (0, 1) is the tax rate on income and (1 − χP )wGE represents

salaries paid to teachers and doctors, with wG a constant real wage (assumed

identical for both categories of workers). For simplicity, the depreciation rate

of private capital is assumed to be zero.

3.3 Schooling Technology

As noted earlier, the economy’s raw labor endowment, which grows at a con-

stant rate n, must be educated before it can be used in market production.

Education is a public, nonmarket activity. Specifically, the production of

educated labor requires the combination of government spending on educa-

tion services (such as instructional materials), GE , as well as infrastructure

10To ensure that the instantaneous utility function has the appropriate concavity prop-
erties, we impose the restrictions κ(1− 1/σ) < 1 and 1 > (1− 1/σ)(1 + κ).
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and health services, teachers (who are all on the government’s payroll), and

students:

Ė = G
μ01
E G

μ2
I H

μ3L
μ4 (χEE)

1−Σμh , (6)

where Ė is the flow of newly-educated workers, χE the proportion of educated

workers engaged in teaching, L the number of students, and μh ∈ (0, 1),
for h = 1, ...4. Thus, the education technology exhibits constant returns

to scale in all inputs. This specification captures the view (discussed in

the previous section) that healthier students learn better; consequently, the

quality of education improves and this translates into a higher output of

educated labor.11 Infrastructure also matters–lack of access to electricity

for instance, may prevent schools from functioning properly.12 To ensure

that the number of newly-educated workers does not exceed the number of

students, we assume that Ė < L.

Equation (6) can be rewritten as

Ė

E
= χ

1−Σμh
E (

GE

E
)μ

0
1(
GI

E
)μ2(

H

E
)μ3(

L

E
)μ4 . (7)

In what follows, we ignore depreciation (or de-skilling) of educated labor.

We also assume that the student-teacher ratio (an indicator of the quality

of schooling) varies inversely with government spending on education per

student:
L

χEE
= (

GE

L
)−a, (8)

where a ∈ (0, 1). This specification captures the idea that spending relatively
more per student (on classroom equipment, for instance), tends to lower the

student-teacher ratio. It also implies that, along the balanced growth path,

where E and GE grow at a constant rate γ (as shown below), the number

11The analysis can readily be extended to the case where healthier teachers provide
better training as well.
12Note that the production of educated labor could also occur through informal job

training, or as a product of experience (learning by doing). We abstract from these con-
siderations and focus instead on knowledge accumulation through schooling.
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of students must grow at the same rate. This, in turn, imposes a lower

bound on the rate of growth of the total population from which students

are drawn, n ≥ γ. Individuals who remain illiterate (that is, those who

are unable to get access to the schooling system) are assumed to turn to

a subsistence (non-market) activity for survival–a plausible assumption for

the low-income countries that we have in mind.13

Combining equations (7) and (8) yields

Ė

E
= AE(

GE

E
)μ1(

GI

E
)μ2(

H

E
)μ3, (9)

where AE ≡ χ
1−μ1−μ2−μ3+μ4 a

1−a
E > 0 and μ1 ≡ μ01 − αμ4/(1− α).14

3.4 Production of Health Services

Aggregate production of health services requires combining public spending

on health and infrastructure, as well as doctors. Assuming that production

takes place under constant returns to scale in all factors yields

H = (χHE)
θ1Gθ2

I G
1−θ1−θ2
H = AH(

E

GH
)θ1(

GI

GH
)θ2GH , (10)

where χH ≡ 1− χP − χE, θh ∈ (0, 1) and AH ≡ χθ1H > 0.

An alternative (or, rather, complementary) explanation for introducing

educated labor in the production function (10) is to assume that the educa-

tion system is used for the delivery of health services. Indeed, as documented

by Glewwe (2002) and Bundy et al. (2005), an increasingly common approach

in developing countries has been to use teachers to deliver micronutrients in

schools.
13See Agénor (2005b) for a more detailed discussion.
14Although we have developed our model in terms of embodied knowledge, it can be

reinterpreted in the standard Uzawa-Lucas framework. With N denoting population, and
Z the stock of knowledge, one would need to use the concept of “effective human capital”
in the production function, defined as ZNH, with productivity assumed to be strictly
proportional to the supply of health services (that is, Q = H). In that case, assuming a

constant population, knowledge production would become Ż = G
μ01
E G

μ2
I H

μ3
Z
1−Σμh instead

of (6), and restriction (8) would not be needed.
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3.5 Government

The government spends on education services, and invests in health and

infrastructure. It levies a flat tax on marketed output at the rate τ . In

addition, it cannot issue debt claims and therefore must keep a balanced

budget at each moment in time. The government budget constraint is thus

given by

GE +GH +GI + S = τY, (11)

where S = (1− χP )wGE is the public sector wage bill. As noted earlier, the

wage rate wG is taken to be constant.15

All categories of spending on services are taken to be a constant fraction

of tax revenues:

Gh = υhτY, for h = E,H, I. (12)

The government budget constraint can thus be rewritten as

S = τ(1− Συh)Y, (13)

or equivalently, assuming that wage payments are a fraction ϕ ∈ (0, 1) of tax
revenues,

υE + υH + υI = 1− ϕ. (14)

4 The Decentralized Equilibrium

In the present setting, a decentralized equilibrium is a set of infinite sequences

for the quantities {C,KP , E}∞t=0, such that {C,KP}∞t=0 maximizes equation
(4) subject to (5), and the path {KP , E}∞t=0 satisfies equations (5), (9), and
(10), for given values of the tax rate, τ , the ratio of government wages to

15We assume implicitly that educated workers seek employment in the public sector first,
perhaps because of the rent-seeking opportunities (or, more generally, the non-pecuniary
benefits) associated with government jobs. Given that these jobs are rationed (only a
fraction (1−χP )E of the pool of educated workers can be employed as doctors or teachers),
there is no arbitrage condition between ωG and the prevailing wage in the private sector,
βY/χPE.
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revenue, ϕ, and the spending shares υh, with h = E,H, I, which must also

satisfy the constraint (14).

This equilibrium can be characterized as follows. The household solves

problem (4) subject to (5), taking the tax rate, τ , and health services, H, as

given. Using (4), (5) and (3), the current-value Hamiltonian for this problem

can be written as

Λ =
(CHκ)1−1/σ

1− 1/σ + λ

½
(1− τ)AP (

GI

KP
)α[(

H

KP
)ε(

E

KP
)1−ε]βKP + S − C

¾
,

where λ is the co-state variable associated with constraint (5).

From the first-order condition dΛ/dC = 0 and the co-state condition

λ̇ = −dΛ/dKP + ρλ, optimality conditions for this problem can be written,

with s ≡ (1− τ)(1− α− β) = (1− τ)η, as

Hκ(CHκ)−1/σ = λ, (15)

λ̇/λ = ρ− sAP (
GI

KP
)α[(

H

KP
)ε(

E

KP
)1−ε]β, (16)

together with the budget constraint (5) and the transversality condition

lim
t→∞

λKP exp(−ρt) = 0. (17)

Equation (15) can be rewritten as

C = λ−σHσκ(1−1/σ).

Taking logs of this expression and differentiating with respect to time

yields
Ċ

C
= −σ( λ̇

λ
) + ν(

Ḣ

H
), (18)

where ν ≡ σκ(1− 1/σ).
Using (10) and (16), and setting Ω ≡ 1− α− εβ(1− θ1) > 0, yields

Ċ

C
= σ

½
sAP (

GI

KP
)α[(

H

KP
)ε(

E

KP
)1−ε]β − ρ

¾
(19)
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+ν

(
ηθ1 + [1− ε(1− θ1)]β

Ω
(
Ė

E
) +

η(1− θ1)

Ω
(
K̇P

KP
)

)
,

where, as shown in Appendix A, equation (A3), the expression for Ḣ/H is

obtained by combining (10), (3), and (12), using the fact that the latter

implies ĠI/GI = ĠH/GH = Ẏ /Y. In addition, substituting (3) in (5) yields

K̇P = (1− τ)AP (
GI

KP
)α[(

H

KP
)ε(

E

KP
)1−ε]βKP + S − C. (20)

As shown in Appendix A, equations (9), (10), (13), (19), and (20) can be

further manipulated to lead to a system of two nonlinear differential equations

in c = C/KP and e = E/KP (see equations (A11) and (A13)). These

equations, together with the initial condition e0 > 0 and the transversality

condition (17), determine the dynamics of the decentralized economy.

The balanced-growth path (BGP) is therefore a set of sequences {c, e}∞t=0,
spending shares and tax rate, such that for initial condition e0 equations (9),

(19), (20) and the transversality condition (17) are satisfied, and consump-

tion, the stock of educated labor, and the stock of private capital, all grow

at the same constant rate γ∗ = Ċ/C = Ė/E = K̇P/KP .

From equations (A7) and (A9) (after substituting (A14) and (A7) in (A9))

of Appendix A, the steady-state growth rate γ∗ is given by the equivalent

forms16

γ∗ = Aυ
μ1
E υM1

I υM2
H τM3 ẽ−M3η, (21)

γ∗ =
σ

1− ν

½
s(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω ẽ

β[1−ε(1−θ1)]
Ω − ρ

¾
, (22)

where δ ≡ 1−θ1−θ2 and a tilde over a variable is used to denote its stationary
value, and A, M1, M2, and M3 (which are all positive terms) are defined in

Appendix A.

From equation (22), the growth rate is positive if the rate of time prefer-

ence is not too large, that is, if ρ < s(Ỹ /K̃P ), as well as 1−ν > 0. The second

16Alternatively, equation (22) can be obtained by substituting (A14) and (A7) into
equation (A10).
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condition can be rewritten as σ < 1+1/κ, which imposes an upper bound on

the intertemporal elasticity of substitution. In turn, this condition–which

can be derived from the convergence requirement γ∗ < ρ/(1−1/σ) combined
with (22)–must hold for the transversality condition (17) to be satisfied

along the BGP. Therefore, a steady-state solution exists as long as the rate

of time preference and the growth rate are not too large.

As shown in Appendix A, along an equilibrium path with a strictly posi-

tive growth rate, the BGP is unique. In addition, there is only one stable path

converging to the equilibrium. Thus, the model is locally determinate, and

its dynamics are illustrated in Figure 1. Although the ė = 0 curve (denoted

EE in the figure) has a concave shape, the ċ = 0 curve (denoted CC) can be

either upward- or downward-sloping, depending on the size of the elasticity

of intertemporal substitution, σ. The upper (lower) panel corresponds to the

case where σ is relatively high (low), in a sense made precise in Appendix

A (see equation (A12)). Therefore, the slope of the saddlepath SS may be

either positive or negative.

Following a jump in c (as a result, for instance, of a change in the tax

rate or in one of the spending shares), c and e may or may not move in the

same direction. The reason is that the transitional dynamics are driven by

the ratio of educated labor to private capital, and as this ratio increases,

the marginal productivity of capital increases, thereby raising the incentive

to save and invest. Although the intertemporal substitution effect tends to

reduce consumption on impact, the positive income effect (associated with

the higher capital stock and output) tends to increase it. Given the rela-

tively high (small) value of the elasticity of substitution, σ, in the upper

(lower) panel, the former (latter) effect dominates and lowers (raises) the

consumption-capital ratio. This is illustrated by a movement along SS from

the left of point A towards A.
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5 Transitional Dynamics

We now analyze the steady-state effects and transitional dynamics of the

economy to an unanticipated, permanent revenue-neutral change between

any two of the spending categories. We examine, in turn, a shift from health

toward infrastructure spending, a shift from education toward infrastructure

spending, and finally a shift from health expenditures toward education.17 It

is intuitively clear that all these experiments entail a trade-off with respect

to their impact on economic growth and the levels of consumption, health,

and education.

5.1 Shift in Spending toward Infrastructure

First, we examine the impact of an increase in υI when offset by a reduction

in υH (dυI = −dυH), holding τ and ϕ constant. Appendix B establishes that
such a shift in the government’s expenditure composition has an ambiguous

effect on the steady-state growth rate. In particular, if education and health

services do not affect the education accumulation process (μ1 = μ3 = 0), the

net effect on growth depends on whether the observed ratio υI/υH lies above

or below its optimal value. In this case, the optimal ratio is a function of

the elasticities of the goods and health technologies only. With μ1 > 0 and

μ3 > 0, the net effect depends also on the education technology elasticities.

To understand the intuition behind these results, consider first the case

where μ1 = μ3 = 0. Increasing the share of public expenditures on in-

frastructure has a positive impact on the marginal productivity of private

capital and, therefore, growth (both directly through the goods technology

and indirectly through the production of health and education services). At

17Although such resource shifting experiments from one type of productive government
spending category to another have long been acknowledged as having important implica-
tions for growth (see, for instance, Glomm and Ravikumar (1997)), most of the literature
has focused on shifts between productive and unproductive expenditures (see, for instance,
Turnovsky and Fisher (1995)). In our model, this could be captured by setting θ1+θ2 = 1,
which implies that GH would become unproductive. Alternatively, we could set μ1 = 0.
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the same time, however, this increase is accompanied by a lower provision

of health services that reduce the supply of healthy workers, which tends

to lower private production and reduce the growth rate. The net effect on

growth, therefore, depends on whether the actual spending ratio υI/υH ex-

ceeds or falls short of an optimal value, which depends on the parameters

characterizing the production of goods and health services (see Appendix

B). If the observed ratio is lower than this optimal value, the growth effect

will be positive, whereas the effect on the consumption-capital ratio will be

negative.

With μ1 > 0 and μ3 > 0, the net growth effect is even more ambiguous.

Now, it depends not only on the elasticities characterizing the production

of goods and health services, but also on those determining the economy’s

ability to produce educated labor. Even if infrastructure services have a small

impact on the production of goods (low α/β), a high relative importance

of infrastructure in the production of educated labor (high μ2/μ3) and/or

production of health services (high θ2/δ) may suffice to lead to increases in

ẽ, c̃, and γ∗. In the particular case where θ1+θ2 = 1, that is, if health services

do not affect the economy-wide level of health, δ = 0 and the effect of an

increase in υI on the steady-state rate of growth is unambiguously positive.

Figure 2 illustrates the possible effects on ẽ and c̃, in the presence of

relatively small values of both μ1, μ3, and of the elasticity of intertemporal

substitution, σ. As a result, both panels show an increase in the steady-state

ratio of educated labor to capital. However, the consumption-capital ratio

and the rate of growth may either increase or fall, depending on the ratio

υI/υH . In both panels, a rise in υI shifts both curves CC and EE to the

right. In the upper (lower) panel, where the ratio υI/υH is relatively small

(large), CC shifts by more (less) than EE and the consumption-capital ratio

falls (rises). In both cases, the economy converges monotonically to the new

BGP, located at point A0.

A similar analysis examines the economic impact of an increase in in-
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frastructure spending when compensated by an equivalent decrease in edu-

cation expenditures (dυI = −dυE). As before, such a change in the com-
position of public spending creates a trade-off with respect to the rate of

growth, as shown in Appendix B. Starting with the case where μ2 = μ3 = 0

so that infrastructure and health public services have no impact on the ed-

ucation technology, an increase in υI has growth-enhancing effects while the

respective decrease in υE has growth-retarding effects. The positive growth

effects take place through the output and health technologies, whereas the

distorting effects are the result of the indirect influence of the education and

health technologies on growth. As a result, the net growth impact depends

on the relative importance of the two offsetting effects, as represented by the

ratio (α+ εβθ2)/[1− ε(1− θ1)]β. As established in Appendix B, if this ratio

exceeds the elasticity of the steady-state value of the educated labor-capital

ratio with respect to the share of spending in infrastructure, both growth

and consumption increase.

These effects are illustrated in Figure 3 for relatively small values of μ2,

μ3, and σ. In both panels the steady-state ratio of educated labor-capital

declines, while the consumption-capital ratio and the rate of growth may

either increase or fall. Both panels reveal that a rise in υI shifts both curves

CC and EE to the left. In the upper (lower) panel, a low (high) elasticity

of the steady-state value of the educated labor-capital ratio with respect to

the share of spending in infrastructure causes the CC curve to shift by more

(less) than EE so that the consumption-capital ratio rises (falls).

In the general case, where μ2 > 0 and μ3 > 0, the net effect on the steady-

state ratio of educated labor to capital is also unclear. This in turn, implies

that the effect on growth is even more obscure since it now also depends

on the elasticities of the education technology with respect to spending on

infrastructure and education. In this general case, a rise in υI may still lead

to a higher ẽ, c̃, and γ∗ even if α/β is low, as long as θ2/θ1 and/or μ2/μ1 are

sufficiently large (that is, as long as infrastructure is sufficiently productive
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in the education and health production technologies).18

5.2 Shift in Spending toward Education

The final experiment consists of a revenue-neutral shift in spending from

health toward education (dυE = −dυH), keeping τ and ϕ constant. The in-

tuition is similar to the above line of argument, which suggests two conflicting

effects on growth. However, both effects now are indirect because they affect

the goods production technology only through the human capital production

techniques. Appendix B shows that in the simple case where μ2 = μ3 = 0,

a rise in υE unambiguously raises the ratio of educated labor to physical

capital; but in general, sufficiently high values of μ2 and μ3 may lead to a

decrease in the steady-state value of e. The positive effect of an increase in

spending on education will thus outweigh the negative effect of lower spend-

ing of health services on the stock of educated workers. The respective effect

on the rate of growth (and the steady-state ratio of consumption to capital),

depends on how far above or below υE/υH is, compared to its optimal ratio.

For values above (below) the optimal value, both the rate of growth and c̃

will be positively (negatively) affected.

The steady-state effects and transitional dynamics of the increase in υE

(again assuming low values for μ2, μ3, and σ) are also illustrated in Figure 2,

where both the CC and EE curves shift to the right. At the new equilibrium,

the education to private capital ratio is higher, while the consumption to

capital ratio could be either lower (upper panel) or higher (lower panel). In

both cases the adjustment path is reflected by the sequence ABA0.

18These results provide a generalization of those derived in Agénor (2005b), where the
provision of health services is absent.
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6 Growth-Maximizing Policies

Using the steady-state growth rate equations (21) and (22), we now examine

the optimal allocation of public expenditures to infrastructure, education,

and health in the decentralized equilibrium, treating the tax rate and one of

the shares of spending as exogenously set (that is, dτ = 0 and dυI = −dυH ,
dυI = −dυE, dυE = −dυH).
Following the same order of illustration as the section that dealt with tran-

sitional dynamics, we first examine a revenue-neutral shift in public spending

from health to infrastructure. As a result of the budget constraint (14), and

with ϕ constant, only one of these shares can be independently chosen.

Setting dγ∗/dυI = 0 in equations (21) and (22), and assuming that the

exogenously set values of υE and ϕ are zero, yields

υ∗I |dυI=−dυH =
Z1 + Z2
Θ1 + Z2

< 1, (23)

where Z1 ≡ β{(μ1ε+μ3)θ2+μ2(1−εδ)} > 0, Z2 ≡ β{(μ1ε+μ3)(1−θ1)+μ2} >
0, and Θ1 ≡ α[μ1+μ2+μ3(1−θ1)] > 0. Equation (23) shows that, in general,
the optimal composition of spending depends on all the parameters charac-

terizing the technologies for producing goods, health services, and educated

labor.

To provide a more intuitive interpretation, it is convenient to consider the

particular case where infrastructure and health services do not affect directly

the accumulation of educated labor (that is, μ2 = μ3 = 0), although similar

intuition would follow if we instead set μ1 = μ3 = 0 or μ1 = μ2 = 0. In this

way, we can write the growth-maximizing share of infrastructure as

υ∗I |dυI=−dυH =
α+ εβθ2

α+ εβ(1− θ1)
. (24)

This expression is a generalization of the optimal allocation rule derived

in Agénor (2005e), in a model where infrastructure enters also in the pro-

duction of health services, but educated labor is absent (that is, θ1 = 0). It
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implies that if the production of health services depends on publicly-provided

infrastructure, that is, θ2 > 0, then the optimal share of spending on in-

frastructure is higher than otherwise. Also note that this share is in general

greater than α, implying that the strict Barro rule, which here corresponds

to υ∗I = α + β, is sub-optimal (see Barro (1990)). In the special case where

educated labor and infrastructure expenditure do not affect the health pro-

duction technology (that is, θ1 = θ2 = 0), the optimal share of spending on

infrastructure is given by υ∗I = α/(α + εβ), where εβ can be viewed as the

weighted elasticity of goods production with respect to effective labor. If

ε = 1, then the optimal share of infrastructure is similar to the expression

obtained in Agénor (2005a).

A more general presentation of the effects of all the related technology

parameters on the optimal share is provided in the second column of Table

1, by using (23). The results are intuitively appealing; they show that an

increase in the elasticities of the production of goods, educated labor, and

health services, with respect to infrastructure outlays, α, μ2, and θ2, respec-

tively, should be accommodated by an increase in the share of infrastructure

spending. Conversely, governments should decrease υ∗I (or increase υ
∗
H) when

the elasticity of production of goods with respect to effective labor, β, the

responsiveness of productivity with respect to health, ε, and the elasticity

of production of educated labor with respect to health, μ3, improve. An

increase in the elasticity of health with respect to education, θ1, tends to

increase υ∗I . The reason is that the increase in θ1 lowers the elasticity of

health output with respect to spending on health, δ, while at the same time

the shift toward infrastructure raises the supply of educated labor–which

in turn raises output of health services and magnifies the initial effect on

education. Finally, the effect that μ1 (the responsiveness of the production

of educated labor with respect to education spending) has on the share of

infrastructure depends on the relative responsiveness of both the goods and

education production technologies with respect to infrastructure compared
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to health spending, that is, on the ratios α/μ2 and εβ/μ3. If the former

(latter) dominates, then υ∗I rises (falls).

A similar line of argument follows when, instead of financing an increase

in the share of infrastructure by decreasing the share of health, there is a

decrease in the share of education (that is, dυI = −dυE). In this case, with
υH = ϕ = 0, the optimal composition is

υ∗I |dυI=−dυE =
Z1 + Z2
Θ2 + Z2

< 1, (25)

where Θ2 ≡ β{(μ1 + μ2)(1− εδ) + μ3θ2} > 0.
For tractability of exposition, consider the case where μ2 = μ3 = 0. The

optimal share of infrastructure is now

υ∗I |dυI=−dυE =
α+ εβθ2

α+ β(1− εδ)
, (26)

which, in contrast to the optimal share derived in equation (24) shows that a

higher elasticity of the health technology with respect to education, θ1, lowers

rather than raises υ∗I . Of course, this is an implication of the fact that now

a higher share of infrastructure is financed by an equivalent reduction in the

share of education spending, and as such, it diminishes the growth-enhancing

effects of education. As before, in the special case where θ1 = θ2 = 0, so

that δ = 1, the optimal allocation of spending between infrastructure and

education would depend only on the parameters characterizing the goods

production technology, represented by the ratio α/β(1−ε). This would yield
an optimal share of υ∗I = α/[α + β(1− ε)]. If, in addition, ε = 0, the result

is consistent with Agénor (2005a).

Table 1 (column 3) provides more information on the effects of the tech-

nology parameters on υ∗I . As illustrated in the case where an increase in

υI is offset by a decrease in υH , we get that higher values of α, μ2, and

θ2 positively affect υ∗I . But now, in addition, so does ε and μ3, because a

higher ε is associated with a lower responsiveness of the production of final

goods (through productivity) with respect to educated labor, and because
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a higher μ3 means that more spending on infrastructure, by raising output

of health services, tends to mitigate the adverse effect of lower education

spending on output of educated labor–in addition to its direct effect. By

contrast, increases in β, μ1, and θ1 negatively affect the share of spending

on infrastructure because they entail a higher degree of responsiveness of the

production of goods, educated labor, and health, respectively, with respect to

education spending (thus calling for higher υ∗E). The fourth column of Table

1 presents the symmetrically opposite effects that changes in the technology

elasticities have on the optimal share of education spending when financed

with a cut in infrastructure expenditure.

The final optimal share of spending to determine is related to education

being financed by an equivalent decrease in health expenditures (that is,

dυE = −dυH). Setting dγ∗/dυE = 0 and υI = ϕ = 0 in equations (21) and

(22) yields

υ∗E|dυE=−dυH =
μ1[1− ε(1− θ1)]

δ(μ2ε+ μ3) + μ1(1− εθ2)
< 1. (27)

In the same vein as before, this revenue-neutral shift in spending from

health to education creates two opposing effects on the marginal product of

capital, and therefore growth. However, in contrast to the previous two cases

examined, the growth effects now are only indirect, through the health and

education production technologies. That is, there is no direct impact on the

goods production technology (notice the absence of the parameters α and β).

Equation (27) reveals that the more important is the responsiveness of the

production of health services and educated labor with respect to education

(health), as measured by θ1 (δ) and μ1 (μ3) respectively, the higher is the

optimal share of spending on education (health) services.
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Table 1
Partial Effects of Technology Parameters

on Growth-Maximizing Spending Structure
υ∗I υ∗E

Parameter Offset: υH Offset: υE Offset: υI Offset: υH
α + + − 0
β − − + 0
ε − + − −
μ1 ? − + +
μ2 + + − −
μ3 − + − −
θ1 + − + +
θ2 + + − +

To get a more intuitive interpretation of υ∗E, consider, as before, the case

where μ2 = μ3 = 0. This gives rise to

υ∗E|dυE=−dυH =
1− ε(1− θ1)

1− εθ2
, (28)

which implies that the growth-maximizing share of investment in education

receives its maximum value (υ∗E = 1) if government spending on health ser-

vices has no indirect effect on the production of output (so that ε = 0).

The final column of Table 1 illustrates in more detail the effects that

changes in the technology parameters have on υ∗E, by using the general rule

spelt out in equation (27). As expected, an increase in the parameters that

characterize the responsiveness, with respect to education spending, of out-

put of goods, 1− ε, educated workers, μ1, and health, θ1, has an enhancing

effect on υ∗E. In addition, an increase in θ2 is also associated with a higher

υ∗E, as a consequence of a lower responsiveness of the production of health

services with respect to health spending. Finally, a government would find

beneficial (in terms of maximizing the rate of growth) a reduction in the share

of public spending in education if μ2 or μ3 rise (because both are related with

a lower impact of education spending on the educated stock of workers).
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Having derived the growth-maximizing spending structure in a market

economy, our next task is to examine the welfare-maximizing structure in

a centrally planned economy and provide a comparison with the growth-

maximizing policies that we have obtained.

7 Welfare-Maximizing Allocation

We now assume that an altruistic central planner maximizes the household’s

lifetime utility by organizing the production and allocation of resources in

all the sectors of the economy. The planner, by having complete informa-

tion, chooses all the quantities directly, taking into account both the welfare-

enhancing effects of health and the process of human capital accumulation.19

To specify the planner’s problem rewrite the output production function

(3), by using (12) and (10), as

Y = (APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω E

[1−ε(1−θ1)]β
Ω K

η
Ω
P . (29)

By using equations (C1), (C2), (C3), and (C4) derived in Appendix C,

the social planner’s problem is to maximize, with respect to C, υI , υH , τ ,KP ,

and E,

Λ =
{C[AHE

θ1υθ2I υ
δ
H(τY )

1−θ1 ]κ}1−1/σ
1− 1/σ

+ζK {[1− (υE + υH + υI)τ ]Y − C}

+ζE{Bυ
μ1
E υ

μ2+μ3θ2
I υ

μ3δ
H (τY )μ1+μ2+μ3(1−θ1)E1−[μ1+μ2+μ3(1−θ1)]},

where ζK and ζE denote the co-state variables associated with equations (C3)

and (C4) respectively.

The first-order optimality conditions are given by

19An alternative approach is to assume that the government solves optimally only for
its fiscal policy instruments, taking as given the paths of consumption and capital accu-
mulation determined by private maximization. See Park and Philippopoulos (2002) and
Piras (2005) for a discussion.
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Hκ(CHκ)−1/σ = ζK , (30)

κCHκ(CHκ)−1/σ
½
θ2 + αδ

υI
− (1− α)δ

υH

¾
(31)

+ζKY

½
ψ(

α+ εβθ2
υI

− εβδ

υH
) + τΩ

¾
= −ζEAυ

μ1
E υM1

I υM2
H τM3E1−M3ηK−M3η

P

½
M1Ω

υI
− μ1Ω

υE
− M2Ω

υH

¾
,

κCHκ(CHκ)−1/σ
½
(1− α)δ

υH
− θ2 + αδ

υI

¾
(32)

+ζKY

½
ψ(

εβδ

υH
− α+ εβθ2

υI
) + τΩ

¾
= −ζEAυ

μ1
E υM1

I υM2
H τM3E1−M3ηK−M3η

P

½
M2Ω

υH
− μ1Ω

υE
− M1Ω

υI

¾
,

κCHκ(CHκ)−1/σ(1− θ1) + ζKY {ψ[α+ εβ(1− θ1)]− τ(υI + υH + υE)Ω}
(33)

= −ζEAυ
μ1
E υM1

I υM2
H τM3E1−M3ηK−M3η

P [μ1 + μ2 + μ3(1− θ1)],

ζ̇K
ζK

= ρ− η

Ω
ψ

Y

KP
− ζE

ζK

[μ1 + μ2 + μ3(1− θ1)]η

Ω
(34)

×Aυμ1E υM1
I υM2

H τM3E1−M3ηK−M3η
P

1

KP
− 1

ζK
κCHκ(CHκ)−1/σ

(1− θ1)η

Ω

1

KP
,

ζ̇E
ζE
= ρ− Ω− [μ1 + μ2 + μ3(1− θ1)]η

Ω
Aυ

μ1
E υM1

I υM2
H τM3E1−M3ηK−M3η

P

1

E
(35)

−ζK
ζE

[1− ε(1− θ1)]β

Ω

Y

E
− 1

ζE
κCHκ(CHκ)−1/σ

ηθ1 + [1− ε(1− θ1)]β

Ω

1

E
,

and the transversality conditions

lim
t→∞

ζKKP exp(−ρt) = lim
t→∞

ζEE exp(−ρt) = 0. (36)

30



Rewriting (30), taking logs, and differentiating with respect to time yields

(18),
Ċ

C
= −σ( ζ̇K

ζK
) + ν(

Ḣ

H
), (37)

which is repeated here for convenience.

Using (34) and (A3), equation (37) becomes

Ċ

C
= σ{ η

Ω
ψ

Y

KP
+

ζE
ζK

[μ1 + μ2 + μ3(1− θ1)]η

Ω
(38)

×Aυμ1E υM1
I υM2

H τM3E1−M3ηK−M3η
P

1

KP
+
1

ζK
κCHκ(CHκ)−1/σ

(1− θ1)η

Ω

1

KP
−ρ}

+ν

(
ηθ1 + [1− ε(1− θ1)]β

Ω
(
Ė

E
) +

η(1− θ1)

Ω
(
K̇P

KP
)

)
.

In addition, from Appendix C, equation (C3) implies

K̇P = ψ(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω E

[1−ε(1−θ1)]β
Ω K

η
Ω
P − C. (39)

Appendix C illustrates how equations (38) and (39) can be further ma-

nipulated to produce two nonlinear differential equations in c and e, which

together with the initial condition e0 > 0 and the transversality condition

for private capital (36) characterize the dynamics of the centrally-planned

economy. The BGP is, again, a set of functions {c, e}∞t=0, such that equa-
tions (38), (39), (C4) and the transversality condition (36) are satisfied, and

consumption and the stocks of educated labor and private capital, all grow

at the same constant rate γ∗∗.

The steady-state growth rate γ∗∗ is given by equation (21) and its equiv-

alent form20

γ∗∗ =
σ

Ω(1− ν)
{
"
ψ + [μ1 + μ2 + μ3(1− θ1)]

υEτ

μ1
+ (1− θ1)κ(

C̃

Ỹ
)

#
(40)

20Equation (40) can be obtained in two ways. First, by substituting (C10) into (A9).
Second, by substituting (C10) and (A7) into (C6).
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×η(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω ẽ

β[1−ε(1−θ1)]
Ω − Ωρ}.

It is straightforward to verify that this equilibrium is consistent with the

transversality condition (36). Finally, Appendix C illustrates the uniqueness

and stability of the BGP, where its dynamics, being qualitatively similar to

those derived for the decentralized equilibrium, are illustrated in Figure 1.

As for the market economy, we now study the optimal allocation of pub-

lic spending to the three categories (infrastructure, education, and health)

in a command environment. With the use of equations (21) and (40), we

examine the welfare-maximizing composition of these expenditure shares in

the case of revenue-neutral shifts from health to infrastructure, education to

infrastructure, and health to education. The respective optimal shares of

spending that emerge are

υ∗∗I |dυI=−dυH =
Z1 + Z2 + T1
Θ1 + Z2 + T2

< 1, (41)

where Z1, Z2, andΘ1 are as defined earlier, T1 ≡ (1−θ1)κ(C̃/Ỹ )[(μ1+μ3)θ2+
μ2(θ1 + θ2)] > 0, and T2 ≡ (1− θ1)κ(C̃/Ỹ )[(μ1 + μ3)(1− θ1) + μ2] > 0.

υ∗∗I |dυI=−dυE =
Z1 + Z2 + T1
Θ2 + Z2 + T3

< 1, (42)

where T3 ≡ (1− θ1)κ(C̃/Ỹ )[(μ1 + μ2)(θ1 + θ2) + μ2θ2] > 0, and

υ∗∗E |dυE=−dυH =
βμ1[1− ε(1− θ1)] + T4

βδ(μ2ε+ μ3) + βμ1(1− εθ2) + T5
< 1, (43)

where T4 ≡ (1− θ1)κ(C̃/Ỹ )μ1θ1 > 0 and T5 ≡ (1− θ1)κ(C̃/Ỹ )[μ1(1− θ2) +

δ(μ2 + μ3)] > 0.

In the particular case where κ = 0, so that the supply of health services

does not affect utility, Th = 0 for h = 1, .., 5, and formulas (41), (42), and

(43) are identical to (23), (25), and (27), respectively. In general, however,

this is not the case. As Table 2 illustrates, when increases in the shares

of infrastructure and education are offset by a decline in health spending,
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the utility-maximizing shares of infrastructure and education fall below their

respective growth-maximizing share (see the first and last columns, respec-

tively). In both cases, the magnitude of the wedge depends on κ, implying

that the greater the role of health services in utility, the larger the difference

between the two optimizing rules.

Intuitively, spending on health services is now more important to the

social planner, given its complementarity with consumption. Choosing shares

of spending on infrastructure and education that are lower than their growth-

maximizing rates reduces the growth rate but also leads to a reallocation of

government outlays toward health services. If δ, the elasticity of the health

production technology with respect to health expenditure is not too low,

and neither is μ3, the elasticity of the education technology with respect to

spending on health, this reallocation leads to higher output of health services

and the supply of educated labor, and thus higher productivity, which tends

to mitigate the adverse productivity effect induced by a decline in public

outlays in infrastructure or education. In turn, with κ > 0, the increase

in output of health services translates into a higher level of consumption

and a subsequent increase in welfare. In each case, this positive welfare

effect dominates the negative effect of a lower growth rate. The higher θ2
is, with respect to the trade-off between infrastructure and health spending,

and the higher θ1 and μ1 are, with respect to the trade-off between education

and health spending, the smaller the difference between the two optimizing

solutions. In the limit case where θ2 = 1, then υ∗∗I |dυI=−dυH = υ∗I |dυI=−dυH =
1. Hence, both the growth- and welfare-maximizing solutions indicate that

all government revenues should be allocated to infrastructure. In the same

vein, when θ1 = μ1 = 1, then υ∗∗E |dυE=−dυH = υ∗E|dυE=−dυH = 1, and public
resources should be directed toward education.
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Table 2
Comparison of the Growth- and Welfare-

Maximizing Spending Structure
υ∗I and υ∗∗I υ∗E and υ∗∗E

Offset: υH Offset: υE Offset: υI Offset: υH
υ∗I > υ∗∗I υ∗I ≶ υ∗∗I υ∗E ≷ υ∗∗E υ∗E > υ∗∗E

Table 2 also compares the two optimizing rules when the government

finances more infrastructure with a cutback in education expenditures (or

vice-versa), and therefore there is no direct change in health spending. As

expected, in such event, it is not clear which of the two maximizing solu-

tions dominates because there is no direct effect on welfare through health.

The ultimate outcome depends critically on the responsiveness of the pro-

duction of goods and health services with respect to infrastructure compared

to education spending. That is, if infrastructure is relatively more produc-

tive than education, α/θ2 > β(1− ε)/θ1, then the growth-maximizing share

of infrastructure exceeds the welfare-maximizing share, and the intuition is

similar to the one outlined for the trade-off between infrastructure and health

spending. However, the parameter of interest in this case is μ2, so that in

the limit case where μ2 = 1, then υ∗∗I |dυI=−dυE = υ∗I |dυI=−dυE = 1.
Finally, we have also constructed a table, in the spirit of Table 1, that de-

scribes the partial effects of the various technology parameters on the welfare-

maximizing spending allocation. The table turns out to be the same as Table

1, revealing that these parameters have equivalent effects on both the growth-

and welfare-optimizing rules.21

21The only exception pertains to the tradeoff between infrastructure and health spend-
ing (see equation (41)) with respect to the impact of effective labor services (β). Although
the effect of β on the growth-maximizing share of infrastructure was shown to be nega-
tive (see Table 1), its effect on the welfare-maximizing solution is ambiguous. As long as
infrastructure is sufficiently productive in the production of goods compared to the pro-
duction of educated labor (that is, if α/μ2 is large enough), however, the negative effect
will continue to hold.

34



8 Concluding Remarks

This paper studied the optimal allocation of government spending between

health, education, and infrastructure in an endogenous growth framework.

In the model, infrastructure affects not only the production of goods but also

the supply of health and education services. Moreover, we also account for

the fact that good health contributes not only to labor productivity but also

to the quality of education, by improving the ability to attend school and

learn. Thus, in contrast to the literature that followed from the seminal work

of Lucas (1988), our model accounts for the fact that both knowledge and

health are embodied in individuals.

The first part of the paper provided a brief overview of the recent evidence,

at both the micro and macro levels, on the impact of health on growth,

interactions between health and education, and the impact of infrastructure

on health and learning outcomes. We noted, in particular, that there is

significant evidence suggesting that better education of mothers tends to

reduce the incidence of disease in children, that healthier children tend to

do better in class, and that access to roads and electricity tends to improve

the ability to attend school and visit health clinics, while at the same time

enhancing the quality of education and health services.

The second part presented the model and the third described the deriva-

tion of the balanced growth path in the decentralized equilibrium. The fourth

part analyzed the properties of the model by considering a series of revenue-

neutral shifts in spending–a shift from education or health spending toward

infrastructure outlays, and a shift in spending from health to education. This

analysis allowed us to highlight the nature of the trade-offs that are embed-

ded in the model, as a result of a binding budget constraint, despite the

micro complementarities.

The last two parts of the paper provided a full characterization of both

the growth- and welfare-maximizing structures of expenditure. They also

compared the results from these two optimizing allocations. Although there

35



are several cases where the comparison is ambiguous, there are also several

instances where the optimal solutions are different. Our analysis showed that

the degree of complementarity between health and consumption in utility, as

well as the parameters characterizing the health and education technology,

play a key role. In particular, if the elasticity of the health production

technology with respect to infrastructure, and the elasticities of the health

and education technologies with respect to educated labor and government

spending on education are not too high, choosing shares of spending on in-

frastructure and education that are lower than their growth-maximizing rates

is optimal from a welfare point of view. The reason is that although this al-

location has a direct negative effect on the growth rate, it also leads to a

reallocation of government outlays toward health services. In turn, this re-

allocation leads to a higher output of health services, and thus higher labor

productivity, which tends to mitigate the drop in public outlays on infrastruc-

ture and education, respectively. In addition, the increase in the supply of

health services translates into a higher level of consumption and a subsequent

increase in welfare.

The model could be extended in various directions. One direction would

be to account for congestion costs in the use of infrastructure and health

services, as for instance in Eicher and Turnovsky (2000) and Piras (2005),

and for a possible inverse relationship between the rate of depreciation of

human capital (educated labor) and health expenditure. Another would be

to account for the intertemporal welfare effect associated with the impact of

health on longevity, as for instance in von Zon and Muysken (2005). Nei-

ther do we account for the fact that the probability of surviving between

periods may be a function of health capital, which is augmented through

public investment–as, for instance, in the overlapping-generations models

of Chakraborty (2004) and Hashimoto and Tabata (2005). If, as noted in the

introduction, an increase in life expectancy raises the incentive to save, the

impact of an increase in public spending on infrastructure on growth would
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be magnified. This issue is further discussed in Agénor (2006), in a model

where the rate of time preference is directly related to consumption of health

services.

A more complex issue would be to explore how infrastructure may accel-

erate the demographic transition. By improving health, it reduces the need

to have too many children, as postulated in the “old age” hypothesis; fertility

rates would therefore drop. Parents may substitute quality for quantity and

therefore invest more in the education of their (fewer) number of children,

which would in turn enhance not only schooling but also health outcomes.

However, to explore these issues an overlapping-generations model would be

more appropriate than the single agent, infinite horizon framework developed

in this paper.
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Appendix A
Stability Conditions in the Market Economy

To obtain the expression for Ḣ/H in equation (19), first use (10) and

ĠI/GI = ĠH/GH = Ẏ /Y from (12) to get

Ḣ

H
= θ1(

Ė

E
) + (1− θ1)(

Ẏ

Y
), (A1)

and then, from (3)

Ẏ

Y
=
[1− ε(1− θ1)]β

Ω
(
Ė

E
) +

η

Ω
(
K̇P

KP
), (A2)

where η ≡ 1− α− β.

Combining these two expressions yields

Ḣ

H
=

ηθ1 + [1− ε(1− θ1)]β

Ω
(
Ė

E
) +

η(1− θ1)

Ω
(
K̇P

KP
). (A3)

The next step is to eliminate Ė/E in equation (A3). From (9) and (10),

Ė

E
= B(

GE

Y

Y

KP

KP

E
)μ1(

GI

Y

Y

KP

KP

E
)μ2+μ3θ2(

GH

Y

Y

KP

KP

E
)μ3δ, (A4)

where B ≡ AEA
μ3
H . Using (12), this expression simplifies to

Ė

E
= Bυ

μ1
E υ

μ2+μ3θ2
I υ

μ3δ
H τμ1+μ2+μ3(1−θ1) (A5)

×e−[μ1+μ2+μ3(1−θ1)]( Y
KP

)μ1+μ2+μ3(1−θ1).

From (3), (10), and (12)

Y

KP
= (APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω . (A6)

Combining this result with (A5) yields

Ė

E
= Aυ

μ1
E υM1

I υM2
H τM3e−M3η, (A7)
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where

A ≡ B(APA
εβ
H )

μ1+μ2+μ3(1−θ1)
Ω > 0,

M1 ≡
μ1(α+ εβθ2) + μ2(1− εβδ) + μ3(θ2 + αδ)

Ω
> 0,

M2 ≡
δ[μ3(1− α) + εβ(μ1 + μ2)]

Ω
> 0,

M3 ≡
μ1 + μ2 + μ3(1− θ1)

Ω
> 0.

Equation (A7) can be substituted in (A3) to give

Ḣ

H
=

1

Ω
{[ηθ1 + [1− ε(1− θ1)]β]Aυ

μ1
E υM1

I υM2
H τM3e−M3η (A8)

.+ η(1− θ1)(
K̇P

KP
)}.

Now, combining equations (13) and (20), and setting ψ ≡ 1− (υE+υH +

υI)τ > 0, yields
K̇P

KP
= ψ

Y

KP
− c,

which, by the use of (A6), simplifies to

K̇P

KP
= ψ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω − c. (A9)

Substituting this result in (A8) and then the resulting expression, along

with (A7), in (19) yields

Ċ

C
= Π(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω (A10)

+
ν(ηθ1 + [1− ε(1− θ1)]β)

Ω
Aυ

μ1
E υM1

I υM2
H τM3e−M3η − νη(1− θ1)

Ω
c− σρ,

where

Π ≡ 1

Ω
{σsΩ+ νη(1− θ1)ψ} > 0.

Subtracting (A9) from (A10) yields

ċ

c
= Φ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω (A11)
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+
ν(ηθ1 + [1− ε(1− θ1)]β)

Ω
Aυ

μ1
E υM1

I υM2
H τM3e−M3η − νη(1− θ1)− Ω

Ω
c− σρ,

where Φ ≡ Π− ψ. The sign of Φ depends on the size of σ as follows:

sg(Φ) = sg(σ − ψ[Ω+ κη(1− θ1)]

sΩ+ κη(1− θ1)ψ
). (A12)

In the particular case where ϕ = 0, this condition boils down to

sg(Φ) = sg(σ − 1
η
).

Given that η ≡ 1−α− β, a sufficient (although not necessary) condition

for Φ < 0 is σ < 1. This condition on σ also ensures that σ < 1 + 1/κ,

which, as shown in the text, is necessary for the transversality condition (17)

to hold.

Similarly, subtracting (A9) from (A7) yields

ė

e
= Aυ

μ1
E υM1

I υM2
H τM3e−M3η (A13)

−ψ(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω + c.

Equations (A11) and (A13) represent a system of two nonlinear differential

equations in c = C/KP , and e = E/KP .

To examine the uniqueness of the BGP, first set ċ = 0 in (A11) to get

c̃ =
1

νη(1− θ1)− Ω
{ΦΩ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω (A14)

×ẽ
[1−ε(1−θ1)]β

Ω + ν(ηθ1 + [1− ε(1− θ1)]β)Aυ
μ1
E υM1

I υM2
H τM3 ẽ−M3η − Ωσρ},

and then substitute (A14) in (A13) with ė = 0 to yield the implicit form

F (ẽ) =
1

Ω− νη(1− θ1)
{Ω(1− ν)Aυ

μ1
E υM1

I υM2
H τM3 ẽ−M3η (A15)

+Ωσρ− Ωσs(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω ẽ

β[1−ε(1−θ1)]
Ω }.
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where c̃ and ẽ denote the stationary values of c and e.

To show that the BGP is unique, note first that from (A15), and using

(21) and (22),

Fẽ = −
M3ηΩ(1− ν)γ∗ + [1− ε(1− θ1)]β[γ

∗(1− ν) + σρ]

[Ω− νη(1− θ1)]ẽ
, (A16)

which can be established to be negative along a BGP with a strictly positive

γ∗, for values of σ < 1 + 1/κ. Thus, F (ẽ) cannot cross the horizontal axis

from below. Now, we also have F (0) = Ωσρ/[Ω − νη(1 − θ1)] > 0. Given

that F (ẽ) is a continuous, monotonically decreasing function of ẽ, there is a

unique positive value of ẽ that satisfies F (ẽ) = 0. From (A14), there is also

a unique positive value of c̃. Therefore, the BGP is unique.

To investigate the dynamics in the vicinity of the unique steady-state

equilibrium, the system of equations (A11) and (A13) can be linearized to

give ∙
ċ
ė

¸
=

∙
a11 a12
a21 a22

¸ ∙
c− c̃
e− ẽ

¸
(A17)

where the aij are given by

a11 =
Ω− νη(1− θ1)

Ω
c̃ > 0,

a12 =
c̃

ẽ

1

Ω

½
[1− ε(1− θ1)]β

ψ
(γ∗ + c̃)Φ

−μ1 + μ2 + μ3(1− θ1)

Ω2
νη(ηθ1 + [1− ε(1− θ1)]β)γ

∗
¾
,

a21 = ẽ > 0,

a22 = −
[μ1 + μ2 + μ3(1− θ1)]η

Ω
γ∗ − [1− ε(1− θ1)]β

Ω
(γ∗ + c̃) < 0,

where the sign of a12 is determined to be negative if Φ < 0, that is, for a

sufficiently low σ as shown in (A12).

From (A17), the slopes of CC and EE in Figure 1 are given by

dc̃

dẽ
|ċ=0= −

a12
a11

,
dc̃

dẽ
|ė=0= −

a22
a21

,
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where although EE always has a positive slope, the slope of CC is upward

(downward) sloping if Φ is negative (positive and sufficiently large).

c is a jump variable, whereas e is predetermined over time. Saddlepath

stability requires one unstable (positive) root. To ensure that this condition

holds, the determinant of the Jacobian matrix of partial derivatives of the

dynamic system (A17), ∆,must be negative, that is, ∆ = a11a22−a12a21 < 0.
In the present environment, this condition is always satisfied. In the case

where the slope of CC is upward-sloping (a12 < 0), EE has to be steeper

than CC, as shown in the lower panel of Figure 1. The slope of the saddlepath

SS is given by −a12/(c̃−χ), where χ is the negative root of the system, and

is thus positive (negative) if a12 < 0 (a12 > 0).
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Appendix B
Transitional Dynamics of Spending Shifts

Equations (A14) and (A15) can be used to examine the impact of a

revenue-neutral shift in the composition of the spending shares on the steady-

state levels of c and e. In particular, using the implicit function theorem,

it can be established that when an increase in infrastructure spending is fi-

nanced with a reduction in the share of health (dυI = −dυH holding τ and ϕ
constant), ∂ẽ/∂υI |dυI=−dυH= −FυI/Fẽ is in general ambiguous. Given that,

from (A16) Fẽ < 0, we have sg(∂ẽ/∂υI) =sg(FυI ). In turn, FυI can be shown

to be equal to

FυI | dυI=−dυH =
1

Ω− νη(1− θ1)
{Ω(1− ν)γ∗

∙
M1

υI
− M2

υH

¸
(B1)

−σs( Ỹ
K̃P

)

∙
α+ εβθ2

υI
− εβδ

υH

¸
},

from where it can be established that FυI > 0 if μ1 = μ3 = 0. This, in turn,

implies that ∂ẽ/∂υI > 0.

In general, from (A14),

∂c̃

∂υI
|dυI=−dυH=

1

νη(1− θ1)− Ω
{Φ( Ỹ

K̃P

) (B2)

×
∙
α+ εβθ2

υI
− εβδ

υH
+
[1− ε(1− θ1)]β

ẽ
(
∂ẽ

∂υI
)

¸
+ν[ηθ1 + [1− ε(1− θ1)]β]γ

∗
∙
M1

υI
− M2

υH
− M3η

ẽ
(
∂ẽ

∂υI
)

¸
}.

Similarly, from (22),

∂γ∗

∂υI
|dυI=−dυH=

σs

1− ν
(
Ỹ

K̃P

)
1

Ω

∙
α+ εβθ2

υI
− εβδ

υH
+
[1− ε(1− θ1)]β

ẽ
(
∂ẽ

∂υI
)

¸
.

Denoting εẽ/υI = (∂ẽ/∂υI)(υI/ẽ), noting that from (23) ε∗ẽ/υI = 1, and

given that Φ < 0 in Figure 2, we therefore have

sg(
∂γ∗

∂υI
) = −sg( ∂c̃

∂υI
) = sg(

α+ β − εβδ

εβδ
− υI

υH
).

43



If υI/υH is lower (greater) than the critical ratio (α+β−εβδ)/εβδ, which
depicts the optimal ratio of υI/υH , an increase in υI has a positive (negative)

effect on growth. Graphically, it can be verified from (A14) and (A15) that

a rise in υI leads to a rightward shift in both CC and EE.

The impact of a rise in υI on the consumption-private capital ratio, given

that ∂e0/∂υI = 0, is
∂c0
∂υI

=
∂c̃

∂υI
− a12

c̃− χ
(
∂ẽ

∂υI
), (B3)

which is also ambiguous in general, given that ∂c̃/∂υI is ambiguous. With

∂ẽ/∂υI > 0, given that a12 < 0, then ∂c0/∂υI > 0 if ∂c̃/∂υI > 0, as shown

in the lower panel of Figure 2.

Within a similar framework, the effects of an increase in infrastructure

expenditures financed by a decrease in education spending (dυI = −dυE with
dτ = dϕ = 0), can be illustrated as follows. The implicit function theorem

implies, as before, the ambiguity of ∂ẽ/∂υI |dυI=−dυE= −FυI/Fẽ, where again

sg(∂ẽ/∂υI) =sg(FυI ). However, now FυI is shown to be

FυI |dυI=−dυE=
1

Ω− νη(1− θ1)
{Ω(1− ν)γ∗

∙
M1

υI
− μ1

υE

¸
(B4)

−σs( Ỹ
K̃P

)(
α+ εβθ2

υI
)},

which is negative (FυI < 0) if μ2 = μ3 = 0. As a consequence, ∂ẽ/∂υI < 0.

Equations (A14) and (22) imply respectively that,

∂c̃

∂υI
|dυI=−dυE=

1

νη(1− θ1)− Ω
{Φ( Ỹ

K̃P

) (B5)

×
∙
α+ εβθ2

υI
+
[1− ε(1− θ1)]β

ẽ
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∂υI
)

¸
+ν[ηθ1 + [1− ε(1− θ1)]β]γ

∗
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υI
− μ1

υE
− M3η

ẽ
(
∂ẽ

∂υI
)

¸
},

and

∂γ∗

∂υI
|dυI=−dυE=

σs

1− ν
(
Ỹ

K̃P

)
1

Ω

∙
α+ εβθ2

υI
+
[1− ε(1− θ1)]β

ẽ
(
∂ẽ

∂υI
)

¸
.
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With μ2 = μ3 = 0 and Φ < 0 in Figure 3, we have

sg(
∂γ∗

∂υI
) = sg(

∂c̃

∂υI
) = sg(

α+ εβθ2
[1− ε(1− θ1)]β

+ εẽ/υI ).

If εẽ/υI < 0 (which is always the case if μ2 and μ3 are both zero or very

small), the effect on growth is positive if

α+ εβθ2
[1− ε(1− θ1)]β

> −εẽ/υI .

If εẽ/υI < 0, the growth effect is always positive. Figure 3 depicts that

an increase in υI leads both CC and EE to shift to the left. As before the

instantaneous effect on c, is shown by (B3), which is in general ambiguous.

With ∂ẽ/∂υI < 0, given that a12 < 0, then ∂c0/∂υI < 0 if ∂c̃/∂υI < 0, as

shown in the lower panel of Figure 3.

Finally, we examine the steady-state effects and transitional dynamics

of the government’s decision to substitute health spending with additional

education expenditures (dυE = −dυH holding τ and ϕ constant). Using the

implicit function theorem, we obtain ∂ẽ/∂υE |dυE=−dυH= −FυE/Fẽ, so that

sg(∂ẽ/∂υE) =sg(FυE). Using equation (A15),

FυE |dυE=−dυH=
1

Ω− νη(1− θ1)
{Ω(1− ν)γ∗

∙
μ1
υE
− M2

υH

¸
(B6a)

+σs(
Ỹ

K̃P

)

µ
εβδ

υH

¶
},

which yields FυE > 0 for μ2 = μ3 = 0. This, in turn, implies that ∂ẽ/∂υE > 0.

Next, we can show that

∂c̃

∂υE
|dυE=−dυH=

1

νη(1− θ1)− Ω
{Φ( Ỹ

K̃P

) (B7)

×
∙
−εβδ
υH

+
[1− ε(1− θ1)]β

ẽ
(
∂ẽ

∂υI
)

¸
+ν[ηθ1 + [1− ε(1− θ1)]β]γ

∗
∙
μ1
υE
− M2

υH
− M3η

ẽ
(
∂ẽ

∂υI
)

¸
},
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and

∂γ∗

∂υE
|dυE=−dυH=

σs

1− ν
(
Ỹ

K̃P

)
1

Ω

∙
−εβδ
υH

+
[1− ε(1− θ1)]β

ẽ
(
∂ẽ

∂υI
)

¸
.

Assuming that μ2 = μ3 = 0 and Φ < 0 in Figure 2, we have

sg(
∂γ∗

∂υE
) = sg(

∂c̃

∂υE
) = sg[

υE
υH
− 1− ε(1− θ1)

εδ
].

If υE/υH is greater (lower) than the critical ratio [1 − ε(1 − θ1)]/εδ, an

increase in υE has a positive (negative) effect on growth. Graphically, it can

be verified from (A14) and (A15) that a rise in υE leads to a rightward shift

in both CC and EE. The impact of a rise in υE on the consumption-private

capital ratio, is given by

∂c0
∂υE

=
∂c̃

∂υE
− a12

c̃− χ
(
∂ẽ

∂υE
), (B8)

where with ∂ẽ/∂υE > 0, given that a12 < 0, then ∂c0/∂υE > 0 if ∂c̃/∂υE > 0,

as shown in the lower panel of Figure 2.
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Appendix C
Stability Conditions in the Command Economy

To express the social planners’ problem, replace (12) and (29) into (10)

to obtain an expression for the production of health services

H = (A1−θ1P A1−αH )
1
Ω υ

θ2+αδ
Ω

I υ
(1−α)δ

Ω
H τ

1−θ1
Ω E

θ1η+[1−ε(1−θ1)]β
Ω K

η(1−θ1)
Ω

P . (C1)

From (5) and (11), the economy’s consolidated budget constraint can be

written as

Y = C + K̇P +GE +GH +GI , (C2)

that is, using (12),

K̇P = ψ(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω E

[1−ε(1−θ1)]β
Ω K

η
Ω
P − C. (C3)

Finally, the education accumulation equation (6) with the use of (12),

(10), and (29) becomes

Ė = Aυ
μ1
E υM1

I υM2
H τM3E1−M3ηK−M3η

P . (C4)

where A,M1,M2, and M3 are as defined in Appendix A.

To get an expression for ζE/ζK , use (31) and (32) to obtain

q ≡ ζE
ζK

=
υEτ

μ1

1

γ∗∗e
(
Y

KP
), (C5)

where γ∗∗ is described by (21) and (40). Equation (C5) implies that q̇ = 0.

Thereafter, use (C5) into (38) to obtain

Ċ

C
= Ξ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω (C6)

+
ν(ηθ1 + [1− ε(1− θ1)]β)

Ω
Aυ

μ1
E υM1

I υM2
H τM3e−M3η − νη(1− θ1)

Ω
c− σρ,

where

J ≡ μ1 + μ2 + μ3(1− θ1),
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Ξ ≡ 1

Ω

½
σηJ

υEτ

μ1
+ ση(1− θ1)κ(

C

Y
) + ψη[σ + ν(1− θ1)]

¾
> 0.

Divide (C3) by KP to obtain (A9), and subtract (A9) from (C6) to get

ċ

c
= Υ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω (C7)

+
ν(ηθ1 + [1− ε(1− θ1)]β)

Ω
Aυ

μ1
E υM1

I υM2
H τM3e−M3η − νη(1− θ1)− Ω

Ω
c− σρ,

where Υ ≡ Ξ − ψ. The sign of this expression depends on the size of σ as

follows:

sg(Υ) = sg(σ − ψ[Ω+ κη(1− θ1)]

η{ψ[1 + κ(1− θ1)] + (1− θ1)κ(
C
Y
) + ηJυEτ/μ1}

). (C8)

Next divide (C4) by E to obtain (A7), and subtract (A9) from (A7) to

obtain
ė

e
= Aυ

μ1
E υM1

I υM2
H τM3e−M3η (C9)

−ψ(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω e

[1−ε(1−θ1)]β
Ω + c.

which is the same as (A13). Equations (C7) and (C9) represent a system of

two nonlinear differential equations in c = C/KP and e = E/KP .

To examine the uniqueness of the BGP, first set ċ = 0 in (C7) to get

c̃ =
1

νη(1− θ1)− Ω
{ΥΩ(APA

εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω (C10)

×ẽ
[1−ε(1−θ1)]β

Ω + ν(ηθ1 + [1− ε(1− θ1)]β)Aυ
μ1
E υM1

I υM2
H τM3 ẽ−M3η − Ωσρ},

and then substitute (C10) in (C9) with ė = 0 to yield the implicit form

F (ẽ) =
1

Ω− νη(1− θ1)
{Ω(1− ν)Aυ

μ1
E υM1

I υM2
H τM3 ẽ−M3η (C11)

+Ωσρ− ση[ψ + (1− θ1)κ(
C̃

Ỹ
) +

JυEτ

μ1
]
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×(APA
εβ
H )

1
Ω υ

α+εβθ2
Ω

I υ
εβδ
Ω
H τ

α+εβ(1−θ1)
Ω ẽ

β[1−ε(1−θ1)]
Ω }.

To show that the BGP is unique, note that from (C11), and using (21)

and (40),

Fẽ = −
1

[Ω− νη(1− θ1)]ẽ
{M3ηΩ(1− ν)γ∗∗+ [1− ε(1− θ1)]β[γ

∗∗(1− ν)+σρ]

(C12)

+ση(1− θ1)κc̃
ηθ1
Ω
},

which, for values of σ < 1 + 1/κ, is negative along a BGP with a strictly

positive γ∗∗. With F (0) = Ωσρ/[Ω− νη(1− θ1)] > 0, F (ẽ) cannot cross the

horizontal axis from below. Given that F (ẽ) is a continuous, monotonically

decreasing function of ẽ, there is a unique positive value of ẽ that satisfies

F (ẽ) = 0. This, in turn, implies a well-defined unique steady-state where

both c̃ > 0 and q̃ > 0.

To investigate the dynamics in the vicinity of the unique steady-state

equilibrium, the system of equations (C7) and (C9) can be linearized to give∙
ċ
ė

¸
=

∙
a11 a12
a21 a22

¸ ∙
c− c̃
e− ẽ

¸
(C13)

where the aij are now given by

a11 =
Ω− νη(1− θ1)

Ω
c̃ > 0,

a12 =
c̃

ẽ

1

Ω

½
[1− ε(1− θ1)]β

ψ
(γ∗∗ + c̃)Υ+ ση(1− θ1)κc̃

ηθ1
Ω

− J

Ω2
νη(ηθ1 + [1− ε(1− θ1)]β)γ

∗∗
¾
,

a21 = ẽ > 0,

a22 = −
Jη

Ω
γ∗∗ − [1− ε(1− θ1)]β

Ω
(γ∗∗ + c̃) < 0,

where the sign of a12 could be negative if Υ < 0, that is, for a sufficiently low

σ as shown in (C8).
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The linearized system (C13) has one unstable positive root, implying

saddlepath stability. As before, c is free to jump, whereas e is constrained

to continuous adjustments. Figure 1 equally represents the phase diagram of

the centrally-planned economy.
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