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1. INTRODUCTION

In perfectly competitive labour markets, the impiosi of a binding minimum
wage leads to reductions in aggregate employmeahisanial welfare. On the other
hand it is also well-known that monopsony can l¢adincreases in aggregate
employment and welfare after a minimum wage impasita result which has fuelled
much debate in the literature (see Manning (200Bhaskar and To (1999) extend
the monopsony argument to a differentiated oligagsavith exogenous, horizontal
differentiation of non-wage job characteristics nfggetric locations along a Salop
“circular city”) welfare improvements from minimunvages emerge again via the
aggregate employment channel. Our objective idetimonstrate the existence of a
new channel whereby minimum wages can improve welfa a differentiated
oligopsony, namely the choice of non-wage job cttaréstics. To do this we switch
to a Hotelling duopsony (“linear city”) model in wh firms choose locations (i.e. the
non-wage job characteristic) at stage | and wadestame Il of a 2-stage game.
Following Bhaskar and To (2003) (where there iswalfare discussion) we also
allow the two firms to differ in their inherent &fiency of employing labour (the
marginal revenue products differ). Abstractingnirall aggregate employment
effects we show in detail how the imposition of miom wages improves social
welfare via its impact on the non-wage job chamésties. Indeed (up to a restriction
regarding existence of pure strategy equilibria@ itmposition of a minimum wage
always improves on the laissez-faire outcome. eoge the mechanism is totally
dependant on the changes in non-wage job charstatsriif such changes are
impossible (e.g. in a “short-run”) minimum wageduee welfare.

The paper therefore studies the laissez-faire maktzome in a Hotelling

duopsony with asymmetric firm efficiency (section &1d the social optimum in such



a world (section 3 also). The results of sectiooffdr no essential novelty beyond
that provided by Ziss (1993) in his completely flataresults for the laissez-faire
outcome and social optima in a Hotelling duopolyhmasymmetric marginal costs.
We go on to study the effect of minimum wages an rtarket outcome (section 4)
and on social welfare (sections 5) with the resglmed above.  Section 2

introduces the framework of our analysis and sadiiconcludes.

2. THE FRAMEWORK

There are 2 firmsi (=0,1) producing output from labour at constant givaal
revenue product ofr for firm 0 andg for firm 1, wherea > . It maybe that the
marginal physical product is higher at firm 0, loe difference may be caused by firm
0 selling in a more profitable output market thamfl; for convenience we refer to
firm O as the efficient firm. The wage offered fioyn i isw;, i = 0,1 and is subject to
minimum wage legislation whereby only; > W can be chosen; throughout we
assumeWD[O, ,8] so that the minimum wage does not preclude theatipa of either
firm.

Each firm also offers a non-wage job characteristithe interval [0, 1]a [

[0, 1] for firm O and (1b) I [0, 1] for firm 1. There is a continuum of workeviose
ideal non-wage job characteristics are uniformbtrithuted over [0, 1]. Taking a job
at firm i whose non-wage job characteristic is at a distahfrem a worker’s ideal
provides the worker with job utility; - td* wheret > 0 is a parameter. Following
d’Aspremont et.al. (1979) we assume that each walpplies inelastically one unit
of labour to the firm that offers the higher jollityt, so that the worker whose ideal

non-wage characteristic is atx [ [0,1] works for firm O if



w, —t(x—a)®>>w, -t(l-b-x)* and at firm 1 if the inequality is reversed, with

indifference if there is equality. I& # 1- b the solution to the equality is
X :%(1—b+a)+(wo —w,)/2t(l-a-b), and the labour market shares or employment

levels at firmi = 0, 1 will be;

0 if X<0
L, =1 X if xO[oa] L =1-L, ifazl-b (2.1)
1 if x=1

If a = 1- b, jobs are homogeneous in their non-wage charatitexi In this case,
analogous to homogeneous product Bertrand moddis asymmetric costs, we
assume that the high wage firm gets the whole lalboarket if wy # wi, but the

efficient firm gets the whole market wheg=w;;

L =1-L1, ifa=1-b (2.2)

Firm profits aren, = (a —w, )L, and 72, = (8 -w, )L_,.

One potential application has the continuum ofkes geographical located
uniformly along Hotelling’s “Main Street”, [0, 1]rowhich the firm’s locate and
workers bear quadratic transport costs of trawvgltmwork. For brevity we use this

terminology in the sequel, whose main focus istthe stage game where firms at
stage | choose simultaneously locatiaris [0,1] for firm 0 and 1b [0 [0,1] for 1, and
offer wagesw; [1 W, i=0, 1, simultaneously at stage Il, employing theghitoming

labour supply and receiving payoffs = profits. \&&sumeW, = [W,A] and W, =



[w,B] so that firms cannot offer wages in excess aif timarginal revenue product.
We do this to avoid some implausible stage Il suoigeaequilibria when firms
collocate & = 1- b) again following the homogeneous product Bertréeatl (see
Hurter and Lederer (1986) for a discussion).

Although the focus is on the case withS, we also extend results to the case
a = [ With this symmetry (2.2) can be replaced by #émalogue of the usual
symmetric cost Bertrand assumption:

0 if wy<w,
L, = % if w, =w, , L =1-L, ifa=1-b (2.3)
1

if w, >w,



3. TWO BENCHMARKS: LAISSEZ-FAIRE MARKET EQUILIBRIUM
AND THE SOCIAL OPTIMUM

The two main results of this section pertain to thessez-faire market
equilibrium (the subgame perfect equilibrium (SPE)he 2-stage game whem =0,
Theorem 1) and the social optima (Theorem 2). Bethlts are due essentially to
Ziss (1993), where Proposition 2 equates to Theoreamd. Proposition 4 is the
analogue of Theorem 2. However we include full virons of our results since the
duopsony setting and notation is quite differemtnfrZiss’'s (1993) duopoloy, and
since we use our supporting lemmas to build thermim wage analysis of sections 4
and 5. We denot@ = (o - 8)/tas a measure of the efficiency differential between
the firms.

Theorem 1 If J 0(0,8] whered* =6-3/3 0081andif W=0, the unique (up to

symmetry) pure strategy SPE outcome has maximuniidocdifferentiation of the

firms (@=b=0 or 1) and the following wages, market sharespanofits;

W =3a+ip-t W =ia+ipet
[ =1+10 L' =i-10
Mo =4t3+0)° Ny =4t(3-of

The following lemmas 3.1, 3.2 and 3.3 (proofs fdr &nd 3.3 are found in the
Appendix) provide a proof of Theorem 1. We firssdebe the best responses and
Nash equilibrium (NE) in stage Il subgames at aabjtiocations (a,b)] [0,1]%. Let
s={(a.b)0[01] :a+b <1}, H ={(a,b)0[01] :a+b =1} and

={(a,b)0S:d<(1-a-b)(3-a+h)}. Note that the subgame attf) 0 Shas, from
symmetry, the same outcome as that ag(1-b) 0 [0,1]%, so description of subgame

NE for (@,b) O S // H suffices. Note also that whey< 3, T is a honempty convex

subset ofS and has an upper boundary $which is downward sloping with



interceptsa = 0, b=b =+4-J-1andb=0,a=a=2-+y1+J. T is the subset of
locations where the inefficient firm gets positiverket share in the wage subgame,

part of the following lemma 3.1

Lemma 3.1
(a) For a wage subgame with locatiab] /S (i) — (iii) describe firm 0’'s best
responses and (iv) — (vi) those of firm 1, whepg=B-t(l1-a-b)3+a-b),

A, =B+tl-a-b)1-a+b), y, =a-t(l-a-b)(3-a+h),
N, :a+t(1—a—b)(1—b+a);

i) w=w +t[(1-a)- b it w, <y,

i) wo=ta+w-t@-bP-a2f it wO[nA)

(i)  w,=[0,a] if A,<w
(iv)  w=w, +t[(1-b)* - a7 it w, <y,
W w=iBrw-qa-aP - it wOfyA,)
vi) w, =[0,4] if Ay<w,

(b) For a wage subgame with locati@bf O T, the unique Nash equilibrium wages,

market shares and profits are;

w,(ab)=2a+1f-4t{l-a-b)3+a-b) , w =ia+35-it{l-a-b)3-a+b)
L(ab)=i(3+a-b)+——2— . L(ab)=(3-a+b)-——2
° k 6(1-a-b) ' ¢ 6(l1—a-b)

s T s T
I'Io(a,b):1—18t(1—a—b){3+a—b+1_a_b} ,ﬂl(a,b):1—18t(1—a—b){3—a+b—1_a_b}

(c) For a wage subgame with locati@gb [ (ST H)/T, the unique Nash equilibrium
wages, market shares and profits are;

W, (a,b) = B +t[(1-a)* - b7 W (a,b)=p



L (a,b) =1 L'(a,b) =0

My(ab)=a-p-t[(1-a)*-b? M;(ab)=0

The efficient firm thus sets higher wages in subgam@mnywhere o&/T, and also
on T, ={(a,b)0T :w,(a,b) > w; (a,b)} = {(a,b)0T:5>2(1-a-b)(a-b)}, whereas on
T, ={(a,b)0T:8<2(1-a-b)a-b)} firm 1's wage is higher.T; is non-empty iff

o0 <1, illustrated in figure 3.1.

2!
Figure 3.1 here

When @,b) O Ty, for instance, figure 3.2 shows (as BBR;) the best responses
generating the subgame I@Eownwith [ >a-t[(1-b)? —az]).

Figure 3.2 here

To find SPE we need the NE of the “reduced fornaigst | location game where
firm O choosesa /7 [0, 1], firm 1 choosed /7 [0, 1] and payoffs are given by
M (a,b)in lemma 3.1. These payoffs are continuous funstiowe look first at the
“constrained best response” of the inefficient fimthis game, which solves:
mg';\xl'li(a,b) s.t. 0sb<l-a We denote this solutiog,(a )xnd ﬁl(a) are the
resulting profits.

For aD[ﬁ,l], n;(a,b)=0for all bD[O,l—a],so t//l(a):[o,l—a] and M, (a) =0.
For aD[O, a), firm 1 can attain positive profit only by choosibgso that §b) //T,
but then, from lemma 3.1(b);

on;/ab=21t(3-a+b-J/(1-a-b))(-1-a-30-J/(l-a-b))<0
Thus ,(a) =0andr,(a) =M, (a,0)for ad[0,a), completing the description of firm
1's constrained best responses. The funcﬁlq(a) thus defined is easily seen to be

continuous, strictly decreasing {xma) and constant at 0 c[ﬁ ;L]



In firm 1's unconstrained best response problem,can also choose

bD[l—a,l]. From symmetry the maximum attainable profit ovais b interval is

n ,(-a), and the unconstrained best response profit fan fir is ma*ﬁl(a),

ﬁl(l—a)] attained at the best responsgg(a)if M,(a)>M,(1-a), 1-¢,(1-a) if

N,a-a)>M,(@ and at {y(a),1-y,(1-a}if N, (a)=M,1-a). When

0 <Y,,a>%, which proves, given the earlier monotonicity pntigs of ﬁl(a) :

Lemma 3.2 The best response of firm 1 in the reduced foagest game when
30(0,%),isb=0if a<%,b=1if a>%andb={01}if a=1.

When 0 <%, the inefficient firm simply locates as far as pbssifrom the
efficient firm. By contrast the efficient firm haspossible incentive to co-locate with
the inefficient rival since it then (anywhere alddgattains positive profits ofr — 5.
The same “centifugal” force that drives the inaéfitt firm to maximum distance from
firm O, also affects firm O’s decision, but thigde is minimized when firm 1 is at the
centre of [0,1] when the maximum distance is srsalleThus one might expect that
firm O will want to co-locate wheh is near¥, moving as far away as possible when
b is sufficiently far from the centre. This intati is borne out in the following

precise statements.

Lemma 3.3 The best response of firm O in the reduced foagest game is;
(a) for 60(0, %), a=0if b<i,a=1if b>1,a={01} if b=1
(b) for JD[%,J*J, there is a strictly decreasing functidid) with b(%)=%,
b(o")=0such thata = 0 if b < b(d), a = {01-b}if b=h(3),a=1-bif
b0(b(),1-b(d)), a={1-b,1}if b=1-b(J) anda=1if b>1-b(d)

Lemmas 3.2 and 3.3(a) and (b) complete the prodhebrem 1.



Finally when d = O,soa=fand T = S the statements in Lemma 3.1(a) and (b)

remain valid. The remaining locations in Lemma(& &are now only the co-location
set H. On this set the wage subgames are homogeneouisari®e games with
constant, symmetric marginal revenue products,tiek is now no reason to assume
that firm O will take the whole market when wages aqual; the usual assumption is
that firms then share the market equally, (2.3)eathan (2.2). Either way the wage
subgame payoffs are uniquely O for both firms,rakemma 3.1(c). So the reduced
form stage | game payoffs continue as in Lemmab3.a0d (c). Lemma 3.2(a)
continues to provide firm 1 best responses in dueiced form game, but firm 0 now
has a symmetric response — both firms wish to gédamaway as possible from the
rival, reproducing the exact d’Aspremont et.al.{@Pparallel:

Corollary to Theorem 1 The statement in Theorem 1 remains true with

o=0anda = B.

Our second benchmark is the social optimum. Am@amow locates the firms 0 and
1 ata, 1b D[O;L] respectively, and dictates the subsets of workés will work at
the 2 firms. We continue to assume that all warkeill be employed, the worker
located atx (I [0,1] generating surplussr—t(x—a)2 at firm 0 and,B—t(l—b—x)zat
firm 1. Without loss of generalita < 1-b and, given sucha,b it will be socially
optimal for some subse[O, >2] O [0,1]to work at 0 and for(§<,1] to work at 1. Social

welfare is then the aggregate surplus:

SW(ab.%) =a &+ ,3(1-x)-tf(x-a)zdx-tj(l-b-x)zdx

0

= a %+ BL-%)-1it[a® +b* +(k-a) +(1-b-X)]

10



Given @,b) the socially optimalX, X(a,b), equatesa —t(x-a)’ to S-t(1-b-&)? if

the resultingxJ[07], otherwiseX =1. Hence;

(ab) = d/20-b-a)+i(l-b+a) if Jd<(1-a) -b?
’ 1 if d>(1-a)’-b?

Substituting the top branch here into the SW foamahd writing /=1-a-b

produces the function;

f(ab)=1(a+B)+ 0% +1at(a-b)-1tfad +b* + (502 +of +3 (-}
Similar substitution of the bottom branch produces;
glab)=a-3ta’+(1-af]

Hence the maximum social welfare attainable attiona @,b) O SOH is;

. _|f(ab) if Js<(i-a)-b
SW(a.b,X(a.b) {g(a,b) it J=(1-a) -b?

Theorem 2 Suppose, without loss of generality, tlzat 1-b.
(a) If 60[0,4)the socially optimal location i®® =1 +4,b° =1~ with and
market share4) =1+29, L) =1-29
(b)If J=1 the socially optimal locations area’=41,b°0[0,4]with
SW° =a -1t and market sharel =1, =0
The proof of Theorem 2 is given in the appendixd ensomewhat different from that
of Ziss (1993), avoiding the use of Lagrangeans twedsomewhat tricky issue of
appropriate concavity of the social welfare funetio When 0 = Q the socially

optimal locations are at the quartiles of the lmratspace, and firms have equal

market share, as in d’Aspremont et al (1979).oAscreases from 0 té the efficient

firm is moved towards the centre, the distance betwfirms staying a§ and the

11



efficient market share increasing frojnto 1. Fordbeyond% the efficient firm stays

at the centre, taking the whole market. Note Hisg (1993) assumes a small positive

set-up cost, so the inefficient firm is not setwipen 6= %,. In contrast wher® =0

the market equilibrium moves the firms to oppogitéremes of the location space,
with equal market share. In this limit, again asdiAspremont et al (1979), the

market outcome provides socially correct marketrehiabut too much location
differentiation. AsJ increases from 0 t@ the market continues to provide too

much differentiation, but also allows too much nedrghare for the inefficient firm.

12



4. MINIMUM WAGESAND MARKET EQUILIBRIUM
Now W >0. To find the effect on market equilibrium (SPE bét2-stage game) we

first identify the effect of the minimum wage onetlstage Il wage subgames at
arbitrary stage | locations. We use the notatigy{a,b) =a —t[(1-b)* -a*] and
W, (a,b) = B-t[(1-a)’ -b?].
Lemma4.1 (a) For wage subgames with Iocatio(raasb)DT and minimum wage
WD(O,,B], the unique Nash equilibrium wages, prices anditsrafe;

(A) the laissez-faire values described in Jlemmal(g. iff

W < min[w; (a,b),w, (a,b)]

(B) w,=w, =W, L,=4(1-b+a)L, =1-L,,M,=1(e-W)1-b+a)
N, =1(8-w)1+b-a) iff W=maxw,(a,b),W,(a,b)]
© w=Ha+rw-t[a-bf -2’ w=w,

L, ={a - wH+[(1-b)? -a’]}/4t(l-a-b)=1-L,,
M, ={o-w+a-bf -a2]f /8t-a-b), M, = (-w)L,
iff W,(a,b)>w=w,(a,b)
D) w,=w,w =3{g+w-y(-a) -p?]}
L=1-L, , L ={8-w+{@1-a) -b’}/4t(1-a-h)
No=(@-w)L, . n,={a-w+ifa-a) -2} s8(1-a-b)
iff w,(a,b) > W= w,(a,b)
(b)  For wage subgames with locationsb{/{SOH\T and minimum

wagesWD(O,,B], the unique Nash equilibrium wages, market shanelspaiofits are

the laissez-fiare values described in Lemma 3.1(c).

13



Proof of Lemma 4.1

For @ b) O S Lemma 3.1(a) and the quasi-concavityrnfas a function o

noted in its proof ensure that the best responsésm 0 are described by (i) — (iii)

below, and those of firm 1 by (iv)-(vi):
(i) Wo = maX[V_V1W1 +t[(1- a)2 - bz]] if W <)y
iy w,= ma{v‘v,%{a +W, —t[(l— b)? - az]}} it w,O[y,,A,)
iy  w, =[w,a] if A <w,

(iv)  w, =maxw,w, +t[(1-b)* —a?]] if w, <y,

v) W = ma){v_v’%{/g"'wo _t[(l_a)2 _bz]}} it w, D[yo’/\o)

vi) w, =[w,z3] if Ay <w,
Thus NE for subgames witla,(b) O S and v_vD[O,,B] correspond to solutions for
w, O[w,a],w, O[w, 8] of one of (i)-(iii) coupled with one of (iv)-(vi).
@) Supposeq b) [0 T. Comparing the above best responses (i)-(vi) titdse of
Lemma 3.1(a) it is immediate that the laissez-faitecomes continue as NE iff
W< min[w; (a,b),w (a, b)J completing the proof of (A).
Solutions withw, =w, =W can be generated by the (ii)/(v) pairing iff:
(1)W=W,(a,b) =a-t[1-b)’ -a?] (2)W=W,(a,b)=L-t[(1-a)* -b?]
B)yw=2y, =a-tl-a-b)(3-a+b) @) w=y,=L-t(l-a-b)(3+a-b)
But (1) = (3) and (2)= (4). Thus (ii)/(v) produce NE wittw, =w, =W (and the

corresponding market shares and profits in (B))1f and (2) hold. It is straight

forward to check that no pairings produce otherdta w, =w, =W, completing the

proof of (B).

14



The (ii)/(v) pairing produces solutions witky, = W = w, iff

W, =%{0’+W—t[(l— b)’ —azl}, w, =wand

(B)YW<W,(a,b)=a-t[(1-b)*-a?’] (B)W=y, =a-t(1-a-b)(3-a+h)
(7) Wz%{ﬁ+wo —t[(1—a)2 —bz]} (B)A, >W, 2y, = f-t(l-a-b)(3+a-h)

Substitution of w shows (7) is equivalent tav=w, (a,b). For @ b) O T the
inequalities in (5) and (7) imply those of (6) a(®), so (ii)/(v) produce NE with
W, 2w, =W (and market shares and profits of (c)) iff (5) &@dl hold. Again no
pairings produce other NE witlw, 2w, =w, completing (C). The proof of (D) is
symmetric to that for (C).
(b) For @, b) /7SH, the laissez-faire outcomes in Lemma 3.1(c) alwayginue
as NE since foi=0,1 W (a,b) = Z=W. It is straightforward to check that no pairings
(of (i)-(iii) with (iv)-(vi)) produce any other NE.For @b) 00 H, the argument for this
case in Lemma 3.1(c) ensures that the laissez-dait@me is the unique NE for any
\TVD[O,,B], completing (b). [ |
Lemma 4.1 shows that there are 4 possible typesgé subgame equilibrium, where
the minimum wage is (weakly) binding on (A) neitliem, (B) both firms, (C) the
inefficient firm only and (D) the efficient firm dyr we label these different types as
“type i equlibrium”,i = A, B, C, D. For giverd the relation between locations and
wage subgame equilibrium type varies withand is now described.

Notice first that ifwW<w," then Wis never strictly binding on either firm in

any wage subgame and type A equilibrium occurdldb@ations. Thus the laissez-

faire SPE continues as in Theorem 1 and its Cayola

15



Corollary 2 to Theorem 1 The statements in Theorem 1 and its Corollaryriara

true for anyw 00 (O,w, ]
If W>w, some wage subgame outcomes (e.qa=at=0) will be affected by

the minimum wage. The following discussion is trated to the assumption that

o) D[O, %) (for brevity, and because qualitatively nothingfaifther interest emerges
outside this range), and for the time being we $oon 30(0,4). The setT; where
firm 1 offers the higher wage in laissez-faire wagdégames is then non-empty, and
the effect ofw>w," on wage subgames is described by figure 4.1 amthée 4.2,
using the following notation for some critical nmmim wagesw,,w, and W, (all
belong to(w;*,,[i) andw, <w, <W,);

wW=a-t ; W, :a—%t(1+5+ﬁ) A :5—%t(1+5—ﬁ)

When 0< 9 <3 figure 4.1 shows how the equilibrium type varigghocation asw
increases fromw,” ,and Lemma 4.2 is the formal statement. In thegrdia the
dotted curve isd=2@1-a-b)(a-b), the A/C border hasw=w,(a,b), the B/C
borderw =W, (a,b), A/D W =w(a,b) and B/DW =W, (a,b).

Figure 4.1 here

Lemma 4.2 Suppose 0d&<0.5.

(@ If w, <wW<Ww, there is type C equilibrium ifv>w] (a,b) and type A if

(b) If W,<w<Ww, there is type B equilibrium ifw = Ww,(a,b), type C if
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(c) If W,<W<W, there is type B equilibrium if eithew;(a,b)=w, (a,b) and
W =W, (a,b), or w,(a,b)<w(a,b) and W =w,(a,b), type A equilibrium if
either w,(a,b)=w(a,b)>wor w (ab)> w(ab)=w, type C if
w,(ab)=w (a,b) and Wy(ab)=w=w(ab) and type D if
w;,(a,b)< W, (a,b) andw,(a,b) > W= w;(a,b).

(d) If w,<w< /g there is a type B equilibrium itv>w,(a,b), type C if

W, (a,b) =W =W, (a,b) and type A ifw < w, (a,b)

Proof of Lemma 4.2 For given wWwe consider the following 4 curves in thah)

plane:

(1) w=w,(a,b), (2) W=w,(a,b), (3) W=W,(a,b), (4) W=wW,(a,b). Itis easily
confirmed that (i) these 4 curves intersect onlyemhd =2(1-a-b)(a—-b), the
dotted curve in Figure 4.1; (i) all 4 curves arewthard sloping inS when
w,(a,b) >w (a,b), (2) lies above (3) i whenw; (a,b) >w,(a,b), (1) lies above (4)
in § the intersection of the 4 curves occurs whereOanda > if W=Ww,, which
produces (d) in Lemma 4.2; the intersection ocetrerea =0 if W, <W < Ww;, which
produces (c); whew <w, (b) emerges as long a&8=Ww,, and (a) is the outcome if

W <

=

[
For anyéD(O,%) andv_vD[O,,B], Lemmas 4.1 and 4.2 define the payoffs in the
reduced form stage | game whose NE correspondet&BE outcomes. Suppressing

the dependence odandw we denote these payoffs ﬁs(a, b),i= ,0fLJd,w, and

(a,b) produce type A equilibriumﬁi(a,b Js given by Lemma 4.1(A); and similarly

17



for type B, C and D equilibrium. The resulting @tions ﬁi :SOH - R, are

continuous, and differentiable almost everywhere.

The nature of the inefficient firm’s constraineesb responses in the reduced

form stage | game (solutions mk;axﬁl(a,b s)t.a< 1- b) follows from the following

properties  (i)-(iv) of the derivative aﬁllab. First remember that
M,(a,b) =N;(a,b) =0for (a,b)I(SOH)\T (a subset of the type A equilibrium
domains in figure 4.1), and we restrict attentiorfetb) O T in (i) — (iv).

() At an interior type A (laissez-faire) equilibrium
(wherew < min[w; (a,b),w; (a,b)]), as in section 391, /ab=aM; /ab<O0.

(i) At an interior type B equilibrium (where eithew>w,(a,b) and
wy(ab)>w (ab), or W>w(ab) and w(ab)>w(ab))
or, /ob=1(8-w)>0.

(i) At an interior type C equilibriuntw <w,(a,b) and
w,(a,b)>w (a,b)),ar,/ob = (B -w)t(l-a-b)* - (A-W)]/4t(1-a-b)’ <0
if W<a-t(l-a-b)?, which follows fromw <w,(a,b); thus

or,/db<0.
(iv) At an interior type D equilibrium(w <w,(a,b) and w; (a,b)>w;(a,b)),

or1,/db has the sign of@+t(1-a-b)1-a-3b)-W which is positive
since S-t(l-~a-d)1-a+b)-w>0; heredrl,/db> 0.
For aD[O,l] where(a,0)0T , firm 1's constrained best response is, witkenaice

to figure 4.1, either at the poibt> 0 where 4,b) is on the B/C border (if there is

such a point), or at the poibt> 0 where §,b) is on the A/D border (if there is
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such a point), or a=0 otherwise. And whema(0) 0 T, anyb OO [0, 1-a] is a
constrained best response, producing zero profiet ¢;(a) denote firm 1's

constrained best response (correspondence) wlaefn‘{aO;L], suppressing the

dependence odandw, and leta =2-+/1+0. Routine calculations produce the

following precise statement;

Lemma 4.3 Supposed0(0,4). For wage subgames with locatioresbj
O0SOH and a minimum wagevO[w,", 8], firm 1's constrained best response,

¢(a), is:

(a) For aJ[0,a]
(i) g@)=0if w swsw,
(i)  ¢(a)=0for ad[L-22 3] and@(a)=1-a® +<x
for adl[0,1- =], if W <W<w

(i) with a=.4-2+p-3W)/t-1 and a,=1i-1(25%-o)+

a(a)=2-(L1+a) + (20 + B-3w)/t forad[a,,a,] and
@(a)=1-\/a® +<= for ad[0,a,], if W, <W< W,

V)  @(a)=0 for aO[1-2%,3] andg(a)=1-,/a’ +<=
for a0[0,4/1- 4], if W,<W< j

(b) for aO[a]],¢(a)=[01-a]
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The graph of firm 1’s constrained best response fsléoows. If aD[a,l] in figure
4.1(a)-(d) then this best response (correspondegreph is the set o) where
bD[O,l— a], from Lemma 4.3(b). FoaD[O,a] in figure 4.1(a) the graph is the
set of @,b) whereb=0; in figure 4.1(b) the graph follows the path Yo, (E,O); in
figure 4.1(c) it followsYs, Ys, Ys, (&,0) and in figure 4.1(d) if followsYs, Y5,
(a0)

Note for future reference that a new critical minrmwage value will emerge
when, in figure 4.1(c), ¥ has a coordinate of3. This requires
d=2(1-a-b)a-b) and (e.g.) W=w,(a,b) with a=Z, which become
5=2(1-b)’* andW=a -1t[d+ (1 -b)(Z-b)] producing the valuav =W (say) =

a —%t(5+ \/E)D (W,,W,). The reason for the criticality a& will be clear after:
Lemma4.4 For anyéD(O,%) andwO[w, , 8], the unconstrained best response of
firm 1 in the reduced form stage | gameqzils(a) if a<s, 1-¢(1-a) if a>% and
{¢1(a),1—¢l(l—a)} if a=%, whereg (a )s the constrained best response described in
Lemma 4.3.

Proof of Lemma 4.4

Suppressing other arguments, Igg(a) denote firm 1's constrained best
response profits toad[01] 7 (a)=0for ad[a] from Lemma 4.3(b), where
a>3(since 6<1); also fil(a) Is a continuous function, form figure 4.1 since
7,(a,b) is a continuous function. We now show tqut(a) is a strictly decreasing

function on [O,a); the symmetry arguments used earlier to establish L@@ then

complete the proof of Lemma 4.4.
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Along vertical segments of firm 1’s constrainedtbesponse graph ((0, 0) to
(2,0)) in figure 4.1(a),Y, to (,0) in figures 4.1(b) and (d)Ys to (a,0) in figure
4.1(c)), ﬁl(a):7ﬁ(a,0):1—18t(3—a—%)2and 67%/6a<0. Along segments of 1's
constrained best response graph that coincide witle A/D border
(Y, toY,in figure 41(c)) 7(a)=7 (ab(@) where b(@ is defined by
W =W, (a,b(a))so that b'(a) = -(L+a)(2-b)™0(-10) which ensuresdz /da<0
here also. Finally, along segments of 1's consé@hi best response graph that
coincide with the B/C borderY{ to Y, in figures 4.1(b), (c) and (d)),
7,(a) =1(B-w)@+b(a)-a) where b(a) is now defined by =w,(a,b(a)) so
b'(a) =-a(l-b)™ <0 and agairﬁirillaa< 0. |

Hence firm 1's unconstrained best response grapgbwslthe constrained
graph if aD[O,%] with a jump ata =% so that foraD[% ,1] the unconstrained graph
extends to include the pointa,lf) where 1b is a constrained best response ta. 1-
The candidates for pure strategy SPE of the 2-stmgee with minimum wage
wa[w, , 3] are the points on firm 1's unconstrained bestaasp graph. Figure 4.2,
illustrates in bold firm 1's unconstrained best p@sse graphs inSCOH; the
extension to [0,f]adds (14, 1-b) for each &b) O SO H shown.
Figure 4.2 here
Consideration of firm 0’s best responses at pantd’s best response graph leads to:
Theorem 3 (a) If 0(0,4)andw(w,",W], the unique (up to symmetry) pure
strategy SPE outcome has the following locatioresgeg, market shares and profits:

(i) (ab) defined by w(a,0)=wand b=0, w,=w,(a,0)>w, =W,

L =L (a0) and, =1;(a,0),i = 01, if wO(w,",W,)
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(ii) (a,b) and (vo,w;) defined byw;, (a,b) =W, (a,b) =
w=w,=w, L, =L (ab) andM, =M (a,b),i = 01, if wO|w,,W|
(b) If 6= (O,%) andv_vD(W,ﬂ], there is no pure strategy SPE.

Proof of Theorem 3 The proof involves a number of steps.

Step 1 With reference to figure 4.1 and lemma 4.1 we haeefollowing derivatives

of M,when (a,b)OT.

(A) Inregion A, T1,is firm O’s laissez-faire profit andll,/da has the sign df(a,b)
defined in the proof of lemma 3.3. In particulance o <+,07,/0a>0whenever
b>+1-9.

(B) Inregion B,6I‘I0/0a=%(a—v_v)>0

(C) In region C,dM,/dahas the sign ofr —-w+t(l-a-b)(1-b-3a). But in region
C, W<a-t[(1-bf’ -a%,soa -w>t(l-a-b)1-b+a). It follows thator,/da> 0
sincel-b+a>3a+b-1(l.el>a+bh).

(D) In region D, dM,/dahas the sign ot(1-a-b)’-(8-wW). But in region D,
B-W>t(l-a-b)(l-a+b)>t(l-a-b)? sodM,/da< 0.

Step 2 The derivatives in Step 1 imply that, whewy <W<W,, the unique (up to
symmetry) remaining SPE candidate is at the g@imtdicated in figure 4.2(a) and (b)
on the border between regions A and C. Sbhw® here and since Step 1 ensures that
firm 0 will not want to deviate to ang where (a,0)0T, P is indeed SPE provided
firm O’s profit atP is at least as large as at co-locatianl(, b=0). This will be true if

H(a,d)=(1-a)3+a+) -18520 everywhere on the set

{@0):an[0i]s0[04]andd = 2a(1-a}}. It is straightforward to check that
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OH /00 <0 everywhere on this set. So the result will folldwH (a,%)zo for all
adfoi, or H(a)=[1+20-a)@+a)]’-36(1-a)=0for ab[0,i]  But

H (0),H (%)>OandH is concave, ensuring the desired result and camgléhe proof
of (a)(i).

Step 3When W, <W<W, the unique (up to symmetry) remaining SPE candidate
at P in figure 4.2(c). Step 1 ensures that form O doatswant to deviate fror® to

any location which leaves,p) //T.

We show next that firm O does not want to devietenfP to collocate; this requires,

m,(a,b)=Ltdl-a-b)[3+a-b+ Pza-p8

1-a-b

whered= 2(1- a- b)(a-b). Equivalently,

(l-a-b)[3+a-b+ ]2 >185 =36(L-a-h)(a—b)

1-a-b

which becomes fl(a - b)]* = 0, and clearly is satisfied. It remains to shbat ffirm
0 does not want to deviate frofto any location strictly to the right of firm 1.oF
convenience leta, b') now denote P; notice thaf <1. From symmetry the profits
attainable by firm 0 from such right deviations dre same as when firm 1 is at it
and firm O chooses strictly to the left of firm Erom step 1 the only candidates for
local maxima of7, on this latter set are;

(@) along theA/c border to the right oP

(b) inAwitha=0if (b <)1-b" <+1-9.
The proof of (a) (ii) is completed by showing;

0] along theA/c border firm 0’s profits decrease with

(i)  inAwherea=0andb<+1-9J, d7m,/0b<O0.
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o)
1-a-b

For (i): heremr, =1t (l-a-b)[3+a-b+ 17,

w=w, (ab)=1a+2B-1t(l-a-b)(3-a+b) so that

da/db = - (1+ b)(2- a)", andd < (1-a—b)(3-a+b)

Differentiating 7, totally with respect td and using thela/db expression shows that
dn,/db<0if d <(1-a-b)©@-a+b) which follows sinced < (L-a-b)(3-a+b)

For (ii): it follows straightforwardly that, witla = 0, 077, /db < Qiff 5/(1— b)< 5-3b.
Using the restrictiorb < V1-9, 0/(1-b) <1+band the required inequality follows as
b<1.

Finally, for W >W as in figure 4.2(d), Step 1 ensures fdthe only candidate) is not
an equilibrium completing (b). [ |
When 0=0a=8,W, =W, =W, =a-tand W =W, =a. In this limit the arguments
leading to Theorem 4, in particular part (a)(idnde applied to provide:

Corollary to Theorem3  If =0 and v_vD(wf,ﬁ) the unique (up to symmetry)

pure strategy SPE outcome hasa=Db :%(1—(51 -W)/t)L, =L, =4 and

1y =7, =1(a-wW)
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5. SOCIAL WELFARE AND MINIMUM WAGES

As Wincreases fromw,” the SPE change as indicated in Theorem 3. Insteyim
figure 4.2, aswincreases fromw, to W,, the SPE locations havie=0 with a
increasing from 0 to} (1-+1- 25} as wincreases fromw, to W, SPE locations
follow the dotted curve (5: 2(1—a—b)(a—b)) with (a,b) increasing from
(%(1—@,0»& w, to (%,%—M}and forw > W there is no pure strategy
SPE. Theorem 4 below answers the question: whatemaspto social welfare in pure

strategy SPE aw increases fronw, to W ? Some preliminary points are;

i) All pure strategy SPE fow O [w, ,w], occur in (on the border of) region A, so the
efficient firm market share i§; =¢ (3+a-b)+J /6(l-a-b)

iij)Let SW(W) denote the value of social welfare in the purategy SPE at minimum
wagew O [w, ,W], and IetSN(Wf)st* denote its laissez-faire value.

iii)Let SA° denote the value of social welfare at the sogéhaum.

Theorem 4  Supposed1(0,4) and W O[w,", W].
(a)  SW(w) is strictly increasing fow O[w,", W,].
(b) If S0[2,4)then SW(W) is strictly increasing for all
wO[w,", W]
(c) If 6D(0,§)there is a unique minimum wag& say, which
maximizesSW(W) over w[w,",W]; at W', a+b >1.
d) Sw(w)>SwW" for all WO[w,",W].

(e) S\ >SW(W)
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Proof of Theorem 4

First note that substitution of the laissez-faiRESa=b =10, L, =4 ++0J) into SW(a,
b, Lo) produces, after some manipulation:

tHSWT =BIt-L+10+20°

(a) ForwO[w, ,W,], SPE locations are= 0 anda = a(w), wherea(w)
is defined byw =w; (a,0) =ia +2 S -1t(l-a)(3-a). It follows that
a'(w)=3t"(4-2a)* > 0. Social welfare can then be written as ationcof a, on the
domain wherea [ [0, %) andd =2a(l-a);

SW(a)=a L, +B@1-L,)-it[a’ +(L, —a)’ +([1-L,)°]

whereL, =(3+a)+

Sincea'(w) > 0it suffices to show thaBW'(a) > 0 on

J
6(1-a)

its domain. Differentiation and manipulation proda

360SW'(a) = 4{1+ }[5+a a?]+ [3+a+1i}{3 11a+1i}

a a

2
= (15) +100+9-15a° - 26a
a

Sinced/(1-a) = 2a on the domain,
36'SW'(a) = 9 6a -15a2 > 0 for a[0,4), completing the proof ofa).
(b)/(c) For w(W,,W)SPE locations are(Ww) andb = b(a) whereb(a) is
defined byd = 2(1-a-b)(a—b) for aD%(l—M),%] and (e.g.)a(W) is defined
by W =W, (a,b(@)) =ia+2B-1t(l1-a-b(a))(3-a+h(a)). Since
b'(a) = (1-2a)/(1- 2b), it follows from W =w. (a,b(a)) thata'(w) = 18 (1-20)*

(1 -a-b) >0. Again social welfare can be written as action of a where

an(h-v1-25)4];
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SM@) = al, + B(L-L,)-1it[a® +b* + (L, —a)° + L-b-L,)°]
where L, =4 (l-b+a)andb = b(a). Since a'(w) >0the sign of SW'(w) coincides
with that of SW (a). Differentiation and manipulation produces

t™(L-2b) SW'(a) = d(a-b)—a*(@1-2b) -b*(1-2a) +1 (1-a-b)®
Some manipulation and substitutionafb=3d/(1-a-b) produces:

4t (L-s)*(L-2b). SW'(a) = 5°(3-5s) - 4(2s-1(1- 5)® = m(s), say, wheres
=a+h.
It is easy to check thain(3)>0,m'(s) <Ofor sO[%,2]and m(s)<Ofor sO(2 ). It
follows thatSW(a) has a unique maximum ofg (1-+1-24,4], and is increasing
(resp., decreasing) to the left (resp., right) ofist value. When
a=3,b=1- Jo12,s=1-/5/2 and m(l—\/m)has the sign 060 - 2. (b) and (c)
now follow.

(d) From (a), (b) and (c) it suffices to show thSW(W)> SW. At W,
a=3,b=35- Jo12 and the required inequality becomes after manijuia
n(y) = 20y® — 45y +18y—9<0

where y=+/6/20(02). Now n(0) < 0,n(1) < 0,n is concave on0,3],
convex on[% ,]] A straightforward calculation shows that at theaque stationary
point on[O,% , N(y) <0 which ensures the result.

(e) This follows since at the unique social optma’ + b’ =4 whereas at
the SPE location which maximizes social welfareb > 3. |
Hence, as the minimum wage increases frath the effect is to increase social

welfare (up to the pure strategy existence lifit W) if 6D[§,%)(part(b)). If
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éD(O,%) the minimum wage (again up to the limit =w) always improves on
laissez-faire (part (d)), but now the improvemenhot monotonic over the whoig
range (parts (a) and (c)), social welfare reaclingaximum at somév’ D(wf,W).

Although minimum wages (up to the pure strateggtexice limit) always improve on
laissez-faire, they never allow attainment of thikgocial optimum (part (e)).
On the other hand whe®d=0,a=43W, =W, =W,=a-t,W=W,=a, and the

arguments of Theorem 4 produce instead:

Corollary to Theorem4  If d=0and WD(WZ*,,B) there is a uniqgue minimum

wage which maximizesSW (W), namely W =a-it, and now S\N(W*):SN°;
again SW(w) > SW" for all wO(w;", B).

So with symmetric firm efficiency, minimum wages@ss the whole rangéw“,ﬁ)
improve on laissez-faire, but the unique socialfarel maximizing minimum wage
now implements the full social optimum.

The above shows that in the “long-run”, via its amp on the non-wage job
characteristic, the imposition of a minimum wagevifare-improving over laissez-
faire. Finally we consider the “short-run” impantwhich we assume that the non-
wage job characteristic remains fixed at its laissére level of a = b =0 or 1 (we
continue to restrict attention #< %2). The short-run affect of a minimum wage is as
follows, from Lemma 4.1,

(A) If Wwsw,~ wages and market shares remain at the laisseziaiels described

in Theorem 1
(B) If a—-t<w< S the minimum wage binds on both firme,(=w, =w)

producing equal market shares
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(C) Ifw, " sW<a-t thenw, =% (@ +W-t), w,=W,
L, =(a-W+t)/4tand L, =1-L,
Adapting the previous general formula, social welfia the short run (SSW) depends

on the minimum wage as follows:
SSW @) = al, + B-L) =% t[L’+ (1-L,)° ]

Where L, =L, (W) and;

L, (W) =(a-W+t)/4t if w <wW<a-t

L, (W=%ifa-tsw< g

Whend >0, w,” <a -t and it is straightforward to check that ther(tinuous)
function SSW is strictly decreasirthen over the intervallw, ~,a —t], constant
elsewhere. Thus;
Theorem 5Supposee (0,%), then SSWi) < SW~ forall W € (w, , 5]
And whend = 0, SSW @) is constant everywhere;

Corollary to Theorem 8f & = 0 then minimum wages have no short-run effect on

social welfare.

Thus in the short-run minimum wages typicalbp@) reduce social welfare from the
laissez faire level. What happens is that the miminmwage first binds only on the
inefficient firm with the efficient firm respondinigy also increasing its wage from the
laissez-faire level, but by less than the ineffititrm’s (forced) increase. As a result
the inefficient firm’s market share increases, whtauses the fall in welfare. Thus
the positive long run welfare impact of minimum wagn Theorem 4 is driven by

and dependent on the effect of minimum wages omémewage job characteristics.
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6. CONCLUSIONS

We have shown how the imposition of minimum wag®s lse welfare improving on
laissez-faire, because of their impact on firmsich of non-wage job characteristics.
In the context of a Hotelling duopsony, jobs areizemtally differentiated (e.g. by
location) and the effect of the minimum wage is rtarrow the gap between
“locations” chosen by firms compared to the maximdifferentiation chosen under
laissez-faire (at least when the efficiency diffai@ between firms is small enough),
in a welfare improving way. The paper thus prosidgenew route through which
minimum wages can be “a good thing”, over and ahireebeneficial employment
effects of the previous literature. It also getesaa natural question for further
research in the differentiated oligopsony framewad&mely the effect of minimum
wages on Vvertically differentiated job charact@&sst(e.g. quality of the work

environment), as opposed to our horizontal difféetion.
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APPENDIX

Proof of Lemma 3.1(a) From the definitions dfl , andX ;

1n,=0 if X<0iew,<w —t[(1-b)*-a’]

@ Ny=(@-w,)x if XO(01]i.e.w —t[(1-b?-a2]<w, <w, +t[(1-a)’-b?]

@) MNy,=a-w, if X=Liew +tf(1-a)°-b’]<w,

It is easy to check that (1), (2) and (3) defiffg as a continuous, quasi-concave
function of wy over the whole range [8] (constant at O over the range of (1), strictly

concave over (2) and linear, decreasing over (3)).

If w, >A, thenX<0, and soL, =M, = Ofor all w,J[0,a]. Thus anyw,[0,a] is

a best response for firm 0 to, 2A, If. w, <A, then strictly positive profits are
attainable by firm 0 (by choosing, =a —¢, £ small enough), and a best response
must lie in the range of (2) above. In this randg,s a strictly concave function of
Wo with stationary pointw, :%{0/+w1 —t[(1-b)? —az]} which lies in the range of
(2), and so is the best response wff_] [yl, /\1). If w, <y,,M, is increasing over the
range of (2) so the maximum @1, occurs atw, =w, +t[(1-a)* —b*], which is
therefore the best response. Interchanging O/Xkcsits, a/b and a/S, and
replacing X by (1— i) produces the firm 1 result. Thus the set of soig&E for
(a,b) /7S correspond to simultaneous solutions of one of (i) in (a) with one of
(iv) — (vi), wherew, U [O,a] andw, [J [0, ,B].

(b) Assume &,b) /7T and consider the (ii)/(v) pairing. The equatiomgrsect at

w =w (a,b),i=0,1 and the resultingv,, Wy satisfy the inequalities in (ii)/(v) iff

d<(1-a-b)(3-a+b)(or(ab)IT). Itis straightforward to check that no pairings
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produce any other NE forp) /7T, which completes the proof of (b), using the NE
wages to derive the corresponding market shareprafids.

(c) Assume §,b) /7ST. Consider the (i)/(vi) pairing whemg; = Sin (vi). The
resulting wages(w0 =B +t{(1-a)* -b’],w, = ,8) satisfy the required inequalities iff

d>(1-a-b)(3-a+h). The (i)/(vi) pairing with wy = S produces
1 - ) | . . o
W, =210+ Bt (1-b)*-a%f, wa = g which satisfies the inequalities iff

J=(1-a-b)3-a+hb), in which casav, = S +t[(1-a)? —b?]. Again one can check
that no pairings produce other NE faxk) /7 ST and that the NE wages produce the
market shares and profits in (c). Consider now ¢hee &,b) /7 H. From the
definition of Lo for this case, ifw, = 8, firm 0 attainsM,=a - 5> With wp = S,
which cannot be improved upofw, > 8=M,=a-w,<a -8, w, <=1, =0)

If w,=24, firm 1 can do no better than choose = S giving N, =0. Thus
W, =w, = SBis a NE. This is the unique NE: W, < S8 thenw, =w, is again 0's best
response givindl, = @Qutw, +¢& (< B, & >0) strictly improves for 1; market shares

and profits are as claimed, completing the proof. u

Proof of Lemma 3.3

Supposed<d<J . From lemma 3.1 we have;

(i) oM, /da=2t(1-a)>0 when &, b) [7(SJH)\T anda < 1.

(i) When @, b) T, an;/aa:it( o +3+a—b)( 9 —1—3a—b]
18 \1-a-b b

whose sign coincides with that Bfa,b) = d - (1-a-b)(1+3a+b). The curveF(a,b)

= 0 intersects the boundary @f where d =(1-a—-b)(3-a+b)uniquely ata=1,

b=149-40 -1 the boundary off wherea = 0 uniquely atb=+1-J, and is
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downward sloping ifil between these intercepts whérs 2. For JD(%,J*], the
curve slopes down whera82b > 1, but is upward sloping wherm®&b < 1 (with a
turning point ab = 2 - 30 , a = 1(1-2b)). In each cas@f1,/da>0to the right of
the curve andrl,/da<O0to the left.

Consider 0’s constrained best response probleanxiT;(a,b)s.t.ad[01-b] Define

G(b,3) = M}, (0,b) - M, (1—b,b) on the domairb0[0,v1-3],50(0,6°]. Then;

G(b.) :%t{(l—b)(rdbﬂ%—bj —185},

aGlab:it(i+3—bj(i+3b—5jsit(i+3—bj(4b—4)<0
18(1-b 1-b 18 (1-b

anddG/00 = %t(ib -b- 6) <0 (usingrdb <l+bon thedomainj.

Thus there is a decreasing functt{@d) on the domairv 0 (0,0 buch thab=b(J) iff
G(b,9)=0, b < b(9) iff G(b,d) > 0 andb > b(J) iff G(b,J) < 0. Moreoverlim b(d)=1
(since G(1,9 -~ O as d-0), b(x)=1 (sinceG(3,%)=0) and b(3")=0(since
G(0,0)=24t[(6+3)* -185] =0whend =3").

In the case whereSD(O,%], the derivative signs in (i) and (ii), and the dovand
slope of the curv&(a,b) = 0 imply thata = 0 anda = 1-b are the only 2 candidates for

0’s constrained best response when [0,+/1- ], and it follows from the previous

paragraph thad = 0 if b < b(d), a:{O;L—b} if b=b(d) anda = 1-b if b > b(d).

2
Moreover;(0,b) :Tlgt(l—b)[i+3—bj is continuous and strictly decreasing in b,

and M (1-b,b) =a - Bindependent ob. When 60(0,4),b(3)>< and using the
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symmetry of thed,b) and (1a, 1-b) subgames, 0’s unconstrained best response is as

described in (a). WhenéD[%,%],b(é)s% and the symmetry ensures the
unconstrained best response of (b).

When 00(3,d], the above arguments ensure the unconstrainedrémstnses in
(b) if bO[0,v1- 8] orif bO[2-+/351]. Whenb[(y1-5,2-+/35) the candidates for

0’s constrained best response arel-b and the value of a whera,lf) [0 T is on the

upward sloping part of thig(a,b) = O curve; lela = a(b) denote this curve, defined by
F(a,b) = 0 and a+2b < 1 for bD(\/ﬁ,Z—\/@) Along this curve 0’s profit is
N;(a(b),b) whose derivative with respect tb is —4(lab) < 0. Also
G(ﬁ,d):%t(8—95—8\/m)<050 b(d)<+1-4, anda = 1 is 0's constrained
best response to arty > b(d), as in the last paragraph, producing again the (b

statement. [ ]

Proof of Theorem 2 First note the following features f{f,b).

0 El% =302 +30-a2-3(0 0 +0f (502 -1)+3(e- a0 (o0 +1)
=10-a’+1/?+10%7?
@ 2 =msgopreymagon

(i)  Equating (i) and (ii) to Of has a unique stationary poiat=++9J,b=%-9
with f(ab)=f =a-1dt+d%-4t.  Now  consider  problem  1:

rp%xg(a,b)s.t.dz(l—a)z—b2,(a,b)DSD H. The solutons are a=41,

bO[2-0,4if d<i,anda=4, bO[0,4]if 6=1; in both cases the optimal value

=4

35



is g =a-4Lt. If =1, the feasible set for problem 1$/7H and the solution to
problem 1 is then necessarily the social optimum.
Supposed < Trom now on.

Next consider problem 2maxf (a,b)s.t.0< (1-a)’ -b?, (a,b) OISO H. The feasible

set is nonempty (with a non-empty interior) and pawot, so there is a solution. But

solutions cannot occur,

(2) on the feasible set boundary wher@a=0,b0[0,v1-0) since

2
t~of /aa:%(ib +1- bj >0;

(2) on the feasible set boundary wheré):O,aD[O;L—\/E) since

2
t™9f /b =%(1—a—%] >0 there.

In addition, whend = 1the (unique) stationary point is not interior te tieasible set,

so any solution to problem 2 belongs to the boundenere 5:(1— a)2 -b* and
a,b>0. Butf andg coincide on this boundary which was also feasiblg, not
optimal, in problem 1. It follows that the solutido problem 1 provides the social
optimum for alld =4, completing (b). Finally, whed <%, the stationary point df

is interior to the feasible set of problem 2 withlue f* ; moreover f* >g" then.

Thus the (unique) stationary point is the only #olu candidate interior to the

feasible set for problem 2, and there cannot beusdbary solution. So the stationary

point solves problem 2 and, sinéé > g~ provides the social optimum; hence (a).
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