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1 Introduction

The general objective of this study is to develop stochastic models of dynamic
economic equilibrium taking into account local (micro-level) interactions between
economic agents. The classical theory allows individuals to interact only on the
macro level—through a price system prevailing in the market. However, much
of the real economic process involves direct contacts between its participants. It
is therefore of interest to provide equilibrium models taking into account pos-
sibilities of, as well as restrictions on, direct interactions between agents. The
restrictions (specifying the notion of ”locality”) may be of various types: certain
individuals may only be able to exchange commodities with certain others; some
may only communicate with a group of the others; there may be spatial, temporal
and informational constrains.

In the last 10-15 years, large work has been done on the integration of classical
general equilibrium theory and local interaction models. Various views on the
problem and various formal settings have been developed. Contributions to the
field were made by Aoki [3], Blume [9], Blume and Durlauf [10], Brock and Durlauf
[14, 15], Brock and Hommes [13], Durlauf [19, 20|, Glaeser and Scheinkman [35],
Horst and Scheinkman [37], Ioannides [38, 39|, Kirman [41, 42|, Kirman and
Vriend [43], Lux [44], Lux and Marchesi [45], Verbrugge [61], Weisbuch, Kir-
man and Herreiner [62] and others. One can distinguish two large branches in
this research area, corresponding to two different mathematical frameworks used.
The first involves consideration of random graphs and is aimed, basically, at the
modeling of the formation and evolution of socio-economic networks. The second
applies in the economics context the methodology developed in statistical physics
for the analysis of large interacting particle systems. We use another approach,
distinct from the above-mentioned ones, describing the structure of local inter-
actions between economic agents in terms of random fields on directed structures
(directed graphs, partially ordered sets, etc.). Below we discuss this approach, in
comparison with others, in detail.

In the present paper we examine a stochastic equilibrium model in which
markets—where agents interact in the process of commodity exchange—are sep-
arated in space and time. The model is specified in terms of a fixed directed
graph, T. The vertices of T correspond to agents acting at certain moments of
time. The agents produce and consume commodities and deliver them to other
agents. The directed arcs of the graph T' describe the spatio-temporal structure
of commodity flows in the economic system. Different agents in the economy are
influenced by different random factors and possess different information. It is
supposed that the stochastic structure of the model is in a sense compatible with
the structure of the given graph 7.

We analyze equilibrium states of the economy, i.e., those states in which all
the agents implement their most preferred production and consumption deci-
sions (given the local equilibrium prices) and balance constraints for the com-



modity flows are satisfied. The main results are existence and uniqueness theo-
rems for such states. The results generalize those obtained in our previous work
(Evstigneev [26], Evstigneev and Taksar [28, 29]), dealing with the case of a finite
graph, to infinite graphs. This generalization requires some hypotheses regarding
the infinite graph 7. In particular, we need certain restrictions on the ”branching
rate” of T and the assumption that T is well-approximable in a proper sense by
its finite subgraphs. These assumptions are used when passing to the limit as the
number of nodes of T tends to infinity. A key role at this stage of the analysis
is played by the stability results (turnpike theorems) for equilibria established in
Dempster, Evstigneev and Pirogov [17].

The study of infinite graph models is motivated primarily by the fact that they
reflect the idea of a ”large” economy, developing over a long time interval. They
provide a framework for analyzing such issues as stability, spatial and temporal
homogeneity, and aggregation in the economic equilibrium context. The present
paper is a step in our program of extending to the graph models the key results of
the mathematical theory of economic dynamics and equilibrium over an infinite
time horizon, as developed by Gale [32, 33, 34], Nikaido [51], McKenzie [47,
48], Brock [11], Brock and Mirman [16], Brock and Haurie [12], Radner [54, 55,
56|, Polterovich [52], Bewley [7, 8], Majumdar and Zilcha [46] and others. This
theory—rich in content and mathematically elegant—belongs to the classics of
mathematical economics. The focus on the above specific goals is one of the main
distinctions of the present line of studies from other research dealing with network
models in economics, regional science, games, and operations management (e.g.
Samuelson [57], Nagurney [49], Shapiro and Varian [58], Batten and Boyce [5],
Nijkamp and Reggiani [50], and Bernstein et al. [6]).

The mathematical background of this work is the theory of random fields.
By a "random field” one means a random function whose domain does not have
a natural structure of linear ordering (Euclidean space, manifold, graph, etc.).
The present study deals with functions of this kind defined on directed graphs
or partially ordered sets. Such random fields arise in many applied problems,
related and not related to economics, e.g. in the control of energy or fluid flows,
the design of telecommunication networks, etc.

A powerful theory exists for random fields on undirected graphs. Originally,
this theory has been built in connection with problems in statistical physics (Do-
brushin [18], Preston [53] and others). Central concepts in that area are the
notions of Gibbs and Markov fields. Methods related to such fields were first
applied to problems in mathematical economics by Follmer [31]. Results along
similar lines have been obtained by Karmann [40] and Allen [1].

Our work is based on an entirely different approach dealing with random
vector fields on directed, rather than undirected, graphs. In contrast with the
above-mentioned line of studies, relying on the techniques of Gibbs—Markov fields,
we do not have well-elaborated methods for working with random vector functions
on directed graphs. The theory of such functions (especially, the analysis of
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their Markov properties) is far less developed than the theory of random fields
on undirected graphs. Some general tools for the investigation of these classes
of fields have been created (see the survey in Evstigneev and Greenwood [27]),
but there are still many challenging open questions in this area. The present
work not only exploits the methodology of this branch of probability theory, but
also contributes to it in that it develops methods for the analysis of equilibrium
stochastic control problems for random fields on directed graphs.

The paper is organized as follows. Section 2 describes the model. Section 3
states the main results. Section 4 presents formulations of some results of the
previous work which are used in this paper. Section 5 contains the proof of the
main theorem. Sections 6 and 7 discuss some specialized models.

2 The model

Let T be a finite or countable set. For each t € T, let K(t) be a subset of T’
containing t. The correspondence t — K (t) determines the structure of a directed
graph on T. The inclusion s € K(t)\{t} means that there is a directed arc of the
graph leading from ¢ to s. We define

Mit)={seT:te K(s)}, K(t+)= K(@)\{t}, M(t—)=M()\{t}. (1)

It is supposed that the sets K (t) and M (t) are finite for each t € T, i.e., the
graph under consideration is locally finite.

Elements of the set T" represent economic agents (acting possibly at different
moments of time). The agents produce and consume commodities. They supply
their products to other agents. The inclusion s € K(t+), means that agent s
depends directly on ¢ via commodity supplies. For each t € T, the set M (t—) U
K (t+) includes those agents which interact directly with ¢ : they either supply
commodities to ¢ or receive them from t.

The model admits both a static and a dynamic interpretation. To introduce
dynamics explicitly one can assume that the vertices of the graph T' are pairs
(n,b), b € B(n), n=1,2,..., where elements of the set B(n) represent economic
agents acting at time n. It is natural to suppose that if (n’,¥') € K(n,b), then
n’ > n, i.e., all the economic transactions require positive time.

Let (2, F, P) be a probability space. Let F; C F, t € T, be a family of o-
algebras and m;, t € T, a collection of positive integers. The integer m; specifies
the number of different types of commodities that can be received by agent ¢ from
other agents (or are contained in the initial endowment of t). For each t € T', the
o-algebra F; represents the class of events influencing agent ¢.

We suppose that each F; is separable (i.e., generated by a countable number
of events), and the following condition holds:

(F) If s € K(t), then F; C F; (s,t € T).



Assumption (F) expresses the fact that random events influencing agent ¢
may thereby influence agents s € K(t+), depending on ¢. (It is not assumed,
however, that each agent s € K(t+) can directly observe all such events.) If a
set S C T is a cycle of the graph T, then, by virtue of (F), we have F; = F; for
any pair of vertices s,t € S. Although we do not assume that the graph T does
not have cycles, the last observation shows that the stochastic structure of the
model over every cycle is in a sense trivial.

Consider the spaces of random vectors:

L:=L(Q,F, PR™), X = Loo(2, F, P,R™).

By definition, the space L; consists of integrable F;-measurable m;-dimensional
random vectors. The space A; includes those and only those elements of £; which
are essentially bounded. We set

P.={peLl::p>0}

All equalities and inequalities for random vectors, such as p > 0 above, are
understood coordinatewise and almost surely (a.s.). We often omit a.s.” if this
does not lead to ambiguity.

Elements of X; are interpreted as random commodity vectors and elements of
P; as random price vectors. For any p = (pl, v, p™) € Prand z = (:El, ey ™) €
X, the scalar product pr = Y7 P’ (w)z? (w), computed for each w € Q, charac-
terizes the cost of the commodity bundle x in the price system p. It is supposed
that commodities received by agent ¢ from his suppliers s € M (t—), as well as the
input of ¢, are evaluated in terms of the price vectors p; € P;. If, for example, the
vertices of T' represent regions, then p; is the price system at the local regional
market .

We define

Zt: H Xsa Qt: H Ps-
sEK(t) sEK(t)
Elements v in Z;, i.e., families of vectors v = (vs)sex@) [vs € X;] are called
strategies of agent t. Here, —v, is construed as the input vector and (v,)sex(i+)
as the set of output vectors. A strategy v reflects production and consumption
decisions which lead to the inputs —v;(w) and the outputs vs(w), s € K(t+),
depending on the random situation w. Versions of the present model in which
production and consumption decisions are considered explicitly are discussed in
Section 6. It is natural in many economic interpretations of the model to assume
the vectors —v; and (v,)sex(4+) to be nonnegative. This assumption, however, is
not needed for the validity of the assertions which we prove below.
Further, define
Qt = H Ps-

SEK(t)



Elements ¢ = (gs)sex () of the set Q, are collections of those price vectors which
correspond to the input and output vectors of agent t. Consider the sets

Z: HZt, P:HPt

teT teT

Elements z = (2,)ier [z = (21s)sex@) € 2] in Z are families of strategies of all
agents and elements p = (p;)ier [p: € P:] in P are families of all price vectors.
For any z € Z and p € P, put

qt(p) = (ps)seK(t)a gt(z) = Z Zst- (2)

SEM (t)

The mapping p — q’(p) selects those components p; of p € P for which s € K ().
The vector g;(z) can be written as

gi(2) = Z zst — (—2ut)-

SEM (t—)
The sum Y. =z, specifies the amounts of commodities which agent ¢ receives
SEM(t—)
from his suppliers; the vector —z;; represents the input of agent ¢. If M (t—) = 0,

then we define > 2y = 0 (all sums over empty sets of indices are supposed
SEM (t—)

to equal zero).
Suppose we are given a family of random vectors

h = (hi)ier, ht € &,
and a family of mappings
Zt:QtﬁZt,tET. (3)

A pair (z,p) € Z X P [z = (20)ter, P = (Pt)ier]| is said to form an equilibrium if,
for all t € T, the following relations hold:

Zt = Zt(qt (p)), (4)
g:(2) +h; >0 (as.), (5)

and
p:8:(2) + pihy = 0 (a.s.). (6)

The mappings (3) describe the economic behavior of agents depending on
prices. For each ¢ = (¢)sex ) € Qt, the collection of vectors Z;(q) = (Z:5(q))sek )
is interpreted as the most preferred strategy of agent ¢ given the price system gq.
We do not specify the preferences explicitly: what matters in this context is
only the result of the agent’s choice of inputs and outputs depending on his/her
observation of the prices.



In an equilibrium, all the agents choose their most preferred strategies, and
constraints (5), (6) are satisfied. Inequality (5), which can be written in the form

Z Zst T+ ht Z —Ztt (a.s.),

SEM (t—)

expresses material balance: the input of every agent does not exceed the amount
of commodities supplied plus the initial endowment h,. (If some components of h;
are negative, this means that some amounts of commodities are withdrawn from
the system.) Equality (6) represents a ”complementary slackness” condition; it
follows from (6) that inequalities (5) hold as equalities when all the coordinates
of p; are strictly positive with probability 1.

The collection of the data described above,

(T’K('))a {ﬂ}a {mt}a {Zt(')}’ {ht}a (7)

will be called an equilibrium model and denoted by M.

Note that Z;(q) depends only on those prices which are related to the input
and output vectors of agent ¢. In this sense, we say that the model under consid-
eration is [ocal. Equilibrium states in this model and its non-local version were
studied in [26] in the case of a finite graph T'. That study extended to the equilib-
rium context the results obtained earlier for an optimal control scheme involving
random fields on finite directed graphs [25]. Further investigation of models of
the above type was undertaken in [17, 28, 29] and [30].

3 The assumptions and the main results
We fix some strictly positive constants A, Ay, 6, and a function
T — (0,00) (8)

defined for each H € (0,00). We denote by |a| the Euclidean norm of the finite-
dimensional vector a and by |a|; the sum of the absolute values of the coordinates
of a. For a random vector z = z(w), the norms ||z||; and ||z|| are defined as
E|z(w)|; and esssup |z(w)|;, respectively.

We assume that the following conditions are satisfied.

(A) There exists a collection 2= (,%)t)teT of strategies 2= (g‘ts)seK(t) € Z; with
properties (A.1) — (A.4) below.

(A.1) For any t € T and q € Q,, the inequality Z;(q) >z, holds for all
s € K(t+).

(A.2) For each s € T, we have

hs + Z [gts _665] Z Oa

teM(s)



where e, = (1,...,1) € R™.
(A.3) The vectors 2, satisfy —Ae, <z,< Ae, (t € T, s € K(t+)).
(A.4) For all t € T and g € Q;, we have

E(th(Q)u—t) > E'(q g’t |f;t) — Ay,

where E(-|F;) stands for the conditional expectation given the o-algebra F;.

(B) The mappings ¢ — Z;(q), t € T, possess the following properties of
boundedness, monotonicity and continuity.

(B.1) For all ¢ € Q;, s € K(t+) and t € T, the vector Z;5(q) satisfies the
inequalities —Ae; < Z;5(q) < Aes. For every t € T, there exists a constant A(t)
such that |Z,(q)| < A(?).

(B.2) For any H € (0,00) and t € S, the inequality

2 2
E(q' - @)(Z(d") - Z(a) > ¢" () El|Zi(a") - Z(a)| +|a — €[] (9)
holds for all ¢! € Q; and ¢* € Q; such that ¢/, ¢’ € P,(H), where

In formula (9), ¢; is the component of the collection of vectors ¢' = (¢*)sex )
corresponding to the index ¢. The function ¢ (t) is supposed to be given (see
(8)); it takes on strictly positive values for all H >0 and t € T

(B.3) If ¢ € Q;, ¢ € Q, and ||¢* — q||, — 0, then EwZ,(¢*) — EwZ,(q) for
all w € Z,.

Most of the assumptions contained in (A) and (B) are similar to the assump-
tions used in [28, 29], where their meaning is discussed in detail. Here, we make
only several brief remarks regarding the above hypotheses.

The family of vectors 2, t € T, s € K(t+), described in (A) is interpreted
as the set of “minimal outputs”. The inequalities Z;,(q) >, hold for all the
output vectors Zi5(q), s € K(t+), of any strategy Z;(q) which might be chosen
by agent ¢ (see (A.1)). Condition (A.2) states that the family of strategies
t € T, allows one to produce the minimal outputs with excess. Assumption (A.4)
is fulfilled when the production incentives of the agents do not differ “too much”
from pure profit maximization; see Section 6. The strict monotonicity condition
described in (B.2) is closely related to the Law of Demand (see Hildenbrand
[36])—a strict monotonicity hypothesis for demand functions. Operators Z,(-)
having a property slightly weaker than (B.2) are examined in [28, 29]. In Section
6, we will consider a specialized model, where condition (B.2) will be deduced
from some hypotheses regarding agents’ production and consumption. Hypothe-
sis (B.3) says that Z;(q") converges to Z;(q) weakly when ¢* converges to q with
respect to the norm || - ||;.

We say that a sequence %, ...,t; € T defines a path of length [ from s € T to
teT,ifty=s, t;,=tandt;; € K(¢;), i=0,...,1 — 1. If there is at least one
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path from s to t, we say that t majorizes s and write s < ¢t. If s < ¢, we denote
by I(s,t) the length of the shortest path to, ..., from s to ¢t. For each k € [0, 1),

we define
D1 (k) = sup 3 K1), (10)
SGT tGTs

where T, = {t € T : s < t}. The function ®(k), k € [0,1), which may take on,
in general, finite and infinite values, is called the generating function of the graph
T.

(T) The graph T satisfies hypotheses (T.1) and (T.2) below.

(T.1) The generating function ®r(k) is finite for any « € [0,1).

This condition may be interpreted as a restriction on the “branching rate” of
T. Denote by 0,,(s) (s € T, m = 1,2, ...) the number of elements in the set

T™(s)={teT:t=s, l(s,t) =m},

consisting of those elements ¢ in 7' which can be reached from s along a path of
length m. Hypothesis (T.1) holds if and only if, for each s € T', the series

(s,k) = Z 0, (s)E™ (11)

converges, and its sum, as a function of s, is bounded on T for each k € [0,1).
Clearly the supremum of ®r(s, k) over s € T is equal to @7 (k).

To formulate the next hypothesis we introduce some definitions and notation
related to the graph T'. In particular, we define the closure, clB, of a subset B
of T as

clB:K(B)UM(B), (12)

where K (B) is the union of K (t), t € B, and M (B) is the union of M (t), ¢t € B.
Further, we put

0_B=1{(ts): teT\B, s€ K(t), s € B}, (13)
0, B={(ts): teB, se K(t), s € T\B}, (14)
oB =0_B| o, B. (15)

The set 0B, consisting of the boundary arcs of B, includes those directed arcs of
the graph T which either begin outside B and terminate inside B, or begin inside
B and terminate outside B.

For a finite set B C T and a number H > 0, we define

1 (B) = ma (M (s)), ¢ (B)=mind" (), 57(B) = G2

where the symbol # denotes the number of elements of a set.

(16)
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The second hypothesis we impose on 7" is as follows.
(T.2) There exist a sequence S; C Sy C ... C T of finite subsets of 7" and a

sequence of nonnegative integers \,, n = 1,2, ..., such that
[e o]
cl Sn g Sn—i—la T = U Sna (17)
n=1
An <, n—\, — 00, (18)

and, for any H > 0,

1
Bn(H)

E.(H) = Bo(H) v, (1 + YA 0, (19)

where

Bn(H) = p7(S,) and v,, = # S,

According to the above assumption, the graph T can be approximated by a
sequence Sp, Sa, ... of its finite subsets such that condition (17) holds and certain
characteristics of the sets S,,, defined in terms of the model under consideration,
do not grow ”too fast” as n — oo. These characteristics are as follows:

(a) the cardinality v, of the set 0S,;

(b) the maximum number p,, = u(S,) of elements in M(s), s €clS,;

(c) the maximum of the numbers (¥ (¢)~!, t € S,, (for any fixed H > 0).

In particular, hypothesis (T.2) holds if the following requirements (i) — (iii) are
met:

(i) the number v,, = # 055, is not greater than ¢yn® for some constants ¢y, c >
0;

(i) we have p,, < byn® for some by > 0 and b € [0, 1);

(iii) the numbers ¢ (t), t € T, are bounded away from 0 by some constant
¢H > 0 (for every fixed H > 0).

Under conditions (i) — (iii), we can define \,, for example, as the great-
est integer that does not exceed n/2. Then, as is easily checked, we have
lim,,_,00 Z,(H) =0 (H > 0), which yields (T.2).

The main result of the paper is Theorem 1 below. This theorem holds under
the assumptions listed in (A), (B), (F), and (T).

Theorem 1. Equilibrium states exist. There exists one and only one equilib-
rium state (z,p) = ((2, pt))eer for which

sup ||pt]]eo < 00. (20)
teT

A comment is in order on the uniqueness part of the above result. Condition
(20) says that the norms ||p:||c of the price vectors p; are finite and, moreover,
uniformly bounded on T'. It can be proved (see Theorem 4 in the next section)
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that if the graph T is finite, then the equilibrium prices always have finite norms
|| - [|oos satisfying ||p¢||coc < H*, where

A 24

i =50 (5257) (21)

Consequently, in the case of a finite 7', the equilibrium state is unique in the class
of all possible equilibria. If T is infinite, then, as can be shown, assumptions like
(20) are needed for uniqueness even in the classical situation—when €2 consists of
one point, T'={0,1,2,...} and K(t) = {t,t + 1}. An example of a deterministic
model in which there exist an equilibrium with bounded prices and another equi-
librium with unbounded prices is presented in Polterovich [52, Section 5]. One
can slightly modify Polterovich’s example to satisfy all the assumptions we use
in this paper.

4 Balanced states and boundedness of the equi-
librium prices

The proof of Theorem 1 relies upon some results obtained in our previous work.
These results are formulated in the present section. Here, we do not assume that
all the hypotheses imposed in the previous sections hold. Rather, we indicate
explicitly, in each particular case, what assumptions we use.

Let S be a subset of T. Let us say that (z,p) € Z x P is an S-balanced state
if constraints (5) and (6) are satisfied for all ¢ € S. According to this definition,
an S-balanced state is a collection of strategies z; € Z; and prices p; € P; indexed
by t € T such that the balance constrains hold on the given set S. Clearly, an
equilibrium state is a T-balanced state satisfying conditions (4).

Suppose we are given a real-valued function ¢ = (¢) > 0, defined on the set
S. Let (2°,p") = ((2},0)))ter € Z X P, i = 1,2, be two S-balanced states. Let us
say that these states are (-comonotone if, for each ¢t € S, we have

E(d'(p) —d'®)(s — =) 2¢(@) - Bl — 2 + o, — 0[] (22)
For every finite set B C S, define the numbers p(B), ((B) and §(B) according
to (16) with ¢(¢) in place of (¥ ().
Theorem 2. Let (2%, p') and (22,p?) be S-balanced states satisfying condition
(22). Let Sy C Sy C ... C Sy be a sequence of finite subsets of S such that
cS,.1CS,,n=2,...,N. (23)
Then for each | € {0,1,..., N — 1}, we have

S° El(#,p)) — (2, p0)° <

tESN_1

11



B (SN ) 1 1-1 1 2\( 1 2

C(SN—Z) (1 + /B(SN)) (t’S%SNEKps ps)(zts Zts)|' (24)

This result was obtained in [17, Theorem 1]. It may be regarded as a version

of a stochastic turnpike theorem with an exponential estimate for the convergence

rate (see [2]). Observe that the term ¢ (Sy—_;) in the right hand side of (24) can

be replaced by ¢ (Sy), since the sequence ¢ (S,), n = 1,2, ..., N, decreases—see

(16). Furthermore, ((Sx)™ = B(Sn)u(Sy)™ < B(Sn). Therefore inequality
(24) implies the following estimate for r (t) = E|(z},p;) — (22, 07)|3:

I iy
te%_lr (t) < On(1+ 0 SN)) , (25)
where the number
Cn=B(Sn)? > El(ps —pi)(zis — 7)) (26)

(t,s)€0SN

does not depend on [. From this we can see that the sums > ,cq, 7 (), | €
{0, ..., N — 1}, are bounded above by a sequence which decreases at an exponential
rate as | varies from 0 to N — 1. This rate,

I ¢(Sw)
By T (B’

depends on the minimum value ¢ (Sy) of  (¢) on Sy and on the maximum value
u(Sy) of #M (t) on clSy (see (16)).

Note that the above result does not involve the mappings Z;(-)—the main
ingredient of the equilibrium model described in Section 2—and so it does not
rely upon any of the assumptions regarding Z(-).

Theorem 3. Let the graph T be finite. Let the equilibrium model satisfy
conditions (A), (B) and (F). Then an equilibrium state exists.

This theorem is a direct consequence of Theorem 1 in [26].

Theorem 4. Let the graph T be finite and let conditions (A), (B.1), and (F)
hold. Then for any equilibrium state (z,p) [p = (pt)ier|, we have

1+

max ||p[oo < H”, (27)

where H* is defined by (21).

For a proof of this assertion see [28, Theorem 5.2]. Note that the estimate for
||pt||co given by (21) does not involve the cardinality of T' explicitly. Therefore
one might conjecture that, by passing to the limit, one can derive an analogous
estimate for an infinite graph T' for which ®7(k) < 0o, k € [0,00). However this
conjecture fails to be true, since, as has already been noticed, if T is infinite, then
the equilibrium prices may be unbounded.

12



Another comment concerns the definition of the norm ||-||s. According to our
definition, ||pt||« is the essential supremum of the finite-dimensional norm |p;|; of
the random vector p; (and not of the Euclidean norm |p;|, for example). Although
all finite-dimensional norms are of course equivalent, the inequalities expressing
their equivalence might contain constants depending on the dimension. In the
present context, the dimension m; may vary with ¢. The choice of the norm |- |;
allows us to obtain estimate (27) which is uniform in ;.

5 Proof of the main theorem

The plan of proving the existence part of Theorem 1 is as follows. First we define
a "restriction”, M= M(T), of the given equilibrium model M to a subset T of
T. We show that M satisfies the same conditions as M. If T is finite, Theorem
3 guarantees the existence of an equilibrium in M. Weput T = Sy, N = 1,2, ...,
where {Sy} is the sequence of sets involved in (T.2), and obtain a sequence of
equilibria in the models M(Sy). We extend them in a certain way to random
vector fields on 7' so that these fields turn out to be S-balanced states for any
finite S C T and all N large enough. By using Theorems 2 and 4, we establish
convergence of these fields in the norm || -||» = (E|-|?)!/? for each t € T. Finally,
we prove that the limit random field forms an equilibrium state.

In this section, we assume that all the assumptions listed in Sections 2 and 3
are fulfilled.

Let T be a subset of T. To define the restriction M= M(T) of the model
M to T, we fix the structure of a directed graph on T specified by the mapping
t— Kt) =K@t NT,teT. Weset M(t) = M(t)NT, t € T. Then we have
M@t)={seT:te K(s)}

Further, define

z= [ &%, 9= ][ P, teT.

sEK(t) sEK(t)

Consider the mapping ¢ — § of Q, into Q, transforming any family of vectors ¢ =
(9s)sei @) €Q; into the family of vectors § = (§s)sex() € Q: such that g = gs, if
s € K(t), and g, =0, if s € K(t)\T. (The mapping q — § assigns the value 0 to
those elements s in K (t) for which g, is not defined.) For any q €Q,, we put

Zts(Q) = Zts(q)a ERS I_((t)a

and ) )
Zi(q) = (Zis (Q))sef((t)-

Observe that the mapping ¢ — Z:(q) acts from Q, into Z;. When we replace
Z:(§) by Z(q), we drop those components Z;;(§) of the collection of vectors Z;(§)
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for which s ¢ K(t). Finally, we define

he=h+ > ZzZg teT. (28)

seM(t)\T

(Sums taken over empty sets are supposed to be equal to zero.) The graph
(T, K ()), the o-algebras F;, the natural numbers m;, the vectors h;, and the

mappings Z; (t € T) specify the equilibrium model which we denote by M=
M(T).

For every t € T, consider the vectors
0 =%, s € K(t), and 20 = (20,)scx
Zts tsy S ; and zy Ris)teK (t) *
Proposition 1. The model M satisfies conditions (A) and (B) with (20),er

in place of (2 )er . We have ®7(k) < ®r(k), k €0,1).
Proof. To verify (A.2), we fix t € T and write

he + Z —be) = hy + Z Zot + Z (gst —be;) >

SEM (t) seM(t)\T seM@)nT
hy + Z (’%st —be;) + Z (’%st —be;) = hy + Z (’%st —be;) > 0.
seM()\T seM(t)NT sEM(t)

The requirement

E(qZ,(q)|F) > E(q2)|F) — Ao, q €Qy,

expressing hypothesis (A.4) for the model M, follows from hypothesis (A.4) for
the model M and from the equalities

aZ:(q) = > 4Zis(q) = > 6:Z:(@) = Y. GZis(d) = §Z:(4),

s€K(t) sEK(t) SEK ()

qzy? = Z QSZts Z QS Zts qzta
sEK(t) SEK(t)

holding for all ¢ €Q,because §, =0,s€K (\T.
We claim that the mappings Z; satisfy the condition of strong monotonicity
analogous to (B.2) (with the same function ¢¥(¢)). Indeed, for any ¢t € T and

q',q*> €Q, with ¢! € P,(H), we have

E(Z(qd") — Z(@))(d' — ) = > E(Zis(d") — Zs())(as — &) =

sEK(t)

> E(Zi(@) = Zu(@)@ — @) 2 ¢ () EllZu(@) - Z(@) + & — @' =

SEK(t)
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¢(t) - EllZi(a") — Zu@®))* + g — &¢I,
since g} = i for all ¢' €0, and since |Z(d") — Z(#)| > 1Z(¢") — Z(@).

Conditions (A.1), (A.3), (B.1) and (B.3) for the model M are direct con-
sequences of the analogous conditions for M.

The truth of the inequality ®7(x) < ®7(k) (k € [0,1)) is clear from formula
(10) and the following considerations: if there exists a path from s € Ttot € T
along arrows of the graph T, then there exists a path from s to t along arrows of
T'; the length of the shortest path from s to ¢ within 7T is not less than the length
of the shortest path from s to ¢ within 7.

The proposition is proved.

Proposition 2. For any finite T C T, the model M possesses an equilibrium
state (Z,0) = ((Z¢, D) )rer with ||pe||eo < H*, where H* is defined by (21).

Proof. The existence of (z,p) follows from Theorem 3 and Proposition 1. By
virtue of Theorem 4, we have that

A, 24
Del oo < 2 p(———n).

But ®7(k) < ®7(k) for all k € [0,1), as has been shown in Proposition 1.
Therefore (29) implies the inequality ||p:||c0c < H*.

The proposition is proved.

We now describe a procedure of extending an equilibrium state in the model
M to a random vector field on T. Let (2,5) = ((2;,5:)):cr be an equilibrium
state in M. For each t € T, set

— ﬁta if t € T, B
b= { Oa ifte T\T, p= (pt)tGTa (30)

z=Z(d'(p), 2= (z)er - (31)

(Recall that q*(p) = (ps)sex)-) ) )

Proposition 3. Let S be a subset of T such that c1 S CT. Then the random
field ((z¢, pt))ier defined by (30) and (31) is an S-balanced state.

Proof. Since (z,p) is an equilibrium state in the model M, the vector

B=h+ Y Zg (32)

sEM(t)

is nonnegative and p,v, = 0 for all t € T. Since c1S C T, we have K(t) = K(t)
and M(t) = M(t), t € S. Therefore, if t € S, then h; = h; and

/l_)t = ht + Z Zst' (33)
SEM(t)
Observe that B
Zis = Zts; 1,8 € T. (34)
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Indeed, fix some ¢ € T and define § = (P),c &()- Then, for any s € T, we have
Zis = Z15(q) = Zis(q), where G is the family of vectors g., r € K(t), such that

G- = p, for r € T and G, = 0 for r € T\T. In view of the definition of p, we have
G = q'(p). Consequently,

Zis = Zis(G) = Zis (qt(p)) = Zts

(see (31)), which yields (34).
By applying (34), with s and ¢ interchanged, to equality (33), we find

hy + Z zg = v, > 0, and p;(h, + Z 2Zst) = Prvy = 0,
SEM(t) sEM(t)

for all t € S.

The proof is complete.

Let S; C S, C ... C Sy C ... C T be a sequence of finite subsets of T involved
in hypothesis (T.2).

Proposition 4. Let N be a natural number. Let (z*,p") and (2%,p*) be Sy-
balanced states satisfying

2t = Z,(q'(p")) forallt € SN (35)

and '
p, € Pu(H), t €T, (36)

for some constant H and i = 1,2. Then we have

Y. El(z,p;) — (2,9 < 4AHEN(H). (37)

tGSN_)\N

Here, A is the constant specified in hypotheses (A) and (B). The numbers
Ay and Ey(H) are described in (T.2).

Proof of Proposition 4. In view of (35), (36) and (B.2), relation (22) holds
with ¢(t) = ¢#(t) for all t € SV. By using Theorem 2 (with S = Sy) and
formulas (25), (26), we obtain that the left-hand side of (37) is not greater than

1
H 2, 1 1-A\n E 1 _ .2 1 _ 2 <
ﬁN( ) ( + ﬁN(H)) (t’s)%asN |(ps ps)(zts Zts)| —

By(H)? - (1+ #)1_” - (#0SN) -4AH = 4AHEN(H),
Bn(H)
which proves the proposition.
Now everything is prepared to prove Theorem 1.
Proof of Theorem 1. For each N > 1, consider the restriction M(Sy1) of
the model M to the set Sy,1. By virtue of Proposition 2 and Theorem 3, this
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model possesses an equilibrium (2V,5") = ((2,9"))iesy .- In view of Theorem
4, we have ||p) |0 < H*.
Define

_N .
N _ ) D, lftESN_H, N _ /N
b= { 0, ifteT\Sy,, GET)P =@ er,

2 =Zd(d (p")) t€T), 2" = () )er. (38)

According to Proposition 3, (2V,p") is an Sy-balanced state (since clSy C
Sn+1), and we have ||p || < H* for all t € T.

Let us show that, for every t € T, (2}, pY) is a Cauchy sequence with respect
to the Ly-norm ||-||y = (E|-|)'/2. To prove this, fix some t = t, € T and consider
the sequence {\,} described in (T.2). Let Ny be such that ¢, € Sy_,, for all
N > Ny. The number N, exists since N — Ay — oo (see (18)) and T is the
union of the sets §; C S5 C ... . Fix an arbitrary ¢ > 0 and consider a number
N = N(€) > Ny such that 4AH*EN (H*) < €, where Ey(-) is defined by (19). The
existence of N = N(e) follows from the fact that Zy(H) — 0 for each H > 0.
Let n,m > N = N(e). Then (2",p") and (2™,p™) are Sy-balanced states. By
virtue of (38), we have (35) with i = m, n. Furthermore, (36) holds with i = m,n
and H = H*. Thus, Proposition 4 can be applied, which yields

r(n,m) = E|(z,,p1,) — (215, Pip)|” <

Y. ElG,p) — (5" p")? < 4AH"En(HY) <e.

tGSN_)\N

Thus, r(n,m) < e for all n and m large enough, which means that {(z,pyy )} is
a Cauchy sequence.

Since the sequence (2", pl) is Cauchy with respect to the Ly-norm || - ||2, we
have z}¥ — 2; and p)¥ — p; for some z; € Z; and p; € P,(H*), where the sequences
2 and pY converge in Ly and hence in L;. This implies that z; = Z;(q'(p)) in
view of (B.3) and of the equality 2" = Z;(q'(p")), which holds for all N and ¢.
For every t € T, we have t € Sy for all N large enough. Consequently,

g(2"V) + h; > 0 (as.), pY (g:(2") + hy) =0 (as.).

for all sufficiently large IV, because (2", p") is an Sy-balanced state. By passing
to the limit as N — oo in the above inequalities, we obtain the relations (5),
(6) and ||pt||eoc < H*. Consequently, (z,p) = ((zt, pt))ier is an equilibrium in the
model M satisfying (20).

To establish the uniqueness of an equilibrium state with bounded prices, sup-
pose that there are two such states (z%,p") = ((2},p!))ier, i = 1,2, satisfying
||p||sc < H. Then conditions (35) and (36) hold for all N and i = 1,2. Fur-
thermore, (z',p') and (2?,p?) are Sy-balanced states for each N. Consequently,
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inequality (37) is true for all N. Fix some t € T. Since N — Ay — o0, (37)
implies
E|(z,p;) — (2,9 < 4AHEN(H)

for all N large enough. This is possible only if (z},p;) = (22,p?) (a.s.) because
The proof is complete.

6 Some specialized models

Suppose that the mappings Z;;(q) involved in the description of the equilibrium
model in Section 2 are of the following form:

_ | W), s € K(t+),
Zis(q) = { Wiu(q) — Ci(q), s=t, (39)

where Wi(q) = (Wis(q))sex() is defined on Q; and takes values in Z;, while
Cy() acts from P, into X;. The mapping g — W;(q) characterizes the production
activity of the economic agent ¢ depending on the prices ¢ = (gs)sex (). The vector
—W(q) specifies the production input, and the vectors Wi, s € K (t+), represent
the production outputs (delivered to the agents s in K(¢+)). The collection of
vectors W;(q) is interpreted as the most preferred production strategy of agent t.
For each t € T, the mapping [ — C;(l) specifies the demand function. The vector
Cy(l) describes the commodity bundle which agent ¢ chooses for consumption,
provided [ € P; is the price system prevailing at the local market ¢. According to
formula (39), the total input —Z;;(q) of agent t is the sum of the production input
—Wu(q) and the consumption vector Cy(g:). In the present context, elements of
T may represent economic units of various kinds (e.g. regions), so that the term
”economic agent” should be understood in a sufficiently broad sense.

Further, suppose that the structure of the mapping W,(q) is as follows. Let
a convex set W; C Z; and a strictly concave functional Fi(w), w € W, be given.
Assume that, for each g € Q;, the functional

F,(w) + Eqw, w € W;, (40)

attains its maximum on W;. Let W;(q) be defined as (the unique) point of max-
imum of (40). The model described above—with the mapping W,(q) defined in
terms of the functional (40) and a general mapping C;(-)—was investigated in
much detail in [29]. This class of models includes as special cases those consid-
ered by Gale [33, 34], Dynkin [21, 22], Polterovich [52], Radner [55], Arkin and
Evstigneev [4], Taksar [59, 60|, Evstigneev and Katyshev [24]. In the paper [29],
conditions on W, F(-), Ci(-) were presented guaranteeing the fulfillment of hy-
potheses (A), (B.1), (B.3) and a somewhat weaker version of hypothesis (B.2).
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Below, we provide additional assumptions which imply (B.2). Specifically, we fix
some t € T, and examine conditions on the above data under which the inequality

E(Z(q") — Z(a*)(¢' — ¢*) >

C(H)- E|Z:(q") — Z())* + g — ¢|*] (H >0) (41)

holds for some function ¢ : (0,00) — (0,00) and for all ¢ € Q;(H) = {¢' € Q; :
q: € P;(H)}, where ¢ stands for the tth component of the collection of vectors
q" = (¢s)sex (). The conditions guaranteeing (41) are discussed in Remarks 1-3
below.

Remark 1. If
E(C(I") - C(@) (I =17 <
—(H) - E[|C,(I") = C:(1®) P + I = %], (42)
for I*,1* € P(H), and
EWi(qg") — Wi(g)) (' — ¢*) > ¢ E[[Wi(q") — Wi(d*))?, (43)

where y(H) > 0 and ( is a fixed strictly positive number, then the mapping (39)
satisfies (41). Indeed, we may assume without loss of generality that v(H) < ¢
(replace v(H) by min(y(H),()). From (43) and (42) with I’ = ¢/, we find

E(Z(q") — Z(a*))(¢" — &) > v(H) - E[Wi(q") — Wi(@*) |+

1
Ci(a}) — Cl@)]® + g} — ¢ "] > 5 V(H) - E(Z(q") — Z(P))* + g — ¢,

which yields (41) with {(H) = ~v(H)/2.
Remark 2. Hypothesis (42) is a consequence of the following one

E(C,(I") = C(*))(I' = 1*) < =3(H) - EllI' = PP, I' € P(H), (44)
and the Lipschitz property of C,(-) on P;(H):
1C.(1") = Cu(IP)l|2 < B(H) - |I' = P[]z, I € Pu(H), (45)

where B(H) > 0 is some number independent of I°. To show this, let us write
(45) in the form

E|l' = P> > B(H)*- E|C,(I") — C,(I)|*.
This, combined with (44), yields
E(C(I") - G =1 <

—@ B[N = 1P? - @B(H)‘Q - E|C/(I") = C(1%) .

19



The last inequality implies (42) with v(H) = 4(H) - min{1, B(H) ™%} /2.
Remark 3. Hypothesis (43) holds when Fi(w) is strongly concave in the
following sense:

F((w' +v")/2) > (F(w') + F(w))/2+p- Elw' —w’|*, w' € W,,  (46)

Indeed, suppose (46) is true. Consider any ¢',q¢*> € Q; and set w' = W,(q"),
i =1,2. Then, in view of (46), we have

F(w) + Eq'w' > (F(w') + F(w”)/2+ Eq'(w' +u?)/2) + p - B’ — w2

By adding up the above inequality with ¢ = 1 and the analogous inequality with
i = 2, we obtain, after easy computations, formula (43) with { = 4p.

7 Invariant equilibria

In the remainder of the paper, we will consider an invariant version of the general
model described in Section 2. Let G be a group of transformations of the graph
T, that is: every g € G is a one-to-one mapping T' — T'; the identity mapping
belongs to G; if g, € G and g, € G, then g,¢, € G; if g € G, then g~! € G. The
result of applying g € G to t € T will be denoted by gt. Suppose that the graph
structure on 7' is invariant with respect to the action of the group G:

(G.1) We have gK (t) = K(gt),t €T, g € G.
Clearly (G.1) holds if and only if gM(t) = M(gt) for all t € T and g € G. Fur-
ther, assume that, to each g € G, there corresponds a one-to-one transformation
0, : 1 — Q of the space 2 such that ©, and @g_l are F-measurable, preserve
the measure P, and satisfy ©,0, = O, for all g,¢' € G. The correspondence
g — O, specifies a representation of the group G by automorphisms ©, of the
probability space (2, F, P). By a standard abuse of notation, we will denote
by the same symbol ©, the operator acting on functions of w according to the
formula O, f(w) = f(O,w).

The model M is said to be invariant if the following condition is fulfilled.

(G.2) For all g € G and t € T, we have

For = O, Fr, my = myy, (47)
and
hg = Oght, Zy(©4q9) = ©,2:(q)), q € Q- (48)
Observe that (G.1), (47) and the fact that O, is measure preserving for each
g imply
Xyt = Oy X, Pyt = OyPy, 2yt = 0,2, and 9y = ©,09;.

The notion of an invariant model can be used to express the idea of temporal
and spatial homogeneity of the system under consideration. For example, let
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the graph T be of the form Z x B, where Z = {0,4+1,+2,...} is the set of
moments of time and B is the set of agents. Let the group G include time
shifts (n,b) — (n + 1,b) and mappings (n,b) — (n,vb), v € Gp, where Gp
is some group of transformations of B. Invariance of the model M under the
time shifts corresponds to the notion of stationarity of a stochastic model defined
in ergodic theory terms, i.e. in terms of measure-preserving transformations of
the underlying probability space (see Evstigneev [23], Radner [55], Bewley [7],
and Arkin and Evstigneev [4, Chapter IV]). Invariance under the transformations
(n,b) — (n,vb) expresses spatial homogeneity of the system. A typical example of
B is a d-dimensional integer lattice Z? (such spaces of agents are often considered
in the studies of local economic interactions: see, e.g., Féllmer [31] and Kirman
[41]). The group G may consist of translations or of Euclidean transformations
of the lattice.

In an invariant model, we can define the notion of an invariant equilibrium
state. Such states (z,p) = ((2;), (p;)) are defined as those satisfying

Zg = Oyz, P =Oyp, t€T, g €. (49)

This definition implies that the random vector function (z;,p;) is stationary on
every orbit T(ty, G) = {gto : g € G} of the group G (here t; is any fixed vertex
of the graph). In particular, (49) implies that the distributions of the random
vectors (z:,p) are the same for all t € T'(ty, G). If T(to, G) coincides with T for
some (and hence for all) ¢, € T', which means that T is a homogenous space of the
group G, then the probabilistic structure of the strategies and the prices involved
in an invariant equilibrium state is the same at all the vertices of the graph T

The uniqueness result contained in Theorem 1 enables one to obtain the fol-
lowing theorem (in which hypotheses (A), (B), (T) and (F) are supposed to
hold).

Theorem 5. If the equilibrium model M is invariant, then any equilibrium
state with prices p; satisfying sup,er ||ptl|oo < 00 is invariant.

In combination with the existence part of Theorem 1, the last result establishes
the existence of an invariant equilibrium state in an invariant model.

Proof of Theorem 5. Let ((2t,pt))ier be an equilibrium state with ||p:||eo <
H < oco. To verify its invariance, it is sufficient to establish the relations ©, "z, =
z; and @g_lpgt =p (t € T, g € G). To prove these relations, in view of the
uniqueness of an equilibrium with bounded prices, it suffices to show that the
random field (z;,p;) = (@g_lzgt, @g_lpgt), t € T, forms an equilibrium state.
(Indeed, we have ||p}|lcc = ||Pt||co, since ©,' is measure preserving, and so the
prices p; are bounded.)

Let us show that ((2},p})):er is an equilibrium state. We have

g(Z)+h= > 2Z,+h= > @g_lzgs,gt +h =

SEM (t) sSEM(t)
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@g_l[ Z Zgs,gt T Oghy] = @g_l[ Z Zgs,gt T hgt] =

SEM(t) sEM (t)
0, Y zrgi+ hyl =0, (ge(2) + hy) >0 (as.), (50)
reM (gt)

since ©O,h; = hy and 7 € M(gt) & r = gs, s € M(t), by virtue of (G.1). The
last inequality in (50) holds a.s. because gg:(z) + h,: > 0 a.s. and ©, preserves
the measure P. Furthermore,

Pi(g:(2) + he) = O, [pg(8gt(2) + hgr] =0 (aus.)
by virtue of (50) and the definition of p,. Finally,
2 =0, 24 = 0, Zu(a” (p)) = Z:(0,'qa" (p)) = Z:(d'(p)),
in view of the relations
@g_lqgt(p) = @g_l(ps)seK(gt) = (@g_lpgs)SGK(t) = (pls)seK(t) = qt(pl)-

The theorem is proved.
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