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Abstract

We study aggregative games in which players� strategy sets are
convex intervals of the real line and (not necessarily di¤erentiable)
payo¤s depend only on a player�s own strategy and the sum of all
players�strategies. We give su¢ cient conditions on each player�s pay-
o¤ function to ensure the existence of a unique Nash equilibrium in
pure strategies, emphasizing the geometric nature of these conditions.
These conditions are almost best possible in the sense that the re-
quirements on one player can be slightly weakened, but any further
weakening may lead to multiple equilibria. The same conditions also
permit the analysis of comparative statics and the competitive limit.
We discuss the application of these conditions in a range of examples,
chosen to illustrate various aspects their use. We also show that all
restrictions on payo¤s in aggregative games that guarantee the exis-
tence of a unique equilibrium of which we are aware are covered by
these conditions. When payo¤s are su¢ ciently smooth, these condi-
tions can be tested using derivatives of the marginal payo¤ and we
illustrate these tests in the applications introduced earlier. We also
investigate conditions under which the unique equilibrium is locally
stable. These hold in particular in a symmetric game under the same
conditions required to ensure the existence of a unique equilibrium.
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1 Introduction

Many commonly studied simultaneous-move games have a similar structure
in which each player�s payo¤ is a function of her own strategy and the sum
of the strategies of all players. Selten [45] called such games �aggregative�.
Applications include Cournot oligopoly, private provision of public goods,
cost and surplus sharing games �of which open access resource games are
special cases �and Tullock rent-seeking contests with linear technology. Fur-
ther applications can be found, via a transformation of the strategy space, in
models of competition with di¤erentiated products (Spence, [47], [48], Dixit
and Stiglitz [25], Blanchard and Kiyotaki [4]) and in rent-seeking contests
with nonlinear technology (Tullock [51], Szidarovzsky and Yakowitz [50]).
Referring to such games, Shubik [46] said: �Games with the above prop-

erty clearly have much more structure than a game selected at random. How
this structure in�uences the equilibrium points has not yet been explored
in depth.� A number of authors have studied existence of pure strategic
equilibria in aggregative games in the context of speci�c applications such as
Cournot oligopoly (for example McManus [36], [37] and Novshek [44]). Such
authors sometimes use methods applicable to a wider range of aggregative
games. Indeed, Kukushkin�s proof of the existence of an equilibrium of an
aggregative game when best replies are non-increasing [34] uses a modi�-
cation of Novshek�s approach to Cournot oligopoly. Dubey et al [27] also
establish existence under assumptions of strategic complementarity or substi-
tution, although they use a somewhat di¤erent approach (pseudo-potential
functions).
In this paper, we focus on uniqueness as well as existence. A unique

equilibrium may increase the predictive power (and thus the falsi�ability)
of the predictions of a model. It also avoids equilibrium selection issues
and relieves the modeller of the task of explaining how players overcome
coordination problems. Conditions for existence and uniqueness of several
aggregative games may be found in the literature. Most intensively studied
are the Cournot oligopoly game ( Szidarovszky and Okuguchi [49], Kolstad
and Mathiesen [33] ) and the public goods contribution games (Andreoni
[2], Cornes, Hartley and Sandler [10] and Bergstrom, Blume and Varian
[3]). More recently, Watts [54] (see also Cornes and Hartley [11]) has estab-
lished such conditions for cost and surplus sharing game and Szidarovszky
and Yakowitz [50] have proved existence and uniqueness in risk-neutral rent-
seeking contests. Most of these authors use distinct approaches to establish
their results, and yet the fact that all these games are aggregative, together
with general results on existence, prompts the question of whether there is a
common technique for investigating those situations under which such games
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are well-behaved. Indeed, our aim in this paper is to develop such techniques
and apply them to the games mentioned as well as several others. We also
examine when such games have predictable comparative statics and the prop-
erties of the large-game (competitive) limit, if it exists. More speci�cally, we
introduce assumptions on the payo¤s of a player such that, if the payo¤s of
all players satisfy these conditions, the game will have a unique equilibrium.
Ideally, these conditions will be best possible on individual payo¤s, in the
sense that, if they are not satis�ed, a game can be constructed with such
a player and all rivals satisfying the conditions and which exhibits multiple
equilibria.
The approach adopted by Novshek and generalized by Kukushkin identi-

�es equilibria as �xed points of the sum of correspondences from the aggre-
gate to the strategy space (�backwards reaction correspondence�), one for
each player. If each player�s correspondence is single-valued, continuous, de-
creasing where positive and has large enough supremum, the game will have
a unique equilibrium. Conditions under which this holds have been derived
for several applications and more generally by Corchon [8], who showed that
su¢ cient conditions for existence of a unique equilibrium in an aggregative
game are payo¤s that are concave in own strategy and satisfy a condition
close to and implied by strategic substitutes, together with compact, convex
strategy sets. Such Nash equilibria also have many other desirable prop-
erties. However, such conditions may be overly restrictive in applications.
For example, in Cournot oligopoly, they rule out iso-elastic demand func-
tions and are they not satis�ed in open access resource games with standard
assumptions on preferences. Nor do they apply to rent-seeking contests. In
all these games, best responses as a function of the aggregate strategy of a
player�s rivals initially rise and subsequently fall as the aggregate increases
from zero. In Section 3, we describe a weaker set of conditions which may
be applied to all the above games. These conditions include or generalize all
the existence and uniqueness results described above1. Although our con-
ditions are less restrictive than Corchon, we are nevertheless able to obtain
comparative statics on the behavior of the aggregate and payo¤s. For exam-
ple, we can unambiguously sign the e¤ect on payo¤s of adding new players.
All these authors use2 the �backward reaction function�of Novshek [44] and
Selten. However, uniqueness requires that the aggregate backward reaction
function be decreasing or at least has slope less than unity. Our modi�cation
is to divide players�reaction functions by the aggregate strategy to obtain a

1Except Kolstad and Mathiesen, who give necessary and su¢ cient conditions on best
response mappings, rather than payo¤s, for a unique equilibrium.

2Sometimes under di¤erent nomenclature.

3



�share function�. Consistency requires the aggregate share function to equal
one in equilibrium and, if such functions are decreasing, the equilibrium will
be unique.
The layout of the paper is as follows. In Section 2, we formally de�ne

aggregative games and describe our notation. In Section 3, we describe our
geometrical conditions (regularity) for ensuring existence and uniqueness of
Nash equilibria. We also introduce share functions and prove that regularity
implies the existence of a continuous share function that is decreasing where
positive. Section 4 extends the analysis to comparative statics of payo¤s
and, in Section 5, we study the (competitive) limit as the number of play-
ers becomes large. Throughout these sections, we illustrate our results by
discussing their application to Cournot oligopoly games. In Section 6, we
consider existence and uniqueness (and comparative statics and competitive
limits, where appropriate) for �ve further applications. The su¢ cient con-
ditions in Section 3 are applied to the payo¤s of individual players and, in
Section 7, we investigate their necessity. Firstly, we show how regularity can
be slightly weakened for one player in an aggregative game without losing
existence, uniqueness and comparative statics results of equilibria. How-
ever, no further weakening of these conditions is possible, when applied to
individual payo¤s. However, when there is a relationship between players�
payo¤s, a further weakening of these condition may be possible and this is
discussed in Section 8. In particular, we investigate problems in which pay-
o¤s are identical or, more generally, fall into a �nite number of types. In
all our analyses, the only smoothness condition we have imposed is continu-
ity. However, regularity can often be tested more conveniently when payo¤s
are twice di¤erentiable in the interior of the payo¤ space. Su¢ cient condi-
tions for regularity are established in Section 9, together with applications
to the �ve examples introduced in Section 6. In Section 10, we discuss local
asymptotic stability under a continuous version of best-response dynamics
with smooth payo¤s. In particular, we show that equilibria of symmetric
aggregative games played by regular players are stable. Finally, Section 11
o¤ers conclusions and discusses several extensions of our methodology.

2 Aggregative games

We consider the simultaneous-move game G =
�
I; fSigi2I ; f�igi2I

�
, in which

each of the �nite set of players I has a strategy set Si = [0; wi] for some
wi > 0. (In some applications, the natural strategy set may be R+. How-
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ever, if strategies xi > wi are dominated3, the theory to be described is still
applicable.) Denote

Q
j2I Sj by S and

Q
j2I�fig Sj by S�i. We write xi 2 Si

for Player i�s strategy and X for
P

i2I xi. If x 2S is a strategy pro�le,
�i : S �!R denotes the payo¤ function of Player i. Henceforth, we assume,
without explicit statement, that �i is continuous except possibly at x = 0.
(The exceptional treatment of the origin is useful in some applications4.)
We call such a game aggregative5 if, for each i 2 I, there is a function

vi : eSi �! R, where

eSi = f(xi; X) : 0 � xi � max fwi; Xgg ,

such that

�i (x) = vi (xi; X) for all x 2S satisfying
X
i2I

xi = X. (1)

Since feasibility dictates that X �
P

i2I wi, we could have imposed (1) only
for such X. However, we do not restrict attention to such X, since our
focus is on conditions on vi ensuring a unique Nash equilibrium and well-
behaved comparative statics for any set of competitors with payo¤s also
satisfying these conditions. Not restricting X also permits the study of
limiting equilibria as the number of players becomes large. With slight
notational abuse, we shall write the aggregative game as G =

�
I;w; fvigi2I

�
,

where w = fwigi2I .
To simplify the exposition, it is convenient to focus on non-null (x 6= 0)

equilibria. Note that there cannot be a null equilibrium if, for any i 2 I,
there is x 2 (0; wi], for which vi (x; x) > vi (0; 0). (In a Cournot oligopoly,
the condition says that at least one �rm can make positive monopoly pro�ts.)
Any equilibrium must satisfy X > 0.

3An example is a Cournot oligopoly in which average cost is positive and non-decreasing
and price approaches or is equal to zero for large output. In such a game, levels of output
at which cost exceeds the corresponding price are dominated by null output.

4For example, in a rent-seeking game, the sum of payo¤s of all players is equal to
the rent minus the agregate expenditure on rent-seeking, provided at least one player�s
expenditure is positive. If all expenditures are zero, so are all payo¤s. Hence, the sum of
payo¤s must be discontinuous at the origin and therefore the payo¤ of at least one player
must also have this property.

5Note that aggregative games need not be potential games (and vice versa). For
example, Theorem 4.5 of Monderer and Shapley [39] shows that for a Cournot oligopoly
game to be a potential game entails linear demand, whereas such a game is aggregative
for any demand function.
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3 Existence and Uniqueness

In this section, we investigate existence and uniqueness of non-null equilib-
ria in pure strategies6. We introduce two assumptions, which we call the
aggregate crossing condition [ACC] and radial crossing condition [RCC]. To
describe and exploit these, a little notation and a preliminary lemma are
needed.
When argmaxxi2Si �i (x) is a convex set for all x�i 2 S�i, we shall

say that Player i has convex best responses. In an aggregative game, best
responses depend only on X�i =

P
j2I�fig xj and it is convenient to write

Bi (X�i) for the set of best responses.

Condition 3.1 (Convex best responses) Bi (X�i) is a convex set.

The continuity properties of vi imply that Bi has closed graph except
possibly at the origin7. It is also useful to observe that the graph of Bi
satis�es the connectedness property set out in the following lemma8.

Lemma 3.1 Suppose that x0i 2 Bi
�
X0
�i
�
and X0

�i � � + �x0i , where � and
� are real numbers. Then there exists X 0

�i � X0
�i and x

0
i 2 Bi

�
X 0
�i
�
such

that X 0
�i = �+ �x0i.

Proof. Since the set of (xi; X�i) satisfying xi 2 [0; wi] and X�i � �+�xi
is bounded we can de�ne XU

�i to be the least upper bound of X�i subject
to xi 2 Bi (X�i) and X�i � � + �xi. Since xi 2 Bi (X�i) implies that
0 � xi � wi, there is a sequence

��
xni ; X

n
�i
�	
such that Xn

�i �! X 0
�i, as

n �! 1 and fxni g is convergent, to xUi , say. By continuity, xUi 2 Bi
�
X 0
�i
�

and X 0
�i � � + �xUi . For any X�i > X 0

�i, there is xi 2 [0; wi] such that
xi 2 Bi (X�i) and, by de�nition of X 0

�i, we have X�i > �+�xi. It follows by
a similar continuity and compactness argument that there is an xLi such that
xLi 2 Bi

�
X 0
�i
�
and X 0

�i � �+ �xLi . If x
0
i is chosen to satisfy X

0
�i = �+ �x0i,

then x0i is a convex combination of x
L
i and xUi and, by convexity of best

responses, x0i 2 Bi
�
X 0
�i
�
. The inequality X 0

�i � X0
�i is immediate from the

construction of X 0
�i.

6In many applications, preferences over outcomes are naturally assumed to be a continu-
ous weak ordering. To order distributions over outcomes entails a signi�cant strengthening
of these assumptions.

7Recall that payo¤s need not be continuous at the origin.
8In fact Bi is connected in the conventional sense but this is more complicated to prove

and not needed in the sequel.
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For Player i and any X > 0, we study the set of strategies xi that the
player can choose in a Nash equilibrium in which the value of the aggregate
is X. Each such xi must be a best response to X�i = X � xi. Hence, the
graph of the correspondence that maps X into the set of strategies consistent
with equilibrium X > 0 is

Li =
n
(xi; X) 2 eS 0i : xi 2 Bi (X � xi)o , (2)

where eS 0i = eSinf0g. Note that Li is the image of graph of Bi under the linear
mapping (xi; X�i) 7! (xi; xi +X�i) which leads to the following corollary.

Corollary 3.1 Suppose that (x0i ; X
0) 2 Li and X0 � � + �x0i , where � and

� are real numbers. Then there exists (x0i; X
0) 2 Li such that X 0 = � + �x0i

and X 0 � x0i � X � xi.

Our conditions may now be stated as follows.

Condition 3.2 (ACC) Player i�s best responses satisfy the aggregate cross-
ing condition at X if there is at most one xi satisfying (xi; X) 2 Li.

Condition 3.3 (RCC) Player i�s best responses satisfy the radial crossing
condition at � if there is at most one value of X satisfying (�X;X) 2 Li.

Geometrically, these conditions can be visualized graphically with X on
the horizontal and xi on the vertical axis. Then Conditions ACC and RCC
state that Li meets a vertical line at X and a ray through the origin with
slope � at most once. Figure 1, Panel (a), shows a situation in which all
three conditions are satis�ed. In panel (b), best responses are not everywhere
convex. Panels (c) and (d) depict violations of Conditions ACC and RCC
respectively. In both of these panels, there is also a value of X�i for which
the set of responses is an interval. Our next lemma demonstrates that he
appearance of this feature alongside violations of one or the other of the
crossing conditions is no coincidence.

De�nition 3.4 Player i is regular if

1. Bi (X�i) is convex for all X�i � 0,

2. best responses satisfy ACC at all X > 0,

3. best responses satisfy RCC at all � 2 (0; 1].
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(d) X−i
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xi
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Our aim in this section is to show that aggregative games played by
regular players have unique pure strategy equilibria. We start by showing
that, for individual players, best responses are singletons.

Lemma 3.2 If Player i is regular, Bi is single valued.

Proof. It is useful to view Bi (X�i) as the set of maximizers of vi on a
line of unit slope through (0; X�i); formally,

Bi (X�i) = argmax
x2Si

vi (x; x+X�i) .

The lemma is proved by �xing X�i > 0 and deriving a contradiction from
the supposition that

Bi (X�i) = [x
�; x��] ,

where 0 � x� < x�� � wi.
To achieve this, it proves convenient to de�neX� = x�+X�i, X�� = x��+

X�i, �� = x�=X�, ��� = x��=X�� and note that �� < ���. We now consider
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the line through (��X��; X��) with unit slope: x = � (X) = X�(1� ��)X��.
(The construction is illustrated in Figure 2.) Note that maximizers of vi on
this line take the form

B� = f(� (X) ; X) : � (X) 2 Bi ((1� ��)X��)g

and observe that X 2 [X�; X��] implies (� (X) ; X) =2 B� because of ACC.
Similarly, if

X�� � X � 1� ��
1� ���X

��,

then � (X) 2 [��; ���], which implies (� (X) ; X) =2 B� because of RCC. It
follows that there is (� (X) ; X) 2 B� � Li which satis�es either (a) X < X�,
or (b) X > (1� ��)X��= (1� ���). In case (a), we can apply Corollary 3.1
to deduce the existence of (x0; X�) 2 Li such that

X� � x0 � X � � (X) = (1� ��)X�� > (1� ��)X�.

We conclude that x0 < ��X� = x� and thus that there are two distinct points
of Li satisfying X = X�, contradicting aggregate crossing. In case (b),

� (X) = X � (1� ��)X��

>
1� ��
1� ���X

�� � (1� ��)X��

=
���

1� ��� [X � � (X)] ,

which implies that � (X) > ���X. We can apply Corollary 3.1 again to
deduce the existence of (x0; X 0) 2 Li such that x0 = ���X 0 and

(1� ���)X 0 = X 0 � x0 � X � � (X) = (1� ��)X��,

implyingX 0 > X��. We conclude that there are two distinct points satisfying
x = ���X, giving another contradiction, this time with the radial crossing
condition.
Panels (a) and (b) of Figure 2 illustrate cases (a) and (b) in the proof. We

now take the reader through the reasoning involved in case (a) with the help
of the �gure. Construct the point C, at the intersection of the lines X = X��

and x = x�

X�X. Corollary tells us that there is a point (x;X) 2 Li that lies
on the line of slope 1 through C. No such point can lie in the segment BC,
since this would violate ACC. Also, no such point can lie in the segment
CD, since this would violate RCC. In case (a), depicted in panel (a), we
suppose the point lies in the segment AB. Such a point is marked in the
�gure. Corollary 3.1 tells us that there must exist a point in Li that is on
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the line X = X� and below the point B. But the existence of such a point
violates ACC. Thus we cannot have a point that is both in Li and in the
segment AB. Turning to case (b), a similar kind of argument rules out the
existence of a point in the segment DE.

xi

XO

x/X = *σ

x/X = * *σ

(a)

x= (X)=X (1 *)X**φ − − σ

u

A

B

D

E

C

X* X**

x *i

x **i

x = *X**i iσ

(b)

xi

XO X* X**

x/X = *σ

x/X = **σ

x *i

x **i

x = *X**i iσ

x = X (1 *)X**− − σ

xi
/

u

A

B

C

D

E

The case X�i = 0 corresponds to the line x = X and is therefore compli-
cated by the possibility of discontinuity at the origin. The radial crossing
condition with � = 1 implies that argmax vi (X;X) is either a singleton or
empty. Hence, there are two possible cases: (i) vi (X;X) is maximized at
X i > 0, or (ii) vi (X;X) has no maximum in X > 0. Since we have assumed
that vi (x; x) > vi (0; 0) for some x > 0, case (ii) can only occur if v is discon-
tinuous at the origin. Note that in case (i), (X i; X i) 2 Li. We shall refer
to X i as the participation value of Player i. In a Cournot oligopoly, X i is
the monopoly output of �rm i. In case (ii), it is convenient to set X i = 0.
Under the assumptions of the lemma, we can de�ne a best response func-

tion: which we write bi (X�i). Since it has a closed graph, bi is a continuous
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function. It follows that, if Li crosses the line X = X0, it crosses X = X 0

for all X 0 > X0. For, if we de�ne

 i (X�i) = bi (X�i) +X�i, (3)

there must be some X0
�i � X0 for which  i

�
X0
�i
�
= X0 < X 0. Since

 i (X
0) � X 0, the intermediate value theorem implies that there is X 0

�i sat-
isfying  i

�
X 0
�i
�
= X 0 as claimed. The aggregate crossing condition implies

that Li crosses X = X0 exactly once for each X0 in a semi-in�nite interval.
This allows us to de�ne a function ri on this interval, where (ri (X0) ; X0)
for the crossing point. We call ri the replacement function9 of Player i.
Note that this function has closed graph (Li) and is therefore continuous.
For our purposes, it is more convenient to use the share function de�ned
as si (X) = ri (X) =X. The radial crossing condition implies that, for any
� 2 (0; 1], there is at most one value of X satisfying si (X) = �. Since
Li � eSi, we must also have si (X) � wi=X and we can conclude that si is
strictly decreasing where positive. In case (i), and the domain of both ri
and si is [X i;1). (If si were de�ned for X < X i, we would have si (X) > 1,
which is impossible.) In case (ii), the domain of ri and si is (0;1) and we
write

�i = sup
X>0

si (X) = lim
X�!0+

si (X) (4)

for the least upper bound of the share function. The following result sum-
marizes and extends these observations.

Proposition 3.1 Regularity is a necessary and su¢ cient condition for the
existence of a share function for Player i, which is strictly decreasing where
positive and has domain [X i;1) or R++. The former case occurs if and only
if i has positive participation value X i and si (X i) = 1 and si (X) < 1 for all
X > X i. In either case, either (a) there is X i > 0 such that si (X) = 0 if
and only if X � X i, or (b) si (X) �! 0 as X �!1.

Figure 3 shows the four possible shapes of the graph of the share function.
The distinction between the cases (a) and (b) rests on whether Li meets the
x = 0 axis. If so, X i is the greatest lower bound of the intersection of Li and
this axis. Furthermore, Li coincides with this axis for X � X i, otherwise
continuity would imply a contradiction of the radial crossing condition (for
small enough � > 0): We shall refer to X i as the dropout value of Player

9This is our name for the �backwards reaction function�. It is intended to capture the
idea that the value of the replacement function at X is the output level that, if subtracted
from X, will be replaced by the player, maintaining the aggregate level X.
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X

1 1

X

1 1

s (X)i

s (X)i

X

1 1

X

1 1

s (X)i

Xi

Xi
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i. In a Cournot oligopoly, X i is the competitive level of output for Player
i. That is, the output at which price falls to the marginal cost of Player i
at the origin. In case (b), it is convenient to set X i = +1, so the dropout
value is always de�ned. The assertion that si is asymptotic to the axis in
this case is a consequence of the inequality si (X) � wi=X.

Remark 3.5 A detailed examination of the arguments leading to the propo-
sition shows that the boundedness of the strategy set of Player i is not required
for all conclusions in the proposition. In particular, if the strategy set is R+
and best responses are unique (or possibly empty if X�i = 0) then all the
conclusions in the proposition except (b) remain valid. Indeed, it is straight-
forward to see that, in case (b), the share function is either strictly increasing
or strictly decreasing. In the latter case, a direct argument is needed to es-
tablish that the share function vanishes asymptotically.

Share functions allow us to compute equilibria because of the following
result, easily proved by chasing de�nitions.
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Lemma 3.3 Suppose that all players have share functions. Then bx is a
non-null Nash equilibrium if and only if bX lies in the domain of si andbxi = bXsi � bX� for all i 2 I, where bX =

P
i2I bxi.

This lemma implies that there is an equilibrium with aggregate valuebX if and only if the aggregate share function sI (X) =
P

i2I si (X) satis-

�es sI
� bX� = 1. Note that the domain of the aggregate share function is

X � maxX i, where the maximum is over players with �nite participation
value, if any, and is R++, otherwise. Under the conclusions of Proposi-
tion 3.1, the aggregate share function is continuous and approaches zero as
X �! 1. If at least one player has a positive participation value, the
aggregate share function is de�ned for X � X = maxX i, where the maxi-
mum is over all players with positive participation values. If no player has
a positive participation value, there is a unique equilibrium if and only if
the aggregate share function exceeds 1 for small enough X. This gives the
following existence and uniqueness result.

Theorem 3.6 Suppose that all players in the aggregative game G =
�
I;w; fvigi2I

�
are regular. If no player has a positive participation value, suppose further
that X

i2I
�i > 1. (5)

Then, G has a unique non-null Nash equilibrium.
If no player has a positive participation value, and (5) is invalid, G has

no equilibrium.

Figure 4 shows the graphs of share functions in a 3-player game. The
thick line is the graph of the aggregate share function, obtained by summing
the individual share functions vertically. Note that equilibrium bX exceeds X,
which explains the terminology �participation value�. Furthermore, Player i
is active (bxi > 0) if and only if bX < X i, which explains the terminology
�dropout value�. It follows from our discussion on participation values that,
if the payo¤ of any player is continuous at the origin, this player has positive
participation value and the game has a non-null equilibrium10.
Theorem 3.6 continues to hold if some or all players have strategy space

R+, provided all share functions which do not meet theX-axis are asymptotic
to it. (See Remark 3.6.) In the opposite case, in which all share functions
are strictly increasing, any equilibrium is still unique and Tarski�s theorem

10If all payo¤s are continuous, existence also follows from standard results [19], [20]
when we impose conditions excluding a null equilibrium.
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can be used to establish existence provided there are values of X for which
the aggregate share function is (i) greater than and (ii) less than unity.
In an aggregative submodular game, RCC holds for all players and all

� 2 (0; 1). Indeed, suppose that

x 2 Bi (X�i) ; x
0 2 Bi

�
X 0
�i
�
; X 0

�i > X�i =) x0 � x,

with strict inequality if x > 0. Then, it is immediate that, for any � satisfying
0 < � < 1,

�X 2 Bi ((1� �)X)
can be satis�ed by at most one value of X, which is just RCC. Suppose that,
in addition, ACC is satis�ed for all X > 0 and, if there is a best response to
X�i = 0, it is unique. Then player i is regular.
However, RCC is a weaker condition than submodularity. Indeed, in the

sequel, we shall discuss a class of supermodular search games in which all
players are regular. More generally, regularity does not imply monotonic
best responses. For example, in a Cournot oligopoly with isoelastic demand
and constant (positive) marginal costs, all players are regular, yet best re-
sponses are initially increasing but eventually decreasing. Nevertheless, we

14



shall show that submodularity and supermodularity in addition to regularity
can sometimes yield stronger comparative statics than regularity alone as it
allows us to sign the slope of the replacement function.

Proposition 3.2 Suppose that all players in the aggregative game G =
�
I;w; fvigi2I

�
are regular and the game is submodular [supermodular]. Then the replace-
ment function ri is strictly decreasing [increasing], where positive.

Proof. We use the fact that ri = Xsi satis�es

ri (X) = bi [f1� si (X)gX] ,

where bi is the best response function. The fact that si is nonincreasing
implies that f1� si (X)gX is strictly increasing in X and therefore that ri
is strictly decreasing where positive if the game is submodular and strictly
increasing if it is supermodular.

The previous proposition applies to individual players; if some players
had increasing and others decreasing best responses, individual replacement
functions would inherit these properties. However, such mixed games appear
to be uncommon in practise. We shall exploit this proposition in Section 4,
which deals with comparative statics.
We illustrate the theorem by applying it to the case of Cournot oligopoly11.

Suppose that the set of �rms is I and �rm i 2 I chooses its output xi from
the set [0; wi] at cost ci (xi). If p denotes the inverse demand function, we
assume (without loss of generality) that p (X) > 0 for 0 < X < wi. The
payo¤ of Player i is

�i (x) = xip (X)� ci (xi)
for x 6= 0 and12 �i (0) = 0. We impose assumptions on demand and costs.
Firstly C1: p is twice continuously di¤erentiable and satis�es

p0 (X) < 0 and 2p0 (X) +Xp00 (X) < 0, (6)

for X > 0. Note that the latter inequality implies that revenue Xp is strictly
concave. The second assumption we shall make is C2: ci is a continuous
convex function13 and satis�es ci (0) = 0.

11The selection of articles in Daughety [22] covers many aspects of this model.
12The special treatment of the origin allows for the possibility that inverse demand is

unbounded for small X.
13Continuity restricts the cost function only at the origin.
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Firstly, we establish convex best responses by noting that

@2

@x2i
[xip (X)] = 2

�
1� xi

X

�
p0 (X) +

xi
X
[Xp00 (X) + 2p0 (X)] < 0.

This shows that �i is a concave function of xi, so best responses are convex,
indeed unique. Furthermore, �rst order conditions hold in the form (xi; X) 2
Li if and only if

p (X) + xip
0 (X) 2 �ci (xi) , (7)

where the right hand side denotes the set (an interval) of slopes of supporting
lines to ci at xi. It is straightforward to verify ACC. Fix X. The left hand
side is strictly decreasing in xi by C1 and the right hand side is an increasing
correspondence14. It follows that (7) can hold for at most one xi. To check
RCC, we can rewrite (7) as

p (X) + �iXp
0 (X) 2 �ci (�iX) (8)

and note that the derivative of the left hand side with respect to X is

(1� �i) p0 (X) + �i [Xp
00 (X) + 2p0 (X)] < 0.

This veri�es the radial crossing condition at �i > 0 and shows that Player i
is regular.
If

sup
_X>0

[p (X) +Xp0 (X)] > max�ci (0) , (9)

for some player i, the best response to x�i = 0 is positive; i.e. the player has
a positive participation value. By Theorem 3.6, there is a unique Cournot
equilibrium. When (9) fails for all i, it is convenient to assume that p (X)
exceeds max�ci (0) for some X > 0 (otherwise �rm i is inactive against all
competition) and the existence of a limiting (absolute) price elasticity � for
small X, that is � = � limX�!0 [p (X) =Xp

0 (X)]. In this case, if p has a
�nite limit as X �! 0 so does Xp0. If p is unbounded, so is Xp0 and we
take the limit as X �! 0 to be +1. With this interpretation,

�i = � � max�ci (0)

limX�!0Xp0 (X)

and (5) yields a necessary and su¢ cient condition for a unique equilibrium.
In particular, if p (X) is unbounded or �ci (0) = f0g, we have �i = � for all
i and a unique equilibrium exists if and only if � > 1=n.

14We say a correspondence F is non-decreasing if � 2 F (xi) ; �0 2 F (x0i) ; x0i > xi =)
�0 � �.
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Di¤erentiability of the demand cannot be dispensed with (unlike di¤er-
entiability of cost functions). To illustrate, consider the demand function

p (X) =
2�X if 0 � X � 1,
3� 2X if 1 < X � 3=2,
0 if X > 3=2,

which is concave and strictly decreasing for X 2 [0; 3=2]. It follows that
Xp (X) is strictly concave on the same interval15. Suppose that there are
two �rms, each with wi = 1 and ci (x) = x=3. Then �i (xi;x�i) is a strictly
concave function of xi. Furthermore, the set of slopes of supporting lines of
�i (with respect to xi) at X = 1 is

�xi�i =

�
2

3
� 2xi;

2

3
� xi

�
.

We conclude that (x1; x2) is a Nash equilibrium if16 x1 + x2 = 1 and 1=3 �
x1 � 2=3. Thus, decreasing demand, strictly concave revenue and convex
costs permit multiple equilibria (though not multiple values of X).

4 Comparative Statics

In this section, we discuss comparative statics, noting that such analyses are
much more intricate in a strategic environment. For example, in a Cournot
game in which an idiosyncratic change in its the economic environment causes
one �rm to reduce its output, other �rms may respond by increasing theirs.
Consequently, it may not be easy to disentangle these e¤ects to deduce, say,
the change in total output. However, if share functions are well-behaved and
a mild extra assumption holds, de�nite results on the aggregate and payo¤s
follow. The key result on the latter is the following.

15If
Z = �X + (1� �)X 0,

where � 2 (0; 1), concavity of p implies

Zp (Z) � �Xp (X) + (1� �)X 0p (X 0) +A,

where
A = � (1� �) (X 0 �X) [p (X)� p (X 0)] > 0,

since p is strictly decreasing.
16And �only if�: a more complete analysis shows that all Nash equilibria satisfy these

conditions.
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Lemma 4.1 Suppose Player i is regular, has share function si and vi (xi; X)
is strictly increasing in X for all xi > 0. If X2 > X1 > 0 and X1 � X i

(participation value), then

vi
�
X1si

�
X1
�
; X1

�
� vi

�
X2si

�
X2
�
; X2

�
and the inequality is strict if X1 < X i.
If vi (xi; X) is strictly decreasing in X for all xi > 0, the same results

hold with the inequality reversed.

Proof. Since si is non-increasing and si (X1) = 1 implies si (X2) < 1,

X1
�
1� si

�
X1
��
< X2

�
1� si

�
X2
��
:

From the de�nition of share functions we have

vi
�
X1si

�
X1
�
; X1

�
= max

x�0
vi
�
x;X1 �X1si

�
X1
�
+ x
�

� max
x�0

vi
�
x;X2 �X2si

�
X2
�
+ x
�

= vi
�
X2si

�
X2
�
; X2

�
.

Note that the continuity of vi implies that vi (0; X) is non-decreasing in X.
Indeed, equality can occur only if both maximands are 0 and, in particular,
only if si (X1) = 0.
The last assertion follows similarly.

This lemma can be applied to show that adding extra players to a game
increases aggregate output and makes existing players worse or better o¤
according as vi is decreasing or increasing in X. If one of the additional
players is active (chooses a positive strategy in equilibrium), currently active
players are strictly worse (or better) o¤.

Theorem 4.1 Let Gk =
�
Ik;wk;

�
vki
	
i2Ik

�
for k = 1; 2 and suppose that

I1 � I2 and w1i = w2i ; v
1
i = v2i for i 2 I1. Suppose all players in I2 are

regular and vi (xi; X) is strictly increasing [decreasing] in X for all xi > 0.
If G1 has a (unique) non-null Nash equilibrium bx1, there is an equilibrium bx2
of G2. Supposing bx2i > 0 for some i 2 I2 r I1 and writing bXk =

P
j2Ik bxkj ,

1. bX2 > bX1,

2. inactive players in G1 are inactive in G2,
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3. active players in G1 are better [worse] o¤ in G2 than in G1,

4. if the game has decreasing {increasing} best responses, bx2i � f>gbx1i .
In the former case, the inequality is strict if bx1i > 0.

The requirement that at least one of the additional players be active is not
really restrictive. If all additional players are inactive, equilibrium strategies
for players in I1 are unchanged.
Note that regularity alone is not su¢ cient to allow us to sign individual

responses. However, as Part 3 shows, this does not prevent us signing
changes in payo¤s.

Proof of Theorem 4.1. The existence of an equilibrium of G2 is an
immediate consequence of Theorem 3.6. Then,X

j2I2

sj

� bX1
�
�
X
j2I1

sj

� bX1
�
= 1 =

X
j2I2

sj

� bX2
�
.

Since each si is non-decreasing, we deduce that bX2 � bX1. Equality could
only occur if we had sj

� bX2
�
= 0 for all j 2 I2�I1 but this would violate

our assumptions and proves Part 1.
If, for some Player i, we have si

� bX1
�
= 0, then si

� bX2
�
= 0 by Lemma

3.1, which gives Part 2.
Part 2 follows immediately on application of Lemma 4.1 using the result

of Part 3.
Part 4 is an immediate consequence of Proposition 3.2.

Suppose that there are initially two players. Figure 5 shows the graphs
of their share functions, s1(X) and s2(X). The associated aggregate share
function, graphed by the thick continuous line, takes the value 1 at the Nash
equilibrium, X = bX1. Now a third player, whose share function is s3(X),
enters the new game. The aggregate share function of the new game is
graphed by the thick dashed line, and equilibrium now occurs at X = bX2.
In the Cournot case, decreasing demand implies that pro�ts strictly decrease
with aggregate output, for a given level of �rm output. The theorem shows
that entry increases output and has an adverse e¤ect on incumbent �rms.
That a condition such as regularity is needed for such a conclusion was shown
by McManus [36], [37].
As a second application of the lemma, we consider the e¤ect of an idiosyn-

cratic change in payo¤s to a single player {̂ 2 I. This yields two aggregative
games, G1 and G2, where Gk =

�
Ik;wk;

�
vki
	
i2Ik

�
and w1i = w2i ; v

1
i = v2i for
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all i 2 I r f{̂g. It is convenient to write Lki for the graph, in the (xi; X)-
plane, of best responses in Gk, generalizing the notation of Section 2. The
next result gives conditions on the change of payo¤s for player {̂ entailing an
increase in equilibrium aggregate.

Theorem 4.2 Suppose (i) that all players in I are regular; (ii) vi (xi; X) is
strictly increasing [decreasing] in X for all xi > 0 and all i 2 I r f{̂g; (iii)�
xk; X

�
2 Lk{̂ for k = 1; 2 implies that x1 � x2 where this inequality is strict

if x2 > 0.
If G1 has a (unique) Nash equilibrium non-null bx1, there is an equilibriumbx2 of G2. Supposing bx2{̂ > 0 and writing bXk =

P
j2Ik bxkj ,

1. bX2 > bX1,

2. players inactive in G1 are inactive in G2,

3. players other than {̂, active in G1, are better [worse] o¤ in G2 than in
G1.
If the game has decreasing {increasing} best responses,
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4. bx2i � f�gbx1i with strict inequality if bx1i > 0, for i 2 I r f{̂g,
5. bx2{̂ > bx1{̂ .
Proof. Regularity implies that all players have share functions, which

are the same in both games for all players in I r f{̂g. By (iii), X
2

{̂ � X
1

{̂

and, if X2
{̂ � X < X

2

{̂ , then s
1
{̂ (X) < s2{̂ (X), implyingX

j2I�f{̂g

s1j (X) + s1{̂ (X) <
X

j2I�f{̂g

s2j (X) + s2{̂ (X)

so that bX2 > bX1. Parts 2, 3 and 4 are proved as in Theorem 4.1. Part
1 implies that the strategy of at least one player must increase in G2. In a
submodular game, it follows from Part 4 that this player must be {̂, prov-
ing Part 5. When the game is supermodular (has increasing replacement
functions), Part 5 follows from:

bx2{̂ = r2{̂

� bX2
�
> r1{̂

� bX2
�
> r1{̂

� bX1
�
= bx1{̂ ,

where the �rst inequality follows from s1{̂ < s2{̂ and the second from Proposi-
tion 3.2.

We leave the reader to con�rm how the shift in an individual�s share
function leads to a shift in the aggregate share function and henc a change
in the equiibrium value of X. The geometric condition that L2{̂ lies above
L1{̂ is equivalent to the requirement that the best responses of Player {̂ are
higher in G2 than G1. In the Cournot game of Section 3, this is equivalent
to a reduction in marginal costs, in the sense that, for any x > 0,

�k 2 �ck{̂ (x) =) �2 < �1, (10)

where ck{̂ is the cost function in Gk for k = 1; 2. Then,�
xk; X

�
2 Lk{̂ () p (X) + xkp0 (X) 2 �ck{̂

�
xk
�

and we must have x2 � x1, where this inequality is strict if x2 > 0. Suppose,
to the contrary, we had x1 > x2 � 0. Let �0 2 �c2{̂ (x1), then we would have

p (X) + x2p0 (X) < �0 < p (X) + x1p0 (X) ,

The �rst inequality follows from the fact that �c2{̂ is strictly increasing and
the second from (10). These inequalities would contradict p0 (X) < 0. Fur-
ther, x1 = x2 > 0 also leads to contradiction, in this case of (10). This
justi�es (iii).
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Theorem 4.2 applies only to a change in payo¤s of a single player. Obvi-
ously, the theorem may be applied cumulatively to changes in the payo¤s of
a proper subset of players. In some applications, we may wish to analyze a
change in all payo¤s. For example, an increase in costs in an input market or
imposition of a tax may lead to an increase in average and marginal costs for
all �rms. In general, consider a change in all payo¤s in a game in which all
players are regular (in both games) and, for all i 2 I, we have

�
xk; X

�
2 Lki

for k = 1; 2 implies that x1 � x2 and that this inequality is strict if x2 > 0.
Repeated application of Part 1 of the theorem shows us that equilibrium X
increases17. In general, we are unable to sign changes in individual strategies
except in the case of increasing best responses, where we can conclude that
all strategies increase.

5 The many-player limit

A well known feature of Cournot oligopoly is the competitive limit. When
there are n identical �rms and marginal costs are positive, the industry out-
put of the n-player game increases in n and approaches the competitive level
as n �! 1. Such a result extends to aggregative games, provided the
(common) dropout value is �nite. As n increases, the share function moves
clockwise about the dropout point, approaching a vertical line as n �! 1.
It follows that the dropout value is the limiting equilibrium value of the ag-
gregate X. Figure 6 indicates how the aggregate share function rotates, and
the equilibrium value of X approaches the common dropout value, as the
number of identical players increases.
We can extend this conclusion to non-identical players by considering

an in�nite sequence S = (i1; i2;:::) of regular players drawn from a �nite
set T of types of regular player with �nite dropout value. All players
of type t 2 T have the same strategy set and payo¤ function, which we
write

�
0; w(t)

�
and v(t) (x;X), respectively. Suppose that there are nt (n)

players of type t in the �rst n members of S, where
P

t2T nt (n) = n,
and write Gn for the game played by the �rst n members of this sequence:
(fikgnk=1 ; (w1; : : : ; wn) ; fvkg

n
k=1) and bXn for its equilibrium aggregate value.

Note that Theorem 4.1 implies that bXn+1 � bXn and the inequality is strict
if the dropout value for Player n + 1 exceeds bXn. Our aim is to study the
sequence

n bXn
o
as n �!1.

17Condition (ii) is only needed for signing the change in payo¤s of players whose payo¤s
do not change. There are no such players in this example and so we do not need to include
this condition.
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Write X(t) for the dropout value of players of type t 2 T and

X� = max
t2T

X(t). (11)

Suppose that nbt (n) �! 1 as n �! 1 for some type bt achieving the maxi-
mum in (11). We shall show that bXn �! X�. To see this, write s(t) (X) for
the share function corresponding to v(t) (x;X) and note that, if type t0 6= bt
has smaller dropout value: X(t0) < X�, then s(bt) �X(t0)

�
is positive by Propo-

sition 3.1. It follows that, if nbt (n) > 1=s(bt) �X(t0)

�
, then bXn > X(t0) by

Theorem 3.6 and another application of the proposition. We may conclude
that for all large enough nbt (n), the only active types are those achieving
the maximum in (11) and the argument of the �rst paragraph allows us to
conclude that bXn �! X�.
It follows from Proposition 3.1 that s(t)

� bXn
�
is either equal to or ap-

proaches zero for all types t 2 T and hence the same is true for equilibrium
individual strategies. If the payo¤ to a zero strategy is itself zero, continuity
allows us to deduce that payo¤s go to zero in the many-player limit. In the
Cournot case, more is true: total pro�t made by all �rms goes to zero. The
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next theorem gives conditions under which this holds for a general aggrega-
tive game as well as summarizing the previous discussion.

Theorem 5.1 De�ne S and
n bXn

o1
n=1

as above and suppose that nbt (n) �!
1 as n �!1 for some type bt achieving the maximum in (11). Then,

1. bXn �! X�,

2. if v(t) (0; X) = 0 for all X > 0 and all t 2 T , then vi
�bxni ; bXn

�
�! 0,

where bxni is the equilibrium strategy of Player i in Gn,

3. if, in addition, v(t) (x;X) =x has a �nite limit as x �! 0+ for all X > 0
and all t 2 T , then

nX
i=1

vi

�bxni ; bXn
�
�! 0.

Proof. We have established the �rst two parts in the preamble and
it only remains to prove Part 3. First observe that by Part 1. we have
X�=2 < bXn < 3X�=2 for all large enough n. Furthermore, for any t 2 T ,
Dini�s theorem asserts that the convergence of v(t) (x;X) =x is uniform in
X 2 [X�=2; 3X�=2] and therefore the limit is continuous. Furthermore,
if X > X� and x < X � X�, we have s(t) (X � x) = 0 which says that
0 2 Bi (X � x). In particular,

v(t) (x;X) � v(t) (0; X � x) = 0,

which implies, by continuity of payo¤s,

lim
x�!0+

v(t) (x;X
�)

x
� 0.

It follows readily from these observations that, given any " > 0, there is a
� > 0 such that

k(x;X)� (0; X�)k < � =)
v(t) (x;X)

x
<

"

X� for t = 1; : : : ; T ,

where k�k denotes Euclidean norm.
Since s(t) (X)X �! 0 as X approaches X� from below, there is an X 0

such that s(t) (X)X < �=
p
2 ifX 0 < X < X�. LetX 00 = max

�
X 0; X� � �=

p
2
	
.

By construction, if X 00 < X < X�, then


�s(t) (X)X;X�� (0; X�)



 < �.
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Choose N so that bXN � X 00. Then n � N implies X 00 < bXn < X� and
therefore,

nX
m=1

vm

�
sm

� bXn
� bXn; bXn

�
=

TX
t=1

nt (n) v(t)

�
s(t)

� bXn
� bXn; bXn

�
<

TX
t=1

nt (n)
"

X� s(t)

� bXn
� bXn

=
nX

m=1

sm

� bXn
� bXn

X� " � ".

This establishes the claimed limit.

Summing over several types, as in Part 3, is only meaningful when payo¤s
are cardinal and comparable, such as pro�ts in oligopoly or expenditures in
risk-neutral rent seeking. In the latter case, with linear production functions,
the sum of payo¤s is equal to the value of the rent net of expenditure on rent
seeking. Part 3 allows us to deduce that rent-seeking dissipates almost all
the rent in a large, asymmetric contest. Even if payo¤s are ordinal, we can
conclude that, in an obvious extension of notation, nt (n) v(t)

�bxn(t); bXn
�
�!

0. Thus, under the assumptions of Part 3, payo¤s of players of type t
approach zero faster than 1=nt (n).
It is not necessary to have nt (n) �! 1 for all t 2 T to draw the

conclusions in Theorem 5.1: Indeed, the argument preceding the theorem
establishes the stated limits provided that nt (n) �! 1 for at least one
type t achieving the maximum in (11). However, if even this fails, it is
straightforward to construct examples where none of the conclusions holds.
For example, if, say, the �rst player in S has dropout point X� and all other
players have dropout point Xy < X�, then it is straightforward to see thatbXn �! Xy as n �!1.
One way of generating the sequence S is by making independent random

choices from T according to some arbitrary distribution. Then the conditions
of Theorem 5.1 hold with probability one. Indeed, Part 1. of the theorem
continues to hold even if T is in�nite, provided the distribution of dropout
points is almost surely bounded above. Indeed, let

X� = ess sup
t2T

X(t) <1.

That is, X� is the least value of X which satis�es Pr
�
t : X(t) � X

	
= 1. In

this case, also, X� can be viewed as the competitive limit.
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Proposition 5.1 Let
n bXn

o1
n=1

denote the sequence of equilibrium aggre-

gate expenditures of the sequence of games fGng1n=1, described above. With
probability one, bXn �! X� as n �!1.

Proof. We can apply Theorem 4.1 to deduce that
n bXn

o1
n=1

is a non-

decreasing sequence and Lemma 3.1 to deduce that, with probability one,
the aggregate share function of Gn is zero for X � X�. Hence, bXn �! XU ,
for some XU > 0, as n �! 1 and the probability that XU � X� is one.
The proof is completed by showing that, with probability one, the aggregate
share function at any X < X� exceeds unity for all large enough n.
In conjunction with the probability distribution over T , the function

which maps the type t 2 T into the value of the share function at X, that
is t 7�! s(t) (X) de�nes a random variable S (X). Furthermore, the value
of the aggregate share function of Gn at X is S1 + � � � + Sn, where each
Sm is an independent copy of S (X). The de�nition of X� implies that
X < X(t) < X� with positive probability and for all such t Lemma 3.1 im-
plies that s(t) (X) > 0. Hence, S (X) is a non-negative random variable
which satis�es Pr fS (X) > 0g > 0. It follows that, with probability one,
there is n0 such that S1 + � � �+ Sn � 1 for all n � n0, as required.

6 Applications

In this section, we introduce �ve further applications chosen to illustrate
the application of the aggregate and radial crossing conditions. In each
case, we give conditions for regularity and thus for the existence of a unique
equilibrium. We also brie�y discuss comparative statics and the competitive
limit, where appropriate.

6.1 Search games

We consider a version of the �coconut economy�search game introduced by
Diamond [23] which omits production and is also discussed by Milgrom and
Roberts [38] and Dixon and Somma [26]. Each player i in the set of players
I exerts e¤ort xi in searching for trading partners. Search incurs a bene�t
which is proportional both to own e¤ort and to the aggregate e¤ort exerted
by the other players as well as a cost described by a cost function ci. The
payo¤ function take the form:

�i (x) = �xi

 
�i +

X
j 6=i

xj

!
� ci (xi) ,
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where � > 0 is a parameter scaling the overall return to search and �i � 0
represents a payo¤ from search e¤ort without meeting a trading partner18.

Example 6.1 (Search) Player i�s strategy set19 is [0; wi] and payo¤ is:

vi (xi; X) = �xi (�i +X � xi)� ci (xi) .

Much of the interest in such games lies in their multiple equilibria and
the consequent coordination problems. If �i = 0 for all i, bx = 0 is an
equilibrium. Here, we focus on unique non-null equilibria, which, if at least
one �i is positive, will be the unique equilibrium. It is readily checked that
this game is supermodular which guarantees existence of an equilibrium as
well as monotone comparative statics. We include the game here to illustrate
the fact that supermodularity is not inconsistent with regularity and to show
that multiple non-null equilibria require marginal costs not to increase too
fast. Indeed, we show that if the marginal cost at x increases faster than
x there will be a unique non-null equilibrium. Speci�cally, we impose the
following condition on Player i.

EA The cost function ci is continuous, di¤erentiable for positive argument
and c0i (x) =x is a positive, strictly increasing function of x > 0.

If, for example, ci = kx�, where k > 0, then EA is satis�ed if and only if
� > 2.

Proposition 6.1 If EA holds for Player i in the Search game, Example 6.1,
then i is regular. The dropout point is positive if and only if �i > 0. If
�i = 0,

�i =

�
1 + lim

x�!0+
c0i (x)

�x

��1
. (12)

Proof. Assumption EA implies that c0i (x) is strictly increasing which
implies that wi is the best response to X�i for X�i � Xw

i , where

Xw
i = max

�
c0i (wi)� �i

�
; 0

�
.

The best response to X�i = 0 is positive20 (and equal to the dropout point)
if �i > 0.and is xi = 0 if �i = 0. Since Assumption EA also implies that

18Perhaps from �nding coconuts lying on the ground.
19In the original game, strategy sets were unbounded.
20EA implies that c0i (x) �! 0 as x �! 0, so marginal payo¤ approaches �i.

27



c0i (x) �! 0 as x �! 0+, the (interior) best response xi to any X�i in the
interval (0; Xw

i ) satis�es c
0
i (xi) = � (�i +X�i), which we can rewrite:

X = xi

�
1 +

c0i (xi)� �i
�xi

�
. (13)

Since c0i is strictly increasing, we may conclude that best responses are unique.
Furthermore, the right hand side of (13) is increasing in xi which shows that
(13) has at most one solution for any X > 0. Note also that, if (13) holds
for some xi 2 (0; wi), then X < wi + Xw

i , so (wi; X) =2 Li. Similarly, if
X � wi +Xw

i ,

X � wi +
c0i (wi)� �i

�
> xi

�
1 +

c0i (xi)� �i
�xi

�
for any xi < wi, so (13) cannot hold. These observations establish ACC.
Similarly, for xi = �X and � 2 (0; 1),

1

�
= 1 +

c0i (�X)

��X
(14)

and, by Assumption EA this equation can have at most one solution in
X > 0. This is RCC and completes the proof of regularity.
Together with Theorem 3.6, the following proposition shows that, if EA

holds for all players, then there is a unique non-null equilibrium, except
possibly if �i = 0 for all i. In the latter case, we also require

P
i2I �i > 1,

where �i satis�es (12).
The existence of a unique equilibrium remains valid if the strategy space

is changed to R+, provided that we strengthen EA by requiring that c0i (x) =x
be unbounded above and the share function vanishes asymptotically. But,
if si (X) 9 0 as X �! 1, we would have Xnsi (X

n) �! 1 on some se-
quence (X1; X2; : : :). Since (14) must hold with � = si (X), taking the
limit on the sequence in (14) would lead to a contradiction with the un-
boundedness of c0i (x) =x. Note that, if any player has unbounded strategy
space, the existence of equilibria of a supermodular game is no longer a di-
rect application of Tarski�s theorem. Nevertheless, existence can be deduced
from Theorem 3.6 (provided there are enough players), for (14) implies that
�i = limx�!0+ [�x=c

0
i (x)] and (5) gives a su¢ cient condition for existence. In

particular, if c0i (x) =x approaches zero for any i, the game will have a unique
equilibrium.
We also note that vi is strictly increasing in X for all xi > 0 so, by

Theorem 4.1, additional searchers lead to increased search e¤ort by existing
searchers and an improvement in their payo¤s.
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6.2 Smash-and-Grab games

Recently Bliss [5] has discussed Smash-and-Grab problems in which expected-
utility maximizing players undertake an activity (such as burglary) which
receives a payo¤ with probability less than one. Increasing the intensity
of the activity increases the potential payo¤, but reduces the probability of
receiving that payo¤.
In the strategic version, Player i selects intensity xi(� wi) which results in

a payo¤ui (xi) with a probability that depends on the full strategy pro�le, x.
Otherwise, the player receives reservation payo¤ 0 (gets caught). We focus
on the case in which the probability of receiving a payo¤depends only on the
sum of the intensities chosen by all players and write this probability hi (X).
(The case where hi is an additively separable can also be handled by a simple
transformation.) As with the Cournot application, kinks where hi becomes
zero can be handled by permitting negative values since this does not a¤ect
the set of Nash equilibria provided ui is increasing and hi is decreasing, as
we shall subsequently assume. All payo¤s are measured in units of expected
utility.

Example 6.2 (Smash and Grab) Player i�s strategy set is [0; wi] and pay-
o¤ is expected utility:

�i (x) = vi (xi; X) = ui (xi)hi (X) :

We will apply the following conditions.

SA For i 2 I,
(i) ui is continuous, satis�es ui (0) > 0 and is strictly increasing and
strictly concave in xi � 0;

(ii) hi is continuous and satis�es hi (0) = 1 and hi
�P

j 6=imj

�
> 0;

for X > 0, hi is continuously di¤erentiable, log concave and satis�es
h0i (X) < 0.

Condition (i) speci�es that players prefer no reward to getting caught,
�nd the activity pro�table and are risk averse. Condition (ii) is satis�ed if
hi (X) = Ai exp f�BiXg or hi is linear. In the latter case, the graph of hi
must reach the axis beyond

P
j 6=imj. This condition is necessary, for, if it

failed for all players, any strategy pro�le with X >
P

j 6=imj for all i would
be an equilibrium.

Proposition 6.2 If SA holds for a player in the Smash and Grab game,
Example 6.2, then that player is regular.
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Proof. Since we are examining pure strategy Nash equilibria, we can
apply a strictly increasing transformation to payo¤s without changing the
set of equilibria. Using a logarithmic transformation, we can take the payo¤
as

ln [uih] = lnui (xi) + lnhi (X)

and note that SA implies that lnui is strictly concave and lnh is concave.
We conclude that best response sets are convex. Furthermore, (xi; X) 2 Li
if and only if

�h
0
i (X)

hi (X)
2 � lnui (xi) (15)

where �f (x) denotes the set of slopes of supporting lines to f at x. Strict
concavity of lnui implies that � lnui (xi) are disjoint for distinct xi. This
establishes both ACC and RCC.

Since payo¤s are continuous, existence is assured, so Theorem 3.6 asserts
the existence of a unique equilibrium. Further, SA implies that vi is a strictly
decreasing function of X, for given xi and (log-concavity of hi, in particular)
that the game is submodular. We may conclude from Theorem 4.1, that
extra players increase equilibrium aggregate intensity, whilst reducing the
individual intensities and payo¤s of existing players.

6.3 Public good contribution games

Our next application is the classic problem of voluntary subscription to the
provision of a public good. Cornes et al. [10] provide a recent discussion
of this model. A set I of consumers has to decide non-cooperatively what
quantity of a public good to provide. Consumer i 2 I chooses how much,
xi, of her income mi to devote to a public good. Preferences are represented
by an ordinal utility function ui (yi; X) where yi is expenditure on private
consumption and X is total expenditure on the public good.

Example 6.3 (Pure Public Goods) Player i�s strategy set is [0;mi] and
payo¤ is utility:

�i (x) = vi (xi; X) = ui (mi � xi; X) when X > 0

and �i (0) = vi (0; 0) = 0.

The following is a generalization of a well-known condition.

PA Player i 2 I has continuous, strictly increasing preferences and the
equal-price income expansion paths is upwards sloping.
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PA is most readily exploited in terms of the set of (absolute values of)
the marginal rate of substitution which we denote by MRSi (y;X). [That
is, the set of slopes of supporting lines (with X on the horizontal axis) to
the upper preference set at (y;X).] In particular, if 1 2 MRSi (y;X) and
�0 2 MRSi (y

0; X 0), where y;X > 0, we require �0 � 1 if X 0 � X; y0 � y and
�0 � 1 if X 0 � X; y0 � y, with strict inequality in both cases if (y0; X 0) 6=
(y;X). This requirement is implied by, but weaker than both goods being
normal.

Proposition 6.3 If PA holds for a player in the game Public Good Contri-
bution game, Example 6.3, then that player is regular.

Proof. We have (xi; X) 2 Li if and only if

1 2MRSi (mi � xi; X) (16)

and xi is a best response to X�i if and only if (16) holds with X = xi+X�i.
The discussion above shows that multiple best responses are not possible
and also veri�es ACC. Note also that (�X;X) 2 Li if and only if 1 2
MRSi (mi � �X;X), which, if � > 0, can hold for at most one value of X,
verifying RCC.

Since payo¤s are continuous, existence of an equilibrium is assured, which,
therefore, is unique. Further, PA implies that vi is a strictly increasing
function of X, for given xi and it follows from (16) that best responses
are decreasing. By Theorem 4.1, additional contributions are o¤set by a
reduction in current contributions, but not enough to reduce total public
good provision. Consequently, current players, even non-contributors, are
made better o¤. These results re�ect the standard notions of free and easy
riding discussed in Cornes and Sandler [18] for example.

6.4 Sharing Games

Next, we consider an example of production and cost sharing which gener-
alizes a number of situations such as joint exploitation of a resource with
common access and jointly cleaning up pollution. For de�niteness, we sup-
pose that costs and output are divided in proportion to input. Other sharing
rules are possible many of which also lead to aggregative games. Watts [54]
and Cornes and Hartley [11] analyze examples in which one of the functions
F or C is an identity. Moulin [41] includes a wide-ranging discussion of
models of this type.
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A good is jointly produced by a group: I. Player i 2 I contributes xi � 0
to a productive activity and receives a quantity fi of the output and faces
a personal cost ci. Preferences are re�ected in a utility function ui (fi; ci).
Total output and cost depend on total contribution, X. Speci�cally,X

j2I
fj = F (X) and

X
j2I

cj = C (X) ,

where F and C are joint production and cost functions. We suppose non-
participants obtain no bene�t: �i (0) = ui (0; 0). We shall assume that
output and cost are shared in proportion to contributions, though other
sharing rules can be analyzed by the same methods.

Example 6.4 (Joint Production with proportional shares) Player i�s
strategy set is R+ and payo¤:

�i (x) = vi (xi; X) = ui

�xi
X
F (X) ;

xi
X
C (X)

�
when X > 0

and �i (0) = vi (0; 0) = ui (0; 0), where ui (f; c) is the utility function.

We will apply the following conditions, generalizing Watts [54].

JA (i) The utility function of Player i is strictly quasi-concave, strictly in-
creasing in fi, strictly decreasing in ci and represents binormal prefer-
ences. There is wi > 0 for which i is indi¤erent between (0; 0) and
(F (wi) ; C (wi)).

(ii) The production function is continuous, satis�es: F (0) = 0, twice
di¤erentiable and satis�es F 0 (X) > 0, F 00 (X) � 0 in X > 0.

(iii) The cost function is continuous, satis�es: C (0) = 0, twice di¤er-
entiable and satis�es C 0 (X) > 0, C 00 (X) � 0 in X > 0.

Our interpretation of binormality is best explained letting MRSi (f; c)
denote the set of marginal rates of substitution (slopes of supporting lines
to the upper preference set, with f on the horizontal axis). Binormality
states that, if � 2 MRSi (f; c) and �

0 2 MRSi (f
0; c0), where f; c > 0, then21

(f 0; c0) > (f; c) implies �0 < �. This is equivalent to the assumption that
income expansion paths are downward sloping.
Under JA, wi can be taken as the upper bound on the strategy space for

Player i. To see this, �rst note that, if xi > wi, then

ui (F (xi) ; C (x)) < ui (0; 0) . (17)

21Weak vector inequalities are interpreted component-wise and x > y means x � y and
x 6= y.

32



For, (ii) and (iii) imply F (wi) � wiF (xi) =xi and C (wi) � wiC (xi) =xi, so
that, if (5.1) were untrue, (i) and the equation�

wi
xi
F (xi) ;

wi
xi
C (xi)

�
=
wi
xi
(F (xi) ; C (xi)) +

�
1� w

xi

�
(0; 0)

would imply ui (F (wi) ; C (wi)) > ui (0; 0), contradicting the de�nition of
wi. It follows from (5.1) that any xi > wi is dominated by xi = 0. To
see this, observe that, for any X � xi, we have xi F (X) =X � F (xi) and
xiC (X) =X � C (xi) and therefore

ui

�xi
X
F (X) ;

xi
X
C (X)

�
� ui (F (xi) ; C (x)) < ui (0; 0) .

Proposition 6.4 If JA holds for a player in the Joint Production Game,
Example 6.4, then that player is regular.

Proof. We have (xi; X) 2 Li if and only if

MC (xi=X;X)

MF (xi=X;X)
2MRSi

�xi
X
F (X) ;

xi
X
C (X)

�
, (18)

whereMC [MC] are convex combinations of the marginal and average prod-
uct [cost]:

MC (�;X) = �C 0 (X) + (1� �)AC (X) , (19)

MF (�;X) = �F 0 (X) + (1� �)AF (X) , (20)

where AC (X) = C (X) =X and AF (X) = F (X) =X. Note that an increase
in � decreases MC, since the marginal cost exceeds the average cost under
(ii). Similarly, an increase in X increases MC since both marginal and
average costs fall under (ii). For MF , similar arguments show the changes
to be in the opposite direction.
To study best responses, we hold X�i �xed and observe that an increase

in xi decreases the �rst component and increases the second component of
bothMC andMF and therefore increasesMC, decreasesMF and decreases
their ratio. Furthermore, xiF (X) =X the correspondence mapping xi to the
right hand side of (18) is strictly decreasing in xi. It follows that (18) has
at most one solution; in particular, best responses are convex.
To verify ACC, we now hold X �xed and observe that the left hand side

of (18) is strictly increasing in xi. (The numerator is increasing and the
denominator decreasing.) As before, the right hand side is a decreasing
correspondence and (18) has at most one solution.
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Finally, we observe that (�X;X) 2 Li if and only if

MC (�;X)

MF (�;X)
2MRSi (�F (X) ; �C (X))

and holding � �xed, note that, once again, the left hand side is increasing in
X and the right hand side a decreasing correspondence in X. This veri�es
RCC, completing the proof.

Since payo¤s are continuous at the origin, existence is assured, so Theo-
rem 3.6 asserts the existence of a unique equilibrium. Furthermore, under
JA, increasing X decreases average product (since F is concave) and in-
creases average cost (since C is convex). Hence, utility decreases. These
conclusions, summarized in the next corollary, generalize the existence and
uniqueness results of Watts [54].

Corollary 6.1 If SA holds for all players in the game 6.2, the game has
a unique equilibrium. Adding players increases equilibrium X and makes
existing active players worse o¤.

6.5 Contests

Our �nal application concerns contests for a biddable rent with risk averse
contestants in which each player�s probability of winning the rent is propor-
tional to some (production) function of their expenditure on rent-seeking.
The corresponding game played by risk neutral contestants is strategically
equivalent to a Cournot oligopoly model with unit elastic demand, provided
production functions are strictly increasing (Vives [53]). However, if some
or all players are risk averse this is no longer true. Nevertheless, the game is
still aggregative22 and can be analyzed using the methods described above.
Formally, suppose Player i 2 I spends yi � 0 on seeking an indivisible

rent R which can be won by only one player. The probability that i wins
the rent is given by the contest success function:

pi (y) =
fi (yi)P
j2I fj (yj)

,

where fi is a strictly increasing function. We assume that Player i is risk
averse or risk neutral and has preferences over lotteries described by a von

22Nitzan [42] gives a useful survey of rent seeking, Hillman and Katz [32] investigate risk
aversion and Cornes and Hartley [12] give an exhaustive discussion of the case of many
players, each with constant absolute risk aversion.
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Neumann-Morgenstern utility function ui. In this example, it is useful to
transform the state space by writing xi = fi (yi). Since fi is strictly increas-
ing, it has an inverse function which we denote gi.

Example 6.5 (Rent Seeking) Player i�s strategy set is [0; fi (R)] and pay-
o¤ is expected utility:

�i (y) = vi (xi; X) =
xi
X
ui (R� gi (xi))+

�
X � xi
X

�
ui (�gi (xi)) when X > 0

and �i (0) = vi (0; 0) = ui (0).

Consider the following condition.

RA Player i

(i) is either risk averse with constant absolute risk aversion or risk
neutral;

(ii) has a continuous, concave production function satisfying fi (0) = 0
and which is di¤erentiable in x > 0 and satis�es f 0i (x) > 0.

Note that the second part of the condition implies that gi (0) = 0, g0i (x)
> 0 for x > 0 and that gi is convex. The �rst part of the condition requires
that ui (z) = 1 � exp f��izg with �i > 0 or ui (z) = z. Existence and
uniqueness in the case when all players are risk neutral was established by
Szidarovzsky and Okuguchi[50]. Since this case is strategically equivalent to
a Cournot oligopoly game with unit-elastic demand and cost function gi for
Player i, it is covered by the discussion of that game in Section 3.

Proposition 6.5 If RA holds for Player i in the Rent-seeking Game, Ex-
ample 6.5, then that player is regular. In this case, Player i has a �nite
dropout value if and only if g0

i
= infx>0 g

0
i (x) > 0, in which case the dropout

value satis�es X i = �i=g
0
i
, where

�i =
1� exp f��iRg

�i

if �i > 0 and �i = R if �i = 0.

Proof. When 0 < xi < X, a calculation shows that (xi; X) 2 Li if and
only if it is a zero of the function e
i, where

e
i (xi; X) = �i (X � xi)
X (X � �i�ixi)

� g0i (xi) .
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Holding X�i �xed, the derivative of the �rst term with respect to xi is

�i (X � xi)
X2 (X � �i�ixi)

2 [�i�i (X + xi)� 2X] < 0,

since xi < X and �i�i � 1. Furthermore, g0i is a strictly increasing function
and we may conclude that e
i is strictly decreasing in xi. So Player i has
convex best responses.
ACC is a consequence of the fact that e
i is a strictly decreasing function

of xi for xi 2 (0; X). RCC can be veri�ed by observing that (�X;X) 2 Li
if and only if

�i (1� �)
X (1� �i�i�)

� g0i (�X) = 0

and the left hand side is strictly decreasing in X:
To prove the remaining assertions, note that convexity of gi implies that

g0
i
= lim

x�!0+
gi (x) .

Since e
i is a strictly decreasing function of xi for given X�i, then xi = 0 is a
best response to X�i if and only if

lim
x�!0+

e
i (x; x+X�i) =
�i�i
X�i

� �ig0i � 0.

This holds for some X�i if and only if g0i > 0 and, in that case, it holds when
X�i � �i=�ig

0
i
. Note that this also establishes the formula for X i.

For X > 0, the share function si satis�es

�iXe
i = 1� 1� �i�i
1� �i�isi (X)

� �iXg0i [Xsi (X)] = 0.

It follows that �i = limX�!0+ si (X) = 1 and, therefore, from Theorem 3.6
that the game has a unique equilibrium, provided there are two or more
players.
Furthermore, vi can be written in the form

ui (�gi (xi)) +
xi
X
[ui (R� gi (xi))� ui (�gi (xi))] . (21)

Since ui is strictly increasing, this shows that vi (xi; X) is strictly decreasing
in X for xi > 0. It follows from Theorem 4.1 that additional contestants
make existing active contestants worse o¤. Note that we cannot, in general,
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sign the changes in individual expenditure, since we do not have monotonic
best responses, Indeed, we cannot even conclude that aggregate expendi-
ture:

P
i2I yi increases. Whilst aggregate X certainly does increase, there

is typically no simple mapping, let alone a monotonic function, from X to
aggregate expenditure, except when fi is linear and identical for all i.
Finally, note that Player i has a �nite dropout value if and only if g

i
> 0

and, since gi is the inverse function of fi, this holds if and only if

f 0
i
= sup

y>0
f 0i (y) <1. (22)

For example, with the transformation function fi (y) = ciy
r introduced by

Tullock, the dropout value is �nite if r = 1 but not if r < 1. If we normalize
the utility function ui to satisfy ui (0) = 0, then vi (0; X) = 0 for any X > 0
and, noting that ui (�gi (x)) is a concave function of x, taking the value 0
when x = 0, we can deduce from (21) that vi (x;X) =x has a �nite limit as
x �! 0 through positive values. Given any x > 0, there is � 2 (0; x) such
that

ui (�gi (x))
x

= �u0i (�gi (�)) g0i (�) ,

from which we conclude

vi (x;X)

x
�! �ig

0
i
� ui (R)

X
as x �! 0+.

It follows from Theorem 5.1 that, in large games played by a �nite set of
types satisfying RA and (22), the total payo¤ approaches zero. Further
applications of this approach to contests may be found in [12].

7 Weak regularity

Study of the applications above prompts the question of whether regularity is
a necessary, as well as su¢ cient, condition on individual players for a unique
equilibrium. Clearly, if a player had a share function that was strictly
increasing where positive, multiple equilibria would be possible for certain
choices of share functions for the other players. Equilibria in the knife-
edge case of a share function that was decreasing but not always strictly
(where positive) is less clear. Indeed, if a single player has a share function
which is non-increasing where positive, but may have horizontal segments of
its graph at share values between 0 and 1, and all other players are regular,
equilibrium will still be unique. For the share functions of the regular players
are strictly decreasing where positive, so the aggregate share function will be
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strictly decreasing at share value 1 which implies at most one equilibrium.
However, if the graphs of two or more players had such horizontal sections,
the graph of the aggregate share function could have a horizontal segment
with unit share23, resulting in multiple equilibrium values of X. In Figure
7, the share function of each of three players has a horizontal stretch at the
share value of 1/3. In the example shown, there is a continuum of equilibrium

s (X)i

X

1

O

1

s (X)1

s (X),2 s (X), s (X)3 4

s (X) + s (X) +s (X)1 3 4s (X) +2

1/3 1/3

values of X. Similarly, it is possible to have vertical sections in the graph of
one player (turning the share function into a correspondence) without losing
existence and uniqueness. Once again, were two or more players to have a
vertical section at the same value of X, multiple equilibria would be possible,
though the equilibrium X would still be unique.

In the remainder of this section, we relate these properties of share func-
tions to geometric properties of the set L{ (weak regularity) and then examine
necessity of these properties for existence and uniqueness of equilibrium. In
particular, we show that existence of a unique equilibrium is assured if one
player is weakly regular and the rest are regular. Furthermore, no further
weakening of these assumptions is possible, where such assumptions impose
restrictions solely on the payo¤s of individual players.

De�nition 7.1 Player i is weakly regular if

1. Bi (X�i) is a singleton for all X�i > 0 and Bi (0) is either a singleton
or empty,

23This requires the equilibrium aggregate to exceed the dropout values of all regular
players.
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2. the setfx : (x;X) 2 Ligis convex for all X > 0,

3. the set fX : (�X;X) 2 Lig is convex for all � 2 (0; 1].

Since we count empty sets as convex, it follows from Lemma 3.2 that a
regular player is also weakly regular. For weakly regular players, we can
de�ne a convex-valued share correspondence for any X > 0 by

Si (X) =
n x
X
: (x;X) 2 Li

o
. (23)

Note that Si has a closed graph24, except possibly at X = 0, and therefore
Corollary 3.1 holds. It follows25 that, if Si (X0) 6= ? and X 0 > X0, then
Si (X

0) 6= ?. Indeed, this is essentially the same argument used to prove
that the domain of the replacement function is a semi-in�nite (to the right)
interval. Furthermore, we shall show that Si is decreasing in the sense that
there is at most one value of X satisfying Si (X) = 1 and

�1 2 Si
�
X1
�
; �2 2 Si

�
X2
�
; X2 > X1 =) �2 � �1.

Note that, if Player i is weakly regular, either vi (X;X) is maximized at
X i > 0, or (ii) vi (X;X) has no maximum in X > 0. As above, we refer to
X i as the participation value.

Proposition 7.1 Weak regularity is a necessary and su¢ cient condition for
the existence of a non-empty, convex-valued, decreasing share correspondence
for Player i with domain [X i;1) or R++. The former case occurs if and
only if i has positive participation value X i and Si (X i) = f1g and � < 1
for all � 2 si (X) with X > X i. In either case, either (a) there is X i > 0
such that Si (X) = f0g if and only if X � X i, or (b) maxSi (X) �! 0 as
X �!1.

Proof. Suppose Player i is weakly regular and let the convex-valued,
share correspondence be Si (X). The proof that the domain of Si is [X i;1)
or R++ is established by a similar argument to that for share functions in
Proposition 3.1; we omit the details. By assumption, Player i has at most
one best response to X�i = 0 and it follows that Si (X) = 1 for at most one
value of X. This can be established by a similar argument to that in Lemma
3.2. We shall prove that Si is decreasing by contradiction, so suppose that
we had 0 < X1 < X2, (x1; X1) ; (x2; X2) 2 Li, �1 = x1=X1, �2 = x2=X2 and
�1 < �2. The best response toX�i = (1� �1)X2 is a point on the line of unit

24Since Li is closed, except possibly at the origin.
25Put � = 0 in the corollary.
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slope through (�1X2; X2). Writing (x0; X0) for this point, we have either A:
X0 � X2 or B: x0 > �1X0. In Case A, we can apply Corollary 3.1 to deduce
that there exists (x0i; X

2) 2 Li such that X2 � x0i � X0 � x0i = (1� �1)X2.
Hence, x0i � �1X2 and convexity of the set in Part 2. of the de�nition of
weak regularity implies that��

xi; X
2
�
: �1X2 � xi � x2

	
� Li. (24)

Since (�1X2; X2) 2 Li by (24), convexity of the set in Part 3. of the de�nition
implies that, ��

�1X;X
�
: X1 � X � X2

	
� Li. (25)

Hence, for small enough " > 0, we have (�1X2 + ";X2) 2 Li by (24) and
(�1X;X) 2 Li, where

X = X2 � "

1� �1 ,

by (25): But this means there are two distinct best responses to X�i =
(1� �1)X2�", contradicting the assumption of a unique best response. In
Case B, we can apply Corollary 3.1 to deduce that there exists (x0i; X

0) 2 Li
such that x0i = �1X 0 and X

0 � x0i � (1� �1)X2. Hence, X 0 � X2 and
Part 3 of the de�nition of weak regularity implies (25). This shows that
(�1X2; X2) 2 Li and, applying convexity again, (24). As we have seen, this
contradicts uniqueness of best responses.
The converse result follows from the fact that

Li =
n
(x;X) :

x

X
2 Si (X)

o
.

Since Si (X) is a convex set for all X > 0, Part 2 of the de�nition of weak
regularity holds. To justify Part 3, note that

fX : (�X;X) 2 Lig = fX : � 2 Si (X)g .

If we had X 0 < X 00 < X 000 with � 2 Si (X
0) \ Si (X 000), since X 00 > X 0,

Si (X
00) is non-empty: If �00 2 Si (X 00), then �00 < � would con�ict with Si

being decreasing (for X 00 to X 000). A similar con�ict would hold if �00 > �
(for X 0 to X 00). Hence, � 2 Si (X 00), which shows that fX : � 2 Si (X)g is
convex, proving Part 3. We prove Part 1 by contradiction, so suppose, to
the contrary that best responses were not unique. Speci�cally, suppose we
had xi; x0i 2 Bi (X�i) and xi < x0i and let X = xi +X�i and X 0 = x0i +X�i.
Then X�i > 0 would imply xi=X < x0i=X

0, contradicting decreasing Si, since
xi=X 2 Si (X) and x0i=X 0 2 Si (X 0). The same conclusion holds for X�i = 0
from the supposition that at most one X satis�es Si (X) = 1.
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The �nal assertions can be established by a similar proof to that of Propo-
sition 3.1; we omit the details.

Lemma 3.3 generalizes to a characterization of equilibria in terms of share
correspondences.

Lemma 7.1 There is a Nash equilibrium bx 6= 0 if and only if bxi= bX 2 Si � bX�
for all i 2 I, where bX =

P
i2I bxi.

It follows that bX is an equilibrium value of the aggregate if and only if

1 2
X
i2I

Si

� bX� , (26)

using conventional set addition. If all players are weakly regular, the aggre-
gate share correspondence is decreasing but Proposition 7.1 does not exclude
the possibility of more than one value of the equilibrium aggregate (although
the set of such values is a closed interval). Even when the equilibrium ag-

gregate bX is unique, if Si
� bX� is not a singleton for two or more i, multiple

equilibria are possible. However, if all but one player is regular, it follows
from Proposition 3.1 that the share functions of all players but one are strictly
decreasing where positive. Since the share correspondence of the exceptional
player is non-decreasing, the aggregate share correspondence is strictly de-
creasing where positive: �1 2 Si (X1), �2 2 Si (X2), �2 > 0 and X2 > X1

imply �2 < �1. Thus, there is at most one equilibrium value of X and, for
any such value, the strategies of the regular players are uniquely determined,
which implies a single equilibrium. De�ning �i = supX>0maxSi (X), for
weakly regular players, we have the following generalization of Theorem 3.6.

Theorem 7.2 Suppose that all but one players in the aggregative game G =�
I;w; fvigi2I

�
are regular and the remaining player is weakly regular. If no

player has a positive participation value, suppose further that
P

i2I �i > 1.
Then, G has a unique Nash equilibrium.
If no player has a positive participation value, and (5) is invalid, G has

no equilibrium.

A decreasing aggregate share correspondence at unit share value is clearly
necessary for a unique equilibrium. However, this does not imply regularity
or even weak regularity of the players; for example, an increase in one player�s
share function can be o¤set by a faster decrease in another�s. However, if we
rule out such interactions and impose conditions only on individual payo¤s,
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Theorem 7.2 is best possible in the following sense. If there is at most
one equilibrium of all games in which an individual plays against regular
competitors is unique, then that individual is weakly regular. Similarly, if
there is at most one equilibrium when an individual plays against competitors
all but one of whom are regular and the exceptional player is weakly regular,
then that individual is regular. It is enough to consider two-player games
to justify these claims.

Proposition 7.2 If every game played by a player against a weakly regular
opponent with positive participation value has a unique equilibrium, then that
player is regular. Similarly, if every game played by a player against a regular
opponent with positive participation value has a unique equilibrium, then that
player is weakly regular.

Proof. We will make use of the fact that, given any X i > 0 and con-
tinuous, share function si de�ned on [X i;1), which is strictly decreasing
where positive and satis�es si (X i) = 1, there is a regular payo¤ function for
which si is the share function. Indeed, we need only take vi (x;X) to be the
negative of the distance from (x;X) to the set

Li =
�
(Xsi (X) ; X) : X � X i

	
.

It is readily veri�ed that this vi has convex best responses and Li satis�es
the aggregate and radial crossing conditions for all X > 0 and � 2 (0; 1],
respectively. A similar argument shows that every correspondence satisfy-
ing the properties set out in Proposition 7.1, can be realized as the share
correspondence of a weakly regular player.
Consider a player, to which we arbitrarily assign the label 1. Equation

(23) de�nes a share correspondence S1 for Player 1 and an application of
Lemma 3.1 with (� = �1) shows that this correspondence is non-empty-
valued on a semi-in�nite (to the right) interval.
To prove the �rst assertion of the proposition, we start by showing that,

under the �rst hypothesis, this correspondence must be strictly decreasing
where positive. If, to the contrary, we had X 00 > X 0 and �00 � �0, �00 > 0,
where �0 2 S1 (X 0), �00 2 S1 (X 00), the argument in the �rst paragraph shows
that there is a weakly regular player, 2, say, with share correspondence S2
such that S2 (X 0) = f1� �0g and S2 (X 00) = f1� �00g. But then Lemma 7.1
leads to the contradiction of two equilibrium values of the aggregate: X 0 and
X 00. To complete the proof, we show that S1 (X)must be single-valued. Sup-
pose, per contra, we had ��; ��� 2 S1 (X�), with �� < ���. Then, there would
exist a share correspondence for player 2 satisfying S2 (X) = [1� ���; 1� ��]
and, since S1 (X)+S2 (X) is a non-degenerate interval containing 1, there are
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multiple equilibria (with aggregate X): This shows that S1 is single-valued:
Player 1 has a share function, which is strictly decreasing where positive. It
follows, as in the �rst paragraph, that Player 1 is regular.
The second assertion is proved similarly; we only sketch the outline.

Firstly, as above, we show that the share correspondence of the player is
decreasing. To complete the proof, we need to establish that S1 (X 0) is a
(possibly degenerate) interval, where non-empty. Indeed, suppose we had
�0 < �00 such that �0; �00 2 S1 (X

0) and �000 =2 S1 (X
0) for all �000 2 f�0; �00g

and consider a share function s2 with positive participation value such that
s2 (X

0) = 1� �000. Then, all elements of the aggregate share correspondence
exceed 1 for X < X 0, are less than 1 for X > X 0 and are not equal to 1 at
X = X 0. Hence, this game has no equilibrium, contradicting the hypothesis
of the proposition. These properties of S1 imply that Player 1 is weakly
regular.

As an illustration of weak regularity, we return to Cournot oligopoly and
focus on the case of linear demand26: p (X) = a� bX and a player, i, with a
di¤erentiable27, but not necessarily convex, cost function, ci. We shall show
that, provided c0i (x) � 0 and 'i (x) = bx+ c0i (x) is non-decreasing in x � 0,
Player i is weakly regular. To see this, �rst note that, for �xed X�i, Player
i�s payo¤ function:

axi � bx2i � bxiX�i � ci (xi) (27)

has slope a � bxi � bX�i � 'i (xi). This is strictly decreasing in xi, which
shows that (27) is a continuous, strictly concave function of xi and therefore
has unique best responses: Part 1 of the de�nition of weak regularity. The
�rst order conditions are that (xi; X) 2 Li if and only if

'i (xi)

8<:
� a� bX if xi = 0,
= a� bX if 0 < xi < wi,
� a� bX if xi = wi.

Our assumption on 'i veri�es Part 2. of the de�nition of weak regularity.
Furthermore, for any � 2 (0; 1], the function 'i (�X) is non-decreasing and
a� bX strictly decreasing in X > 0 and Part 3 is an immediate consequence.
This establishes weak regularity. Since the assumption that 'i is strictly
decreasing implies regularity, if bx + c0i (x) is strictly increasing for all but
one player and non-decreasing for the exceptional player, the game will have
a unique equilibrium.

26For expositional convenience, we permit negative p. However, such values will not
arise in equilibrium.
27Strictly, in an open set containing R+.
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In this example, the share correspondence can be written down explicitly.
For X � X i, where X i is the dropout value:

X i =
a� c0 (0)

b
,

we have Si (X) = f0g. For X between the monopoly value and X i, we have

Si (X) =
'�1i (a� bX)

X
, (28)

where the correspondence '�1i is the inverse of the function 'i. Note that
the graph of Si can have vertical sections corresponding to intervals (of X)
on which 'i is constant. However, Si as de�ned in (28) is strictly decreasing
in X. It follows that, even if 'i is non-decreasing for all players, although
multiple equilibria are possible, the equilibrium value of X is unique.

8 Repeated payo¤s

As we discussed in the previous section, regularity or even weak regularity is
not necessary for a unique equilibrium, once we allow for interactions between
payo¤s. An example is provided by a game with n players with identical
payo¤s. Suppose that the share correspondence is single valued and strictly
decreasing where positive, for share values less than or equal to 1=n. The
aggregate share correspondence is single valued and strictly decreasing for
share values less than or equal to one, which implies that there is at most one
equilibrium. Indeed, we can still infer uniqueness if the n-player symmetric
game is augmented by additional regular players, provided conditions for
existence are satis�ed. An example of this is the n-fold replication of a
general game, a special case of the type game discussed in Section 5, used to
study the competitive limit. In this section, we formalize these observations
and discuss their application.

De�nition 8.1 The share correspondence Si (X) of Player i is well behaved
beyond

�!
X if

1. X <
�!
X and � 2 Si (X) imply � > �!� , where

�!� = minSi
��!
X
�
, (29)

2. X >
�!
X implies Si is single-valued and the function thereby de�ned is
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(a) strictly decreasing where positive

(b) tends to �!� as X �! �!X
(c) is either asymptotic or eventually equal to zero28.

If the equilibrium aggregate exceeds
�!
X and the share correspondence of

Player i is well-behaved beyond
�!
X , the player can be considered as having a

well-behaved share function at the equilibrium. It is therefore useful to seek
conditions on payo¤s ensuring such a property of the share correspondence.
We shall say that Player i is eventually regular if the player satis�es the

conditions of regularity for large enough aggregate and small enough shares.

De�nition 8.2 Player i is eventually regular with threshold aggregate value�!
X if

1. the set [0;�!w i] \ Bi (X�i) is convex for any X�i � (1��!� )
�!
X , where

�!w i = min fwi;�!� X�i= (1��!� )g29,

2. best responses satisfy ACC for all X >
�!
X ,

3. best responses satisfy RCC for all � satisfying 0 < � � �!� , where �!� is
de�ned in (29).

It is convenient to refer to �!� as the threshold share.

Proposition 8.1 If a player is eventually regular with threshold value
�!
X ,

then that player�s share correspondence is well behaved beyond
�!
X .

Proof. Label the player i. The �rst step is to prove that best responses to
X�i � (1��!� )

�!
X cannot exceed �!w i, which implies that Bi (X�i) is equal to

the set of best responses in [0;�!w i]. The proof is by contradiction, so suppose
we had x0i 2 Bi

�
X0
�i
�
satisfying�!w i < x0i � wi andX0

�i � (1��!� )
�!
X . Then,

we would have (x0i ; X
0) 2 Li with x0i > �!� X0. Since Li is closed and the

set Mi = f(x;X) jx � �!� X; 0 � x � min fwi; Xgg is compact, there will be
(x�; X�) 2 Li \Mi satisfying X� � x� � X � x for all (x;X) 2 Li \Mi.
There are two possibilities; A: X��x� > X0�x0, and B: X��x� = X0�x0.
In Case A, we must have

x� > �!� X� (30)

28It is also continuous by the closed graph property of the correspondence.
29Geometrically, �!w i is the x value of the intersection of the line X � x = X�i and

the ray through the origin with slope �!� . Note that, any xi in the intersection satis�es
xi � �!� X; we are focusing attention on share values below �!� .
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to avoid violating RCC (since
��!� �!X;�!X� 2 Li). If

x 2 Bi (X� � x� + ") (31)

for some " > 0; we must have x � �!� X (by de�nition of (x�; X�)) and
X > X� for all x 2 Bi (X�i). This latter inequality can be justi�ed by
noting that, were it not to hold, we could apply Corollary 3.1 to deduce the
existence of (x0; X�) 2 Li such that X�� x0 � X�i, which implies x0 � �!� X�

and violates ACC at X = X�. Note that x � �!� X and X > X� imply

X� < X � X� � x� + "

1��!� < X� +
"

1��!� ,

where we have also used (30) for the �nal inequality. Hence, for any sequence
of " that vanishes in the limit, the corresponding sequence of X approaches
X� and, since Li is closed, we deduce the existence of (x00; X�) 2 Li such
that x00 � �!� X�, which violates ACC at X = X�. In Case B, we use
the fact that all best responses x to X�i > X� � x� � (1��!� )�!X satisfy
x � �!� X to use an obvious modi�cation of the proof of Lemma 3.2 to deduce
that Bi (X�i) is a singleton for all such X�i and therefore de�nes a function
bi (X�i). Furthermore, this function has a closed graph and is therefore
continuous. An application of the intermediate value theorem shows that
there is (xi; X�) 2 Li such that xi � �!� X�. This violates ACC at X = X�.
This completes the proof that eventually regular players have best reponses
in [0;�!w i]. A straightforward modi�cation of the proof of Lemma 3.2 then
shows that Bi (X�i) is a singleton for X�i � (1��!� )

�!
X .

The remainder of the proof is an adaptation of arguments in Section 3.
To avoid lengthy repetition, we sketch only an outline, omitting most of the
details. The argument following Lemma 3.2 is easily modi�ed to establish
that Si (X) is a singleton for all X >

�!
X and we write �!s i for the function

thus de�ned. A similar modi�cation shows that �!s i is strictly decreasing
where positive in

��!
X;1

�
and either approaches or equals zero as X �!1.

Since Li is a closed set,

lim
X�!�!X

�!s i (X) 2 Si
��!
X
�
.

If the limit exceeded �!� , RCC would be violated at � = �!� and we may
conclude that �!s i (X) �! �!� as X �! �!X . This establishes requirement
(ii) of eventual regularity. Condition (i) can be proved by supposing we had
� 2 (0;�!� ] satisfying � 2 Si (X), where X <

�!
X and using Corollary 3.1 to

derive a contradiction. Such a contradiction (of RCC at �!� ) is immediate
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if � = �!� . For � < �!� , we have shown that there is X 0 >
�!
X such that

� 2 Si (X 0) and this contradicts RCC at �, completing the proof.
Figure 8 shows a game in which players are eventually well-behaved.

Combining the results of Proposition 8.1 with Lemma 7.1 gives the following

XO
X

x =  Xi iσ

xi

X−i

wi

wi wi

theorem in which we take the threshold value of a regular player to be the
participation value if it exists and, otherwise, zero.

Theorem 8.3 Suppose that all players in the aggregative game G =
�
I;w; fvigi2I

�
are regular or eventually regular and let

 !
X be the maximum threshold value.

If X
i2I
minSi

� !
X
�
� 1,

G has a unique non-null Nash equilibrium.

Note that for any player whose threshold value is less than
 !
X (ie. not a

maximizer of threshold values) the share correspondence is single-valued in
equilibrium.
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The theorem can be applied to a type game with a �nite set of types
T as formalized in Section 5, from which we also adopt the notation. For
each type t 2 T , let It denote the set of players of that type and nt be the
number of players in It. Here, fItgt2T is a partition of the player set I and
all players in It have the same payo¤s. Suppose players of type t 2 T are
eventually regular and denote the threshold aggregate and share values by
X(t) and �(t). If types are labelled so that X(1) � X(t) for all t 2 T then
n(1)�(1) � 1 implies the inequality in the theorem and therefore a unique
equilibrium. In particular, we note the following corollary.

Corollary 8.1 A type game in which, for all t 2 T , players of type t are
eventually regular with threshold share value at least 1=nt, has a unique non-
null Nash equilibrium.

The corollary can obviously be extended to include some players which
are regular rather than eventually regular.
As an application of the corollary, consider the Cournot oligopoly game

considered earlier. We shall prove that, provided the cost function of �rms
of type t is convex and inverse demand p is continuous, and, where positive,
p is twice di¤erentiable and satis�es

p0 (X) < 0 and
�
#�1 + 1

�
p0 (X) +Xp00 (X) < 0,

for some # 2 (0; 1) then players of type t are eventually regular with threshold
share #. We �rst establish that, for any X�i > 0 the revenue of Player i is
a strictly concave function of own strategy for xi satisfying

0 � xi � max
�
#X�i

1� #;wi
�
.

For xi > 0,
d2

dx2i
xip (xi +X�i) = 2p

0 (X) + xip
00 (X) .

If p00 (X) � 0, the right hand side is negative. If p00 (X) > 0,

d2

dx2i
xip (xi +X�i) � (1� #) p0 (X) + #

��
#�1 + 1

�
p0 (X) +Xp00 (X)

�
< 0,

using xi � #X.
The aggregate crossing condition holds for all X > 0; this is immediate

from (7). The derivative of the left hand side of (8) with respect to X can
be written �

1� �i
#

�
p0 (X) + �i

��
#�1 + 1

�
p0 (X) +Xp00 (X)

�
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and this is negative for �i � #, which veri�es the radial crossing condition
for such �i. If we label the types so that

n1 � n2 � � � � � nT

and
p0 (X) < 0 and (n1 + 1) p0 (X) +Xp00 (X) < 0, (32)

holds for positive demand, then �rms of type t are eventually regular with
threshold share value at least 1=nt and Corollary 8.1 is applicable.
For example, suppose demand has constant elasticity � and all �rms have

the same costs. Direct application of Theorem 3.6, using (6) restricts the
elasticity to exceed unity. However, applying Corollary 8.1 with a single
type, using (32) and noting that n1 = n, extends the result to inelastic
demand. In particular, (32) holds if and only if � > 1=n. Note also that
in the inelastic case, �i = � and the same inequality is equivalent to (5). It
follows from Corollary 8.1, that there is a unique (and therefore symmetric)
equilibrium.
The case jT j = 2 and linear costs is addressed by Collie [7]. It is straight-

forward to check that (32) is equivalent to the conditions given by Collie, of
which our results for Cournot games can be seen as a generalization30.
Condition (32) suggests that, if the game has a �nite competitive limit,

then for su¢ ciently many players of the type with the largest dropout point,
the second inequality is implied by the �rst. This will certainly be true if the
(negative of the) elasicity of marginal demand: �Xp00 (X) =p0 (X) is bounded
above in the region where demand is positive. Indeed, if we write � for this
upper bound, (32) holds for positive demand, provided n1 > � � 1. Note
that boundedness of marginal demand holds in common cases such as linear
and constant elasticity demand. For a su¢ ciently large game, Theorem 8.3
implies the existence of a unique equilibrium. If we suppose further that
p (X) �! 0 asX �!1 and c0(t) (0) > 0, players of type t will have a dropout
point X(t) which is the unique solution of p (X) = c0(t) (0). Combined with

30Collie considered two groups of �rms withm in the �rst and n in the second. All �rms
in the same group have identical, constant marginal costs. Demand satis�es p0 (X) < 0
for all X > 0 and

(m+ 1) p0 (X1 +X2) +X1p
00 (X1 +X2) < 0 for all X1; X2 > 0,

(n+ 1) p0 (X1 +X2) +X2p
00 (X1 +X2) < 0 for all X1; X2 > 0,

(m+ n+ 1) p0 (X) +Xp00 (X) < 0 for all X > 0.

Choosing labels so that m � n and taking the limit X2 �! 0 in the �rst inequality, gives
(32) with a weak inequality. A modi�cation of our arguments can be used to establish
eventual regualarity directly from Collie�s inequalities.
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Theorem 5.1 on the large-game limit, this validates the competitive limit of
Cournot oligopoly under the weaker assumptions that marginal demand is
negative and has an upper bound on its elasticity. Speci�cally, provided
all types have positive and non-decreasing marginal costs, the equilibrium
aggregate output approaches maxt2T X(t) and aggregate pro�ts fall to zero
as the game becomes large.

9 Smooth payo¤s

Establishing regularity by direct application of the aggregate and radial cross-
ing conditions may require some ingenuity. When payo¤s are su¢ ciently
smooth, these conditions can be tested by examining the properties of mar-
ginal payo¤s. In this section, we describe and justify the relevant inequal-
ities as well as discussing comparative statics, the competitive limit under
smoothness assumptions and eventual regularity.
Throughout this and the next section, we shall assume that �i (x), the

payo¤ of each player i 2 I, is a continuously di¤erentiable functions of xi 2
(0; wi) for all x�i 2 S�i. For an aggregative game in which �i = vi (xi; X),
we shall write 
i (xi; X) for the marginal payo¤with respect to own strategy
and note that, if (x;X) 2 inteSi, where the latter denotes the interior of eSi,
then


i (x;X) =
@vi
@xi

(x;X) +
@vi
@X

(x;X) .

Note that Li is a (possibly strict) subset of the set of zeroes of 
i in inteSi. We
shall further assume that 
i is a continuously di¤erentiable function of (xi; X)
in inteSi and refer to payo¤s satisfying these di¤erentiability assumptions as
smooth.
The conditions we shall study are as follows.

A1 If (x;X) 2 inteSi and 
i (x;X) = 0, then
@
i
@x

(x;X) < 0.

We shall show that this assumption implies ACC at anyX > 0. Similarly,
the following assumption implies that RCC holds for any � 2 (0; 1].

A2 If (x;X) 2 eSi, 0 < x < wi and 
i (x;X) = 0, then

x
@
i
@xi

(x;X) +X
@
i
@X

(x;X) < 0.

50



Note that, when x = X, it is necessary to interpret the left hand side of
this inequality as x@2�i=@x2i .
These two conditions are su¢ cient for regularity.

Proposition 9.1 If a player has smooth payo¤s satis�ng A1 and A2, then
that player is regular. Furthermore, the share function si is di¤erentiable
except possibly at the dropout point and, if si (X) > 0, then s0i (X) < 0.

Proof. Convexity of best responses follows from quasi-concavity of pay-
o¤s in own strategy and the latter follows from the observation that, if
(x;X) 2 inteSi and 
i (x;X) = 0, then A1 and A2 imply

@2�i
@x2i

= X�1
�
(X � x) @
i

@x
+ x

@
i
@x

+X
@
i
@X

�
< 0.

This inequality also holds for x = X by direct application of A2. This
shows that �i (xi;x�i) is a continuous function of xi 2 [0; wi], has no local
minima in (0; wi) and is therefore strictly quasi-concave. Note that this
implies that, for (x;X) 2 eSi with 0 < x < wi, we have (x;X) 2 Li if and
only if 
i (x;X) = 0.
We now show that A1 leads to ACC at all X > 0. De�ne

� (X) = inf fx 2 (0; wi) : 
i (x;X) < 0g
= sup fx 2 (0; wi) : 
i (x;X) > 0g ,

where we take the in�mum of an empty set to be wi and the supremum to be
0. The equality of the two de�nitions is a consequence of the fact that, given
X, 
i (x;X) changes sign at most once as x increases in (0; wi) and such a
change must be from positive to negative. Note also that � is a continuous
function on X > 0. Indeed, compactness of the range of � implies that, if
it were discontinuous at X0, there would be a sequence fXng convergent to
X0 on which � (Xn) �! �+ 6= � (X0) as n �! 1. If, say �+ > � (X0),
we would then have � (Xn) > �++ =

�
�+ + � (X0)

�
=2 for all large enough

n. Hence, 
i (�
++; Xn) > 0 for all large enough n, which, because of the

continuity of 
 implies that 
i (�
++; X0) � 0 implying �++ � � (X0), a

contradiction. A contradiction can be derived similarly if �+ < � (X0).
Veri�cation of ACC is completed by showing that Li is a subset of the graph
of �, for then ACC is immediate. So suppose that (x0; X 0) 2 Li and X 0 > 0.
If A: x0 2 (0; wi), we have already noted that 
i (x0; X 0) = 0, which is readily
seen to imply x0 = � (X 0). If B: x0 = 0 and there is a neighborhood of X 0

such that (0; X) 2 Li for all X in the neighborhood, strict quasi-concavity
of best responses implies that 
i (x; x+X) < 0 for all x 2 (0; wi). By
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considering all X < X 0 in the neighborhood, we deduce that 
i (x;X
0) < 0

for all small enough x which entails � (X) = 0 (using the �rst de�nition of �).
If C: x0 = 0 and there exists X arbitrarily close to X 0 such that (x;X) 2 Li
with x > 0, we know that x = � (X) by (i) and can deduce that � (X 0) = 0
from the closedness of L0 and continuity of �. Finally, if x0 = wi, a similar
argument (using the second de�nition of �) shows that � (X 0) = wi. In all
cases, � (X 0) = x0 as required.
To complete the proof, we need to show that A2 implies RCC for all

� 2 (0; 1]. This is done by �rst observing that, for any such � and X > 0
with 
i (�X;X) = 0, we have

@

@X

i (�X;X) = �X

@
i
@xi

(�X;X) +X
@
i
@X

(�X;X) < 0,

byA2. This implies that 
i (�X;X) changes sign at most once asX increases
from 0 to wi=� and such a change must be from positive to negative. This
observation can be used to modify the proof for ACC to show thatA2 implies
RCC. We shall omit the details.
Di¤erentiability of the replacement function (and therefore the share func-

tion) when 0 < si (X) < wi=X follows from applying the implicit function
theorem to the �rst order condition 
i (Xsi (X) ; X) = 0. To justify this
application, we note that @
i=@xi 6= 0, by A1. Furthermore,

s0i (X) =

�
xi
@
i
@xi

+X
@
i
@Xi

�
=X2@
i

@xi
,

evaluated at (xi; X) = (Xsi (X) ; X). By A1 and A2, s0i (X) < 0. If
si (X) = wi=X we must have 
i (Xsi (X) ; X) � 0. If we had 
i = 0, the
same argument would hold. If we had 
i > 0, then si (X 0) = wi=X

0 in a
neighborhood of X and s0i < 0 is immediate.
In a Cournot oligopoly game, if demand is twice continuously di¤eren-

tiable for X > 0 and Player i�s cost function is twice continuously di¤eren-
tiable for 0 < x < wi, then


i (x;X) = p (X) + xp0 (X)� c0i (x) (33)

for all such (x;X). For A1, we require

p0 (X) < c00i (x)

if (x;X) 2 inteSi and 
i (x;X) = 0, and for A2, we require
xp0 (X)� xc00i (x) +Xp0 (X) + xXp00 (X) < 0
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if (x;X) 2 eSi, 0 < x < wi and 
i (x;X) = 0. If p
0 (X) < 0 for all X > 0, a

su¢ cient condition for both inequalities is

c00i (x) > max fp0 (X) ; 2p0 (X) +Xp00 (X)g (34)

for 0 < x � X. Note that this inequality permits some concavity in demand
functions without losing a unique equilibrium. For example, if demand is
linear31 with slope �b, then we require c00i (x) > �b for 0 < x < wi.
Comparative statics can also be studied when payo¤s are smooth. Obvi-

ously, a su¢ cient condition for vi (xi; X) to be strictly increasing [decreasing]
inX is @vi=@X > [<]0 for 0 < xi < X. A su¢ cient condition for supposition
(iii) in Theorem 4.2 is that 
1{̂ (xi; X) < 
2{̂ (xi; X) whenever 0 < xi < X.
This can be proved using the fact that, if 0 < xi � X, then Li coincides with
the set of zeroes of 
 {̂ (x;X). Suppose,

�
xk; X

�
2 Lk{̂ for k = 1; 2. If x2 > 0,

then

1{̂
�
x2; X

�
< 
2{̂

�
x2; X

�
= 0.

We can conclude from A1 and the continuity of 
1{̂ that x
1 < x2. (Recall

that xk = 0 if and only if 
k{̂ (x;X) � 0 for all x 2 (0; w{̂).) If x2 = 0, then

2{̂ (x;X) � 0 for all x 2 (0; w{̂) and therefore 
1{̂ (x;X) < 0 for all such x,
which implies x1 = 0.
In the Cournot game,

@vi
@X

= xp0 (X) < 0

and an idiosyncratic increase in the marginal costs of an active players {̂
reduces 
 {̂. It follows from Theorem 4.2 that such a change leads to a fall
in aggregate output and reduces the pro�ts of other active players.
Comparative statics results are stronger when the game has decreasing

or increasing best responses. With smooth payo¤s, interior best responses
to X�i, satisfy


i (bi (X�i) ; X�i + bi (X�i)) = 0 (35)

and the implicit function theorem allows us to deduce that the best response
function bi (X�i) is di¤erentiable at X�i provided @
i=@xi + @
i=@X 6= 0.
Furthermore,

b0i (X�i) =
�@
i=@X

@
i=@xi + @
i=@X
, (36)

where the right hand side is evaluated at (bi (X�i) ; X�i + bi (X�i)). Under
A1 and A2, we have seen that the denominator in (36) is strictly negative
31The assumption of di¤erentiability holds for linear demand only if the demand curve

reaches the axis no later than wi. Dominance considerations show that we can make this
assumption without loss of generality.
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when (35) holds. Hence, the following condition is su¢ cient for decreasing
best responses.

A2* If (x;X) 2 inteSi and 
i (x;X) = 0, then
@
i
@X

(x;X) < 0. (37)

Note that A1 and A2* together imply A2, except possibly when x = X.
The latter case is covered if (37) holds for x = X.
Similarly, a su¢ cient condition for increasing best responses is.

A3 If (x;X) 2 inteSi and 
i (x;X) = 0, then
@
i
@X

(x;X) > 0.

At �rst sight this may appear to con�ict withA2 at least when x is small.
Note, however, that the inequalities in A2 and A3 are required to hold only
when 
i = 0. That this restriction permits both A2 and A3 is illustrated
in the �rst application in the following subsection.
The application of these conditions is often simpli�ed when 
i can be

factorized:


i (xi; X) = �i (xi; X) e
i (xi; X) for all (xi; X) satisfying 0 < xi < X,

where �i (xi; X) > 0 if (x;X) 2 eSi and 0 < x < wi. In this case, A1, A2,
A2* and A3 hold for 
i if and only if they hold for e
i. For, 
i = 0 ,e
i = 0 so that

@
i
@xi

= �i
@e
i
@xi

and
@
i
@X

= �i
@e
i
@X

when these derivatives are evaluated where 
i = 0. We will use this �factor-
ization principle�in several of the applications evaluated below.

9.1 Applications of smooth games

In this section, we discuss these conditions for the applications covered in
Section 6.
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9.1.1 Search games

In the search game discussed in Subsection 6.1, suppose that ci is convex and
twice continuously di¤erentiable for positive arguments. Then,


i (x;X) = � (X � x)� c0i (x) .

Assume that, for all x 2 (0; wi),

0 < c0i (x) < xc00i (x) .

Then,
@
i
@x

(x;X) = �� � c00i (x) < 0,

so A1 holds. If 
i (x;X) = 0, we also have

x
@
i
@xi

(x;X) +X
@
i
@X

(x;X) = � (X � x)� xc00i (x)

= c0i (x)� xc00i (x)
< 0

for (x;X) 2 eSi, 0 < x < wi. Thus A2 holds.
Finally, @
i=@X = 1 > 0, so A3 holds, which shows that best responses

are increasing; the game is supermodular. Since an increase in � increases 
i,
condition (iii) of Theorem 4.2 applies and we can deduce by sequential appli-
cation of the theorem, that the search intensity of all players with equilibrium
in (0; wi) increases.

9.1.2 Smash-and-Grab games

In the Smash-and-Grab games discussed in Subsection 6.2, suppose that
utility ui is twice continuously di¤erentiable for positive arguments and the
probability function hi (X) is twice continuously di¤erentiable for X > 0 for
which hi is positive. Then,


i (x;X) = u0i (x)hi (X) + ui (x)h
0
i (X) .

Suppose that for each i we have u0i (xi) > 0 and u00i (xi) � 0 if xi > 0 and
h0i (X) < 0, [h

0
i (X)]

2 > hi (X)h
00
i (X) for all X > 0. If 0 < x < X, then

@
i
@x

(x;X) = u00i (x)hi (X) + u0i (x)h
0
i (X) < 0.
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If, in addition, 
i (x;X) = 0, then

@
i
@X

(x;X) = u0i (x)h
0
i (X) + ui (x)h

00
i (X)

= u0i (x)

�
h0i (X)�

hi (X)

h0i (X)
h00i (X)

�
< 0.

This establishes A1 and A2*. Hence, under these assumptions, players in
a Smash-and-Grab game are regular and have decreasing best responses.

9.1.3 Public good games

In the public good contribution games discussed in Subsection 6.3, suppose
that ui is twice continuously di¤erentiable for positive arguments. Then,


i (x;X) = �
@ui
@q
(m� x;X) + @ui

@X
(m� x;X) .

If @ui=@X > 0 for all positive arguments, we can apply the factorization
principle with �i = @ui=@X to divide by �i, which givese
i (x;X) = 1�MRSi (m� x;X) , (38)

where MRSi = [@ui=@q] = [@ui=@X]. Now suppose further that

@ MRSi
@q

< 0;
@ MRSi
@X

> 0 (39)

for positive arguments. ThenA1 andA2* follow immediately from (38) and
(39). Hence, under these assumptions, players in a public good contribution
game are regular and have decreasing best responses.

9.1.4 Sharing games

In the sharing games discussed in Subsection 6.4, suppose that F;C and ui
are twice di¤erentiable for positive arguments. Then


i (x;X) = MF
� x
X
;X
� @ui
@f

� x
X
F (X) ;

x

X
C (X)

�
+MC

� x
X
;X
� @ui
@c

� x
X
F (X) ;

x

X
C (X)

�
,

whereMF andMC are given by (19) and (20). If @ui=@c > 0, we can apply
the factorization principle with �i =MF @ui=@c to divide by �i, which gives

e
i (x;X) =MRSi

� x
X
F (X) ;

x

X
C (X)

�
� MC (x=X;X)

MF (x=X;X)
.
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Now suppose further that F 0 (X) > 0, F 00 (X) < 0, C 0 (X) > 0, C 00 (X) > 0
for all X > 0. Suppose, in addition, that ui is concave and @ MRSi=@f < 0
and @ MRSi=@c. Then, if 0 < x < X,

@ MRSi
@x

� x
X
F (X) ;

x

X
C (X)

�
= AF

@MRSi
@f

+ AC
@MRSi
@c

< 0,

where AF and AC are the average product and average cost, and

x
@MRSi
@x

� x
X
F (X) ;

x

X
C (X)

�
+X

@MRSi
@X

� x
X
F (X) ;

x

X
C (X)

�
= xF 0

@ MRSi
@f

+ xC 0
@ MRSi
@c

< 0.

Furthermore,

@

@x

�
MC (x=X;X)

MF (x=X;X)

�
=
(C 0 � AC) MF + (AF � F 0) MC

XMF 2
> 0.

Note that the cost function is strictly convex (C 00 > 0) and therefore average
cost is less than marginal cost. Similarly average product exceeds marginal
product. After some manipulation, we �nd

MF 2
�
x
@

@x

�
MC (x=X;X)

MF (x=X;X)

�
+X

@

@X

�
MC (x=X;X)

MF (x=X;X)

��
=

nh x
X
C 00 +

�
1� x

X

�
AC 0

i
MF �

h x
X
F 00 +

�
1� x

X

�
AF 0

i
MC

o
> 0.

The sign is justi�ed as average cost is non-decreasing and average product is
non-increasing. The �rst and third inequalities above show that assumption
A1 is satis�ed (for e
 and therefore for 
.) Similarly, the second and fourth
inequalities justify A2.
Hence, under these assumptions, players in sharing games are regular.

9.1.5 Contests

In the contests discussed in Subsection 6.5, suppose that fi is twice continu-
ously di¤erentiable for positive arguments and f 0i > 0, f

00
i < 0 for all positive

arguments. Then a calculation shows that


i (x;X) = exp f�igi (x)g
�
X � �ix

X

�e
i (x;X) ,
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where �i is the (constant) coe¢ cient of risk aversion, gi is the inverse function
of fi and

e
i (x;X) =
1

X
� 1� �i
X � �ix

� �ig0i (x) , and

�i = 1� exp f��iRg < 1.

Since X � �ix > 0, we may apply the factorisation principle by dividing
by the �rst two terms in the expression for 
. If 0 < x < X,

@e
i (x;X)
@x

= � �i (1� �i)
(X � �ix)

2 � �ig
00
i (x) < 0,

where we have used the fact that g00i > 0, a consequence of our assumptions
on f 0i . This veri�es A1 and

x
@e
i (x;X)

@x
+X

@e
i (x;X)
@X

= � �i (X � x)
X (X � �ix)

� �ixg00i (x) < 0

veri�es A2.
Hence, under our assumptions on fi, contestants with constant absolute

risk aversion are regular.

10 Stability

In this section, we investigate local stability of equilibria of smooth aggrega-
tive games under a version of the Cournot tatonnement process. This o¤ers
a crude model of learning under bounded rationality and asymptotic stabil-
ity may be viewed as supporting the robustness of Nash equilibrium as a
solution concept. Furthermore, the stability conditions are closely related
to conditions giving benign comparative statics.
We focus on the continuous-time version of best-response dynamics. As-

suming that all players are regular, Player i has a well-de�ned best response
function, bi (X�i), and the dynamics can be written

:
xi = �i [bi (X�i)� xi] for all i 2 I, (40)

where �i > 0 is a measure of the speed of response of i and the initial point
satis�es x (0) � 0. (See Moulin [40], for example.) Hahn [30] established
asymptotic stability of this process to the unique equilibrium of the Cournot
oligopoly game under conditions which ensure decreasing replacement func-
tions. These results were extended by Al-Nowaihi and Levine [1] and, more
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recently, by Dastidar [21]. Discrete best-response dynamics for aggrega-
tive games have recently been analyzed by Kukushkin [35] for �nite strategy
spaces and �better-response�dynamics32 by Dindo¼s and Mezetti [24] for in-
terval strategy spaces.
Any strategy pro�le bx is a Nash equilibrium if and only if it is a rest

point of the dynamics (40). Furthermore, if bX�i exceeds the dropout value
of Player i, then bi (X�i) = 0. Within any small enough neighbourhood
of the equilibrium, xi (t) = xi (0) exp (��it). In particular, xi (t) is non-
negative and approaches bxi = 0. This observation allows us to focus our
analysis on players which are active in equilibrium, with the exception of
any inactive player i for which bxi is exactly equal to their dropout value,
X i. In such a case, it is also possible for the right hand side of (40) to have
discontinuous derivatives at bx and this, in turn, may induce multiple solutions
of the di¤erential equations. We call any strategy pro�les for which bxi = X i

for some i 2 I critical. It is conventional to analyze such cases by solving the
equations either side of the point and stitching the solutions together at the
boundary. To avoid the consequent complications, we con�ne our discussion
to non-critical pro�les.
Qualitative properties of a trajectories (40) in the neighborhood of a reg-

ular strategy pro�le x� can be obtained by linearization about that point.
In particular, provided the Jacobian J (x�) of the right hand side of (40) is
non-singular, asymptotic stability of the linearized system implies asymptotic
stability of (40). In the next proposition, we give conditions on the replace-
ment functions to ensure this. Recall that regular player i of a smooth game
has a replacement functions that is di¤erentiable in (X i;1), except possibly
at X = X i, if this is �nite.

Proposition 10.1 Suppose that all players have a di¤erentiable replacement
function at the non-critical strategy pro�le x�, thenX

j2I
r0j (X

�) 6= 1

implies that J (x�) is non-singular.

The proof uses the following lemma.

Lemma 10.1 If aj 6= �1 for j = 1; : : : ;m and
mX
j=1

aj
1 + aj

6= 1, (41)

32A randomly chosen player randomly selects a strategy and switches to it if and only
if it results in an improved payo¤ for that player.
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the matrix

A =

0BBB@
�1 a1 � � � a1
a2 �1 � � � a2
...

...
. . .

...
am am � � � �1

1CCCA
is non-singular.

Proof. If A were singular, there would be a non-zero m-vector z satis-
fying Az = 0. These equations can be written

zj =
aj

1 + aj
Z, for j = 1; : : : ;m,

where Z =
Pm

j=1 zj. Summing over j and using (41) would give Z = 0 and
hence z = 0, a contradiction.

Proof of Proposition 10.1. Under the suppositions of the proposition,
J (x�) is given by A in the lemma, where the o¤-diagonal elements in row i

are b0i
�P

j 6=i x
�
j

�
. Note that

ri (X) = bi (X � ri (X))

and di¤erentiating with respect to X at x� and rearranging gives

b0i

 X
j 6=i

x�j

!
=

r0i (X
�)

1� r0i (X�)
.

It follows that b0i
�P

j 6=i x
�
j

�
6= �1 for all i and the sum in (41) is

P
j2I r

0
j (X

�).
The proposition is now an immediate application of the lemma.

Note that
r0i (X) = Xs0i (X) + si (X) . (42)

If bx is an equilibrium, we can sum over i and use Lemma 3.3 to deduce that,
if the slopes of all share functions are non-positive and strictly negative for
at least one player, X

j2I
r0j

� bX� < 1, (43)

so linearization can be applied. But this holds at any non-critical equilibrium
of a smooth game with players whose payo¤s satisfy A1 and A2, since then
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s0i

� bX� � 0 for all i and si � bX� > 0 for at least one i, which implies that

s0i

� bX� < 0. We use this linearization in the proof of the next theorem which
gives a su¢ cient condition for asymptotic stability.

Theorem 10.1 Suppose bx is a non-critical equilibrium of a smooth aggrega-
tive game G =

�
I;w; fvigi2I

�
in which A1 and A2 hold for all players, of

which m are active. If mr0i
� bX� < 1 for all i 2 I, then bx is locally asymp-

totically stable.

The proof uses the following lemma.

Lemma 10.2 The matrix

B =

0BBB@
�b1 c � � � c
c �b2 � � � c
...

...
. . .

...
c c � � � �bm

1CCCA
is negative de�nite if

1. c = �1 and b1; : : : ; bm > 1, or

2. c = 1 and b1; : : : ; bm > m� 1.

Proof. Suppose that z 6= 0.

1. We can write

zTBz =�
mX
i=1

(bi � 1) z2i �
 

mX
i=1

zj

!2
< 0.

2. In this case, we have

zTBz =

 
mX
i=1

zi

!
�

mX
i=1

(bi + 1) z
2
i

<

 
mX
i=1

zi

!2
�m

mX
i=1

z2i

= �
mX

i;j=1
i6=j

(zi � zj)2 � 0.

61



In either case, B is negative de�nite.

Proof of Theorem 10.1. We have already observed that, if bxi = 0,
then xi (t) �! bxi as t �! 1, in a neighborhood of bx. This solution can be
substituted in the right hand side of (40) to give a time-dependent system
which approaches the system with x1 eliminated as t �! 1. We use the
result that, provided the process with x1 replaced by its limiting value is
asymptotically convergent the same is true of the full process. In this way
we can remove all such variables and assume, without loss of generality, that
ai > 0 for all i = 1; : : : ;m and ai = 0 for i > m, if jIj > m. The linearization
of the process involving the �rstm components can be written

:
y = Ay where

A is in Lemma 10.1 with ai = b0i

� bX� and y = x�bx. If m = 1, convergence
of these equations is obvious, so assume that m � 2.
Consider the Lyapunov function

V (z) =
1

2

mX
i=1

z2i =�i jaij .

It is clear that V (z) = 0 if and only if z = 0 and we complete the proof by
showing that V is decreasing on trajectories. This is done by noting that

:

V = rV (y) dy
dt
= yTDy,

for y 6= 0, where

D =

0BBBBBBB@

�1= ja1j � � � �1 �1 � � � �1
...

. . .
...

...
. . .

...
�1 � � � �1= jam0j �1 � � � �1
1 � � � 1 �1= jam0+1j � � � 1
...

. . .
...

...
. . .

...
1 � � � 1 1 � � � �1= jamj

1CCCCCCCA
and we have arranged the rows of A so that ai < 0 for i � m and ai > 0 for
i > m. Note that

D+DT

2
=

�
D� 0
0T D+

�
,

where 0 is an m0 � (m�m0) matrix of zeroes,

D�=

0B@ �1= ja1j � � � �1
...

. . .
...

�1 � � � �1= jam0j

1CA
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and

D+=

0B@ �1= jam0+1j � � � 1
...

. . .
...

1 � � � �1= jamj

1CA .
It follows that

:

V < 0 for all y 6= 0 if and only if D� and D+ are negative
de�nite. (Obvious modi�cations can be made to cover the case when all
o¤-diagonal elements of A have the same sign.)
To establish negative de�niteness for D�, observe that, if i � m0, then

ai = r0i

�bY � = h1� r0i �bY �i < 0
which implies that ai < �1, since r0i

�bY � < 1=2 by supposition. Hence,

1= jaij > 1 and Part 1 of Lemma 10.2 can be applied. For D+, if i � m0+1,

then ai > 0 and r0i
�bY � < 1=m implies that 0 < ai < 1= (m� 1). This

allows us to apply the second part of the lemma to D+ and completes the
proof.

The condition in Theorem 10.1 is satis�ed a fortiori if r0i
� bX� � 0 and

this is entailed by decreasing best responses. Thus, equilibria of smooth
Smash and Grab games as well as public good contribution games are locally
stable. In a Cournot oligopoly game with twice continuously di¤erentiable
demand and costs, r0i

� bX� � 0 holds if c00i (x) � 0 for all x > 0 and, for all

X > 0, p0 (X) < 0 and
p0 (X) +Xp00 (X) < 0. (44)

These are the conditions used by Hahn [30], but they are quite restrictive.
For example, constant-elasticity demand is excluded as is rent-seeking, even
if players are risk neutral.
In the case of Cournot oligopoly, (44) can be weakened. Indeed, a su¢ -

cient condition for r0i (X) < 1=m is p0 (X) < 0 for all X > 0 and the following
modi�cation of condition (34) for regularity:

c00i (x) > max fp0 (X) ; (m+ 1) p0 (X) +mXp00 (X)g (45)

for 0 < x � X. To see this, note that, if positive, ri (X) is the unique
xi satisfying 
i (xi; X) = 0, where 
i is given by (33). Di¤erentiating with
respect to X and solving for r0i, we have

r0i (X) =
p0 (X) + ri (X) p

00 (X)

c00i (ri (X))� p0 (X)
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and (45) implies r0i (X) < 1=m. For example, if the inverse demand function
is p (X) = X�1=� and the cost function is convex, (45) holds if � > m.
Note however, that r0i (X) < 1=m is only required to hold at equilibrium,

which can expand the set of parameters for which that equilibrium is stable.
With constant-elasticity demand, suppose Player i has constant marginal
cost ci for all i. Then, the replacement function satis�es

ri (X) = max
�
�
�
X � ciX(1+�)=�

�
; 0
	
.

If there are m active players, the equilibrium condition says that

�

"
m bX � mX

i=1

ci

! bX(1+�)=�

#
= bX, (46)

where we label the costs of the active players c1; : : : ; cm. Further, the con-
dition in Theorem 10.1 can be written:

r0i

� bX� = � � (1 + �) ci bX1=� <
1

m
. (47)

Solving (46) for bX, substituting in (47) and simplifying the resulting inequal-
ity gives:

ci >
�c

1 + �
,

for active players i, where c is the average marginal cost over all active
players. Thus, provided marginal costs of active players do not vary too
much, equilibria are stable.
When all active players have the same payo¤s, even weaker conditions

apply. To see this, observe that share functions of players with payo¤s satis-
fying A1 and A2 have negative slope, that shares sum to one in equilibrium
and sum (42) over active players to get mr0i (X) < 1. Hence, regularity is
su¢ cient for stability in such a game.

Corollary 10.1 Suppose that A1 and A2 hold in a smooth game and all
active players are identical, then the equilibrium is locally asymptotically sta-
ble.

Consider a game with a continuous aggregate share function. Were this
to be non-decreasing at an equilibrium, there must be at least one more equi-
librium. For such games, uniqueness entails a strictly decreasing aggregate
share function at equilibrium, which must therefore be stable. Note that
the assumption of identical active players may be a good one for large games
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in which players fall into a �nite set of types, all of which have distinct �-
nite dropout points, for then, once there are enough players of the type with
largest dropout point, only they are active and the corollary applies. It
is interesting to compare these observations with the result of Dastidar [21]
that the equilibrium of almost all symmetric Cournot oligopoly games with
unique equilibria is stable.

11 Conclusions

We have explored su¢ cient conditions on payo¤s in aggregative games which
ensure a unique (non-null) equilibrium, benign comparative statics and de-
sirable large game limits and illustrated the application of these results to
several classes of aggregative games. These conditions are almost the weak-
est possible requirements on individual payo¤s. We have also demonstrated
how these conditions can be tested when payo¤s are su¢ ciently smooth and
investigated the stability of the unique equilibrium for such payo¤s. The
main tool in our approach is the share function. In fact share functions and
correspondences have wider applicability than our use of them in this pa-
per would suggest. For example, [13] studies rent dissipation in a sequential
game with entry costs and [14] examines e¢ cient rules for sharing the surplus
of a joint production game. In both cases, share functions are the essential
analytical tool for deriving the results. In some cases, share functions have
to be replaced with correspondences. For example, an application to the
analysis of (multiple) equilibria of Tullock rent-seeking contests where the
�production function�exhibits increasing returns to scale is given in [16].
Since the present treatment has focussed particularly on the task of iden-

tifying well-behaved games, we should emphasize two features of our treat-
ment. First, the use of replacement and share correspondences is much more
widely applicable. Any game with aggregative structure can be �and, in our
view, is most easily �modelled using our approach. This observation applies
not only to well-behaved, but also to �badly-behaved�, games that possess
multiple pure strategy equilibria. In particular, our approach can handle
games of strategic substitutes, games with strategic complements, and those
that �t into neither of these categories. In contrast to other treatments, we
do not need to provide separate treatments of these families of games.
Another potential extension is to games in which payo¤s depend on the

strategies of rivals through some (common) function other than the sum of
all strategies. In some cases, a transformation of strategy spaces and payo¤s
can restore aggregativity. An application is given above in Subsection 6.5 for
the case of contests in which the production function fi is non-linear. Indeed,
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in the case of a smooth game, it can be shown that for replacement and share
functions to exist, such a transformation must be possible. However, where
there are kinks in payo¤s (as in weakest-link problems, where payo¤s depend
on own strategy and the minimum of all strategies) there may be no share
function. Nevertheless, share correspondences may still be used to analyze
such games and, indeed, completely characterize the set of equilibria in both
weakest-link and best-shot games. More general aggregation functions are
also considered by Dubey et al [27], who, however, use (pseudo-)potential
functions to conduct their analysis.
Finally, in some games payo¤s depend on more than one aggregative func-

tion. It may still be possible to adapt the methods used above. In particular,
by isolating aggregative sub-games which can be analyzed as above and then
imposing consistency in the overall game, existence, uniqueness, comparative
statics, and large-game limits can be studied. Hartley and Dickson [31] ap-
ply this approach to obtain a number of novel results in market games with
a single product and Cornes et al [17] consider games in which groups con-
tribute to �local�public goods that also contribute to a global public good
entering the payo¤s of all players.
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