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Abstract. Considered here are transferable-utility, coalitional produc-
tion (or market) games, featuring di¤erently informed players. It is assumed
that personalized contracts must comply with idiosyncratic information. The
setting may create two sorts of shadow prices: one for material endowments,
the other for knowledge. Focus is on speci�c, computable core solutions, gen-
erated by such prices. Solutions of that sort obtain under standard regularity
assumptions.

Keywords: cooperative games, transferable utility, di¤erential information, pri-
vate core, Lagrangian duality, value of information.
JEL classi�cation: C62, C71, D51, D82.

1. Introduction
Economics deals with various ways to handle scarcity. Prominent problems, and cor-
responding institutions, regard production, valuation or allocation of limited material
items. Equally important issues revolve though, around acquisition, distribution and
sharing of information. The latter object is, however, just like other more tangible
commodities, often unevenly distributed, scarce, or quite simply lacking.
E¢ cient instruments that handle lacking but symmetric information come as con-

tracts o¤ered say, by insurers or �nancial bodies. In contrast, presence of asymmetric
information frequently impedes e¢ ciency, eliminating maybe good opportunities for
concerted actions, exchange or insurance.
That observation has inspired many studies on contracts under di¤erential knowl-

edge about the state of the world. Main concerns were always with e¢ ciency, incentive
compatibility, and existence of appropriate solutions. In particular, the appropriate-
ness and properties of various core versions have been scrutinized in this context.1

This paper pursues that vein, placing the private core at center stage and specializing
to transferable utility.
Our approach goes as follows. Manifold instances involve agents who worship

maximization of quasi-linear utility or monetary payo¤. So, for the argument, let
us talk hereafter about pro�t-maximizing producers, each willing to accept side-
payments. These agents hold di¤erent technologies, endowments, and informations.

�School of Economics, University of Manchester, Oxford Road M13 9PL UK. The �rst author is
visiting, on leave from University of Bergen; sjur.�aam@econ.uib.no, and he thanks Finansmarkeds-
fondet for �nancial support.

1Studies include [1], [2], [9], [15], [18], [19], [30], [31] and references therein.
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In short, everybody possibly acts in three intertwined roles: as producer, owner,
and "informer." It appears natural therefore, that contracts pay each party in three
corresponding capacities.
When inquiring whether acceptable and feasible payment schemes of such sort ex-

ist, a leading maxim says that scarcity commands a price. Another guideline tells that
prices of private, perfectly divisible, material commodities typically emerge as shadow
items, brought to the fore by di¤erential calculus. There is however, no direct coun-
terpart concerning marginal amounts of information. A rich theory notwithstanding
[7], [17], to measure information content still seems di¢ cult - and to divide it even
harder.
These pessimistic observations seemingly preclude di¤erentiation, classical or not,

as our main or only vehicle. Closer scrutiny shows however, that Lagrangian duality,
already known to furnish standard shadow prices, may help to evaluate information
as well.2 Instrumental to this end are multipliers that relax informational constraints.
The prospect of such relaxation motivated our inquiry on several grounds. First,

since dual problems often come more tractable than their primal counterparts, one
may more easily use them to compute or display explicit core outcomes. Another
bonus of duality is that inquiries about existence of equilibrium prices can be di-
vorced from those concerning allocations. Further, it seems worthwhile to have handy
some simple or practical instances to test intuition - and to isolate crucial solution
properties, in particular the presence or size of informational rent. It is noteworthy
that such rent may accrue to totally unproductive, quite poor but complementary
informed parties. Also noteworthy is that a player may be at disadvantage by be-
coming better informed. Finally, but admittedly on a more technical note, we �nd it
interesting to see precisely where and how - and to what degree - the availability of
price-generated imputations depends on convex preferences.
The paper addresses several groups of readers. One comprises economists and

game theorists who wish to analyze, compute or display some "quanti�able" e¤ects
of di¤erential information. Another group include actuaries and �nance theorists
dealing with di¤erentially informed agents. Also addressed are mathematicians and
operations researchers interested in how convex analysis applies to parts of game
theory.
Section 2 formalizes the setting. Section 3 relates core solutions to shadow prices.

A few properties of price-generated imputations are investigated in Section 4. Section
5 deals with non-transferable utility. Some comments and examples are found in
Section 6, and Section 7 concludes.

2. Formulation
The subsequent model requires several sorts of data, presented next. Some readers
might contend with perusing this section, returning to details when needed.

2This observation has long been central in stochastic programming. See in particular the nice
papers [11], [12].
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Players form a �nite, �xed set I of economic agents, each construed as a producer
who aims at maximal expected pro�t.

Uncertainty prevails as to which scenario will materialize next. These constitute a
comprehensive set S of mutually exclusive states. For example, S might be seen as the
range of a stochastic vector. All parties understand that one s 2 S will come about
in a while. Since our chief concerns are with analysis, computation and modelling, we
hesitate not in assuming S �nite. Doing so saves discussion of purely mathematical
or technical issues - albeit, of course, at the loss of some generality.3

The occurrence of the state separates time in two periods. During the �rst, de-
cisions are committed in face of non-negligible uncertainty. Ex post, when the state
already has occurred, players honor contracts and collect proceeds.

Information ex post about the realized state may di¤er in degree or nature among
players. For example, when s is a vector, various agents may get to see di¤erent
components. Formally, at the second stage, individual i can only ascertain to which
part Pi(s) in a prescribed partition Pi of S the true state belongs. Evidently, the �ner
his partition, the better informed he is then. At one extreme, if some player�s parti-
tion consists exclusively of singletons, he fully knows the state after it has happened.
Re�ecting this, we refer to each instance Pi = ffsgg as one of perfect information.
In contrast, if the entire space S constitutes a player�s partition Pi = fSg, then even
ex post he knows virtually nothing about s.
For the subsequent analysis let Fi denote the �eld formed by taking unions of

parts Pi 2 Pi: Such parts are also called atoms. More generally, a nonempty family F
of subsets in S is declared a �eld if stable under complements and unions. Minimal
members of F are then referred to as atoms. A �eld F embodies coarser information
than the (�ner) �eld F̂ i¤ F  F̂ :
The polar instance of symmetric information has all �elds Fi equal. Plainly, par-

titions then coincide across players, and everybody knows that ex post merely one
and the same part of the state space will be worth caring about. This case is cov-
ered below but not especially considered - except as a good case for mutual insurance.

Commodity bundles are codi�ed as vectors in a standard Euclidean space X with
coordinates indexed by the goods in question. A contingent commodity bundle x(�)
is a mapping s 2 S 7! x(s) 2 X. Oftentimes, when confusion cannot result, we write
simply x instead of x(�): Let X := XS denote the space of all contingent commodity
bundles.4 x 2 X is declared adapted - or measurable with respect - to a �eld F i¤ x
is constant on each atom of F :
A priori agent i owns a Fi-adapted endowment ei 2 X: Clearly, ei(s) 2 X is

3We take care though, to state things in ways that invite generalizations.
4As a notational matter, whenever S; T are nonempty sets, TS denotes the set of all mappings

from S into T:
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construed as the resource bundle privately owned by i in state s: If ei, as conceived
ex ante, were not adapted to the information structure of agent i; then Fi should be
replaced by a �ner �eld.
Given any function f de�ned on S; its "level sets" constitute a partition that

generates a minimal �eld F(f) with respect to which f is adapted. Thus we require
that F(ei) � Fi: A strict inclusion is acceptable. It would mean that i has at hand
more private information than imbedded in ei:

The essential objective of player i is to maximize a proper monetary payo¤ �i(xi)
with respect to his Fi-adapted bundle xi:5 To account conveniently for other con-
straints that might apply only to him - be it nonnegativity, capacity limits etc. - we
allow �i to take the value �1:6 This simple device accounts for constraint violation
by means of an in�nite penalty. It serves as Occam�s razor, allowing us to focus on
essential objectives - and to shy away from particular features. We refrain therefore,
from spelling out what feasibility might mean in full and quite varied detail.
The nature and properties of �i(�) are, for now, left fairly unspeci�ed. Emphasized

though, is that �i(�) incorporates all but one constraint of player i. The single
exception is that his contract xi be adapted to own information. There are two
reasons for stating this explicit constraint in that form: First, the only treaties he
can credibly commit to, are constant across contingencies he cannot discriminate.
Second, only such treaties are enforceable. In short, imperfect information makes for
incomplete contracts or partial commitments.7

Accommodated are, of course, additively separable payo¤s

�i(xi) =
X
s2S

�i(s; xi(s))�(s); (1)

featuring a state-dependent function �i(s; �), and a positive probability measure �
over S. The "integrand" s 7! �i(s; �) in (1) need not be Fi-measurable. But, be-
cause only Fi-adapted xi are feasible, we may just as well replace �i(�; �) with its
adapted version E [�i(�; �) jFi ] : Format (1) is more general than it might �rst ap-
pear. To wit, evident modi�cations of �i allow one to replace � by a measure �i that
better mirror agent i�s subjective beliefs.

Exchange and sharing of commodities is presumed free of restrictions. That is,
all goods are construed as perfectly divisible and transferable. So, ex ante a coalition
C � I might allocate any Fi-adapted xi to its member i 2 C subject to �i(xi) > �1

5Any function taking values in R[f�1g is called proper i¤ not identical to �1:
6Although somewhat unlikely, it is conceivable, and not precluded, that some agent cannot

survive in autarchy, this meaning �i(ei) = �1:
7Two competing models deviate at this point. In one, all contracts are written on common

information ^i2IFi = \i2IFi; this leaving fairly few or slim possibilities for mutual agreements. In
the other, all information is pooled into _i2IFi. But then, quite likely, some parties must commit
ex ante to terms they cannot verify ex post.



Private Information, Transferable Utility, and the Core 5

and X
i2C

xi = eC :=
X
i2C

ei. (2)

We envisage that this sort of agreement comes as an ensemble of contracts, one for
each member i 2 C, specifying, in terms veri�able by him, precisely what bundle
xi(s) he is entitled to in state s:
Denote by _i2CFi the smallest �eld that contains all Fi; i 2 C: Evidently, both

sides of (2) are adapted to _i2CFi: It may well happen though, that F(eC) is strictly
coarser than _i2CFi: Indeed, it is interesting, and not precluded, that F(eC) be totally
uninformative, meaning that eC is a constant.
Pooling mechanism (2) has two economic advantages. First, it allows resource

transfers across C: Second, if some member i 2 C is strictly better informed than
others in that F(eC�i) ( F(eC); then greater �exibility becomes possible for C in
adapting pro-actively to various contingencies.

Prices on contingent commodity bundles are linear functionals, mapping X into
R: These functionals constitute a vector space X� called dual to X. Presence of a star
henceforth signals that the object in point is a price - or an operator on such items.
It�s convenient to have an explicit representation of members x� 2 X�. For that

purpose �x hereafter a probability measure � on S with full support. That is, posit
�(s) > 0 for all s 2 S: Naturally, if some positive � re�ects prior and common
probabilistic beliefs, then that � becomes most appropriate to use. In any case, each
strictly positive measure � on S generates a positive de�nite, bilinear form

hx0; xi :=
X
s2S

x0(s) � x(s)�(s) (3)

on X, the dot indicating the standard (or another) inner product on the underlying
commodity space X: By the Riez representation theorem a dual vector corresponds
to a unique linear form hx�; �i : With this sort of identi�cation the space at hand
becomes self-dual; that is: X = X�:

Expectations - and conditional versions of these - are essential below. The posi-
tive probability measure �; just mentioned, gives rise to an unconditional expectation
E : X ! X by Ex :=

P
s2S x(s)�(s): Further, for each �eld F in S; generated by a

partition P, there is a conditional expectation operator E [� jF ] : X! X; de�ned by

�(P )E [x jF ] (s) := E [1Px] for each state s 2 P and every part P 2 P:

Here the indicator 1P equals 1 on P and 0 elsewhere. Since by assumption �(P ) > 0,
the customary formula applies:

E [x jF ] (s) = E [1Px]

�(P )
=
X
s02P

x(s0)
�(s0)

�(P )
when s 2 P 2 P:
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Most important, writing Ei := E [� jFi ], we see that Fi-measurability of xi amounts
to

xi = Eixi: (4)

Note that EF := E [� jF ] ; when seen as a linear operator from X to X, has a standard
S � S real matrix representation with �(s0)

�(P )
in entry (s; s0) 2 S � S when s; s0 2 P;

and 0 otherwise.8 To operator EF : X! X is associated a transpose E�F : X� ! X�,
represented by the transposed matrix, featuring �(s)

�(P )
in entry (s; s0) 2 S � S when

s; s0 2 P; and 0 otherwise. It�s impact is given by

(E�Fx
�)(s) =

�(s)

�(P (s))
x�(P (s))

where P (s) is the part of P to which s belong, and where x�(P ) :=
P

s2P x
�(s):

For any transformation T 2 fEF ; E�Fg it holds that T 2 = T: Consequently, either
transformation projects its domain onto a subspace, alias its range. Further, using
inner product (3), either transformation decomposes the domain orthogonally into
the direct sum of its range and the kernel of its transpose:

domT = RangeT � KerT � with RangeT ? KerT �: (5)

For example, any x 2 X admits a unique representation

x = xF + x
?
F with



xF ; x

?
F
�
= 0; xF = EFx; x

?
F = x� xF 2 kerE�F : (6)

3. The Game and Core Solutions
Recall that payo¤s and resources are regarded as transferable. Also recall that ex
ante the triples (�i;Pi; ei); i 2 I; are commonly known.9
The above data generates a transferable-utility, cooperative game with player set

I and a characteristic function that associates to coalition C � I aggregate value

vC := sup

(X
i2C

�i(xi) :
X
i2C

xi = eC and xi = Eixi for all i 2 C
)
: (7)

As before, eC :=
P

i2C ei is shorthand for the aggregate endowment held by coalition
C: Note that "excess demand" xi � ei of any agent i is adapted to his information.
The economic attractions of pooling objectives and endowments, as done in (7),

are evident and twofold. First, the most e¢ cient producers can utilize resources fur-
nished by others. Second, complementary production factors can be brought together.
Formally, the advantages of coordination re�ect in superadditive values:

vC1[C2 � vC1 + vC2 whenever nonempty C1; C2 � I are disjoint.

8The �ner partition that underlies F ; the more sparse the matrix representation of EF : In
particular, when each s is an atom, the said matrix equals the identity.

9Ex post, private information, in the hand of agent i; amounts to his certainty as to which part
Pi(s) 2 Pi does indeed prevail.
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A function C � I 7! vC ; satisfying v? = 0; is called convex or supermodular [21] if

vC1[C2 + vC1\C2 � vC1 + vC2 :

The marginal value vC[i � vC of player i joining coalition C then increases with C:
Instance (7) is, however, not generally convex. To see this, let Fi = f?; Sg and posit

�i(xi) := sup fh�y; yii : Ayi = xi; yi � 0g (8)

where A maps an ordered Hilbert space Y linearly into X, and �y 2 Y: Then

vC = v(eC) := sup fh�y; yi : Ay = eC ; y � 0g (9)

with vC = �1 whenever the linear program is infeasible. Since the reduced function
e 7! v(e) so de�ned is concave, its generalized di¤erential @v(�) is monotone decreasing
[6]. This points to possible disadvantages of joining a coalition as its last member.
Anyway, whenever he enters, a new member may bring three bene�ts to a coali-

tion. First, if endowed, he adds to the aggregate holding. Second, if productive, he
expands the joint capacity. Third, if additionally informed, he makes for more �exible
exchanges.10

Note that problem (7) is linearly constrained. This feature is most convenient for
theoretical analysis and practical computation. To wit, the Kuhn-Tucker optimality
conditions then come without any constraint quali�cation.
Given the characteristic function C 7! vC ; de�ned in (7), we want to "solve" the

game, using the core as solution concept. Speci�cally, a payment pattern (ui) 2 RI
is said to reside in the private-information core i¤

Pareto e¢ cient :
P

i2I ui = vI ; and
stable against blocking:

P
i2C ui � vC for all C � I:

A chief concern is, of course, that the core could be empty. Put di¤erently: the
question is whether the game is balanced or not? In that regard the following result
can be established along well known lines; see [22]:

Proposition 3.1. (Balanced games) Suppose all payo¤ functions �i(�) are con-
cave. Then the core is nonempty in every subgame which involves a player community
C � I that has �nite value vC. In particular, when vC is �nite for all C � I, the
entire game becomes totally balanced [27].

Proposition 3.1 just deals with existence; it�s non-constructive. Moreover, it de-
mands that every party has convex preferences. In contrast, we seek computable core

10Broadly speaking, the more varied private information is across coalition members, the less
cumbersome the restriction that components xi(s) must stay constant over parts Pi 2 Pi:
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solutions, brought to the fore in constructive and explicit manner. Besides, in this en-
deavor, it would be expedient that convexity, if not already present, emerges exactly
where and when needed.11 �
So, to identify explicit solutions, if any, consider problem (7) from a dual and price-

oriented vantage-ground. In doing so, associate a multiplier (price) vector x� 2 X�
to constraint (2) and a similar vector x�i 2 X� to constraint (4). Thus, related to
problem (7) is a standard Lagrangian

LC(~x; ~x
�) :=

X
i2C

f�i(xi) + hx�; ei � xii+ hx�i ; Eixi � xiig ; (10)

or equivalently,

LC(~x; ~x
�) =

X
i2C

fhx�; eii+ �i(xi)� hx� + x�i � E�i x�i ; xiig

where ~x := (xi); and ~x� := (x�; x�i ; i 2 I): The interpretation of LC is commonplace
but worth recalling all the same. Suppose individual i 2 C could add a perturbation
�ei 2 X to his endowment at cost hx�;�eii : Upon doing so constraint (2) would take
the relaxed form X

i2C
xi =

X
i2C
(ei +�ei): (11)

Further imagine that instead of (4) member i 2 C could face the looser constraint

xi = Eixi +�xi; (12)

with �xi 2 X chosen freely but at extra cost hx�i ;�xii : In that relaxed setting
coalition C could achieve overall payo¤

sup
(�ei;�xi);i2C

(X
i2C

[�i(xi)� hx�;�eii � hx�i ;�xii] : (11) & (12) hold
)
= LC(~x; ~x

�):

Given x�; observe that no Fi-adapted perturbation �xi commands any extra value.
Indeed, during optimization all worthwhile Fi-adapted substitutions have already
been considered. So, by (6) only choices �xi 2 kerE�i merit attention. That is,
�xi(P ) :=

P
s2P �xi(s) = 0 for all P 2 Pi:

Anyway, the more freedom in choosing perturbations, the richer in detail the
corresponding price regimes. For such reasons we face a crucial modelling choice at
this juncture, namely: Should perturbed versions (11) of equations that, in essence,
account for material balances, also embody extra information? We choose to block
this avenue, our motivation being to separate payments for tangible endowments from
those concerning information. Re�ecting this choice, and since formation of the grand

11For more on this issue, see [13], [14]. It will be seen though, that we can hardly accommodate
any agent whose objective �i(�) is globally convex.
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coalition C = I is of chief interest, we insist from here on that any endowment price
x� be F(eI)-measurable.
After these considerations declare now ~x� = (x�; x�i ; i 2 I) a shadow price or

Lagrange multiplier vector i¤, under that price regime, access to a competitive market
for �

material perturbations: �e = E [�e jF(eI) ] and
informational perturbations: �xi; i 2 I;

o¤ers the grand coalition no advantage. Formally, and much simpler, ~x� quali�es as
Lagrange multiplier i¤

sup
~x

LI(~x; ~x
�) � vI : (13)

In mathematical terms ~x� is a shadow price i¤ it realizes the saddle value of LI :

sup
~x

LI(~x; ~x
�) = inf

~x�
sup
~x

LI(~x; ~x
�) = sup

~x

inf
~x�
LI(~x; ~x

�): (14)

To bring out economic and game-theoretic implications of this concept let

f (�)(x�) := sup ff(x)� hx�; xi : x 2 Xg

denote the conjugate of a proper function f : X! R[f�1g :12 Plainly, f (�)(x�)
records the pro�t that accrue to a producer who enjoys revenue function f(�) and
faces linear price regime x� for inputs.13

Applying these terms, the additive separability of LC together with the de�ning
relations hx�i ; Eixii = hE�i x�i ; xii imply that

sup
~x

LC(~x; ~x
�) =

X
i2C

n
hx�; eii+ �(�)i (x� + x�i � E�i x�i )

o
: (15)

We can now state a chief result forthwith:

Theorem 3.1. (Price-supported core solutions) Each shadow price ~x� =
(x�; x�i ; i 2 I) generates a solution (ui) 2 RI in the private-information core by the
formula

ui = ui(~x
�) := hx�; eii+ �(�)i (x� + x�i � E�i x�i ): (16)

12f (�) is convex and lower semicontinuous. In terms of the standard Fenchel conjugate f� of
convex analysis f (�)(x�) = (�f)�(�x�); see [25]: Using instead the concave conjugate

f�(x�) := inf
x
fhx�; xi � f(x)g ;

which re�ects minimization of expenses hx�; xi net of revenues f(x); we get f (�) = �f�, and f�� is
the smallest concave upper semicontinuous function � f:
13Note that separable instances f(x) =

P
s2S fs(x(s))�(s) gives

f (�)(x�) =
X
s2S

f (�)s (x�(s))�(s):
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Proof. For any coalition C � I and any multiplier vector ~x� it holds via (15) thatX
i2C

ui :=
X
i2C

n
hx�; eii+ �(�)i (x� + x�i � E�i x�i )

o
= sup

~x

LC(~x; ~x
�)

� inf
~x�
sup
~x

LC(~x; ~x
�) � sup

~x

inf
~x�
LC(~x; ~x

�) = vC :

Thus
P

i2C ui � vC : Since C � I was arbitrary, this takes care of stability against
blocking. Further, for Pareto optimality we need now only verify that

P
i2I ui � vI :

But the last inequality follows from (13). �

A few words on the economic signi�cance of formula (16) are in order. Plainly,
that formula reimburses agent i the value hx�; eii of his endowment. We shall argue
later that the resource price x� emerges as a (generalized) derivative of a concave
function with respect to the aggregate endowment. Since concavity makes for a de-
creasing derivative, the larger aggregate, the smaller the price. Formally, e 7! x�(e)
is monotone decreasing in the sense that

he� e0; x�(e)� x�(e0)i � 0 (17)

for all e; e0 at which the derivatives exist. When X = RG for a �nite set G of goods,

hx�; eii =
X
g2G

E(x�g � eig) =
X
g2G

�
Ex�g � Eeig + cov(x�g; eig)

	
: (18)

Consequently, like in �nance, i receives a covariance premium for his endowment eig
of good g provided that holding be anti-correlated with eIri;g :
As said, the second component in (16) re�ects production pro�t, calculated at

a common resource price x� distorted by an additive, idiosyncratic component x�i �
E�i x

�
i ; stemming from private information. One might call

pi := x
� + x�i � E�i x�i

the information-corrected shadow price facing agent i: If player i holds perfect infor-
mation, pi := x�: Plainly, an agent i bene�ts from collaboration i¤ ui > �i(ei): A
su¢ cient condition for this to happen is that

�
(�)
i (pi) > �

(�)
i (x

�)

because then ui > hx�; eii+ �(�)i (x�) � �i(ei):
While equal treatment is standard in the customary core (and in Walras equi-

librium as well), di¤erential information may overthrow that property; see [1]. Here
though, transferable utility restores it: Agents who have equal endowments, informa-
tion, and preferences, receive the same price-generated imputation (16).
Theorem 3.1 begs the question whether Lagrange multipliers exist? To ensure

existence, as expected and seen below, concavity of each �i(�) would be most con-
venient. That property would re�ect wide-spread risk aversion but it will really not
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be required here. Instead comes a somewhat weaker assumption about convoluted
preferences - often assigned to who is called a representative agent.
Before regarding his preferences recall that sup-convolution (7) contributes to-

wards concavity of the resulting, reduced function. Broadly, by admitting many and
small agents the optimal value vI = v(eI) becomes "more concave" in eI : The cur-
vature or global support of e 7! v(e) is what decides existence of shadow prices. To
bring this out consider the aggregate but perturbed payo¤ function

�(�e;�x) := sup

(X
i2I
�i(xi) :

X
i2I
xi = eI +�e & xi = Eixi +�xi 8i 2 I

)
: (19)

Here �e is F(eI)-measurable. Observe that �(0; 0) = vI : Since shadow prices bear on
di¤erential properties of �; recall that a proper function f; mapping a Hilbert space
Y into R[f�1g ; has a supergradient y� at a point y i¤

f(�) � f(y) + hy�; � � yi :

We then write y� 2 @f(y) and declare f superdi¤erentiable at y:

Theorem 3.2. (Characterization and existence of solutions)
� ~x� is a shadow price i¤ ~x� 2 @�(0; 0): Thus existence of a shadow price is ensured
i¤ the perturbation function � is superdi¤erentiable at (0; 0):
� Denote by �̂ the smallest concave function � �; the latter de�ned in (19). It suf-
�ces for existence of a shadow price, whence of a core solution (16), that �̂(�; �) be
�nite-valued near (0; 0) with �̂(0; 0) = vI : In particular, if all �i are concave, with
�(�; �) �nite near (0; 0); then at least one shadow price regime exists.
� No core solution of the sort (16) exists if there is a strictly positive duality gap:

� := inf
~x�
sup
~x

LI(~x; ~x
�)� vI :

In this case, any scheme (16) entails aggregate overpayment � �:14 �

Proof. Plainly, ~x� = (x�; x�i ; i 2 I) 2 @�(0; 0) i¤

�(�e;�x)� hx�;�ei �
X
i2I
hx�i ;�xii � �(0; 0)

for all �x = (�xi) and all F(eI)-measurable �e:In turn, via substitutions �e =P
i2I(xi � ei), �xi = xi � Eixi, and �(0; 0) = vI ; this is equivalent to

LI(~x; ~x
�) =

X
i2I
f�i(xi) + hx�; ei � xii+ hx�i ; Eixi � xiig � vI for all ~x;

14Note that an empty core is not precluded. In particular, if vI = �1, imputations (16) would
yield

P
i2I ui = +1 for any feasible multiplier ~x�: Presumably such explosion of aggregate impu-

tations (dual problem values) may assist in detecting emptiness of the core.
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whence to (13). This takes care of the �rst bullet. For the second simply note
that the "concavi�cation" �̂ of � has a supergradient at each point near which it is
�nite-valued, and evidently, @�̂(0; 0) � @�(0; 0) because �̂(0; 0) = �(0; 0): Finally, the
assertion after the third bullet is justi�ed by the fact that each instance of (16) yieldsP

i2I ui > vI : �

Example 3.1. A single producer facing resource owners has a state-dependent
revenue function fs : X ! R[f�1g which is concave. Each agent i 2 I�0 is
non-productive when quite alone, but he owns an endowment pro�le ei 2 X. Let
I := f0g [ I�0 and put e0 := 0: Then

vC :=

�
0 if 0 =2 C
Ef�(eC(�)) otherwise.

For any i 6= 0 we have �i(0) = 0; and �i(xi) = �1 otherwise. Consequently, �(�)i = 0;
and resource owner i receives ui = hx�; eii. Any resource price x� re�ects marginal
revenues, that is, x�(s) 2 @fs(eI(s)) for each s: Therefore, i 6= 0 ) ui = E [x

�ei] =P
s x

�(s) � ei(s)�(s): The producer receives

u0 = Ef
(�)
� (x

� + x�0 � E�0x�0)(�) =
X
s2S

�
f (�)s (x

�(s) + x�0(s)� E�0x�0(s))
	
�(s):

Quite generally, an agent with �(�)i � 0 quali�es as a pure resource owner. When
X = RG for a �nite set G of goods, any shadow price gives a pure resource owner
core payment given by formula (18).
A this point a consequence of re�ned information is noteworthy. Suppose one

agent i gets a nondegenerate part Pi of his partition split into smaller sets - and
that his endowment ei be rede�ned with some variation across Pi: Also suppose that
each other player already has Pi fully contained in an atom of his. As a result
F(eI) becomes more re�ned, whence x� is likely to vary inside Pi: Pursuing this line,
one may straightforwardly design instances where (Ex�) � (Eei) remain constant, butP

g2G cov(x
�
g; eig) does not. Broadly, if s 7! @fs and s 7�! ei(s) are positively (neg-

atively) correlated, then re�ned information is likely to advantage (disadvantage) i
in his capacity as resource owner. So, while information re�nement increases vI ; the
distributional impact is not clear cut. �

Some discussion of the Theorem 3.2 is in order. The superdi¤erentiability - that
is, the global support - of the perturbed function � at (0; 0) does not demand that
all underlying �i be concave. Also, on a technical note, such support unhinges ar-
guments for existence of equilibrium from appeals to �xed point theorems. If some
�i isn�t concave, one may "board up its holes" by employing instead the smallest
concave function �̂i � �i. This done, each price regime ~x� generates imputations
ûi(~x

�) � ui(~x�). In terms of the duality gap � any shadow price ~x� for the concavi�ed
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game gives P
i2I ûi(~x

�) � vI + �; andP
i2C ûi(~x

�) � vC for all C � I:
The Shapley-Folkman theorem [10] asserts that concavi�cation of payo¤s will be
e¤ective on at most dimX + 1 agents. For more on this issue, and for estimates of
the duality gap (or core de�cit) �; see [3], [13], [14], [28].
The upshot is that there is room for agents whose payo¤s are non-concave in

regions of no economic interest. It is hard however, to accommodate players having
globally convex payo¤ functions. Indeed, presence of merely one individual of that
sort su¢ ces to render the perturbed function � convex. When moreover, that � has
a supergradient somewhere, it must be a¢ ne. De�nitely, such an instance has little
of interest or realism.
Uniqueness of a Lagrange multiplier amounts, of course, to have �(�; �) di¤eren-

tiable at (0; 0): We shall not explore this issue.
Typically, the commodity space X is ordered, and most often at least some

agent has monotone payo¤. Then, provided
P

i2I xi always be F(eI)-measurable,
free disposal becomes possible because it su¢ ces for material balance to insist thatP

i2I xi � eI : So, under such quali�cations, the resource price x� must be nonnegative.
Nothing was said so far about solvability of (primal) problems (7). For complete-

ness, recorded next are some propositions on existence of an optimal allocation across
the grand coalition:

Proposition 3.2. (Existence of optimal allocations) Optimal allocations ex-
ist and the value vI is attained in each the following three cases:
1) The upper level set(

(xi) :
X
i2I
�i(xi) � r; xi = Eixi;

X
i2I
xi = eI

)
(20)

is closed for all r 2 R with respect to convergence in each state-dependent bundle
xi(s):

15 Also suppose that the said set is nonempty compact for at least one r 2 R.
2) Each �i is upper semicontinuous and concave on RangeEi, and the recession
functions

0��i(di) := inf
r>0

�i(xi + rdi)� �i(xi)
r

; �i(xi) �nite,

satisfy X
i2I
0��i(di) � 0 &

X
i2I
0��i(�di) < 0 implies

X
i2I
di 6= 0:

3) Each �i is upper semicontinuous with a conjugate �
(�)
i that is �nite-valued contin-

uous at 0.
15Since S is �nite, this amounts of course to have �i(�) upper semicontinuous with respect to the

product topology on XS :
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Proof. Statement 1) is standard. For 2) see Rockafellar (1970) Corollary 9.2.1.
For 3) Let

f�(y�) := inf
y
fhy�; y � f(y)ig

denote the concave conjugate of a proper function f that maps a Hilbert space into
[�1;+1) : Then, on the same space, f̂ := (f�)� equals the smallest concave upper
semicontinuous function � f: The fact that �i� is �nite-valued and continuous at 0
implies, by Moreau-Rockafellar theorem [6], that each upper level set f�̂i � rig is
compact.
Now consider any maximizing, feasible sequence xk = (xki ). Since vI is �nite there

exist real numbers ri such that xki 2 f�̂i � rig for all k and i: Extract a convergent
subsequence to get the targeted conclusion. �

Having cared so far about existence of shadow prices and attainment of values, it
seems �tting to mention a case that causes little of such concerns:

Example 3.2. Linear Production Games. The computational and expressive
power of linear programming, with modern extensions [5], motivates a brief look
at cooperative producers who have linear technologies [23]. A special instance was
already considered in (8), (9). Here, more generally posit

vi := sup fhci; yii : Aiyi � ei; yi � 0g : (Pi)

The objective
hci; yii := E [ci � yi] =

X
s2S

ci(s) � yi(s)�(s);

features Fi-adapted vectors ci(s) and yi(s) that reside in an Euclidean space Yi: The
constraints in (Pi) mean that Ai(s)yi(s) � ei(s); yi(s) � 0 for all s: The Fi-adapted
operator (or matrix) Ai(s) maps Yi into X, and both these spaces are ordered.
Problem (7) now amounts to the following aggregate linear program:

vC := sup

(X
i2C

hci; yii :
X
i2C

Aiyi � eC with yi � 0 and Fi-adapted
)
: (PC)

Proposition 3.3. (Linear imputations) Suppose the aggregate linear problem (PI)
has �nite optimal value vI . Let x� and y�i ; i 2 I; be Lagrange multipliers - alias
optimal dual variables - associated to the material balance

P
i2I Aiyi � eI and the

information restrictions yi = Eiyi, i 2 I; respectively. Then the payment pattern

i 2 I ! hx�; eii

belongs to the private-information core. This happens if x� and y�i ; i 2 I; optimally
solve the dual problem

min hx�; eIi s. t. x� � 0 and ci � A�ix� + y�i � E�i y�i for all i: �
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For a simple numerical illustration, consider two agents, two states, with asymmetric
informations and endowments described as follows:

Agent i Partition Pi state s: s1 s2
1 fs1g ; fs2g endowment e1(s) : 2 0
2 fs1; s2g endowment e2(s) : 1 1

When �i(xi) =
P

s xi(s) for all i; s; we get vi = 2 for each i; and vI = 4: This
speci�cation makes the cooperative game perfectly additive: Pooling among the risk
neutral agents o¤ers nobody any bene�t over autarky.
As one would expect, no direct information rent accrue when all players are risk-

neutral. Also note that individual payo¤ was de�ned here as a reduced function:
�i(xi) := supyi�i(xi; yi): This feature, and the importance of such instances, speaks
against presuming �i smooth.
Linear objectives belong to the wide and important class of polyhedral functions,

de�ned as those whose hypograph equals the intersection of �nitely many closed half-
spaces [25]. Since the conjugate of such functions are polyhedral as well formula (16)
become tractable.
As is well known, presence of players with linear objectives facilitate risk sharing.

Likewise, when information is symmetric, the prospects of mutual insurance appear
good:

Proposition 3.4. (Symmetric information and mutual insurance) Suppose
all Fi = F are equal and generated by a partition P. Also suppose �i is of sepa-
rable form (1) with �i(s; �) adapted to the common F : Then coalition C has value
vC =

P
P2P vC(P )�(P ) where

vC(P ) := sup

(X
i2C

�i(s; �i) :
X
i2C

�i = eC(s)

)
for each s 2 P:

Moreover, ui =
P

P2P ui(P )�(P ) with

ui(P ) = x
�(s) � ei(s) + �(�)i (s; x�(s)) for each s 2 P:

Thus, cooperative solutions are sustained merely via state-contingent transfers.

Proof. With no loss of generality replace S with P. After such replacement every-
body has a perfect information structure whence the information constraints can all
be ignored. �

4. Some Properties of Price-generated Imputations
We have stressed the advantages of cooperation. It may happen though, that some
player prefers to take no part:
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Proposition 4.1. (On dummies or outsiders) Imputation (16) o¤ers agent i
autarky payment ui = �i(ei) i¤ the information-corrected shadow price "coincides"
with his marginal payo¤; that is, i¤

pi := x
� + x�i � E�i x�i 2 @�i(ei): (21)

Proof. Since x�i �E�i x�i 2 KerE�i and ei is Fi-measurable, we have hx�i � E�i x�i ; eii =
0: Therefore autarky payment happens i¤

hpi; eii+ �(�)i (p) = �i(ei);

or equivalently, precisely when

�
(�)
i (pi) := sup f�i(xi)� hpi; xiig = �i(ei)� hpi; eii :

Plainly, the function xi 7! �i(xi)� hpi; xii is maximal at xi = ei i¤ (21) holds. �

As customary Lagrange multipliers relate to geometry, information, and willingness
to pay. These features are recorded next. For the statement denote by f 0(y; �y) the
directional derivative of f : Y! R[f�1g at y 2 Y in the direction �y:

Proposition 4.2. (Properties of shadow prices)
1) x� must be orthogonal on the a¢ ne subspace spanned by equation

P
i2I xi = eI .

More precisely, the replicated vector (x�; :::; x�) 2 X�I is normal to the manifold
M :=

�
~x = (xi) 2 XI :

P
i2I xi = eI

	
in that*

x�;
X
i2I
xi � eI

+
= 0 for all F(eI)-adapted aggregates

X
i2I
xi (22)

Further, x�i must be orthogonal to kerE
�
i :

hx�i ; xi � Eixii = 0 for all xi: (23)

2) The material component x� is, or can be made, F(eI)-measurable. Also, x�i must
be F i-adapted.
3) If the perturbed function � (19) is di¤erentiable at 0 in the direction (�e;�x);
then

�0(0; �e;�x) � inf
(
hx�;�ei+

X
i2I
hx�i ;�xii : ~x� shadow price

)
. (24)

In case � is concave and �nite near (0; 0), equality holds in (24).

Proof. 1) The saddle property (14) of shadow prices opens, as usual, a perspec-
tive on a two-person, zero-sum, non-cooperative game. To wit, there is a �ctitious,
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price-setting agent who wants to minimize LI(~x; ~x�) with respect to ~x�: In doing so,
he obtains no advantage in letting x� have a non-zero component normal to man-
ifold M. And quite similarly, he cannot bene�t from letting x�i have a non-trivial
component orthogonal on RangeEi.
(22) tells that, given price regime x�, it is not worth coalition I while to contem-

plate additions �xi to ei that violate
P

i2I �xi = 0: (23) says that information prices
for agent i blocks him from straying outside the adapted subspace EiX =: RangeEi:
(22) and (23) are commonly called complementarity conditions.
2) The �rst assertion derives from the hypothesis that only F(eI)-measurable per-

turbations of the aggregate endowment were accommodated. Plainly, the dual space
to EF(eI)X comprises only functionals of corresponding measurability. Concerning
x�i we already observed in Proposition 8 that this price must stand orthogonally on
kerE�i : But, by decomposition (5), the orthogonal complement to kerE

�
i is RangeEi;

that is, the space of Fi-adapted contingent vectors.
3) By Theorem 3.2 each shadow price ~x� is a supergradient of � at (0; 0). This

implies that

�(t�e; t�x)� �(0; 0) � t
(
hx�;�ei+

X
i2I
hx�i ;�xii

)

for any t > 0 and shadow price ~x�. Consequently,

�(t�e; t�x)� �(0; 0)
t

� inf
(
hx�;�ei+

X
i2I
hx�i ;�xii : ~x� shadow price

)

and the �rst assertion follows. The second one is a standard result of convex analysis.
�

For interpretation of assertion 3) assume the shadow price be unique. Then hx�;�ei
is an upper bound on the willingness of grand coalition I to pay for resource additions
in direction �e: Further, if agent i could commit a more �exible contract xi; beyond
his information structure, then hx�i ;�xii estimates what his adaptability is worth in
direction �xi:
We conclude this section by inquiring about the robustness or stability of core

imputations (16). In particular, how do they fare under perturbations of endowments,
payo¤s and information structures?
The issue can be formalized as follows: Let ~x�n be a shadow price of a game

�n := (eni ; �
n
i ; E

n
i )i2I : Suppose the latter converges to � := (ei; �i; Ei)i2I in a sense to

be made precise. Then, will each cluster point ~x� of the sequence (~x�n) be a shadow
price for �? Further, will uni = u

n
i (~x

�n)! ui(~x
�)?

Plainly, in asking these questions, there is no ambiguity or choice as to what
(eni ; ~x

�n; uni ) ! (ei; ~x
�; ui) should mean. Also, Eni ! Ei amounts to have the matrix

representation of Eni converge in each entry to that of Ei: But some care is needed
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in de�ning the appropriate notion of convergence �ni ! �i: We say that a sequence
of functions fn : X ! R[f�1g epi-converges to f : X ! R[f�1g, and write
fn !epi f; i¤
� 8x 2 X 8xn ! x it holds that lim inf fn(xn) � f(x) and
� 8x 2 X 9xn ! x such that lim sup fn(xn) � f(x):

Proposition 4.3. (Variational convergence of shadow prices and impu-
tations) Suppose (eni ; E

n
i )! (ei; Ei), and

8i 2 I; 8x�i 2 X�;8xn�i ! x�i it holds that lim inf �
n(�)
i (xn�i ) � �

(�)
i (x

�
i ); and �

n(�)
i (x�i )!

�
(�)
i (x

�
i ). Also suppose each lower level set

n
�
(�)
i � r

o
is bounded for every r 2 R and

every i:
Let ~x�n be a shadow price of game �n = (eni ; �

n
i ; E

n
i )i2I : Then each cluster point

~x� of the sequence (~x�n) is a shadow price of the unperturbed game � = (ei; �i; Ei)i2I :
Moreover, uni = u

n
i (~x

�n)! ui = ui(~x
�) for each i:

Proof. Denote by Lni : X� � X�! X� the linear mapping de�ned by Lni (x�; x�i ) :=
x� + x�i � E�i x�i : Plainly, Eni ! Ei implies En�i ! E�i . Thus L

n
i ! Li for each i: Now

de�ne

F n(~x�) :=
X
i2I
hx�; eni i+ �

n(�)
i �Lni (x�; x�i ) and F (~x�) :=

X
i2I
hx�; eii+ �(�)i �Li(x�; x�i ):

Observe that F n !epi F . Since ~x�n 2 argminF n; the conclusion follows from Theo-
rem 7.33 in [26]. �

5. Non-Transferable Utility
So far arguments hinged upon utility being transferable. This section drops that
assumption at the cost of a less constructive approach to core solutions.
As hitherto, by a price system is understood a pro�le ~x� := (x�; x�i ; i 2 I) such

that x� 2 X is F(eI)-measurable, and each x�i 2 X is Fi-measurable. For any price
system let

ci(~x
�; xi) := hx�; xii+ hx�i ; xi � Eixii

denote the cost incurred by player i when he purchases xi 2 X. Note that ci(~x�; ei) =
hx�; eii : A feasible price-allocation pair (~x�; ~x) is called a Walras equilibrium if for
each i
� ci(~x�; xi) � hx�; eii ; and �i(x0i) > �i(xi)) ci(~x

�; x0i) > hx�; eii :
It is declared a quasi-equilibrium if for each i
� ci(~x�; xi) = hx�; eii ; and �i(x0i) � �i(xi)) ci(~x

�; x0i) � hx�; eii :
A feasible allocation ~x is in the Core if no proper coalition C � I can �nd another
feasible allocation (x0i)i2C such that �i(x

0
i) � �i(xi) for each i 2 C, with at least one

inequality strict.

Proposition 5.1. (Existence of quasi-equilibrium) Assume each �i is Lipschitz
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continuous, concave on its e¤ective domain dom�i := fxi : �i(xi) > �1g, and that
the latter set is nonempty compact. Then there exists a quasi-equilibrium.

Proof. Let (~x��; ~x�) be a saddle-point for the Lagrangian

L�(~x�; ~x) :=
X
i2I
f�i�i(xi)� ci(~x�; xi) + hx�; eiig :

Then
�i
�
�i(x

�
i )� �i(xi)

	
� ci(~x��; x�i )� ci(~x��; xi): (25)

Let S(�) equal the set of all saddle point of L�; and posit

D(~x�; ~x) := f� 2 � : �i = 0 if ci(~x�; xi) > ci(~x�; ei)g ;

Since each �i is Lipschitz continuous on its domain, so are all functions (xi) 7!P
i2I �i�i(xi) on K := �i2Idom�i with a modulus that doesn�t depend on �. Conse-

quently, the components of the multiplier vectors ~x��; having the nature of a super-
gradients

x�� + x��i � E�i x��i 2 @
�
�i�i(x

�
i )
�
;

must be uniformly bounded. This entails that, modulo the transformation ~x� !
(x�� + x��i � E�i x��i ); we can restrict ~x� to belong to a compact convex set K�: Then
S�D has a �xed point (~x�; ~x; �) on the set K� �K ��:
We claim that ci(~x�; xi) = ci(~x�; ei) for all i: Indeed, if some ci(~x�; xi) > ci(~x�; ei),

then by construction �i = 0; and (25) would yield the contradiction ci(~x�; xi) �
ci(~x

�; ei): Consequently, ci(~x�; xi) � ci(~x
�; ei) for all i: But, if some such inequality

were strict, there is the contradiction
P

i2I ci(~x
�; xi) <

P
i2I ci(~x

�; ei): This proves the
claim. Similarly, if �i(x0i) � �i(xi) and ci(~x�; x0i) < ci(~x�; xi) for some Fi-measurable
x0i; then L

�(~x�; �) cannot be maximal at ~x: �

Proposition 5.2. (Walras equilibrium) Suppose each �i is lower semicontinu-
ous on its e¤ective domain dom�i and that this set is starshaped with respect to 0:
Then each quasi-equilibrium for which all h~x�; eii > 0, is a Walras equilibrium.

Proof. If a quasi-equilibrium (~x�; ~x) is not a Walras equilibrium, then some agent
i has a Fi-measurable x0i such that �i(x0i) > �i(xi) and ci(~x�; x0i) = ci(~x

�; ei): Since
dom�i is starshaped with respect to 0; we have rx0i 2 dom�i for all r 2 [0; 1] : By
the lower semicontinuity of �i on its e¤ective domain, for r < 1 su¢ ciently close to
1 we still get �i(rx0i) > �i(xi) but ci(~x

�; rx0i) < ci(~x
�; ei) which contradicts the quasi-

equilibrium. �

Proposition 5.3. (Nonempty core) Under the hypotheses of Propositions 5.1-
2 there exists a core solution.
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Proof. Pick any quasi-equilibrium (~x�; ~x): If ~x is not in the core, some proper coali-
tion C has an alternative feasible allocation (x0i)i2C satisfying �i(x

0
i) � �i(xi) for all

i 2 C; with at least one inequality is strict. By quasi-equilibrium ci(~x�; x0i) � ci(~x�; ei)
for all i: ByWalras equilibrium, ci(~x�; x0i) > ci(~x

�; ei) for each strictly improving agent.
The upshot is the contradiction

P
i2C ci(~x

�; x0i) >
P

i2C ci(~x
�; ei): �

6. Some Comments and Examples
Since payment ui = hx�; eii+�(�)i (x�+x�i �E�i x�i ) is convex in ~x�; impacts of changes
in measurability become interesting. For the argument suppose �rst that ei remains
unaltered but let the triple [x�; x�i � E�i x�i ;F(eI)] be replaced by a "�ner" versionh
x̂�; x̂�i � Ê�i x̂�i ;F(êI)

i
; satisfying x̂� + x̂�i � Ê�i x̂�i 6= x� + x�i � E�i x�i and

E
h
x̂� + x̂�i � Ê�i x̂�i

���F(êI)i = x� + x�i � E�i x̂�i :
Then, if �(�)i is strictly convex, ûi := hx̂�; eii+�(�)i (x̂�+ x̂�i � Ê�i x̂�i ) > ui: In particular,
if player i is propertyless, perfectly informed, and has �(�)i is strictly convex, he is
likely to bene�t form a re�nement of the �eld F(eI). In short, anybody who causes
an expansion of F(eI) to F̂ , seems to create positive externalities each other player
who has and maintains Fi � F(eI).
If ei changes, there is, of course, a material e¤ect, but possibly also repercussions

via the information structure. To better isolate the latter, let i be a pure resource
owner. He has �(�)i � 0 and gets ui = hx�; eii : A pair y1; y2 of real-valued random
variables, de�ned on the same probability space, is said to exhibit negative (positive)
dependence if

Pr fy1 � r1 jy2 � r2g � (�) Pr fy1 � r1g � Pr fy2 � r2g for all real r1; r2;

with strict inequality for at least one choice r1; r2. When X = RG for a �nite set G of
goods, formula (18) gives ui: Thanks to (17), upon ignoring possible nonsmoothness,
we can, as an instance of the law of demand, quite reasonably posit that resource
price x�g be a decreasing function of total abundance eIg: Then, if eIg and eig are
negatively dependent, cov(x�g; eig) > 0; see [20] Proposition 16.9. Consequently, if
each pair (eIg; eig); g 2 G; shows negative (positive) dependence, agent i experiences
some bonus (loss) over the average payment E(x�) � E(ei):
It is noteworthy that the �rst fundamental theorem of welfare economics is no

longer valid. The reason is that (rational expectation) Walras equilibria, by ascribing
value merely to commodities, need not belong to the private core. For example, a
propertyless agent i with perfect information structure Fi = ffsgg gets production
pro�t �(�)i (x

�). So, provided �(�)i (x
�) > 0; he is left with some purchasing power.

Plainly, Walras equilibrium, in giving any propertyless agent zero wealth, nulli�es
his consumption - irrespective of what information he brings. In contrast, the private
core is apt to reward him for information that allow risk averters to write more de-
tailed or diversi�ed contracts. It also deserves mention that Walras equilibrium may
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fail to exist in cases where the core is nonempty:

Example 6.1. An instance with no Walras equilibrium but nonempty core:
Let there be two goods, two players, and two equally likely states: Posit e1(s) = (1; 0),
e2(s) = (1; 1) in each state s, and

�i(xi) :=

�
Exi;g=i(s) if xi(s) 2 R2+ for all s
�1 otherwise.

Let Fi be generated by a perfect partition. Then any allocation that always gives
player 1 an amount � 2 [1; 2] of the �rst good - and invariably player 2 all the rest,
is in the core. Plainly, x�(s) � (1; 1) is the unique, and state-independent shadow
price, and

��i (x
�) :=

�
0 if x�(1) � 1 and x�(2) � 0
+1 otherwise.

Consequently, u1 = 1; u2 = 2 is a price-generated core imputation. There is how-
ever, no competitive equilibrium. Indeed, an equilibrium price vector p = [p(s)] =
[p(1); p(2)] cannot have p(1) = 0; leaving agent 1 destitute. Further, if p(1) > 0; then
agent 2 will demand more of good 2 than available. Changing F1 to f?; Sg would
not upset this conclusion. �

It must be emphasized that di¤erential information easily comes in the way of good
contracts - as illustrated next.

Example 6.2. A case for autarky: Accommodated are two agents, one good,
and three states as follows:

Agent i Pi state s : s1 s2 s3
1 fs1g ; fs2; s3g endowment e1(s) : �1 0 0
2 fs2g ; fs1; s3g endowment e2(s) : 0 �2 0

Posit format (1) with �i(s; 0) = 0 and xi(s) � 0; to get vi = �i(si; �i)�(si) for
each i: Both players get 0 is state s3: Therefore, by measurability x1(s2) = 0 and
x2(s1) = 0; - to the e¤ect that no contract becomes possible apart from the autarkic
one. Information structures are unequal here but symmetric across players. While
both parties might want to write contracts in terms of s1; s2; either is unable to
disentangle s3 as a special contingency. Note that F1_F2 amounts to perfect ex post
information. �
This example illustrates that the private core is a second-best equilibrium con-

cept. Indeed, Pareto e¢ ciency often does not obtain. The simple reason is that
agents might be unable to unveil the pooled information _i2IFi.

Example 6.3. On the advantage of being informed. Accommodated are
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two agents, two goods, and two states as follows:

Agent i Pi state s : s1 s2
1 fs1g ; fs2g endowment e1(s) : (1; 0) (0; 0)
2 fs1; s2g endowment e2(s) : (0; 2) (0; 2)

The two goods, referred to by second-place subscripts g = 1; 2, are perfect comple-
ments, i.e. completely useful only when available in equal quantities. Thus

�i(xi) =
X
s

min fxi1(s); xi2(s)g�(s)

with xi(s) � 0; to get vi = 0 for each i: It is impossible to o¤er player 2 a positive
constant amount of good 1: Thus

vI = max

(X
s

min fx11(s); x12(s)g�(s) : 0 � x1(s) � eI(s)
)
= �(s1):

The shadow price x� on resources is the constant vector (1; 0): Thus the price-
generated core payments are

u1 = hx�; e1i = �(s1) and u2 = hx�; e2i = 0:

When probability measure �(s1) � 0:5, player 1 is not superior in terms of endow-
ment and technology. But his information advantage allows him to produce the cake
- and have it all. �

Example 6.4. On syndication. It is known that players who hold relatively
scarce resources may loose by forming a syndicate. It appears though that price-
generated core solutions may mitigate this. To wit, following [24], let there be 5
players, one good, and two states:

Agent i Pi state s : s1 s2
i = 1 = 2 fs1; s1g endowment ei(s) : 1 0

i = 3 = 4 = 5 fs1g ; fs2g endowment ei(s) : 0 1=2

Posit �i(xi) := min fxi(s1); xi(s2)g to have vS = min fjS \ f1; 2gj ; jS \ f3; 4; 5gjg ;
and the private core reduces to the single pro�le (0; 0; 1

2
; 1
2
; 1
2
): Here the resource price

x� = [x�(s1); x
�(s2)] = [0; 1=�(s2)] ; and ui = hx�; eii :

If owners of the scarce resource form a syndicate f1; 2; 3g ; the core becomes larger,
and it contains imputations uf3;4;5g < 3=2: However, since syndication does not a¤ect
x�, for the price-generated selection we still get uf3;4;5g(x�) =



x�; ef3;4;5g

�
= 3=2: This

attests to the competitive nature of formula (16). �



Private Information, Transferable Utility, and the Core 23

Example 6.5. Superior information. Accommodate here a player who owns
nothing but some valuable information:

Agent i Pi state s : s1 s2 s3
1 fs1g ; fs2; s3g endowment e1(s) : 2 1 1
2 fs1; s3g ; fs2g endowment e2(s) : 1 2 1
3 fs1; s2g ; fs3g endowment e3(s) : 0 0 0

Use payo¤
�i(xi) =

X
s2S

�
xi(s)� x2i (s)=2

	
with xi(s) � 0 for all i; s; to get vi = 1 for i = 1; 2; and v3 = 0: Further, value
vf1;2g =

P
i=1;2 vi = 2; is supported by status quo (no trade) because otherwise

x1(s1) must maximize
P

i=1;2 fxi(s1)� x2i (s1)=2g s.t.
P

i=1;2 xi(s1) = eI(s1) which
entails x1(s1) = x2(s1) = 3=2: By measurability this implies x2(s3) = 3=2 whence via
material balance x1(s3) = 1=2: Finally, again by measurability and material balance,
in that order, x1(s2) = 1=2 and x2(s2) = 5=2: But symmetry considerations say
x1(s1) = x2(s2) - so we have a contradiction at hand. Note that either player i = 1; 2
�nds it interesting to collude with the utterly poor but somewhat informative agent
3 : For i = 1; 2

vfi;3g = 2 > vi + v3 = 1:

To explain this, let C = f1; 3g (the instance f2; 3g is quite similar) and suppose
x1(s1) > 0: Since x1(s1) must maximize

P
i2C fxi(s1)� x2i (s1)=2g s.t.

P
i2C xi(s1) =

eI(s1), we get x1(s1) = x3(s1) = 1: Considerations of measurability and material
balance thereafter yield:

state s : s1 s2 s3
allocation x1(s) : 1 0 0
allocation x3(s) : 1 1 1

and thereby vf1;3g = 2: Finally, for the grand coalition assume each xi(si) > 0 to get
optimal allocation

state s : s1 s2 s3
allocation x1(s) : 3=2 1=2 1=2
allocation x2(s) : 1=2 3=2 1=2
allocation x3(s) : 1 1 1

and consequently, vI = 3:75: The upshot is that players 1; 2; although they have no
genuine reason to collude with each other, �nd it in their interest to join the grand
coalition, this making the propertyless player a right honorable member.

7. Concluding Remarks
The core, a most popular solution concept of cooperative game theory, occupied center
stage here. Moreover, a price-generated selection was made within the core. Such
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selection points to the �rst welfare theorem and to various ways of shrinking the core.
In fact, to ensure a nonempty or small core, possible avenues include replication of
players [8], accommodation of a nonatomic player set [4], convexi�cation of preferences
[14], or tolerance for fuzzy coalitions [16].
None of these approaches were pursued here. Instead we simply presumed that

aggregate payo¤ was superdi¤erentiable at the point of reference. Economic agents -
all facing uncertainty but di¤ering in capacities, e¢ ciencies, endowments or informa-
tions - can then bene�t from cooperation. To bring this out the paper reconsidered
coalitional production (or market) games introduced by Shapley and Shubik (1969).
When contracts comply with private information, and utility is transferable, explicit
core solutions obtain. These are de�ned in terms of Lagrange multipliers that relate
to material resources, information, and production.
As said, existence of appropriate multipliers requires that the perturbed function

� (19) be concave at the point of reference. Such concavity could come about via
aggregation of a representative agent economy as follows: Let I := f1; :::; jIjg and
introduce for each t 2 (i� 1; i] ; i 2 I; a player with endowment et = ei; upper
semicontinuous payo¤ �t = �i; and partition Pt = Pi: Thus player i becomes a
representative for a continuum of identical agents. Introduce next the functions

�̂i(xi) := sup

�Z i

i�1
�t(xt)dt : xt = Eixi and

Z i

i�1
xtdt = xi

�
:

The functions �̂i so constructed are all concave [29], and

sup

(Z jIj

0

�t(xt)dt : xt = Eixi and
Z jIj

0

xtdt = eI

)

= sup

(X
i2I
�̂i(xi) : xi = Eixi and

X
i2I
xi = eI

)
:

The resulting, "representative" game �̂ = (ei; �̂i;Pi)i2I has a concave perturbed func-
tion �̂ (19), and the preceding analysis applies.
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