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Abstract. Considered here is on-line �nancial management aimed at
maximizing the long-run growth of wealth. The portfolio is repeatedly rebal-
anced in response to observed returns on diverse assets. Suppose statistical
information and related methods are not available - or deemed either inappro-
priate or too di¢ cult. On that assumption this paper explores how an adaptive
procedure, which totally dispenses with statistics and associated competence,
nonetheless may solve the problem over time.
Keywords: log-utility, portfolio selection, growth of wealth, evolutionary sta-
bility, replicator dynamics, stochastic approximation.
JEL Classi�cation: C61, C62, G11.

1. Introduction
Imagine an investor who steadily aims at maximal, long-term growth of his �nancial
savings, but always hesitates - or quite simply remains untrained - in using proba-
bilistic reasoning and statistical methods. Thus, at any stage, he neither accesses nor
produces empirical estimates of dividend distributions or associated parameters. In
short, although empirically oriented, he never acts like a probabilist or statistician.
Could he, by some reasonable rule of thumb, improve his portfolio stepwise - and, all
the same, maximize growth in the long run?
Assuming a stochastic but stationary environment, this paper provides a construc-

tive, positive and quite simple answer. Not surprisingly, the answer comes in terms
of investment behavior that reallocates savings towards assets most recently observed
to generate above average relative return. Such reallocation has several noteworthy
features, relating to many and fairly diverse strands of literature. A �rst relation is to
stochastic approximation methods [2], [3]; a second goes to evolutionary game theory
[15], [21]. Other links point towards dynamical systems, adaptive algorithms, and
reinforcement learning [3], [20]. Finally, and most important, it all revolves around
Kelly�s investment criterion [6], [18]. Proper presence of all these aspects su¢ ce for
convergence to optimal portfolio choice in the long run.
To bring this out Section 2 speci�es the setting and the adaptive process. Section

3 links the latter to replicator dynamics and evolutionary stability in two-person
games. Stability of that sort ensures global convergence, as proven in Section 4.
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2. The Setting and the Investment Strategy
Suppose wealth grows multiplicatively as follows: At discrete times t = 0; 1; ::: the
investor puts the proportion pat of his total holding into asset a 2 A. That asset gives
gross return Xa

t+1 � 0 per unit, obtainable at the end of time interval (t; t+ 1]. Hence
his accumulated �nancial savings St develop by the dynamic

St+1 := hpt; Xt+1iSt := (
X
a2A

patX
a
t+1)St;

where h�; �i designates the usual inner product on RA: As customary, the latter space
consists of all functions a 2 A 7! x(a) =: xa 2 R. Without loss of generality posit
S0 = 1: The asset list A is �xed and �nite. The restrictions pat � 0 and

P
a2A p

a
t = 1,

mean that pt := (pat ) always belongs to the standard simplex

P :=

(
p = (pa) 2 RA+ :

X
a2A

pa = 1

)
:

By tacit assumption pt can be, and indeed is, chosen so that hpt; Xt+1i > 0 almost
surely (a.s.).
With apologies for slight abuse of language, since proportions are at center stage,

call any p 2 P a portfolio. Note that short positions are precluded. Further note
that money is never injected or withdrawn. And no transaction cost does ever incur.
Then, what investment strategy will maximize the growth rate of stock?
For a start, and for simplicity, suppose the return vectors Xt = (X

a
t ) 2 RA; t =

0; 1; ::: are independent, and all distributed as a generic X. Then plainly, one should
hold the portfolio p 2 P constant to enjoy stock ST = �T�1t=0 hp;Xt+1i at any future
time T regarded worthy of special attention. In such settings, assuming a �nite
expectation E log hp;Xi, the Strong Law of Large Numbers [4] says that

log(S
1=T
T ) =

1

T

TX
t=1

log hp;Xt+1i ! E log hp;Xi a.s. when T ! +1:

Thus an unconditioned log-optimal portfolio p; meaning one which will

maximize E log hp;Xi s.t. p 2 P; (1)

ought appeal to the agent at hand. The optimal value d := maxpE log hp;Xi in (1)
describes the dominant behavior of ST in that ST � 2Td when log = log2.
More generally, if the return process Xt displays dependencies over time, the

portfolio pt; chosen at time t; should respond to the history (X0; :::; Xt) and other
relevant information observed so far. Let all such information be codi�ed by means
of a sigma-�eld Ft: In essence, what is required is that pt stays constant on each atom
of Ft:
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If the investor worships maximization of the objective E logST , T denoting his
planning horizon, he would, at any interim time t; be well advised to

maximize Et log hpt; Xt+1i s.t. pt 2 P, (2)

using then conditional expectation Et := E [� jFt ] : Such maximization generates an
expected growth rate dT := maxE(logST )=T over the time span [0; T ] : De�ne d1 :=
limT!1 dT ; provided this limit exists. Employing 2 as base for the logarithm, the
relation ST � 2Td1 tells that d1 quali�es as doubling rate - and 1=d1 as the expected
time until doubling of wealth.1

These observations, and many studies, speak for iterative resolution of problem
(2).2 But then the investor had better identify the underlying probability distribu-
tions - and also be able to compute corresponding expectations. Quite often however,
at least one of these two requirements is not met. Knowledge might be imperfect -
or expectations too hard to compute. If so, how can a scantly informed, statistically
unskilled investor, while seeking maximal long-run growth of own savings, sequentially
adapt his portfolio in response to observed returns?
To come to grips with this question consider the Kuhn-Tucker conditions of prob-

lem (2):
Et
�
Xa
t+1= hpt; Xt+1i

�
= 1 whenever pat > 0;

Et
�
Xa
t+1= hp;Xt+1i

�
� 1 otherwise.

�
(3)

Conditions (3) are necessary and su¢ cient for optimality. They tell that the relative
returns Xa

t+1= hpt; Xt+1i on assets a 2 A worthy of investment must, in conditional
expectation, all equal the maximal value 1:
Optimality conditions often guide the design of adaptive processes, and so they�ll

do here as well. For the sake of argument imagine operator Et were absent in (3).
Its hypothetical absence permits a shift of focus towards the realized, relative returns
Xa
t+1= hp;Xt+1i. Trivially, these entities have weighted mean

P
a2A p

aXa
t+1= hp;Xt+1i =

1: This indicates that a positive position pat in asset a should be reduced i¤

Xa
t+1= hp;Xt+1i < 1:

Speci�cally, it seems prudent that portfolio pt be updated at the end of time period
(t; t+ 1] as follows: For each a 2 A let

pat+1 = p
a
t + stp

a
t

�
Xa
t+1= hpt; Xt+1i � 1

�
: (4)

1When the return process is stationary, Theorem 15.5.1 in [6] says that

d1 = lim
t!1

max fEt log hpt; Xt+1i : pt 2 Pg :

If moreover, returns are independent across time, d1 = d := the optimal value in (1).
2See [6] and references therein. Related material is also found in [5], [7], [9], [10], [14], [16], [17],

[18].
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Discrete-time, stochastic process (4) becomes the main object below. It di¤ers
from the procedures studied in [5], [11] where E and Et; respectively, operate on
Xa
t+1= hpt; Xt+1i ; and where st � 1: In contrast, the sequence st 2 (0; 1) of step sizes

is here selected a priori subject to

(I)
P

t st = +1; and
(II)

P
t s
2
t < +1:

�
(5)

In terms of behavior, divergence condition (I) re�ects that adaptation remains quite
e¤ective from any stage onwards. Mathematically, in terms of intrinsic time �k :=
s0 + � � � + sk at stage k; condition (I) embodies that (4) - as a sort of numerical
integration - must continue until time �1 = 1. On the other hand, convergence
condition (II) entails that st ! 0; thereby reducing the response to randomness over
time. Taken together (I) and (II) require that st; as a measure of adaptiveness, should
dwindle but not too fast.
Note that (4) is not a stochastic gradient method [8]. That method would here

assume the form
pt+1 = P [pt + stXt+1= hpt; Xt+1i] ;

P denoting the orthogonal projection onto P. The latter operation demands however,
some competence and e¤ort [19]. And why should an investor, who is unable to
calculate expectations, be perfect in orthogonal projections?
A bonus of (4) is that neither operation is needed. In (4) it is prudent though,

to choose initial proportions pa0 > 0 for all a. Any such choice ensures that p
a
t > 0

for all t and each a: Thus full diversi�cation always obtains - a feature that appears
natural on two accounts: First, if pa0 = 0; then p

a
t = 0 for all t to the e¤ect that good

investments might possibly be foregone. Second, for reasons not modelled, if direct
observation of the entire return vector Xt is deemed desirable at every stage t, then
something should always be held of each asset. In any case - provided st 2 [0; 1],
p0 2 P, and Xa

t+1= hpt; Xt+1i � 0 - iteration (4) ensures that pt 2 P for all t: Further,
to maintain pt in the relative interior of P it su¢ ces to select p0 there and pick every
st 2 (0; 1):

3. Log-optimal and Evolutionary Stable Strategies
Does (4) converge? To elucidate that question it helps to digress brie�y into nonco-
operative game theory. For the moment suppose the return process is stationary. In
particular, take all Xt here to be distributed as one and the same X: Assume problem
(1) has �nite optimal value and at least one optimal solution. Recall that portfolio
�p 2 P is unconditioned log-optimal i¤

E [Xa= h�p;Xi] = 1 whenever �pa > 0; and
E [Xa= h�p;Xi] � 1 otherwise.

�
(6)

As announced, to appreciate such investment strategies from a di¤erent angle, con-
sider now a noncooperative, two-person, symmetric game, featuring �nite action space
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A. Payo¤s in that game are de�ned as follows: When player 1 and 2 use mixed strate-
gies p and �p 2 P, respectively, the �rst of them takes home pro�t

�(p; �p) :=
X
a2A

pa � E [Xa= h�p;Xi] : (7)

As customary, a pair (�p; �p) 2 P� P is declared a symmetric Nash equilibrium i¤

�(p; �p) � �(�p; �p) for all p 2 P. (8)

Since �(�p; �p) = 1; conditions (6) and (8) are equivalent, and it follows forthwith

Proposition 3.1. (Log-optimality and equilibrium) A portfolio �p is unconditioned
log-optimal i¤ it constitutes a Nash equilibrium (�p; �p) in the two-person, symmetric
game with payo¤ (7). �

Unless a log-optimal �p selects only one asset, which seems rather unlikely, many
diverse p maximize (7). So, one can rarely expect an equilibrium strategy �p to be
strict. Yet all equilibria enjoy a sort of stability that goes beyond (8) - as explained
next. A set �P � P of equilibria is declared evolutionary stable [15] i¤ for each �p 2 �P
there is some � > 0 such that

p 2 P��P, kp� �pk � � & �(p; �p) = �(�p; �p) ) �(�p; p) > �(p; p):

The last inequality says that �p fares strictly better against any non-optimal, su¢ -
ciently close, best response p than does the latter against it self. Typically �P is a
singleton. Indeed, this happens if the possible return vectors are con�ned to no single
hyperplane [1], [5]. In other words: when X has support of full dimension, �p becomes
unique.

Proposition 3.2. (Log-optimality and evolutionary stability) The set �P of un-
conditioned log-optimal portfolios is closed convex and evolutionary stable. In fact, it
holds for any p 2 P��P that �(�p; p) > �(p; p):

Proof. The function p 7! L(p) := E log hp;Xi is concave and upper semicontin-
uous. Therefore the set �P := argmaxL is closed convex. For any non-optimal p
and optimal �p it holds of course that L(p) < L(�p): Further, because of concavity,
L(�p) � L(p) + hL0(p); �p� pi : Adding the left hand sides and the right hand sides
of the last two inequalities we get hL0(p); �p� pi > 0: Finally, since hL0(p); �p� pi =
�(�p; p)� �(p; p), the conclusion follows. �

Still pursuing the game theoretic perspective, let �(a; p) := E [Xa= hp;Xi] denote
the payo¤ to a player who opts for pure strategy a 2 A against the mixed p 2 P:
For the argument, let us subscribe next to the idea that pure strategies that perform
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above average, will be replicated. That is, assume they are at evolutionary advantage
is so far as

dpa

d�
:= _pa = pa [�(a; p)� �(p; p)] (9)

for each a 2 A: We immediately record that system (9) is remarkably stable:

Proposition 3.3. (Asymptotic stability) System (9) is globally asymptotically stable
on the relative interior of the simplex. That is, for any initial p0, having all pa0 > 0;
it holds that each accumulation point of the resulting trajectory is log-optimal.

Proof. Recall that the relative entropy (alias Kullback-Leibler distance)

K(�p; p) :=
X
a2A

�pa log
�pa

pa
= �

X
a2A

�pa flog pa � log �pag (10)

between any two probability distributions �p; p 2 P is jointly convex, nonnegative,
and vanishes only when �p = p: Continuity considerations lead to the convention that
0 log 0 = 0 and r log(r=0) = +1 when r > 0: Introduce a "distance function"

�(p) := min fK(�p; p) : �p log-optimalg : (11)

Note that �(p) so de�ned is (convex and) di¤erentiable. Indeed, for each p 2 P
there is a unique minimizing �p(p) 2 �P. Uniqueness derives from K(�; p) being strictly
convex for each p: Consequently, by Danskin�s envelope theorem, when all pa > 0;

r�(p) = @

@p
K(�p; p)j�p=�p(p) = � [�pa=pa] 2 RA:

Thus, on the interior of the simplex, �(�) is a Lyapunov function because along a
solution trajectory of (9) it has time derivative

d

d�
�(p(�)) = �

X
a2A

�pa [�(a; p)� �(p; p)] = � [�(�p; p)� �(p; p)] < 0;

�p denoting the unique minimizer in (11). Asymptotic stability follows from this
because �(p), being bounded below, must converge. Its limit value must equal 0, and
the conclusion follows. �

4. Convergence
Given so much stability of (9), it is tempting next to discretize time in that system,
using (tick or) step size st: Numerical integration of (9), using Euler�s direct method,
then takes the form

pat+1 = p
a
t + stp

a
t [E [X

a= hpt; Xi]� 1] :
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Upon dropping the expectation operator in the last equation, format (4) comes up
anew. In short, convergence of (4) revolves around the following question: Does the
stability of continuous-time, deterministic system (9) transfer to its discrete-time,
stochastic counterpart (4)? That question, quite standard in stochastic approximation
theory, gets a positive answer here.
It hinges however, on two hypotheses stated next. First, the return process must

have a particular Markovian feature, called the Robbins-Monro assumption, namely:
The conditional distribution of Xt+1 given Ft depends at most on pt: This means,
in essence, that the return process Xt be stationary. Second, and quite reasonably,
assume that

� := sup

(
E
X
a

fXa= hp;Xi � 1g2 : p 2 P
)
<1: (12)

Clearly, (12) holds if all random variables Xa= hp;Xi for a 2 A; p 2 P are uniformly
bounded.

Theorem 3.1. (Global convergence to log-optimality) Under the Robbins-Monro
assumption and (12) each cluster point of iteration (4) is almost surely a log-optimal
portfolio. In particular, when the latter is unique, convergence to that portfolio ob-
tains a.s.

Proof. The demonstration derives from established theory, using the results in [2] or
Chapter 5 of [3]. For completeness main arguments are included. But the following
auxiliary result is just stated:

Lemma (See [3], Section 5.2.1) Suppose At; Bt; Ct; Dt; t = 0; 1; ::: are �nite-valued,
non-negative random variables, all measurable with respect to a sigma-�eld Ft � Ft+1;
which satisfy

E [At+1 jFt ] � (1 +Bt)At + Ct �Dt: (13)

Then, in the event f
P

tBt < +1;
P

tCt < +1g it holds that

At ! A <1 and
X
t

Dt < +1 a.s. (14)

As said, in the present case, let Ft be generated by the return vectors X0; :::; Xt and
other relevant information unveiled up to time t: Plainly, Ft � Ft+1: Posit

At := min
�
kpt � �pk2 =2 : �p log-optimal
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Note that At = kpt � �ptk2 =2 � 0 for a unique Ft-measurable, log-optimal �pt. Also,

At+1 � kpt+1 � �ptk2 =2 = k(pt � �pt) + (pt+1 � pt)k2 =2
� At + st

X
a2A
(pat � �pat )

�
Xa
t+1= hpt; Xt+1i � 1

�
+ s2t

X
a2A

�
Xa
t+1= hpt; Xt+1i � 1

�2
=2

= At + st
X
a2A
(pat � �pat )Xa

t+1= hpt; Xt+1i+ s2t
X
a2A

�
Xa
t+1= hpt; Xt+1i � 1

�2
=2

In this string take conditional expectation Et := E [� jFt ] to get inequality (13) with

Bt := 0; Ct := s
2
t�; and Dt := �st

(X
a2A
(pat � �pa)Et

�
Xa
t+1= hpt; Xt+1i

�)
� 0:

Now, via condition (II) in (5), since the event f
P

tBt < +1;
P

tCt < +1g carries
full probability, (14) follows. Whenever A > 0, condition (I) in (5) implies

P
Dt =

+1: Consequently, A = 0 a.s. and this completes the proof. �

5. Concluding Remarks
This paper emphasized three views on portfolio management. One related to how an
imperfectly informed, statistically non-trained �nancial manager might learn growth-
optimal investment step by step. Another looked merely for a tractable algorithm to
compute a log-optimal portfolio. And �nally, one perspective was on how equilibrium
might emerge in a symmetric game of �nance. Whatever viewpoint or vantage-ground
one chooses, eventually to �nd a good portfolio is likely to take some time and some
adaptation - as re�ected in process (4).
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