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Affine Price Expectations and Equilibrium in Strategic Markets

S.D. Fl̊am1 and O. Godal2

Abstract. This paper considers equilibrium in imperfect markets, featuring
agents who exchange property rights. Important cases include trade in emission
permits of greenhouse gases, or exchange of catch quotas of fish. Some players act
strategically while others are price-takers. The “demand curve” is endogenous, and
it affects all parties. The resulting, reduced objectives need not be concave. There-
fore, existence of equilibrium is a delicate matter. To simplify things, and to ensure
availability of “equilibria up to first order”, we presume that all strategic agents form
affine price expectations.

Keywords: Noncooperative games, Cournot oligopoly, emissions trading, second
order optimality conditions.
JEL Classification: C72, L13, Q50.

1. Introduction

Economic theory has given some pre-eminence to large, anonymous markets for price-
takers, each participant immediately knowing at precisely which places he will be
a net supplier. Modern economies feature however, many markets that share nei-
ther of these properties. Indeed, some important settings comprise fairly few, non-
anonymous, and price-affecting parties - many of whom must reason a bit before
knowing on what side of the counter they will stand.

Included are exchange markets for various fish quotas. There, before making their
bids, owners of significant fish resources might deliberate on how own supply/demand
will affect clearing prices. Also important are the emerging markets for emission rights
of greenhouse gases.

Two issues complicate modelling and analysis of such situations. First, unlike the
Cournot oligopoly, there is no “demand curve.” That object must rather be derived
endogenously. Second, the said curve may affect players in ways that upset desirable
curvature properties. To wit, some reduced objectives, after incorporation of the
demand curve, could become non-concave in proper decisions. And then, as is well
known, existence of pure Nash equilibrium is hard to ensure.

1Visiting professor, School of Economics Studies, University of Manchester UK. Support from
Ruhrgas and Finansmarkedsfondet is gratefully acknowledged.

2Corresponding author, Department of Economics, University of Bergen, Herman Foss gate 6,
N-5007 Bergen, Norway; odd.godal@econ.uib.no. Thanks for support are due Research Council
of Norway (SAMSTEMT), Meltzerfondet, Professor Wilhelm Keilhau’s Minnefond, and Stiftelsen
Thomas Fearnley, Heddy og Nils Astrup.
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Reflecting on this problem, the present paper has two parts, following after the
model set-up in Sections 2 and 3. The leading and larger part, Section 4, while some-
what pessimistic in tenor, stresses the difficulties in getting hold of a full-fledged Nash
Equilibrium. The second and smaller and decidedly more optimistic part, Section 5,
brings out that if players contend with affine price expectations, then indeed, there
are situations that comply with equilibrium up to first-order optimality.

For ease of interpretation - and comparison - the main story is phrased as dealing
only with trade of emissions permits.3 Montgomery [13] first modelled such markets
and proved existence of equilibrium, assuming that all agents were price-takers. That
assumption was later relaxed by Hahn [9] who accommodated one dominant firm. His
study spurred a large literature on permit markets, with various extensions, including
Westskog’s [18] oligopoly case.4

That literature inspires at least two queries. First, on a technical note, revenue
or cost functions are commonly assumed smooth - say, at least twice continuously
differentiable. As a matter of fact, reduced functions, generated by optimization - and
notably by linear programs - are often merely piecewise differentiable.5 Admittedly,
differentiability might be seen mainly as a technical issue, carrying less of economic
substance. But, in any case, it had better be dealt with. For example, the slope of the
demand curve, so crucial in optimality conditions, how can it be identified? Indeed,
even if all objective functions were indeed differentiable, one cannot claim that derived
demand be likewise.6 Second, one can hardly contend with merely characterizing
equilibrium, leaving questions about existence and uniqueness somewhat in the lurk.

This paper looks into both these issues. While subscribing to convex analysis, it
accommodates non-smooth functions and explores existence and uniqueness of equi-
librium. If agents must form perfect opinions (rational expectations) about entire
price curves, results on existence of equilibrium are non-conclusive and not very
encouraging. As said, chief concerns are with the resulting curvature of objective
functions. Besides, special provisions are needed for either side of the permit market.

On a decidedly more positive note we offer a convenient and constructive - and,
in our opinion, quite natural - escape from those complexities. It comes by assuming
that players behave as though the price curve were globally affine.7 This assumption
amounts, on the psychological side, to relieve players from much cognitive effort -
and, on the mathematical side, to simplify analysis considerably. The price to be

3Adaptations to quota markets are straightforward.
4In the emerging market for greenhouse gas emissions permits under the Kyoto Protocol, a broad

literature (see e.g. Springer [17]) suggests that trade will occur between relatively few parties. This
provided part of the motivation for the present study.

5This feature is dealt with in the literature that concerns estimation of emissions (abatement)
cost functions. For the case of greenhouse gases, see e.g. [4].

6So, we hesitate in presuming as much smoothness as do, for example, Kolstad and Mathiesen
[11]. A constructive and usefull exception is the study of Murphy et al. [14].

7If it really is - as in linearly constrained, quadratic programming - then so much the better.
Otherwise, how strategic traders preceive price curves is an issue for experimental economics and
cognitive physcology.
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paid is that the resulting solution concept might produce spurious “equilibria.”8

2. The Setting

Accommodated here is a fixed, finite set I of economic agents, each construed as a
cost minimizing producer. These agents are collectively constrained (say, by various
treaties) to keep the aggregate emissions of a finite group G of pollutants below
specified levels.

Individual i ∈ I is endowed with a permit vector ei = (eig) ∈ RG. We use the
convention that eig > 0 implies the right, on the part of i, to emit this amount of
“gas” g ∈ G into global commons. Similarly eig ≤ 0 accounts for his obligation to
absorb/capture |eig| from the environment.9

Clearly, agent i may want a permit pattern xi ∈ RG that differs from ei. In
the aggregate however, such demand cannot exceed supply, i.e.,

∑
i∈I xi ≤

∑
i∈I ei,

this inequality being understood to hold component-wise. Permits are homogeneous,
non-storable, perfectly divisible and exchanged in a common market where a price
vector p ∈ RG prevails.

Some agents are particularly well endowed; others are plagued by significant short-
ages. Such “large” agents presumably act strategically à la Cournot, accounting for
how their choice of quantity will influence prices. Others simply take prices for
granted; they are minor, and, most likely, they figure as strategic dummies. Thus,
each agent i ∈ I belongs either to a nonempty competitive fringe F ⊂ I of price-
takers or to a complementary society S ⊂ I of strategists. Since presumably no one
can figure both “small” and “large” - or both as dummy and strategist - at the same
time, I is the disjoint union F ∪ S, F 6= ∅.

Agent i incurs convex cost ci (xi) by keeping xi for personal use.10 Technological
restrictions, capacity limits and other constraints will of course affect costs. It is
convenient therefore, both in notation and analysis, to account for these by means of
infinite penalties. Thus ci (xi) = +∞ iff xi is infeasible. This device save us repeated
mention of evident or implicit constraints (for example non-negativity).

Producers interact over two stages in Stackelberg manner as follows: “First”,
each strategist i ∈ S chooses to his heart the permit bundle xi he wants to retain for
himself. “Second”, the fringe members regard the residual quantity

Q :=
∑
i∈I

ei −
∑
i∈S

xi

as total supply, to be allocated via perfect competition. Thereby they minimize their

8If any, most of those might not survive posterior analysis - or pertubations.
9For any vector v = (vg) ∈ RG, when writing v ≥ 0, we mean that vg ≥ 0 for all g ∈ G. The

inner product on RG is defined by v · w :=
∑

g∈G vgwg.
10When instead payoff πi (xi) obtains from input xi, posit ci(xi) := −πi(xi).
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aggregate cost:

cF (Q) := inf

{∑
i∈F

ci(xi) :
∑
i∈F

xi ≤ Q

}
. (1)

Associated to primal problem (1) is a dual, aimed at appropriate pricing, namely:
Maximize the reduced function

inf
xF

{∑
i∈F

ci(xi) + p · (
∑
i∈F

xi −Q)

}
(2)

with respect to p ∈ RG. Here xF := (xi)i∈F is the allocation of permits across the
fringe, and the dot signals the standard inner product. To relate problem (1) to (2)
recall that the Fenchel conjugate

c∗(p) := sup
x
{p · x− c(x)} (3)

of a cost function c : RG → R∪{+∞} reports the competitive profit under price
p. Now, any vector p ∈ RG that makes the dual value (2) coincide with the primal
value (1) is declared a shadow price at Q, and we write p = P (Q). Thus emerges
an implicitly defined, vector-valued, inverse “market curve” Q 7→ P (Q), bound to
become a main object here below. Now is the best time to list some properties of the
primal-dual problem pair (1)-(2). The following, which derive from standard convex
analysis, are stated without proof.11

Proposition 1 (On fringe costs, duality and shadow prices)
• (Attainment of fringe cost) If the essential objective in (1) is inf-compact, meaning
that the lower level set

{
(xi)i∈F :

∑
i∈F

ci(xi) ≤ r and
∑
i∈F

xi ≤ Q

}

is compact for every real number r, then the infimal value cF (Q) in (1) is attained.
In that case, cF is a proper function (that is, finite in at least one point and never
−∞).
• (Preservation of convexity and lower semicontinuity) If all terms ci in (1) are
convex, lower semicontinuous (lsc for short), then so is cF .
• (Bi-conjugacy and attainment of fringe cost) If cF is convex lsc, and all c∗i , i ∈ F,
are finite and continuous at a common p, then c∗∗F = cF , and the minimum in (1) is
attained.
• (Shadow prices are dual optimal) Any shadow price solves problem (2) optimally.

11Particularly useful and informative is the material on infimal convolution in Laurent [12].
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Moreover, given existence of at least one shadow price p = P (Q), the optimal value
of problem (2) equals cF (Q).
• (Shadow prices are negative subgradients) p = P (Q) is a shadow price iff

cF (Q̂) ≥ cF (Q)− p · (Q̂−Q) for all Q̂. (4)

This happens iff −p is a subgradient of cF at Q, that is, −p ∈ ∂cF (Q). Moreover,
if p = P (Q) is a shadow price and cF (Q) is attained at xi, i ∈ F, then −p ∈ ∂ci(xi)
for all i ∈ F, meaning that “marginal” costs are equal across the fringe.
• (Finite fringe cost and existence of shadow prices) Existence of a shadow price
p = P (Q) is ensured whenever cF in finite-valued near Q and convex.
• (Prices slope downwards) (4) implies the (implicit) law of demand :

−p ∈ ∂cF (Q),−p̂ ∈ ∂cF (Q̂) ⇒ (p− p̂) · (Q− Q̂) ≤ 0. ¤

Focus is throughout on strategic interaction. At this point however, since fringe
members are price-takers, a semi-collusive feature might be noted as follows. Given
total supply S =

∑
i∈S(ei−xi) from the strategists, suppose fringe member i demands

di with
∑

i∈F di = S. Then, for any nonempty subset F ⊆ F of fringe members define
its (coalitional) cost

cF(QF) := inf

{∑
i∈F

ci(xi) :
∑
i∈F

xi ≤ QF

}

where QF :=
∑

i∈F(ei + di). Observe that QF = Q. Thus emerges a cooperative
transferable-utility (market or) production game inside the fringe. From [5] one im-
mediately derives

Proposition 2 (Shadow prices generate core solutions) For any shadow price p =
P (Q) and demand profile di, i ∈ F, the imputations

i ∈ F 7→ γi := −c∗i (−p)− p · (ei + di)

belongs to the core of the game having characteristic function F 7→cF(QF). That is,

∑
i∈F γi = cF (QF ) and∑
i∈F γi ≤ cF(QF) for each F ⊂ F. ¤

Take hereafter existence of inverse demand correspondence Q → P (Q) for granted.
Note that P (Q) is a closed convex set, depending upper semicontinuously on Q.
Plainly, a multi-valued price curve becomes non-tractable in analysis. We need that
Q → P (Q) be a single-valued function (whence continuous). This motivates the fol-
lowing

Definition 1 (Essential smoothness and strict convexity) A proper convex function
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c is essentially smooth if it is differentiable on the interior of its proper domain
domc := {x : c(x) < +∞} and ‖∇c (x)‖ → +∞ whenever x approaches the boundary
of that domain. Furthermore, c is essentially strictly convex if strictly convex on
every convex subset of {x : ∂c (x) 6= ∅} . ¤

Suppose henceforth that some ci, i ∈ F, is monotone decreasing (i.e., non-increasing)
with respect to the customary order on RG, that is, xig ≤ x′ig for all g ⇒ ci(xi) ≥
ci(x

′
i).

Proposition 3 (Concerning mainly single-valuedness and continuity of inverse de-
mand)
• (On fringe profit) When some function ci, i ∈ F, is monotone decreasing, the
Fenchel conjugate c∗F (3) of the function cF defined in (1) is given by c∗F =

∑
i∈F c∗i ,

that is, the aggregate profit of the fringe under any price regime equals the sum of the
members’ optimal, price-taking profits.
• If at least one c∗i , i ∈ F, is essentially strictly convex, then so is c∗F .
• If c∗F is strictly convex with all ci, i ∈ F, lsc convex proper, and cF is lsc proper,
then cF becomes continuously differentiable on the interior of its domain, and its
derivative equals −p there, i.e. c′F (Q) = −P (Q).
• If c∗F is essentially strictly convex, then cF is essentially smooth.

Proof. The monotonicity assumption entails that the constraint in (1) can be re-
placed by

∑
i∈F xi = Q. Now the first bullet follows from Rockafellar [16, Theorem

16.4]. The second bullet is trivial, and the third follows from Hirriart-Urruty and
Lemaréchal [10, §X, Theorem 4.1.1, p. 79]. For the fourth and last, see Borwein and
Lewis [2, Theorem 4.2.5, p. 78]. ¤

To make good use of Propositions 1 and 3 we shall invoke some

Standing assumptions: (On the properties of the cost and profit functions)
• Each agent i incurs lsc convex cost ci (xi). Furthermore, each effective domain

Xi := domci := {xi : ci(xi) < +∞}
is nonempty compact and ci is monotone decreasing on Xi.
• The profit function c∗i (·) is essentially strictly convex for at least one i ∈ F.
• There exists at least one price p at which all profit functions c∗i , i ∈ F, are finite-
valued and continuous.
• At any such p = P (Q), the cost function cF is finite near Q. ¤

3. The game with perfect price expectations

Under the above standing assumptions a unique market clearing permit price p =
P (Q) ∈ RG does indeed exist for each Q. We posit that each agent is so clever and
well informed as to foresee the upcoming p. To begin with we make an even stronger
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Assumption on rational price expectations: Until further notice posit that each
strategist knows the entire function Q 7→ P (Q). Also presume that this fact is com-
mon knowledge among the strategists.

Admittedly, with I small, the fringe agents behave naively indeed, ignoring their
market power and acting as non-strategic dummies. The following notion of equilib-
rium reflects this feature:

Definition 2 (Cournot-Nash equilibrium) A feasible emission profile (x̄i)i∈I con-
stitutes a Cournot-Nash equilibrium iff x̄i then minimizes agent i’s cost plus his
proceeds from sale. That is, x̄i minimizes

ci (xi) + P (
∑

i∈I ei −
∑

j∈S�i x̄j − xi) · (xi − ei) when i ∈ S

ci (xi) + P (
∑

i∈I ei −
∑

j∈S x̄j) · (xi − ei) otherwise.

}
(5)

Here P (Q) = −∂cF (Q). ¤

4. Existence, Characterization, and Uniqueness of equilibrium

As said, existence of equilibrium is a delicate matter, to be discussed first:

4.1. Existence of equilibrium. Concerning this crucial issue the following re-
sult serves as a benchmark.

Proposition 4 (Existence in case of convex preferences) Suppose each strategist
i ∈ S faces a quasi-convex or uni-modal12 objective (5). Then there exists a Cournot-
Nash Equilibrium.

Proof. The best response Bi(x−i) of any agent i ∈ I to the choice profile x−i :=
(xj)j 6=i committed by his “rivals” is a nonempty closed convex subset of Xi = domci.
Moreover, the correspondence x−i ; Bi(x−i) has closed graph. The existence of a
fixed point (xi) = x ∈ B(x) := Πi∈IBi(x−i) now follows from Kakutani’s theorem.
Any such point is an equilibrium. ¤

The key hypothesis in Proposition 4 is hard to defend.13 Instead, one may be tempted
to avoid it by means of randomized strategies. Glicksberg’s theorem [8] then gives:

Proposition 5 (Existence of mixed equilibrium) Suppose players randomize over
pure strategies while seeking to minimize expected costs. Then there exists a Cournot-
Nash Equilibrium in mixed strategies. ¤

12Uni-modal means here that the set of minimizing xi is convex.
13If, as in Montgomery [13], all players were price-takers, existence would obtain easily.
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As said, it’s hard to argue for convex preferences. But plainly, it seems equally,
if not more, difficult to justify mixed equilibria. So, the rest of this section falls back
to explore whether strategists’ preferences might reasonably be convex. A main result
in this subsection is that affine price curves pose no problems with existence of Nash
equilibrium. If the reader prefers to accept that assertion, he may move on to the
next subsection 4.2 without loosing main arguments.

To identify sufficient conditions for

xi 7→ P (Q) · (xi − ei) (6)

to be convex in xi, it is convenient first to discuss some curvature properties at the
aggregate level. For this purpose denote by

Z :=
∑
i∈S

(xi − ei) =
∑
i∈F

ei −Q

the total net amount of permits bought by the strategists and name

P (Z) := P (
∑
i∈F

ei − Z)

the residual price function. Assume henceforth that P (Z) be increasing component-
wise in Z. We shall need that the total market expenditure P (Z) ·Z incurred by the
strategists (henceforth named the industry), be convex:

Lemma 1 (The properties of industry expenditure) The expenditure function P (Z) ·
Z, is convex in Z, if one of the following holds.
(i) P (Z) is affine in Z,
(ii) P (Z) is convex (concave) in Z, and Z ≥ 0 (≤ 0), that is, the strategists are net
buyers (sellers) of permits,

Proof. Let α, α̂ ∈ (0, 1) be arbitrary but satisfy α + α̂ = 1. Pick any feasible Z,
Ẑ and define

σ : = P(αZ + α̂Ẑ) · (αZ + α̂Ẑ) and

µ : = αP(Z) · Z + α̂P(Ẑ) · Ẑ.

Industry expenditure P (Z) · Z will be convex in Z iff µ ≥ σ. Otherwise,

0 < σ − µ

= P(αZ + α̂Ẑ) · (αZ + α̂Ẑ)− αP(Z) · Z − α̂P(Ẑ) · Ẑ.

= P(αZ + α̂Ẑ) · (αZ + α̂Ẑ)

− αP(Z) · (αZ + α̂Z + α̂Ẑ − α̂Ẑ)

− α̂P(Ẑ) · (αZ − αZ + αẐ + α̂Ẑ),
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which after a bit of algebra

=
[
P(αZ + α̂Ẑ)− αP(Z)− α̂P(Ẑ)

]
· (αZ + α̂Ẑ)

− αα̂
[
P(Z)− P(Ẑ)

]
·
[
Z − Ẑ

]
=: γ



 (7)

Thus σ− µ > 0 implies γ > 0. Since P(Z) is increasing in Z, the second line in (7) is
negative. Thus,
(i) if P (Z) is affine in Z, the first term in (7) is zero, hence γ > 0 is a contradiction.
(ii) If P (Z) is convex (concave) in Z, the first part of the first line of (7) is negative
(positive) respectively. Hence if Z, Ẑ are positive (negative) in each coordinate, this
furnishes a contradiction once again. ¤

Note that whenever P (Z) is strictly increasing in Z, the second line in (7) is strictly
negative. It is therefore obvious that when (i) or (ii) are satisfied, P (Z) ·Z is strictly
convex when P (Z) is strictly increasing in Z.

Lemma 1 does not preclude strategic behavior on either side of each market. That
diversity motivates a closer scrutiny of the curvature properties of the individual mar-
ket expenditure P(Z) · zi with zi := xi − ei for strategists i ∈ S. Let Z−i := Z − zi

denote what the other strategic agents demand in aggregate.

Lemma 2 (On the properties of individual expenditure of strategists) For each i ∈ S,
his expenditure P(zi + Z−i) · zi is convex in xi (and zi) in each of the following two
cases:
(i) The assumptions of Lemma 1 are satisfied such that P(Z) · Z is convex and any
one of the following conditions hold:

a) P is affine,
b) P is concave, and Z−i ≥ 0,
c) P is convex, and Z−i ≤ 0.

(ii) P is increasing and at least one of the following holds
a) P is affine,
b) P is concave, and (xi − ei) ≥ 0,
c) P is convex, and (xi − ei) ≤ 0.

Proof. Fix any strategist i ∈ S. Pick arbitrary α, α̂ ∈ (0, 1) such that α + α̂ = 1.
Select any two feasible xi, x̂i. Let zi := xi − ei, ẑi := x̂i − ei. Define

β : = P(αzi + α̂ẑi + Z−i) · (αzi + α̂ẑi), and

θ : = αP(zi + Z−i) · zi + α̂P(ẑi + Z−i) · ẑi.

The assertion follows if β ≤ θ. Assume on the contrary that

0 < β − θ
= P(αzi + α̂ẑi + Z−i) · (αzi + α̂ẑi)− θ
= P(αzi + α̂ẑi + Z−i) · (αzi + α̂ẑi + Z−i)
− P(αzi + α̂ẑi + Z−i) · Z−i − θ.





(8)
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(i) By convexity of industry expenditure granted by Lemma 1, the last expression is

≤ αP(zi + Z−i) · (zi + Z−i) + α̂P(ẑi + Z−i) · (ẑi + Z−i)
− P(αzi + α̂ẑi + Z−i) · Z−i − θ
=: Z−i · φ,

where φ = αP(zi + Z−i) + α̂P(ẑi + Z−i) − P(αzi + α̂ẑi + Z−i). Hence, if β > θ, then
Z−i · φ > 0. This furnishes a contradiction when any one of (i) a) − c) are satisfied.
It also follows immediately that P · (xi − ei) is strictly convex if under any one (i)
a)− c) industry revenue is strictly convex
(ii) By expanding (8) as in (7) we get that

0 < β − θ
= −φ · (αzi + α̂ẑi)
− αα̂[P(zi + Z−i)− P(ẑi + Z−i)] · [zi − ẑi]
=: ξ.

Thus, β > θ implies ξ > 0. Since P is increasing in xi, we get αα̂[P(zi + Z−i)−P(ẑi +
Z−i)] · [zi − ẑi] ≥ 0. Hence ξ > 0 is a contradiction whenever φ · (αzi + α̂ẑi) ≥ 0.
The latter is clearly satisfied under setting (ii) when at least one among conditions
a)− c) hold. In that same setting, if P is monotone increasing in xi, then P · (xi− ei)
is strictly convex under any one condition a)− c). ¤

Note that if all other strategic agents than i are net buyers of permits in aggre-
gate, then Z−i ≥ 0 for agent i if he buys less than the other strategic agents or is a
permit seller. On the contrary if the other strategic agents are net sellers of permits in
aggregate, then Z−i ≥ 0 is true if agent i sells more permits than the other strategists
in aggregate. The converse is of course true for Z−i ≤ 0.

After all these preparations comes a first main result:

Theorem 1 (Existence and of Cournot-Nash equilibrium) Assume that the condi-
tions of Lemma 2 are satisfied and that all strategy sets are nonempty compact con-
vex. Then there exists a Cournot-Nash equilibrium.

Proof. Each agent i, whether strategist or price-taker, has an objective which is
convex in own variable and jointly continuous. The fringe members can be “elim-
inated” from the game. They only serve to generate a well-behaved market curve
Q 7→ P (Q). In the reduced game, featuring only strategists, since strategy sets are
of the desirable sort and objectives are bona fide, equilibrium existence follows from
Borwein and Lewis [2, p. 206]. ¤

4.2. Characterization of equilibrium. Granted existence, equilibrium calls for
closer scrutiny. Of particular importance is characterization and uniqueness of equi-
librium. For those purposes, some additional properties of inverse demand merit to
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be brought out:

Lemma 3 (The slope of the market curve) Given Q suppose (p, xF ) solves problem
(2) such that locally around (p, xF ), all functions

∑
i∈F c∗i and ci, i ∈ F , are twice

continuously Fréchet-differentiable. Suppose also that (
∑

i c
∗
i (p))′′ ,[ c′′i (xi)], i ∈ F ,

are all non-singular there. Then, P (·) is differentiable at the given Q and

P ′(Q) =
[∑

i∈F [c′′i (xi)]
−1]−1

where P ′ := ∂P
∂xi

= −∂P
∂Q

, i ∈ S. If in addition, (
∑

i c
∗
i (p))′′, [ c′′i (xi)] are continuous in

a neighborhood of ( p, xF ) then P ′ is continuous in a neighborhood of Q.

Proof. From the Theorem of Crouzeix [3], and by applying the envelope theorem on
(1) respectively, we have (c∗F )′′ (p) = [c′′F (Q)]−1 = [P ′ (Q)]−1. Thus,

P ′(Q) =
[
(c∗F )′′ (p)

]−1
=

[(∑
i∈F c∗i (p)

)′′]−1

=
[∑

i∈F c∗′′i (p)
]−1

=
[∑

i∈F [c′′i (xi)]
−1]−1

.





(9)

The second equality in the first line of (9) comes from the first bullet of Proposition
2, while the second equality in the second line results from applying Crouzeix [3] once
again. ¤

The differentiability assumption in Lemma 3 is not particularly attractive - and wor-
risome if cost functions were “piecewise linear”. One way around this obstacle could
be opened by regularizing the cost functions by integral of infimal convolution using
smooth enough kernels. With Lemma 3 in vigor, the following obtains forthwith:

Proposition 6 (Characterization of Cournot-Nash equilibrium) Under the assump-
tions of Theorem 1, together with those of Lemma 3, a Cournot-Nash equilibrium is
characterized by,

p = P (Q) ∈ −∂ci (xi) for all i ∈ F, Q =
∑

i∈I ei −
∑

i∈S xi, and
p ∈ −∂ci (xi)− P ′(Q) · (xi − ei) for all i ∈ S,

}
(10)

where P ′(Q) =
[∑

i∈F [c′′i (xi)]
−1]−1

.

Proof. This follows immediately form the first order optimality conditions of (5)
and from Lemma 3. ¤

4.3. Uniqueness of equilibrium. For the purpose of uniqueness, we shall follow
the lines of Murphy et al. [14], by defining an auxiliary equilibrating problem
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related to (5). It is parametric in nature and assumes the following form:

minx

∑
i∈I {ci (xi) + p · (xi − ei)}+ 1

2

∑
i∈S(xi − ei) · p′ (xi − ei)

subject to Q =
∑

i∈I ei −
∑

i∈S xi.

}
(EP)

In (EP) Q ∈ RG is taken as a datum and p = P (Q), p′ = P ′(Q).
Suppose that all ci(·) besides already being convex also are continuously differen-

tiable in the relevant domain. Then, x := (xi)i∈I solves (EP) if and only if there exist
a multiplier vector λ ∈ RG associated to the material balance in (EP) such that

0 = c′i (xi) + p for all i ∈ F, and
λ = c′i (xi) + p + p′ (xi − ei) for all i ∈ S.

}
(11)

Lemma 4 (Equilibrium amounts to vanishing multipliers)
• Let Q be such that the optimal solution (xi)i∈I to (EP) yields λ = 0, in (11).
Then, (xi)i∈I is a Cournot-Nash equilibrium. Conversely, if (xi)i∈I is an equilib-
rium solution, then (xi)i∈I solves (EP) for Q =

∑
i∈I ei −

∑
i∈S xi =

∑
i∈F x̄i,

p = P (Q), p′ = P ′(Q), and λ = 0.
• Suppose that the additional condition of Lemma 3 holds, then λ (Q) and xi (Q) , i ∈
S, are upper semi-continuous correspondences in Q with compact values. In particu-
lar, under uniqueness they depend continuously on Q.

Proof. For the first bullet simply note that when λ = 0, (11) comprises all first-order
necessary optimality conditions that go along with interior solutions to problems (5).
When appropriate convexity prevails as well, the same conditions are also sufficient.
The last bullet follows directly for xi (Q) when applying Berge’s Maximum Theorem
(see e.g. Aliprantis and Border [1, Theorem 14.30]) to problem (EP). By that same
theorem, it follows that the dual function associated to problem (EP) is continuous,
whence so is its maximizer λ (Q). ¤

Clearly, for the purpose of uniqueness, one would want the relation Q 7→ λ (Q) to be
monotonous, which would also fit the price interpretation of λ:

Lemma 5 (On the monotonicity of λ (Q)) Suppose P (Z) · Z is convex in Z; that
ci(·) be continuously differentiable in the relevant domain for all i ∈ S, and that at
least one agent is a strategist. Then, λ (Q) is a monotone decreasing function of Q.
Moreover, λ (Q) is strictly monotone in Q when at least one of the additional holds.
(i) P (Z) · Z is strictly convex in Z,
(ii) ci (xi) are strictly convex for all i ∈ S,
(iii) P (Q) is strictly decreasing in Q.

Proof. Summing in (11) over all i ∈ S and write s := |S| we get

sλ =
∑
i∈S

c′i (xi) + sp + p′Z.
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Pick any distinct and feasible Q and Q̂, and solve (EP) for each of these. If λ (·) is
monotone decreasing, it implies that

ω := s[λ(Q)− λ(Q̂)] · [Q− Q̂] ≤ 0.

Assume on the contrary that ω > 0, that is

0 < ω = [
∑

i∈S c′i (xi(Q))−∑
i∈S c′i(xi(Q̂))] · [Q− Q̂]

+ s[P (Q)− P (Q̂)] · [Q− Q̂]

+ [P ′(Q)Z − P ′(Q̂)Ẑ] · [Q− Q̂]

where Ẑ :=
∑

i∈F ei− Q̂. Now, let P′(Z) be the derivative of P(Z) taken with respect
to Z and recall that for P ′ (Q) the derivative was taken with respect to xi, i ∈ S. It
then follows that P′(Z) = P ′ (Q). As xi, i ∈ S is non-increasing in Q and ci (xi) is
convex in xi, that is c′i (xi) is increasing in xi, it follows that

ω ≤ s[P (Q)− P (Q̂)] · [Q− Q̂]

+ [P ′(Q)Z − P ′(Q̂)Ẑ] · [Q− Q̂]

= s[P (Q)− P (Q̂)] · [Q− Q̂]

− [P′(Z)Z − P′(Ẑ)Ẑ] · [Z − Ẑ]

= (s− 1) [P (Q)− P (Q̂)] · [Q− Q̂]

− [P′(Z)Z + P(Z)− P′(Ẑ)Ẑ − P(Ẑ)] · [Z − Ẑ].

Since P (Z) · Z is convex, this is

≤ (s− 1) [P (Q)− P (Q̂)] · [Q− Q̂] ≤ 0

as P (Q) is non-increasing in Q (last bullet of Proposition 1), and s ≥ 1. Hence
ω > 0 is a contradiction. It follows immediately that λ (Q) is strictly monotonous in
Q when at least one of (i)− (iii) holds. ¤

With the support of Lemma 5, the issue of uniqueness may now be addressed.

Theorem 2 (Uniqueness of Cournot-Nash equilibrium) Suppose there exist two per-
mit profiles (x̃i)i∈I and (x̄i)i∈I that both are interior Cournot-Nash equilibria; that
λ (Q) is strictly monotonous in Q; and that ci (xi) are strictly convex for all i ∈ F .
Then (x̃i)i∈I = (x̄i)i∈I , and hence equilibrium is unique.

Proof. Suppose on the contrary that the profiles (x̃i)i∈I and (x̄i)i∈I are distinct.
Denote Q̃ and Q̄ as the corresponding amount of permits available to the fringe.
Since both are equilibria, we know from Lemma 4 that λ(Q̃) = λ(Q̄) = 0. As λ is
strictly monotonous it follows that Q̃ = Q̄. As ci (xi) is strictly convex for all i ∈ F,
the objective of problem (EP) is strictly convex in (xi)i∈I . Since the constraint to
that problem is linear, then (x̃i)i∈I 6= (x̄i)i∈I is a contradiction and equilibrium is
unique. ¤
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5. Equilibrium under Affine Price Expectations

In hindsight we find some results in Section 4, when laden with hard-to verify hypothe-
ses, not very encouraging. To have a more heartening perspective, one conducive to
analysis and computations, we decide to weaken next the assumption about perfectly
rational expectations. The alternative goes as follows:

Assumption about affine price expectations: Posit henceforth that each strate-
gist behaves as though the price curve were affine. Specifically, each agent i ∈ S
persistently believes that prices be of the form

Q̂ → P(Q̂) := PQ(Q̂) := P (Q)− c
′′
F (Q)

[
Q̂−Q

]
. (12)

Fringe members, on the other hand, remain price-takers. That is, they maintain (de-
generate) point expectations about the price vector. ¤

The straightforward interpretation of (12) is that all strategists, in forming their
beliefs, use one and the same point [Q,P (Q)] through which passes an imaginary
price curve having slope −c

′′
F (Q). There are two reasons for accommodating these

curves. First, upon contending with an affine function P(·) instead of the possibly
more intricate counterpart P (·), players may more easily reason about market in-
teraction. Second, as made clear in Section 4, existence is likely to become a more
tractable issue. The appropriate solution concept now assumes a corresponding form:

Definition 3 (First-order equilibrium) A feasible emission profile (x̄i)i∈I constitutes
a first-order equilibrium iff x̄i minimizes agent i’s cost plus his proceeds from
sale. That is, x̄i minimizes

ci (xi) + P(
∑

i∈I ei −
∑

j∈S�i x̄j − xi) · (xi − ei) when i ∈ S

ci (xi) + P(
∑

i∈I ei −
∑

j∈S x̄j) · (xi − ei) otherwise.

}
(13)

Moreover, the realized price-quantity pair p,Q must satisfy

p = −∂cF (Q) = P (Q) = P(Q)and P ′(Q) = −c
′′
F (Q). ¤

Theorem 3 (On the existence of first-order equilibrium) Suppose cF is twice contin-
uously differentiable. Then, under affine price expectations there exists at least one
first-order equilibrium.

Proof. For each Q there is, by the results in Section 4, at least one Nash equi-
librium in the noncooperative game that features objectives (13) and price curve
PQ(·) prescribed in (12). Let Nash(Q) denote the resulting set of Nash equilibria.
One may easily argue that the correspondence Q ; Nash(Q) so defined is upper
semicontinuous with convex values. Let

Q̂(Q) :=

{∑
i∈I

ei −
∑
i∈S

xi : (xi) ∈ Nash(Q)

}
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be the resulting (possibly set-valued) supply to be allocated among the fringe mem-
bers. The correspondence Q ; Q̂(Q) defined in this manner has a fixed point by
Kakutani’s theorem. Any such point supports a first-order equilibrium. ¤

A full-fledged Nash equilibrium, as defined in Section 4, is certainly of first order.
But conversely, and in principle, a first-order equilibrium need not be Nash. To wit,
consider the following one-gas, three-agent example, i.e. |G| = 1, |I| = 3. Agent 1 is
a price-taker endowed with no permits (e1 = 0) and costs

c1 (x1) =





+∞ when x1 ∈ (−∞, 0)

110
19
− 2x1 + 1

2
x2

1 when x1 ∈ [0, 99
100

]

163534261
30852200

− 8219
8119

x1 + 1
2

19
8119

x2
1 when x1 ∈

(
99
100

, 100
19

]

100380361
72200

− 10019
19

x1 + 1
2
100x2

1 when x1 ∈
(

100
19

, 10019
1900

]

0 when x1 ∈
(

10019
1900

, +∞)
.

(14)

Agents 2 and 3 are strategists with endowments e2 = e3 = 10019
1900

and costs

ci (xi) =





+∞ when xi ∈ (−∞, 0)

ai − bixi when xi ∈ [0, 10019
1900

]

0 when xi ∈
(

10019
1900

, +∞)
,

i = 2, 3, where a2 = 8826739
1520000

, a3 = 3817239
760000

, b2 = 881
800

, and b3 = 381
400

. Clearly, if either sort
of equilibrium in this example exist, the associated allocation of permits would satisfy
xi ∈ (0, 10019

1900
) for each i ∈ I. For any such xi, one may verify that the cost function for

the price-taker given in (14) is strictly decreasing, strictly convex, and continuously
differentiable with marginal costs being piecewise linear. The cost functions for the
strategists and the price curve generated by the price-taker, then become exactly as in
Novshek [15, Example 3, p. 88]. Hence, as he shows, no full-fledged Nash equilibrium
exists.14 However, it is straightforward to check that the allocation

x1 =
519

800
, x2 =

2386

475
, x3 =

74091

15200
with p =

1081

800
and p′ = 1

indeed is a first-order equilibrium. Here, no profitable deviations are available for
agents that entertain local perspectives in the form of affine price functions.

14In this example, the assumptions of Lemma 1 are violated.
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6. Concluding Remarks

Our chief errand was to explore existence of equilibrium in imperfect markets with
endogenous market curves. Main problems relate to convexity of strategists’ prefer-
ences. These problems are not of novel notice in the literature on strategic multilateral
exchange.15 For instance, Giraud [7, p. 371] comments on Cournot producers who
face competitive consumers, that
“...the best way to model oligopolistic behavior is probably to assume that firms first set
quantities, while, second, a price emerges on the consumption markets. Of course, as is
well known, one encounters severe difficulties in trying to carry over this program: given
the quantities put up for sale in the first-period, there is not necessarily uniqueness of the
second-period price equilibrium outcome. As a consequence, the firms’ payoff function in
the first-period is not well defined—or, at least, is not a function. Moreover, even if unique-
ness was guaranteed, this payoff function need not be quasi-concave (so that existence of
a subgame-perfect equilibrium would become a problem, unless mixed strategies were al-
lowed).”
In permit markets there is the additional challenge that strategists may reside on
either side of the counter. Also, one wonders: what features make some agents qual-
ifying as price takers and others as strategists? This question is particularly pressing
since the fringe had to be nonempty here - so as to serve as market clearing device.

References

[1] C.D. Aliprantis, K.C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide,
Springer-Verlag, Berlin, 1994.

[2] J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and
Examples, Springer-Verlag, New York, 2000.

[3] J.P. Crouzeix, A Relationship between the Second Derivatives of a Convex Function
and of its Conjugate, Math. Program. 13 (1977), 364-365.

[4] EPA, U.S. Methane Emissions 1990-2020: Inventories, Projections, and Opportunities
for Reductions. U.S. Environmental Protection Agency, Washington, DC, 1999.

[5] I.V. Evstigneev and S. D. Fl̊am, Sharing nonconvex costs, J. Global Optimization 20
(2001) 257-271.

[6] J.J. Gabszewicz, Strategic multilateral exchange: general equilibrium with imperfect
competition, Edward Elgar, Cheltenham, UK, 2002.

[7] G. Giraud, Strategic market games: an introduction, J. Math. Econ. 39 (2003), 355-
375.

[8] I.L. Glicksberg, A further generalization of the Kakutani fixed point theorem with
application to Nash equilibrium points, Proc. Amer. Math. Soc. 3 (1952), 170-174.

15See e.g. Gabszewicz [6] and Giraud [7].



17

[9] R.W. Hahn, Market Power and Transferable Property Rights, Quart. J. Econ. 99
(1984), 753-764.
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