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Abstract

In this paper, it is shown that a consistent misspecification test
statistic based on a local linear Kernel regression estimator is asymp-
totically equivalent to one based on the Nadaraya-Watson estimator.
A variery of new, and consistent, variance estimators are also given.

1 Introduction

Testing for misspecification of functional form has been one of the most
important topics for research in econometrics. Influential contributions con-
cerning the testing of parametric models include Hausman (1978), White
(1982) and Ruud (1984) and the unifying conditional moment procedures of
Newey (1985) and Tauchen (1985). Subsequently, much work has focussed
on improving the finite sample performance of such tests procedures, under
the null. This includes examining asymptotically equivalent versions of test
statistics, higher order asymptotic analysis and the development bootstrap
procedures (see, for example, Orme (1991), Chesher and Spady (1991) and
Horowitz (1994), respectively). For a survey of these issues, see Godfrey and
Orme (2001) and references therein.

However, although methods are now available to improve the finite sam-
ple performance of parametric test procedures under the null (in the sense
that one is able to obtain very good agreement between nominal and empir-
ical significance levels, in general), these tests will not be consistent against

∗Corresponding author. This paper is part of Eduardo Fe’s Ph.D. dissertation. A
previous version was presented in the conference ”Semiparametrics in Rio”, Getulio Vargas
Foundation, Rio de Janeiro (2004). Email address: E.Ferodriguez@manchester.ac.uk
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all deviations from the null model. One way of overcoming this is to employ
nonparametric, kernel-based, methods to construct consistent misspecifica-
tion tests.

During the late 1980’s and the 1990’s a large number of articles have
been published regarding this topic. Following the work of Robinson (1988)
on the estimation of semi-nonparametric models, one can find nonparamet-
ric misspecification tests in Hardle and Mammen (1993), Fan and Li (1996,
2000, 2002), Gozalo (1993), Zheng (1996), Li and Wang (1998), Lavergne
and Vuong (2000), and Ellison and Ellison (2000). Virtually all the pub-
lished papers consider only the framework of regression analysis. However,
the methodology can, of course, be extended to test arbitrary moment con-
ditions (see, for example, Zheng (1998) who proposes a test for conditional
symmetry and Hsiao and Li (2001) who propose a consistent test for het-
eroskedasticity).

The paper by Ellison and Ellison (2000) proposed a nonparametric mis-
specification test statistic based on the Nadaraya-Watson (NW) regression
estimator. This statistic is an “unweighted” version of Zheng’s (1996) con-
sistent test statistic, will was shown to be asymptotically distributed as a
standard normal random variable. The NW estimator is a natural choice,
since it provides a consistent estimator of a regression function and is easy
to implement using a modern computer. However, work by Fan (1992,1993)
has shown the NW estimator is not an optimal estimator among the class
of linear smoothers. The so called Local Linear Regression (LLR) estima-
tor (Stone, 1977) has asymptotic minimax efficiency, a “more stable” bias,
the same variance as that of the NW estimator, and it does not suffer the
Boundary Bias problem (see, for instance, Wand and Jones (1995)). That is,
the LLR estimator has constant convergence rate through the domain of the
regression function (unlike the NW estimator). Thus one might naturally
consider the use of the LLR estimator in place of the NW estimator, in the
construction of consistent misspecification tests. Moreover, the approach of
Ellison and Ellison (2000) suggests (but does not establish) that the LLR
version of the test statistic will be asymptotically distributed as a standard
normal random variable, under the null. In fact this paper shows that a
stronger results obtains.

This paper considers the use of the NW and LLR estimators to construct
test statistics which provide consistent procedures to assess the validity of
some arbitrary moment condition. It is shown that (i) the LLR version will,
in fact, be asymptotically equivalent to the NW version of the test statistic;
and (ii) there are a variety of different consistent variance estimators which
might be employed when implementing these test procedures, which may
lead to the classic conflict amongst test criteria.

The plan of this paper is as follows: Section 2 summarises the model, test
statistics under consideration and derives the relevant limiting distributions.
Section 3 reports the findings of a small Monte Carlo study. Section 4
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concludes.

2 Model and Test Statistics

2.1 The parametric model and hypothesis under test

It is assumed that we have observations w0i = {(yi, x0i)}Ni=1 , onW 0 = (Y,X 0) ,
where X is a (d× 1) vector and Y scalar random variable. Within some
specified parametric framework (e.g., maximum likelihood, non-linear least
squares, generalised method of moments), these data are used to model an
unknown (k × 1) parameter, θ, with θ ∈ Θ and Θ being a compact convex
subset of Rm. In order to test the adequacy of the parametric model, a
moment condition of the form E (ε|x) = 0 is to be tested in which ε =
u(θ0;W ) and u(θ;W ) is some (scalar) random function of θ. Formally, the
null and alternative hypothesis are:

H0 : Pr [E (u (θ0;Wi) |Xi) = 0] = 1, a.s. for some θ0 ∈ Θ
HA : Pr [E (u (θ;Wi) |Xi) = 0] < 1, a.s. for all θ ∈ Θ.

The following basic assumptions are made, in which |.| is the absolute
value of a scalar, ||a|| = √a0a is the Euclidean Norm of a vector and ||A|| =p
tr (A0A) =

p
tr(AA0), is the Euclidean Norm of a matrix.

Assumption 1 (i) The w0i are independently and identically distributed as
W 0 = (Y,X 0) , with joint density g(w); (ii) X is a continuous ran-
dom variable and has convex compact support, S ⊂ Rd, with density
f(x); (iii) f(x) is bounded above, infx f(x) ≥ δ > 0 and is uniformly
continuous.

Assumption 2 The u = u (θ;W ) have first and second order derivatives de-

noted∇θu =
∂u(θ;W )

∂θ
, (m× 1) and∇θθu =

∂2u(θ;W )

∂θ∂θ0
, (m×m) , re-

spectively, and there exists a measurable function b (W ) > 0 satisfyingR
b(w)dw <∞ which dominates |u| , ||∇θu|| and ||∇θθu|| , for all θ ∈ Θ.

Furthermore, writing ε = u(θ0;W ), for some θ0 ∈ Θ, ε has bounded
fourth moment with E

¡
ε2|X = x

¢
= σ2(x) and E

¡
ε4|X = x

¢
= µ4(x).

Assumption 3 A parametric estimator, θ̂, is available such that under H0,
θ̂ − θ0 = Op(N

−1/2)

Assumption 1 requires X to be continuously distributed, although Y
could be discrete. The analysis in this paper could be extended to include
the case of discrete (or mixed X), along the lines of the recent paper by
Racine and Li (2004). The conditions on f(x) avoid problems associated
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with small values of the density when using Kernel-based methods (see for
example, Ellison and Ellison (2000) and Fan and Li (2002)) and, thereby,
simplifies the analysis. Without it, trimming out small values of the density
could be employed (as, for example, in Lavergne and Vuong, 1996) but at
the cost of complicating the proofs. Assumptions 2 and 3 justify the various
asymptotic expansions that will be used to derive limiting distributions,
and are fairly standard. The next section introduces the Kernel-based test
statistics under consideration.

2.2 The Test Statistics

First, define ζij =

µ
Xi −Xj

h

¶
, with Xi having typical element Xil, l =

1, ..., d, and the product Kernel as

Kij =
1

hd

dQ
l=1

½
k

µ
Xil −Xjl

h

¶¾
≡ 1

hd
K
¡
ζij
¢
,

where K (ζ) is a product kernel, and k(s) is a univariate kernel, satisfying
the following:

Assumption 4 Let k(s) ≥ 0 be a bounded real-valued, symmetric, density
function, k : R→ R, such that:
(i)
R∞
−∞ k(s)ds = 1

(ii) sups k(s) <∞
(iii) |s| k (s)→ 0 as |s|→∞.
(iv)

R
k2 (s) ds <∞.

The parameter h is a smoothing parameter which approaches zero as N →
∞, as detailed later.

Now, let T = {Tij} be some (N ×N) weighting matrix with diagonal
elements equal to zero and e = {ei} be an (N × 1) vector. Then define a
class of test statistics as

V TN (e) =
Nhd/2

N(N − 1)e
0Te =

Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
eiTijej . (1)

Examples include the following:

1. Zheng’s (1996) test statistic is

V KN (û) =
Nhd/2

N(N − 1)
X
i

X
j 6=i
ûiKijûj

=
1√
N

NX
i=1

ûir̂N (Xi)
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where ûi = u
³
θ̂;Wi

´
, r̂N(Xi) =

√
Nhdα̂N (Xi)fN (Xi), fN(Xi) =

1
N−1

P
j 6=iKij is the ‘leave-one-out’ Nadaraya-Watson (NW) density

estimator and α̂N(Xi) is the corresponding ‘leave-one-out’ NW regres-
sion estimator of E [ε|Xi] , but with θ̂ replacing θ0.

2. Ellison and Ellison (2000) proposed

V PN (û) =
Nhd/2

N(N − 1)
X
i

X
j 6=i
ûiPijûj , Pij =

Kij
fN(Xi)

=
1√
N

NX
i=1

ûirN (Xi), say

where, here, rN(Xi) =
√
Nhdα̂N(Xi).

3. Replacing α̂N(Xi) with α̃N(Xi), the ‘leave-one-out’ Local Linear (Ker-
nel) Regression (LLR) estimator yielding the statistic

V RN (û) =
1√
N

NX
i=1

ûirN(Xi)

=
Nhd/2

N(N − 1)
X
i

X
j 6=i
ûiRijûj

=
Nhd/2

N(N − 1) û
0Rû

where, here, rN(Xi) =
√
Nhdα̃N(Xi), and, therefore,

Rij =

Kij −
µ

1

N − 1
P
s6=iKisζ

0
is

¶µ
1

N − 1
P
s6=iKisζisζ

0
is

¶−1
Kijζij

∆i

=
Kij − bN(Xi)0 (MN(Xi))

−1Kijζij
∆i

;

∆i ≡ ∆N(Xi) =
1

N − 1
X
s6=i

n
Kis − bN (Xi)0 (MN (Xi))

−1Kisζis
o

= {fN(Xi)}− bN(Xi)0 (MN(Xi))
−1 bN (Xi) > 0,

where the definitions of fN(Xi) ≡ fNi, bN(Xi) ≡ bNi and MN(Xi) ≡
MNi are implicit, so that

1

N − 1
P
j 6=iRij = 1.

This last statistic (to the best of our knowledge) has not previously been
discussed or analysed. In this paper, we provide its limit distribution under
the null by showing that it is asymptotically equivalent to V PN (û), which is
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the Ellison and Ellison (2000) statistic. The intuition for this asymptotic
equivalence runs as follows. The difference between V RN (û) and V

P
N (û) is

V RN (û)− V PN (û) =
1√
N

NX
i=1

ûi
√
Nhd (α̃N(Xi)− α̂N (Xi))

=
1√
N

NX
i=1

ûiaN (Xi)

where aN(Xi) =
√
Nhd (α̃N(Xi)− α̂N(Xi)) . However, under the null that

E [ε|x] = 0, it can be shown that a0N (x) =
√
Nhd

¡
α̃0N(x)− α̂0N(x)

¢
is op(1),

where α̂0N (x) and α̃0N (x) are, respectively, the NW and LLR estimators of
E [ε|X = x] . Consistency of θ̂ under the null suggests therefore that aN(x)
will also be op(1) which, in turn, indicates the possible degeneracy of V

R
N (û)−

V PN (û) . This result is formally established in this paper.
Note that, it is expected that V RN (û), V

P
N (û) and V

K
N (û) will provide

consistent test statistics, for a one-sided testing procedure. For example,
Zheng (1996) shows that V KN (û)/Nh

d converges (in probability) to a finite
positive limit under HA (when u (θ;W ) is a regression model error).

2.3 The Limit Distributions

Following (1), define

V QN (e) =
Nhd/2

N(N − 1)
X
i

X
j 6=i
eiQijej . Qij =

Kij
f(Xi)

.

The starting point of the analysis is an application of Hall’s (1984) cen-
tral limit theorem for degenerate U-statistics, for which the conditions are
relatively easy to verify.

Lemma 1 As N →∞, h→ 0 such that Nhd →∞,
(i) V QN (ε)

d→ N(0,Σ), where Σ = 2
R
K2 (ζ) dζ 0

R ©
σ2(x)

ª2
dx0.

(ii) Furthermore,

ΣQ1N(ε) =
2hd

N(N − 1)
X
i

X
j 6=i

ε2iQ
2
ijε

2
j

ΣQ2N(ε) =
hd

N(N − 1)
X
i

X
j 6=i

ε2i
©
Q2ij +QijQji

ª
ε2j

are consistent for Σ.

6



With this result, the strategy for establishing the limit distribution of
V RN (û) is to show the following:

V RN (û)− V QN (ε) = op(1)
by noting that

V RN (û)− V QN (ε) = V RN (û)− V PN (û)
+V PN (û)− V QN (û)
+V QN (û)− V QN (ε)

where each of the three terms on the right hand side are op(1). In particular,
by showing that V RN (û) − V PN (û) = op(1) it is established that V RN (û) will
be asymptotically equivalent to the Ellison and Ellison (2000) test statistic.

Consider first, V QN (û) − V QN (ε) . Following very closely the arguments
laid out in Zheng (1996), and the assumptions stated to date, we have the
following Lemma.

Lemma 2 Under Assumptions 1-4 with N →∞, h→ 0 such that Nhd →
∞,

V QN (û)− V QN (ε) = op(1)
so that

V QN (û)
d→ N(0,Σ).

Proof. See Appendix

To establish that V PN (û)−V QN (û), the following rather general, result is
established.

Theorem 3 Let V KN (û) =
Nhd/2

N(N − 1)
P
i

P
j 6=i ûiKijûj be defined as above

and consider the statistic V DN (û) =
Nhd/2

N(N − 1)
P
i

P
j 6=i ûiaN(Xi)Kijûj where

aN(x) is a scalar random function of X1, ...,XN such that supx∈S |aN (x)| =
o(1), a.s.. Then V DN (û) = op(1).

Proof. See Appendix.

The above Theorem allows us to show both V PN (û) − V QN (û) = op(1)
and V RN (û)−V PN (û) = op(1).We make the following additional assumptions
which impose slightly stronger conditions on the behaviour of h (Assumption
5) and the kernel function, as follows:1.

1It is possible to weaken these conditions, to obtain the same result, but at the expense
of complicating the proof.
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Assumption 5 As N → ∞, h → 0 there exists a δ ∈ (0, 1) such that
N δh2d → γ, where γ is a positive constant.

Assumption 6 Assume that
(i) k(s) ≥ 0 also satisfiesZ ∞

−∞
|sk(s)| ds < ∞ (2)Z ∞

−∞

¯̄
s2k(s)

¯̄
ds = µk2 <∞. (3)

(ii) k(s) has characteristic function η (t) , with derivatives η0(t) and
η00(t), all of which are absolutely integrable.

Note that Assumption 6(i), ensures that η0(t) and η00(t) exist. Further-
more, Assumption 6(ii) implies that k(s) = (2π)−1

R
η(s)e−itsdt, isk(s) =

(2π)−1
R
η0(s)e−itsdt, where i2 = −1, and s2k(s) = − (2π)−1 R η00(s)e−itsdt.

Then, since K (ζ) has characteristic function φ(ξ) =
Qd
l=1 η (ξl) , where

ξ0 = (ξ1, ..., ξd) , it follows that

K(ζ) =
dY
l=1

k (ζ l) = (2π)
−d
Z

φ(ξ)e−iξ
0ζdξ0,

iζ lK (ζ) = iζ lk(ζ l)
dY

m6=l
k (ζm) = (2π)

−d
Z
∇lφ (ξ) e−iξ0ζdξ0,

ζ2lK (ζ) = ζ2l k(ζ l)
dY
r 6=l
k (ζr) = − (2π)−d

Z
∇2llφ (ξ) e−iξ

0ζdξ0

ζ lζmK (ζ) = ζ lζmk(ζ l)k (ζm)
dY
r 6=l
r 6=m

k (ζr) = − (2π)−d
Z
∇2lmφ (ξ) e−iξ

0ζdξ0, l 6= m,

where ∇lφ (ξ) = ∂φ (ξ)

∂ξl
and ∇2lmφ (ξ) =

∂2φ (ξ)

∂ξl∂ξm
, and these results will be

useful in what follows.

Assumption 7 The functions,

z0(c) =

Z
|φ (cξ)− φ (ξ)| dξ0

z1(c) =

Z
|∇lφ (cξ)−∇lφ (ξ)| dξ0
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and

z2(c) =

Z ¯̄∇2lmφ (cξ)−∇2lmφ (ξ)¯̄ dξ0
are Locally Lipschitz of order 1 at c = 1; i.e., there exists a ε > 0 and
0 < B <∞ such that

|zr(c)| < B |c− 1| for all c ∈ (1− ε, 1 + ε) and r = 0, 1, 2.

Together, Assumptions 5-7 permit the application of Van Ryzin’s (1969)
method in order to prove the following result.

Lemma 4 Under Assumptions 1, 5-7

sup
x∈S

|fN (x)− f(x)| −→ 0, a.s. (4)

sup
x∈S

||bN (x)|| −→ 0, a.s. (5)

sup
x∈S

¯̄¯̄
MN (x)− µK2 f(x)Id

¯̄¯̄ −→ 0, a.s. (6)

Furthermore

sup
x∈S

|fN (x)|−1 = O(1) a.s. (7)

sup
x∈S

¯̄¯̄
MN(x)

−1¯̄¯̄ = O(1) a.s. (8)

sup
x∈S

|∆N (x)− f(x)| −→ 0, a.s. (9)

sup
x∈S

|∆N(x)|−1 = O(1) a.s. (10)

Proof. See Appendix.

Exploiting Lemma 4, the following result is established, which provides
an alternative asymptotic justification for the test statistic proposed by El-
lison and Ellison (2000).
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Corollary 5 Under Assumptions 1-7.

V PN (û)− V QN (û) = op(1)
so that

V PN (û)
d→ N(0,Σ).

Proof. Note that

V PN (û)− V QN (û) = V DN (û)
where the (n× n) matrix D has typical element

Dij =

µ
f (Xi)− fN (Xi)
f (Xi) fN (Xi)

¶
Kij

= aN(Xi)Kij , say.

Note that by Lemma 4. supx∈S |aN (x)| = o(1), a.s. The result follows from
Theorem 3

Finally, the following Corollary completes the demonstration.

Corollary 6 Under Assumption 1-7,

V RN (û)− V PN (û) = op(1)
so that

V RN (û)
d→ N(0,Σ).

Proof. We have

V RN (û)− V PN (û) = V DN (û)
where the (n× n) matrix D now has typical element

Dij =
(fN (Xi)−∆N (Xi))Kij
∆N(Xi)fN(Xi)

− bN (Xi)
0 (MN (Xi))

−1Kijζij
∆N(Xi)

=
bN(Xi)

0 (MN(Xi))
−1 bN (Xi)Kij

∆N(Xi)fN(Xi)
− bN(Xi)

0 (MN(Xi))
−1Kijζij

∆N (Xi)

= a1N (Xi)Kij + a2N(Xi)
0Kijζij , say,

so that

V DN (û) =
Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
ûia1N(Xi)Kijûj +

Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
ûia2N(Xi)

0ζijKijûj .
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Note that by Lemma 4. both supx∈S |a1N(x)| = o(1), a.s, and supx∈S ||a2N(x)|| =
o(1), a.s. Theorem 3 implies that

V D1N (û) =
Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
ûia1N(Xi)Kijûj = op(1).

Similarly,

V D2N (û) =
Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
ûia2N(Xi)

0ζijKijûj = op(1).

The latter is slightly more complicated but the result also follows from The-
orem 3 since it can be expressed as the sum of the following d terms

Nhd/2

N(N − 1)
NX
i=1

X
j 6=i
ûia2Nl(Xi)ζijlKijûj

where a2N (Xi) = {a2Nl(Xi)} and ζij =
©
ζijl
ª
, l = 1, ..., d, and noting that

Nhd/2

N(N − 1)
PN
i=1

P
j 6=i ûiζijlKijûj ≡ 0, for l = 1, ..., d.

It follows, therefore, that V RN (û) − V QN (ε) = op(1), as required, so that
by Lemma 1, V RN (û)

d→ N (0,Σ) . It follows that the following test statistic

SRN (û) =
V RN (û)p
ΣN (û)

will have a limit standard normal distribution under the null, where ΣN (û) >
0 is any consistent estimator for Σ. On the other hand, it can be shown (sim-
ilar to Zheng, 1996) that SRN (û)/Nh

d converges in probability to a positive
constant under HA. Thus, an asymptotically valid test procedure is to reject
H0 for large values of S

R
N (û) .

A consistent estimator for Σ is given by the following Lemma.

Lemma 7 Consistent estimators of Σ are given by any of the following

ΣP1N (û) =
2hd

N(N − 1)
X
i

X
j 6=i
û2iP

2
ijû

2
j

ΣP2N (û) =
hd

N(N − 1)
X
i

X
j 6=i
û2i
©
P 2ij + PijPji

ª
û2j

ΣR1N (û) =
2hd

N(N − 1)
X
i

X
j 6=i
û2iR

2
ijû

2
j

ΣR2N (û) =
hd

N(N − 1)
X
i

X
j 6=i
û2i
©
R2ij +RijRji

ª
û2j .
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Proof. See Appendix.

Note that different choices of variance estimator can lead to a so-called
conflict amongst test criteria. For example, writing, tij = ûiRijûj , it follows
that

SRN (û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t2ij

d→ N(0, 1)

as n→∞, h→ 0. Equally, writing t∗ij =
1

2
ûi {Rij +Rji} ûj , we also have

SR
∗

N (û) =

P
i

P
j 6=i t

∗
ijq

2
P
i

P
j 6=i t∗2ij

d→ N(0, 1)

but SR
∗

N (û) ≥ SRN(û), in finite samples, indicating a potential conflict among
test criteria depending on the choice of variance estimator.

3 Monte Carlo Simulations

This section reports the findings of a small Monte Carlo study of the finite
sample performance of various test statistics of the form STN (û) , including
Zheng’s (1996) statistic, the Ellison and Ellison (2000) statistic, the LLR
based statistic, and modifications thereof.

The Data Generation Process (DGP) employed under the null is the
following regression model

yi = 1 +Xi1 +Xi2 + ui

q
1 +X2

i1

where Xi1 = Zi1 + Vi, Xi2 = Zi2 + Vi, with Zij ∼ U (−π,π) , j = 1, 2,
Vi ∼ U (−π,π) and ui ∼ N (0, 1) , with Zi1, Zi2, Vi and ui all iid. The test
statistics considered are:

1. SKN (û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t

2
ij

, tij = ûiKijûj

2. SPN(û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t2ij

, tij =
1

2
ûi {Pij + Pji} ûj

3. SRN(û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t

2
ij

, tij =
1

2
ûi {Rij +Rji} ûj
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4. SGN(û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t2ij

, tij =
1

2
ûi {∆N(Xi)Rij +∆N (Xj)Rji} ûj

5. SHN (û) =

P
i

P
j 6=i tijq

2
P
i

P
j 6=i t2ij

, tij =
1

2
ûi {fN (Xi)Rij + fN (Xj)Rji} ûj

The Kernel employed was a standard normal product Kernel, K (ζ) =
1

(2π)−2
exp

³
− (ζ1+ζ2)22

´
, with smoothing parameter h = N−1/6, which satis-

fies h → 0, Nh4 → ∞, and Assumptions 4,6 and 7. Both asymptotic and
bootstrap critical values were employed, in a one-sided test procedure. The
(wild) bootstrap DGP is given by

y∗i = β̂0 + β̂1Xi1 + β̂2Xi2 + ûiηi

where the β̂j are the Ordinary Least Squares (OLS) estimators under the
null, ûi the OLS residual and ηi an iid random variable which takes the value

−1 or 1 with probability 1
2
. This form of the wild bootstrap was mentioned

by Liu (1998) and has been advocated by Davidson and Flachaire (2000). It
has been shown to perform well by Godfrey and Orme (2002, 2004). From
the bootstrap sample, a typical test statistic is denoted STN (ũ

∗) , where
T = K,P,R,G or H, and ũ∗ is the bootstrap OLS residual. Repeating
this for a large number of bootstrap samples one is able to construct a
“bootstrap” critical value; see, for example, Li and Wang (1998). Letting
ZN = {yi,Xi1,Xi2}Ni=1 denote the observed data, then adaptations of the
results in Section 2.3 show that, conditional on ZN , S

T
N (ũ

∗) |ZN d→ N(0, 1),
which establishes the asymptotic validity of the wild bootstrap in the sense
that the use of bootstrap critical values should perform at least as well as
those obtained from standard O(1) asymptotic theory (i.e., standard normal
critical values).

For all experiments in this small Monte Carlo study, N = 100; 2000
replications of sample data were generated; and, 399 bootstrap samples for
each replication.

Table 1 gives the empirical significance levels (at the nominal levels of
10%, 5% and 1%) for each of the statistics.
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Table 1

Empirical Significance Levels
Wild Bootstrap Asymptotic

10% 5% 1% 10% 5% 1%
SKN (û) 9.80 5.60 1.40 6.80 3.55 1.45
SPN(û) 10.00 5.00 1.15 5.15 2.60 0.55
SRN(û) 10.35 5.15 0.95 7.00 2.60 0.30
SGN(û) 9.25 5.10 1.55 6.75 3.90 1.40
SHN (û) 10.90 5.30 0.95 5.90 2.95 0.30

As expected, the bootstrap performs well at controlling significance levels
(there is very good agreement between nominal and empirical values) and
this close agreement is reflected in other experiments, not reported here,
which use different sample sizes, smoothing parameters, and DGPs. As pre-
viously found, the use of asymptotic critical values is not to be recommended
as it leads to tests which are significantly undersized.

Table 2

Rejection frequencies: DGP2, γ = 0.25
Wild Bootstrap Asymptotic

10% 5% 1% 10% 5% 1%
SKN (û) 62.60 49.25 28.15 60.50 47.85 27.70
SPN (û) 67.25 55.70 30.50 59.65 45.95 21.50
SRN (û) 43.35 30.45 10.60 39.15 23.75 3.75
SGN (û) 60.20 47.20 26.25 59.85 48.30 27.50
SHN (û) 66.45 53.40 29.10 61.75 49.10 24.20

Tables 2 and 3 report rejection frequencies for the following DGP (DGP2 ):

yi = yi = 1 +Xi1 +Xi2 + γXi1Xi2 + ui

q
1 +X2

i1,

for γ = 0.25 (Table 2) and γ = 0.5 (Table 3). The rejection frequen-
cies listed under “Asymptotic” are included for completeness for should be
treated with caution since they are not size-adjusted. The Wild Bootstrap
rejection frequencies indicate that all tests have power and, although these
rejection frequencies can be sensitive to the choice of smoothing parameter,
it is noteworthy that across all experiments (not all reported here to con-
serve space) the Ellison and Ellison (2000) statistic, SPN (û) , appeared most
powerful with that based on the Local Linear Regression Estimator, SRN (û) ,
least powerful. This is an unexpected result, since prior intuition suggested
that the Local Linear Regression technique should yield greater power.
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Table 3

Power: DGP2, γ = 0.5
Wild Bootstrap Asymptotic

10% 5% 1% 10% 5% 1%
SKN (û) 99.50 98.90 95.55 99.45 99.05 96.55
SPN (û) 99.50 98.80 95.65 99.40 98.50 90.85
SRN (û) 92.30 82.95 53.10 91.75 79.30 33.40
SGN (û) 98.85 98.05 93.90 99.20 98.50 95.15
SHN (û) 99.45 98.85 96.15 99.45 98.60 94.95

4 Conclusion

Extending the work of Zheng (1996) and Ellison and Ellison (2000), a consis-
tent conditional moment test has been constructed by employing the Local
Linear Regression estimator and its limiting behaviour analysed. Its limit
distribution is standard normal but, moreover, it is asymptotically equiva-
lent to the Ellison and Ellison (2000) test statistics, which is based on the
Nadaraya-Watson regression estimator. In addition, a variety of consistent
variance estimators arise from our analysis which might be employed when
implementing test procedures.

Although asymptotically equivalent, the results of a small Monte Carlo
study indicates that the Ellison and Ellison (2000) procedure, which uses
the Nadaraya-Watson estimator, is far more powerful than that which uses
the Local Linear Regression estimator. Moreover, the Ellison and Ellison
(2000) procedure is more powerful than that of Zheng (2000).

Having proposed the use of the Local Linear Regression estimator in the
construction of Kernel-based nonparametric tests, Monte Carlo evidence
suggests that sue of the simpler Nadaraya-Watson estimator still yields a
more powerful procedure. Future research will address adaptations to these
test statistics (via trimming) which avoid the requirement of compact sup-
port for the regressor density; the use of RESET versions, to avoid the curse
of dimensionality; and, a comparison with other parametric and nonpara-
metric procedures proposed in the literature; e.g., Wang (1998)

5 Appendix

Here we collect together the main of the proofs.

Proof of Lemma 1
(i) Write V QN (ε) as V

Q∗
N (ε), where Q∗ = 1

2 (Q+Q
0) , and Hall’s condi-

tions are easily verified.
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For (ii), note that by results on variances of quadratic forms2,

var
h
V Q

∗
N (ε)

i
=

N2hd

N2(N − 1)2
X
i

X
j 6=i
E

·
ε2i ε

2
jK

2
ij

½
1

f2(Xi)
+

1

f(Xi)

1

f(Xj)

¾¸

=
N2

N(N − 1)
Z
K2 (ζ)σ2 (x)σ2 (x− ζh)

×
½

1

f2(x)
+

1

f(x)

1

f(x− ζh)

¾
f(x)f(x− ζh)dx0dζ 0

= 2

Z
K2 (ζ) dζ 0

Z ©
σ2(x)

ª2
dx0 + o(1).

It is also true that

N2hd

N2(N − 1)2
X
i

X
j 6=i
E

·
ε2i ε

2
jK

2
ij

1

f2(Xi)

¸

=
N2

N(N − 1)
Z
K2 (ζ)σ2 (x)σ2 (x− ζh)

1

f2(x)
f(x)f(x− ζh)dx0dζ 0

= 2

Z
K2 (ζ) dζ 0

Z ©
σ2(x)

ª2
dx0 + o(1).

It follows, from H-projection arguments (see for example Zheng (1996))
that both

ΣQ1N (ε) =
2hd

N(N − 1)
X
i

X
j 6=i

ε2iQ
2
ijε

2
j

ΣQ2N (ε) =
hd

N(N − 1)
X
i

X
j 6=i

ε2i
©
Q2ij +QijQji

ª
ε2j

are consistent for Σ.

Proof of Lemma 2.
Adapt Zheng’s (1996) method of proof as follows. Take a second order
Mean Value Expansion of V DN (û) about θ̂ = θ0 yielding

V QN (û) = V
Q
N (ε) + V

0
2N

√
N
³
θ̂ − θ0

´
+
1

2

√
N
³
θ̂ − θ0

´0
V3N

³
θ̂ − θ0

´
2See, for example, Li and Wang (1998), details under compact support conditions of

Assumption 1.
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where

V QN (ε) =
Nhd/2

N(N − 1)
X
i

X
j 6=i

εiQijεj

V 02N =

√
Nhd

N(N − 1)
X
i

X
j 6=i

εiQij (Oθεj)
0 +

√
Nhd

N(N − 1)
X
i

X
j 6=i

εiQji (Oθεj)
0

V3N =
hd/2

N(N − 1)
X
i

X
j 6=i
u∗iQij

¡
Oθθu

∗
j

¢
+

hd/2

N(N − 1)
X
i

X
j 6=i
(Oθu

∗
i )Qij

¡
Oθu

∗
j

¢0
+

hd/2

N(N − 1)
X
i

X
j 6=i
u∗iQji

¡
Oθθu

∗
j

¢
+

hd/2

N(N − 1)
X
i

X
j 6=i
(Oθu

∗
i )Qji

¡
Oθu

∗
j

¢0
where εi = u(θ0;Wi), u

∗
i = u(θ∗;Wi), Oθεi =

∂u(θ0;Wi)

∂θ
, Oθu

∗
i =

∂u(θ∗;Wi)

∂θ
, Oθθu

∗
i =

∂2u(θ∗;Wi)

∂θ∂θ0
.

By Lemma 1, V QN (ε)
d→ N(0,Σ). Now we show that:(i) V2N = op(1);

(ii) V3N = op(1)
To prove (i), re-write the first term in V 02N as

A0N =
√
Nhd

N(N − 1)
X
i

X
j 6=i
eiKijm

0
j +

√
Nhd

N(N − 1)
X
i

X
j 6=i
eiKijv

0
j

where ei = εi/f (Xi) , v
0
j = Oθεj − mj and mj = E [Oθεj |Xj ] , and

consider A0Nλ for any λ 6= 0. The first term in A0Nλ is Op
¡
hd/2

¢
by

Zheng (1996, Lemma 3.3b). The second term in A0Nλ is

uN =

√
Nhd

N(N − 1)
X
i

X
j 6=i
eiQijηj , ηj = v

0
jλ,

where E
£
ηj |Xj

¤
= 0 and E [ε∗i |Xi] = 0. Now, fairly general results on

variances of quadratic forms gives

var [uN ] ≤ 2Nhd

N2 (N − 1)2
X
i

X
j 6=i
E
£
e2iK

2
ijη

2
j

¤
= O

¡
N−1

¢
O (1) ,

since, by results similar to those used in Lemma 1,
2hd

N(N − 1)
P
i

P
j 6=iE

h
ε∗2i K

2
ijη

2
j

i
=

O(1). Therefore uN = op(1) for all λ 6= 0. Thus, A0N converges in prob-
ability to zero.
The same approach can be used to show that the second term in
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V2N ,

√
Nhd

N(N − 1)
P
i

P
j 6=i eiKji (Oθεj)

0 , is op(1)

The proof of (ii), is identical to that of Zheng (1996, Lemma 3.3d).

Proof of Theorem 3.
Take a first order Mean Value Expansion of V DN (û) about θ̂ = θ0,
which yields

V DN (û) = V
D
N (ε) + V

0
2N

√
N
³
θ̂ − θ0

´
+
1

2

√
N
³
θ̂ − θ0

´0
V3N

³
θ̂ − θ0

´

where

V DN (ε) =
Nhd/2

N(N − 1)
X
i

X
j 6=i

εiaN(Xi)Kijεj

V 02N =

√
Nhd

N(N − 1)
X
i

X
j 6=i

εiaN(Xi)Kij (Oθεj)
0

+

√
Nhd

N(N − 1)
X
i

X
j 6=i

εiKijaN(Xj) (Oθεj)
0

V3N =
hd/2

N(N − 1)
X
i

X
j 6=i
u∗i aN(Xi)Kij

¡
Oθθu

∗
j

¢
+

hd/2

N(N − 1)
X
i

X
j 6=i
(Oθu

∗
i ) aN (Xi)Kij

¡
Oθu

∗
j

¢0
+

hd/2

N(N − 1)
X
i

X
j 6=i
u∗iKijaN (Xj)

¡
Oθθu

∗
j

¢
+

hd/2

N(N − 1)
X
i

X
j 6=i
(Oθu

∗
i )KijaN(Xj)

¡
Oθu

∗
j

¢0
.

and show that:(i) V DN (ε) = op(1); (ii) V2N = op(1); (iii) V3N = op(1).
Proof of (i):
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Note that V DN (ε) has second moment

E
¯̄
V DN (ε)

¯̄2
=

N2hd

N2(N − 1)2
X
i

X
j 6=i
E
£
ε2i ε

2
jK

2
ij

©
a2N(Xi) + aN(Xi)aN(Xj)

ª¤
≤ 2

N2hd

N2(N − 1)2
X
i

X
j 6=i
E
£
ε2i ε

2
jK

2
ija

2
N (Xi)

¤
≤ 2E

sup
x∈S

|aN (x)|2 N2hd

N2(N − 1)2
X
i

X
j 6=i

ε2i ε
2
jK

2
ij


= o(1)

2N2hd

N2(N − 1)2
X
i

X
j 6=i
E
£
ε2i ε

2
jK

2
ij

¤
= o(1)O(1)

thus VN = op(1).
Proof of (ii):
Write the first term in V 02N as

A0N =
√
Nhd

N(N − 1)
X
i

X
j 6=i

εiaN (Xi)Kijv
0
j +

√
Nhd

N(N − 1)
X
i

X
j 6=i

εiaN(Xi)Kijm
0
j

where mj = E [Oθεj |Xj ] , vj = Oθεj −mj , and consider, first, uN =√
Nhd

N(N − 1)
P
i

P
j 6=i εiaN(Xi)Kijv

0
jλ, for any λ 6= 0. We have, with

ηj = v
0
jλ,

var [uN ] ≤ 2Nhd

N2 (N − 1)2E
X

i

X
j 6=i
a2N (Xi)ε

2
iK

2
ijη

2
j


= o(1)

2Nhd

N2 (N − 1)2
X
i

X
j 6=i
E
£
ε2iK

2
ijη

2
j

¤
= o(1)O(N−1)

Thus, in general, uN = op(1). ThereforeA
0
N =

√
Nhd

N(N − 1)
P
i

P
j 6=i εiaN(Xi)Kijm

0
j+

op(1). To verify that A
0
N = op(1) it is sufficient to show that zN =√

Nhd

N(N − 1)
P
i

P
j 6=i εiaN(Xi)Kijξj is op(1), where ξj = m0jλ,for any
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λ 6= 0. Consider

var [zN ] =
Nhd

N2 (N − 1)2E
X

i

X
j 6=i
a2N (Xi)ε

2
iK

2
ijξ

2
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Nhd
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i

X
j 6=i

X
l 6=j,l 6=i

a2N(Xi)ε
2
iKijξjKilξl


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x
|aN (x)|2

 Nhd

N2 (N − 1)2
X
i

X
j 6=i
E
£
ε2iK

2
ijξ

2
j

¤

+
Nhd

N2 (N − 1)2
X
i

X
j 6=i

X
l 6=j,l 6=i

E
£
ε2iKij

¯̄
ξj
¯̄
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¤ .
As before, it can be shown that

hd

N (N − 1)
P
i

P
j 6=iE

h
ε2iK

2
ijξ

2
j

i
=

O(1), so that the first term in var [zN ] is o(N
−1). Furthermore,

1

N (N − 1) (N − 2)
X
i

X
j 6=i

X
l 6=j,l 6=i

E
£
ε∗2i Kij

¯̄
ξj
¯̄
Kil |ξl|

¤
=

Z ½
1

hd
K

µ
xi − xj
h

¶
1

hd
K

µ
xi − xl
h

¶
f−2(xi)σ2(xi)

× |ξ(xj)| |ξ(xl)| f(xi)f(xj)f(xl)} dxidxjdxl
=

Z
K(s)K(t)σ2(x) |ξ(x− sh)| |ξ(x− th)| f(x− sh)f(x− th)

f(x)
dxdsdt

→
Z

σ2(x)ξ2(x)f(x)dx = E
£
σ2(X)ξ2(X)

¤
= O(1),

where we have made the substitutions x ≡ xi, s = (xi − xj) /h, t =
(xi − xl) /h, so that the second term in var [zN ] is o(h

d). Therefore,
zN = op(1) Thus the first term in V 02N is op(1). By similar arguments,
the second term in V 02N is also op(1).
Proof of (iii)
Consider the first term in V3N . We have¯̄̄̄
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by Assumption 2.1. Again, it is easy to show using H-projection argu-

ments that
1

N(N − 1)
P
i

P
j 6=iKijb(Wi)b(Wj) is Op(1) the first term

in V3N is op(h
d/2), since supx |aN(x)| = op(1). By similar arguments

it can be shown that all such terms in V3N are op(1), so that V3N is
op(1).

To prove Lemma 4, the following results are required.

Lemma 8 (Van Ryzin, 1969) Let {Yn}Nn=1 and {Zn}Nn=1 be sequences of
random variables on a probability space (Ω,F , P ). Let {Fn} be a sequence
of Borel fields, Fn ⊂ Fn+1 ⊂ F , where Yn and Zn are measurable with
respect to Fn. If
1. 0 ≤ Yn a.s.
2. EY1 <∞
3. E [Yn+1|Fn] ≤ Yn + Zn, a.s.
4.
X∞

n=1
E |Zn| <∞

then Yn converges a.s. to a finite limit.

Lemma 9 (i) The w0i are independently and identically distributed as W
0 =

(Y,X 0) , with joint density g(w); (ii) X is a continuous (d× 1) random vari-
able with bounded, uniformly continuous density f(x). Define εi = ε (Wi) , a
scalar random variable, and let β(x) = E [ε(W )|X = x)] be uniformly con-
tinuous on S, such that E |ε (W )| and E ¯̄ε2 (W )¯̄ both exist and are finite.
Let

qN (x) =
1

N

NX
j=1

Kh (x−Xj) ε(Wj)

where Kh(s) = h
−dK (s/h) and K (s) is a product kernel, with absolutely in-

tegrable characteristic function φ (ξ). Additionally, assume that (i) hN −→ 0
as N −→ ∞, (ii) there is δ ∈ (0, 1) and 0 < γ such that N δh2d = γ, (iii)
g (c) =

R |φ (cξ)− φ (ξ)| dξ0 is Locally Lipschitz of order 1 at c = 1.Then,
sup
x
|qN (x)− q (x)| −→ 0

where q (x) = f(x)β(x).
Proof. Let us start by noting that

sup
x∈S

|qN (x)− q (x)| = sup
x∈S

|qN (x)−EqN (x)|+ sup
x∈S

|EqN (x)− q (x)|
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Consider,

|EqN (x)− q (x)| =
¯̄̄̄Z
K (s) {β (x− sh) f (x− sh)− β (x) f (x)} ds

¯̄̄̄
.

The Kernel assumption and uniform continuity imply supx∈S |EqN (x)− q (x)|→
0. By Assumption 2.3, K(ζ) = (2π)−d

R
φ(ξ)e−iξ

0ζdξ0, so that

qN (x) =
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(2π)d
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ψN (ζ) e

−iζ0xφ (ζh) dζ 0 (11)

where ψN (ζ) = N
−1PN

j=1 e
iζ0Xjε (Wj) is a unbiased estimator for ψ (ζ) =

E
h
eiζ

0Xε (W )
i
. Given that
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e−iζ

0x
¯̄̄
= 1, it follows that

|qN (x)−EqN (x)| ≤ 1

(2π)d

Z
|ψN (ζ)− ψ (ζ)| |φ (ζh)| dζ 0

which does not depend on x. Therefore

sup
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|qN (x)−EqN (x)| ≤ 1

(2π)d
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|ψN (ζ)− ψ (ζ)| |φ (ζh)| dζ 0

or, equivalently½
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(
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|ψN (ζ)− ψ (ζ)| |φ (ζh)| dζ 0

)2
≤ 1

(2π)2d

Z
|φ (ζh)| dζ
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|ψN (ζ)− ψ (ζ)|2 |φ (ζh)| dζ 0

¾
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1

(2π)2d
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|φ (ξ)| dξ0

)
YN

where

YN =
1

hd

Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζh)| dζ 0. (12)

The objective is to show that YN converges to zero almost everywhere. We
do so by verifying the conditions in Lemma 8. In what follows it will be
convenient to recover the dependence of h on N , so that we shall now write
hN instead .
Under condition (ii) there is a δ ∈ (0, 1) such that Nδh2dN = γ. When N = 1
it follows that h2d1 = γ, so that hd1 =

√
γ and h1 = γ1/2d. As a result of these

22



conditions,

EY1 =
1

hd1

Z
E |ψ1 (ζ)− ψ (ζ)|2 |φ (ζh1)| dζ 0
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dζ 0

=
1√
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¤ Z |φ (ξ)| dξ0

< ∞

where we have used the result in Lemma 10. Furthermore, it is easy to see
that 0 ≤ YN , and, by means of usual techniques,
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hdN
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E |ψN (ζ)− ψ (ζ)|2 |φ (ζhN)| dζ 0

≤ 1

Nh2dN
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ε2 (W )

¤ Z |φ (ξ)| dξ0 (13)

Therefore,

EYN → 0 as N →∞

because by condition (ii), Nh2dN = N1−δγ →∞. We now need to show that
E [YN+1|FN ] ≤ YN +ZN , a.s. for certain quantity ZN to be defined. Let us
write ψN+1 (ζ) and ψ (ζ) in the following way:
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The second term in the right hand side can itself be expanded as follows:
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µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)| dζ 0

+
1

hdN+1 (N + 1)2

Z
|ψ (ζ)|2 |φ (ζhN+1)| dζ 0

≤ 1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN )| dζ 0

+
1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)− φ (ζhN )| dζ 0

+
1

hdN+1 (N + 1)2

Z
|ψ (ζ)|2 |φ (ζhN+1)| dζ 0.

Thus,

YN+1 ≤ 1

(N + 1)2 hdN+1

Z
|φ (ζhN+1)| dζ 0

+
1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN )| dζ 0

+
1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)− φ (ζhN )| dζ 0

+
1

hdN+1 (N + 1)2

Z
|ψ (ζ)|2 |φ (ζhN+1)| dζ 0.

≤ +
1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN )| dζ 0

+
1

hdN+1

µ
N

N + 1

¶2 Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)− φ (ζhN )| dζ 0

+
1

(N + 1)2 hdN+1

Z
|φ (ζhN+1)|

n
1 + {E |ε (W )|}2

o
dζ 0

≤ hdN
hdN+1

µ
N

N + 1

¶2
YN + SN + TN

where we have used the inequality |ψ (ζ)|2 ≤ {E |ε (W )|}2 and for

SN =
1

hdN+1

Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)− φ (ζhN)| dζ 0

TN =
1

(N + 1)2 hdN+1

Z
|φ (ζhN+1)|

n
1 + {E |Q (x)|}2

o
dζ 0
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However, from condition (ii), N δh2d = γ ⇒ hd =
√
γN−δ/2 implying that

hdN
hdN+1

µ
N

N + 1

¶2
=

µ
N

N + 1

¶2−β
≤ 1

where β ∈ (0, 1/2). Then, letting ZN = SN + TN , it follows that
YN+1 ≤ YN + ZN

Furthermore, E [YN |FN ] = YN and E [ZN |FN ] = ZN , so E [YN+1|FN ] ≤
YN + ZN and the third condition of lemma 8 is thus verified. We have
shown that E [YN ] → 0 as N → ∞; Then, the theorem will be complete if
we can show that

P∞
i=1E [ZN ] <∞.

We start by noting that ,

ESN =
1

hdN+1

Z
|ψN (ζ)− ψ (ζ)|2 |φ (ζhN+1)− φ (ζhN)| dζ 0

≤ 1

NhdN+1
E
£
ε2 (W )

¤ Z |φ (ζhN+1)− φ (ζhN )| dζ 0

hence letting cN = hN+1/hN ≤ 1,

ESN ≤ 1

NhdN+1
E
£
ε2 (W )

¤ Z |φ (ζcNhN )− φ (ζhN )| dζ 0

=
1

NhdN+1h
d
N

E
£
ε2 (W )

¤ Z |φ (cNξ)− φ (ξ)| dξ0

By assumption (iii),

|g (c)| =
Z
|φ (ct)− φ (t)| dt ≤ B |1− cN |

for some B > 0. Hence

ESN ≤ 1

Nh2dN

E
£
ε2 (W )

¤
cN

B |1− cN |

=
1

Nh2dN
E
£
ε2 (W )

¤
B

¯̄̄̄
hN
hN+1

− 1
¯̄̄̄

but for η = δ/2d ∈ (0, 1/2d), we have
hN
hN+1

− 1 =
µ
1 +

1

N

¶η

− 1 ≤ 1

N

so that

ESN ≤ 1

N2h2dN
E
£
ε2 (W )

¤
B.
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In addition to this, ETN = O
¡
N2h2dN

¢−1
. By condition (ii), N2h2dN =

N2−δγ → ∞. Since EZN is at most N2h2dN , we conclude that EZN → 0,
so that the series

P
E [ZN ] is also convergent. The conclusion follows that

YN → 0 a.s. and thus,

sup
x∈S

|qN (x)−EqN (x)|→ 0

a.s.

Lemma 10 E |ψN (ζ)− ψ (ζ)|2 ≤ 1
N

©
E
£
ε2 (W )

¤ª
.

Proof. Firstly, note that ψN (ζ) =
1

N

P
i exp(iζ

0Xi)ε(Wi), so that

E |ψN (ζ)− ψ (ζ)|2

= E

¯̄̄̄
¯ 1N

NX
i=1

ε(Wi) cos
¡
ζ 0Xi

¢−E £ε(Wi) cos
¡
ζ 0Xi

¢¤
+i
1

N

NX
i=1

ε(Wi) sin
¡
ζ 0Xi

¢−E £ε(Wi) sin
¡
ζ 0Xi

¢¤¯̄̄̄¯
2

= E |Z1 + iZ2|2
= E (Z1 + iZ2) (Z1 − iZ2)
= E

¡
Z21 + Z

2
2

¢
(16)

then by independence

E
¡
Z21 + Z

2
2

¢
=

1

N

³
E
©
ε (W ) cos

¡
ζ 0X

¢−E £ε (W ) cos ¡ζ 0X¢¤ª2
+ E

©
ε (W ) sin

¡
ζ 0X

¢−E £ε (W ) sin ¡ζ 0X¢¤ª2´
=

1

N

©
E
£
ε2 (W )

©
cos2

¡
ζ 0X

¢
+ sin2

¡
ζ 0X

¢ª¤
−
³£
E
¡
ε (W ) cos

¡
ζ 0X

¢¢¤2
+
£
E
¡
ε(W ) sin

¡
ζ 0X

¢¢¤2´o
≤ 1

N
E
£
ε2 (W )

©
cos2

¡
ζ 0X

¢
+ sin2

¡
ζ 0X

¢ª¤
=

1

N

©
E
£
ε2 (W )

¤ª
where the inequality follows from the fact that E

¡
Z21 + Z

2
2

¢ ≥ 0 and³£
E
¡
ε (W ) cos

¡
ζ 0X

¢¢¤2
+
£
E
¡
ε(W ) sin

¡
ζ 0X

¢¢¤2´
> 0.

The last equality follows since cos2
¡
ζ 0X

¢
+ sin2

¡
ζ 0X

¢
= 1.
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Proof of Lemma 4
(i)supx∈S |fN (x)− f(x)| −→ 0, a.s.
This now simply follows from the previous Lemma, with ε(W ) ≡ 1.
(ii) supx∈S ||bN (x)|| −→ 0, a.s.
This follows very closely the previous method. By Assumptions 5 and
6, we have

iζ lK (ζ) = (2π)
−d
Z
∇lφ (ξ) e−iξ0ζdξ0.

Letting bNl(x) be the l
th element of bN(x),

ibNl(x) = i
1

Nhd

NX
j=1

K

µ
x−Xj
h

¶µ
xl −Xjl
h

¶

=
1

Nhd

NX
j=1

(
1

(2π)d

Z ∞

−∞
∇lφ (ξ) exp

µ
−iξ0

µ
x−Xj
h

¶¶
dξ0
)
.

=
1

(2π)d

Z  1

N

NX
j=1

exp
¡
iζ 0Xj

¢∇lφ (ζh) e−iζ0xdζ 0


=
1

(2π)d

Z
ϕN(ζ)e

−iζ0x∇lφ (ζh) dζ 0,

which is similar to (11). It follows that, since |bNl(x)−EbNl(x)| ≡
|i (bNl(x)−EbNl(x))| , 3 we can write½
sup
x
|bNl(x)−EbNl(x)|

¾2
≤ 1

(2π)2d

½Z
|ϕN(ζ)− ϕ(ζ)| |∇lφ (ζh)| dζ 0

¾2
≤ 1

(2π)2d

Z
|∇lφ (ζh)| dζ 0

×
Z
|ϕN(ζ)− ϕ(ζ)|2 |∇lφ (ζh)| dζ 0

=

(
1

(2π)2d

Z
|∇lφ (ξ)| dξ0

)
Y 0N

where Y 0N = h
−d R |ϕN (ζ)− ϕ(ζ)|2 |∇lφ (ζh)| dζ 0 ≥ 0 a.s. The method

of proof then proceeds as before to show that Y 0N → 0, a.s.. so that
supx |bNl(x)−EbNl(x)| → 0, a.s., where we exploit the locally Lips-
chitz condition (Assumption 7). This implies that supx ||bN(x)−EbN (x)||→
0, a.s..

3For any complex number z = a + ib, |z|2 = zz̄, where z̄ = a − ib is the compex
conjugate of z. Thus |z| = ¡a2 + b2¢1/2 .
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Finally,

sup
x
||bN (x)|| < sup

x
||bN(x)−EbN (x)||+ sup

x
||EbN (x)||

where it is easy to show that supx ||EbN (x)||→ 0. This completes the
proof.
(iii) supx∈S

¯̄¯̄
MN (x)− µK2 f(x)Id

¯̄¯̄ −→ 0, a.s.
The same method is used, to demonstrate the result element by ele-
ment. Again, by Assumptions 5 and 6, we can write

ζ lζmK (ζ) = − (2π)−d
Z
∇2lmφ (ξ) e−iξ

0ζdξ0

so that

mNlm(x) = − 1

Nhd

NX
j=1

K

µ
x−Xj
h

¶µ
xl −Xjl
h

¶µ
xm −Xjm

h

¶

= − 1

Nhd

NX
j=1

(
1

(2π)d

Z ∞

−∞
∇2lmφ (ξ) exp

µ
−iξ0

µ
x−Xj
h

¶¶
dξ0
)
.

= − 1

(2π)d

Z  1

N

NX
j=1

exp
¡
iζ 0Xj

¢∇2lmφ (ζh) e−iζ0xdζ 0


= − 1

(2π)d

Z
ϕN(ζ)e

−iζ0x∇2lmφ (ζh) dζ 0.

Then, similar to before,½
sup
x
|mNlm(x)−EmNlm(x)|

¾2
≤ 1

(2π)2d

½Z
|ϕN (ζ)− ϕ(ζ)| ¯̄∇2lmφ (ζh)¯̄ dζ 0¾2

≤ 1

(2π)2d

Z ¯̄∇2lmφ (ζh)¯̄ dζ 0
×
Z
|ϕN(ζ)− ϕ(ζ)|2 ¯̄∇2lmφ (ζh)¯̄ dζ 0

=

(
1

(2π)2d

Z ¯̄∇2lmφ (ξ)¯̄ dξ0
)
Y 00N

where Y 00N = h−d
R |ϕN (ζ)− ϕ(ζ)|2 ¯̄∇2lmφ (ζh)¯̄ dζ 0 ≥ 0 a.s. The

method of proof then proceeds as before to show that Y 00N → 0, a.s..
so that supx ||mN(x)−EmN (x)||→ 0, a.s.
Finally,

sup
x
||mN (x)|| < sup

x
||mN(x)−EmN (x)||+ sup

x

¯̄¯̄
EmN(x)− µK2 f(x)Id

¯̄¯̄
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where, as before, it is easy to show that supx
¯̄¯̄
EmN (x)− µK2 f(x)Id

¯̄¯̄→
0. This completes the proof.
(iv) supx∈S |fN (x)|−1 = O(1) a.s.
f(x)− infx∈S f(x) ≥ 0 and fN (x)− f(x)+ supx∈S |fN (x)− f(x)| ≥ 0.
Therefore,

fN (x) = f(x) + [fN (x)− f(x)] ≥ inf
x∈S

f(x)− sup
x∈S

|fN(x)− f(x)|

From this it follows that

sup
x∈S

¯̄̄̄
1

fN(x)

¯̄̄̄
≤ 1

|infx∈S f(x)− [supx∈S |fN(x)− f(x)|]|
.

The term on the RHS isO(1) a.s, since infx∈S f(x) > δ and supx∈S |fN (x)− f(x)| =
o(1), a.s.
(v) supx∈S

¯̄¯̄
MN(x)

−1¯̄¯̄ = O(1) a.s.

We now that ||A||2 = Pd
t=1 λ

2
t where λt are the eigenvalues of the

(d× d) matrix A. Then (iii) implies that
sup
x∈S

γ0γ = o(1) a.s.

where γ = γ(x) is the (d× 1) vector with typical element γt(x) =
ξt(x)− µK2 f(x), t = 1, ..., d, and ξt ≡ ξt(x) is an eigenvalue of MN (x),
and (of course) µK2 f(x) are the trivial eigenvalues of M(x) (with mul-
tiplicity d). We can assume that ξt > 0 for N sufficiently large. Then
since γ is finite dimensional, it must be that supx |γt(x)| = o(1), a.s.
Thus we can write

ξt(x) = µK2 f(x) +
¡
ξt(x)− µK2 f(x)

¢
= µK2 f(x) + γt(x)

with infx f(x) ≥ δ > 0 and supx |γt(x)| = o(1), a.s. Thus
ξt(x) ≥ µK2 δ − sup

x
|γt(x)|

so that

sup
x

¯̄̄̄
1

ξt(x)

¯̄̄̄
≤ 1¯̄
µK2 δ − {supx |γt(x)|}

¯̄ = O(1), a.s.

because supx |γt(x)| = o(1), as. Finally
¯̄¯̄
MN(x)

−1¯̄¯̄ = Pd
t=1 ξ

−2
t .

Thus

sup
x

¯̄¯̄
MN(x)

−1¯̄¯̄ = sup
x

¯̄̄̄
¯
dX
t=1

ξ−2t

¯̄̄̄
¯ ≤ supx

dX
t=1

¯̄̄̄
1

ξt(x)

¯̄̄̄2
= O(1), a.s.

29



(vi) supx∈S |∆N (x)− f(x)| −→ 0, a.s.
This follows immediately from (i), (ii) and (v).
(vii) supx∈S |∆N (x)|−1 = O(1) a.s.
This follows in a similar vein to (iv), since∆N(x) = f(x)+[∆N (x)− f(x)] ≥
infx∈S f(x)− supx∈S |∆N (x)− f(x)| , and the result follows.
This completes the proof of the Lemma 4.

Proof of Lemma 7.
From Lemma 1 that ΣQ1N(ε) = Σ + op(1) and Σ

Q
2N (ε) = Σ + op(1).

Furthermore, similar to Zheng (1996, Lemma 3.3e) it is easy to show
that

ΣQ1N(û) = Σ1N(ε) + op(1)

ΣQ2N(û) = Σ2N(ε) + op(1).

However, both these estimators are not operational since they depend
upon f(x) which is unknown.
We shall consider a rather general case, such as the statistic

Ω1N (û) =
2hd

N(N − 1)
X
i

X
j 6=i
û2i aN (Xi)K

2
ijû

2
j

where, as before, supx |aN(x)| = o(1), a.s.. Then

|Ω1N (û)| ≤ sup
x
|aN(x)| 2hd

N(N − 1)
X
i

X
j 6=i
û2iK

2
ijû

2
j

= sup
x
|aN(x)| 2hd

N(N − 1)
X
i

X
j 6=i

ε2iK
2
ijε

2
j + op(1)

and
2hd

N(N − 1)
P
i

P
j 6=i ε

2
iK

2
ijε

2
j = Op(1) so that |Ω1N (û)| = op(1).

Using this result, it is straightforward to show that¯̄̄
ΣP1N (û)−ΣQ1N (û)

¯̄̄
= op(1),

using

|aN (Xi)| =

¯̄̄̄
1

f2N(Xi)
− 1

f2(Xi)

¯̄̄̄
=

¯̄
f2(Xi)− f2N(Xi)

¯̄
f2N(Xi)f

2(Xi)
.
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Similarly

ΣP2N (û)− ΣQ2N (û) =
hd

N(N − 1)
X
i

X
j 6=i
û2i aN (Xi)K

2
ijû

2
j

+
hd

N(N − 1)
X
i

X
j 6=i
û2iK

2
ijcN(Xi,Xj)û

2
j

where

cN (Xi,Xj) =
(fN(Xi)− f(Xi))fN (Xj)
fN(Xi)fN(Xj)f(Xi)f(Xj)

− (fN(Xj)− f(Xj))f(Xi)
fN(Xi)fN(Xj)f(Xi)f(Xj)

=
(fN(Xi)− f(Xi))
fN(Xi)f(Xi)f(Xj)

− (fN (Xj)− f(Xj))
fN (Xi)fN (Xj)f(Xj)

=
c1N (Xi)

fN(Xi)f(Xi)f(Xj)
− c1N (Xj)

fN (Xi)fN (Xj)f(Xj)
.

Now, supx |c1N(x)| = o(1), a.s., and supx {fN (x)}−1 = O(1), a.s., so
that supx,y |cN (x, y)| = o(1), a.s. Then following previous arguments,
it follows that

¯̄̄
ΣP2N(û)− ΣQ2N(û)

¯̄̄
= op(1).

Now consider ΣR1N(û)− ΣP1N (û) :

¯̄
ΣR1N (û)− ΣP1N (û)

¯̄ ≤ 2hd

N(N − 1)
X
i

X
j 6=i
û2i

¯̄̄̄
¯R2ij − K2

ij

f2N(Xi)

¯̄̄̄
¯ û2j

and

¯̄̄̄
¯R2ij − K2

ij

f2N(Xi)

¯̄̄̄
¯ =

¯̄̄̄
Rij − Kij

fN(Xi)

¯̄̄̄ ¯̄̄̄
Rij +

Kij
fN (Xi)

¯̄̄̄
. Now

¯̄̄̄
Rij − Kij

fN (Xi)

¯̄̄̄
≤ |a1N (Xi)|Kij + ||a2N (Xi)||Kij

¯̄¯̄
ζij
¯̄¯̄

and ¯̄̄̄
Rij +

Kij
fN (Xi)

¯̄̄̄
≤ |a1N (Xi)|Kij + ||a2N (Xi)||Kij

¯̄¯̄
ζij
¯̄¯̄

where a1N(Xi) =
bN(Xi)

0 (MN(Xi))
−1 bN (Xi)

∆N (Xi)fN (Xi)
and a2N (Xi) =

(MN(Xi))
−1 bN (Xi)

∆N (Xi)
,

with supx |a1N(x)| = o(1), a.s., and supx |a2N (x)| = o(1), a.s. There-
fore ¯̄

ΣR1N(û)− ΣP1N(û)
¯̄ ≤ 2hd

N(N − 1)
X
i

X
j 6=i
û2iD

2
ijû

2
j
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where

D2ij = |a1N(Xi)|2K2
ij + ||a2N(Xi)||2K2

ij

¯̄¯̄
ζij
¯̄¯̄2
+ 2 |a1N (Xi)| ||a2N(Xi)||K2

ij

¯̄¯̄
ζij
¯̄¯̄
.

Therefore,¯̄
ΣR1N(û)− ΣP1N(û)

¯̄ ≤ sup
x
|a1N (x)|2 2hd

N(N − 1)
X
i

X
j 6=i
û2iK

2
ij û

2
j

+sup
x
|a2N(x)|2 2hd

N(N − 1)
X
i

X
j 6=i
û2iK

2
ij

¯̄¯̄
ζij
¯̄¯̄2
û2j

+sup
x
|a1N(x)| sup

x
|a2N(x)| 4hd

N(N − 1)
X
i

X
j 6=i
û2iK

2
ij

¯̄¯̄
ζij
¯̄¯̄
û2j .

We know that
2hd

N(N − 1)
P
i

P
j 6=i û

2
iK

2
ijû

2
j = Op(1), and similarly it

can be shown that
2hd

N(N − 1)
P
i

P
j 6=i û

2
iK

2
ij

¯̄¯̄
ζij
¯̄¯̄2
û2j = Op(1) and

4hd

N(N − 1)
P
i

P
j 6=i û

2
iK

2
ij

¯̄¯̄
ζij
¯̄¯̄
û2j = Op(1). Thus

¯̄
ΣR1N(û)− ΣP1N(û)

¯̄
=

op(1).
Finally, slightly more tedious, but in a similar vein it is shown that
|Σ6N(û)− Σ4N(û)| = op(1). Note that¯̄
ΣR2N (û)− ΣP2N (û)

¯̄ ≤ |Σ5N(û)− Σ3N(û)|

+
hd

N(N − 1)
X
i

X
j 6=i
û2i |RijRji − PijPji| û2j ,

in which the first term is zero. The second term is

hd

N(N − 1)
X
i

X
j 6=i
û2i |RijRji − PijPji| û2j ≤

hd

N(N − 1)
X
i

X
j 6=i
û2i |Rij | |Rji − Pji| û2j

+
hd

N(N − 1)
X
i

X
j 6=i
û2i |Pji| |Rij − Pij | û2j .

Now,

|Rji − Pji| ≤ |a1N(Xj)|Kij + ||a2N (Xj)||Kij
¯̄¯̄
ζij
¯̄¯̄

|Rij | ≤ Kij
∆N(Xi)

+ ||a2N(Xi)||Kij
¯̄¯̄
ζij
¯̄¯̄
.

Thus. since supx |alN (x)| = 0 a.s., l = 1, 2, and supx∆N (x) = O(1)
a.s., it follows that

hd

N(N − 1)
X
i

X
j 6=i
û2i |Rij | |Rji − Pji| û2j = o(1) a.s.
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Similarly,
hd

N(N − 1)
P
i

P
j 6=i û

2
i |Pji| |Rij − Pij | û2j = o(1), a.s.
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