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Abstract

As shown by Dufour, Khalaf, Brenard and Genest, exact tests for heteroskedasticity can be ob-
tained, by using Monte Carlo (MC) techniques, if it is assumed that the true form of the error
distribution under the null hypothesis is known. The corresponding nonparametric bootstrap tests
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using asymptotic analysis and simulation experiments. The evidence suggests that the combina-
tion of an asymptotically pivotal test statistic with a nonparametric bootstrap gives a robust and
well-behaved procedure.
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1 Introduction

There is an extensive literature on the construction, implementation and interpretation of

tests for heteroskedasticity which informs a large body of empirical work. This literature, and

a survey of the use of heteroskedasticity tests in empirical studies, is usefully summarized

in a recent paper by Dufour, Khalaf, Brenard and Genest (2004). As observed in that

paper, most test procedures employ asymptotically valid critical values and numerous studies

have compared the �nite sample behaviour of these �asymptotic�tests in order to provide

applied workers with some guidance on their use. The evidence is that �rst order asymptotic

theory, in general, provides a rather poor guide to �nite sample behaviour. Rather than use

asymptotic critical values, Godfrey and Orme (1999) exploit Beran�s (1988) results and

show that a simple bootstrap procedure can, in many cases, provide a greater degree of

control over signi�cance levels than that previously a¤orded by standard asymptotic theory.

Indeed, �bootstrap�tests are now widely acknowledged as having the potential to provide

much more reliable inferences, and their use in empirical work should increase rapidly as

computing costs continue to fall and appropriate routines are added to standard packages.

In general, the bootstrap tests deliver improvements in the Error in Rejection Probability

(ERP), i.e: the discrepancy between actual and desired signi�cance levels, but they remain

only asymptotically valid. In contrast, Dufour et al : (2004) provide results which show that,

through the use of Monte Carlo techniques, it is possible to eliminate this discrepancy com-

pletely. Their analysis is in the context of tests for heteroskedasticity, but the methodology

is more widely applicable. It will be useful to refer to test procedures which employ these

Monte Carlo techniques as MC tests (and retain Monte Carlo study to refer to sampling

experiments employed to investigate the behaviour of various test criteria). The distinct

advantage of the MC method is that it provides simple exact procedures for a large class

of tests and enables new tests to be de�ned and implemented, even if they are based on

statistics whose �nite sample or asymptotic distributions are intractable.
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The applicability of these MC tests, however, rests on the strong assumption that the null

distribution of the error of the regression model is known.1 Given this assumption, Dufour

et al : (2004) show that the test criteria they consider are exactly pivotal, under the null.

However, if the focus is on the problem of testing for heteroskedasticity, it is not clear that

applied workers will want to use tools that depend in an important way upon the validity

of an auxiliary assumption that speci�es the general form of the error distribution: in many

cases there is no precise non-sample information upon which to base this assumption.

The aims of this paper are to analyse the consequences for MC tests of making an

incorrect assumption about the distribution of the error, and to compare MC tests with

nonparametric bootstrap tests when the former enjoy the bene�t of correct speci�cation of

the error model. It is shown that it is necessary to distinguish between two scenarios when

considering the e¤ects of incorrect speci�cation of the error distribution. First, the test

criterion is an asymptotic pivot: it is shown below that, in this case, the MC test is only

asymptotically valid (with theory predicting that it possesses an ERP which is of the same

order in T , the sample size, as that of the asymptotic test). Second, the test criterion is

not an asymptotic pivot: it is shown below that, in this case, the MC test is asymptotically

invalid (with an ERP which isO(1)). In both cases the bootstrap test remains asymptotically

valid. Furthermore, in the �rst scenario the bootstrap test has an ERP which is of smaller

order in T than both the MC and asymptotic test whilst in the second scenario it has an

ERP which is of the same order in T as the asymptotic test. The term �asymptotic pivot�

is used in the precise sense of Beran (1988), and is de�ned in Section 3.

The paper is organized as follows. Section 2 de�nes the model and discusses the asymp-

totic test procedures that are employed in the analysis. In order to develop the principal

results, which are generally applicable, only a subset of the tests considered by Dufour et al :

(2004) need be considered and the focus here is on the important class of tests in which the

1 Under this assumption, the MC method is, in fact, an example of Case 1 detailed by Horowitz (1994)
when discussing the information matrix test: given regressor values, simulation techniques can be used to
obtain exact inferences.
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alternative hypothesis has the variances depending on exogenous variables. Section 3 de-

scribes the bootstrap and MC tests, collectively termed simulation-based tests, and provides

an analysis of their asymptotic properties. In order to illustrate the theoretical �ndings, a

Monte Carlo study is undertaken and this is described in Section 4, with the results reported

in Section 5. Finally, Section 6 concludes.

2 Models and tests

2.1 Models

As in Dufour et al : (2004), the regression model with heteroskedastic errors is written as

yt = x
0
t� + ut; (1)

with

ut = �t"t; (2)

in which xt = (xt1; : : : ; xtk)0, xt1 = 1, � = (�1; : : : ; �k)
0, 0 < �t < 1, and the terms "t are

independently and identically distributed (iid) with common cdf F having zero mean and

unit variance, t = 1; : : : ; T . The null hypothesis is H0 : �t = �, 0 < � <1, for all t.

It is assumed here that, at a minimum, the regularity conditions given by Koenker

(1981) are satis�ed. These conditions include conventional requirements about the limiting

behaviour of the regressors of (1) which are taken to be strictly exogenous; see (A.1) of

Koenker (1981, p: 108). Regarding the iid random terms "t of (2), it is further assumed that

E("4t ) = �4 < 1, for t = 1; : : : ; T . The assumptions for "t correspond to (A.2) of Koenker

(1981), except that he uses a slightly di¤erent parametrization with the "t being iid(0; �2);

so that, in his framework, the null hypothesis is HK
0 : �t = 1 for all t.

The results of OLS estimation of (1) play an important role in the construction of tests

of H0. Let the OLS estimator of � in (1) be

�̂ =

 
TX
t=1

xtx
0
t

!�1 TX
t=1

xtyt; (3)
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with associated predicted values and residuals given by

ŷt = x
0
t�̂ and ût = yt � ŷt, t = 1; : : : ; T:

The variance estimate for the model of H0 is denoted by �̂
2 = T�1

PT
t=1 û

2
t :

2.2 The test statistics

As discussed below, when assessing the consistency ofH0 with the sample data, di¤erences in

the forms of test statistics re�ect di¤erences in the assumptions made about the speci�cation

of the alternative hypothesis. When H0 is true, tests that use di¤erent alternatives will all

be (at least) asymptotically valid, provided required regularity conditions are satis�ed.

In general, some tests are intended to have �nite sample validity, others are designed to be

only asymptotically valid: the assumptions for the former type are usually more restrictive

than those for the latter. When tests are designed to be exact, employing critical values from

standard statistical tables (e.g: for t or F distributions), the "t are typically assumed to be

normally distributed; so that, in such cases, the "t are NID(0; 1). However, as made clear by

Dufour et al : (2004), exact tests can be derived for other distributions if MC methods, rather

than standard tables, are adopted to assess statistical signi�cance. There are consequences,

however, if an incorrect assumption about the error distribution is made.

In order to develop this argument, the basic forms of the test statistics to be considered in

this paper are designed for heteroskedastic alternatives in which the variances are functions

of exogenous variables and share the following characteristics: (i) they do not depend upon

the nuisance parameters of the null model, viz: (�0; �2); and (ii) they are calculated using

results from OLS estimation.

2.2.1 Breusch-Pagan statistic

Breusch and Pagan (1979), hereafter BP, consider an alternative hypothesis that can be

written as

�2t = h(z
0
t); (4)
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in which h(�) is a function with �rst and second derivatives, zt = (zt1; : : : ; ztm)0, zt1 = 1 and

 = (1; : : : ; m)
0, t = 1; : : : ; T . The exogenous variables of zt satisfy regularity conditions

similar to those for the regressors of xt in (1); see Koenker (1981, p: 108). Homoskedasticity

is implied by the (m � 1) restrictions of 2 = : : : = m = 0. By assuming that under the

null hypothesis the errors ut are NID(0; �2), BP derive a Lagrange multiplier (LM) test and

show that it is based upon a test statistic equal to one half of the explained sum of squares

from the OLS regression of �̂�2û2t on zt. Under this assumption, the BP test statistic is

asymptotically distributed as �2(m � 1), with signi�cantly large values indicating that the

null hypothesis is inconsistent with the sample data. This form of a LM test has been derived

independently by other researchers; see Cook and Weisberg (1983), and Godfrey (1979).

The assumption of normality is important for the asymptotic validity of the BP test.2

Moreover if any other error distribution were assumed, the log-likelihood for the alternative

model, and hence the LM test statistic for 2 = : : : = m = 0, would be di¤erent. Thus,

unless normality is assumed, there is little motivation for using the procedure proposed by

BP.

2.2.2 Koenker�s statistic

Koenker (1981) extends the BP approach to obtain a statistic that is robust to nonnormality,

provided that the terms "t satisfy the regularity conditions described above and, in particular,

have �nite fourth moment. Koenker�s �Studentized�test uses, as a statistic, T times the R2

from the OLS regression of û2t (or equivalently �̂
�2û2t ) on zt of (4). The �

2(m�1) distribution

now provides an asymptotically valid basis for a test of the assumption of homoskedasticity

in the presence of unspeci�ed forms of nonnormality.

2 More precisely, it is required that E(u4t ) = 3�
4 under H0; which is true when the "t are NID(0; 1).
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2.2.3 Glejser�s statistic and modi�ed forms

In Glejser�s (1969) approach, the statistic is calculated by using jûtj, rather than û2t , as a

typical observation on the dependent variable in the arti�cial regression on zt.3 Therefore,

Glejser�s algorithm uses, say,

jûtj = z0t + wt: (5)

The restrictions to be tested in (5) are, as before, 2 = : : : = m = 0 and a standard F -

test of these restrictions is assumed to be asymptotically valid.4 However, results reported

by Godfrey (1996) imply that the Glejser test requires an assumption additional to those

required for Koenker�s large sample test.

For Glejser tests to be asymptotically valid, the error distribution under H0 must have

Pr(ut > 0) = 0:5, for which a su¢ cient (but not necessary) condition is that ut has a

symmetric distribution.5 The assumption that Pr(ut > 0) = 0:5 is restrictive but it can

be relaxed by modifying the dependent variable used in the arti�cial regression proposed by

Glejser (1969). A suitable modi�cation is proposed independently by Machado and Santos

Silva (2000) and Im (2000), hereafter MSSI. The modi�ed Glejser test is derived by replacing

jûtj in (5) by g(ût), where

g(ût) = ût � f1(ût > 0)� �̂g;

1(�) is the usual indicator function, and �̂ = T�1
PT

t=1 1(ût > 0) is the sample proportion of

nonnegative residuals. Observe that the Glesjer tests, and variants thereof, only require the

"t to possess �nite second moments; see Machado and Santos Silva (2000, Assumption 1, p:

199).

3 Glejser�s test can be interpreted as the LM test for the case of errors that have a double exponential
distribution.

4 As described in Dufour et al : (2004), 2 = : : : = m = 0 can also be tested by comparing T times the
R2 from the OLS estimation of (5) with right-hand-side critical values from the �2(m� 1) distribution.

5 Pagan and Pak (1993) remark on the relevance of conditional symmetry of the error term to the
asymptotic validity of the Glejser test.
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2.2.4 Szroeter�s test statistic

Szroeter (1978) derives a family of test statistics by adding a strong assumption concerning

the alternative hypothesis to those required under the null hypothesis. His speci�cation of

the alternative model imposes the restriction that there is a known ordering of the variances

�2t . Consequently, after suitable reordering of the data, which is denoted by enclosing the

observation subscript in round brackets, variances satisfy �2(t) > �2(t�1) with at least one

strong inequality when there is heteroskedasticity. This sort of ordering is not, in general,

implied by the alternatives adopted by BP, Koenker, Glejser, and MSSI. Moreover, it can-

not be assumed that the information that permits correct ordering of variances under the

alternative is routinely available.

Given his assumption about the pattern of heteroskedasticity, Szroeter (1978) considers

the use of a subsample of squared residuals when calculating test statistics. Accordingly,

let A be a speci�ed non-empty subset of f1; : : : ; Tg, and ~u(t), t 2 A, be the corresponding

subset of ordered residuals, e.g: ~u(t) = û(t) gives a subsample of ordered OLS residuals. Also

let h(t), t 2 A, be a set of nonstochastic scalars such that h(t) � h(s) if t < s.

The general form of Szroeter�s statistic before it is �centered under the null�is given by

~h =

P
t2A h(t)~u

2
(t)P

t2A ~u
2
(t)

: (6)

The speci�c versions of Szroeter�s statistic that are used by Dufour et al : (2004) all use

A = f1; : : : ; Tg and OLS residuals; so that they are special cases of

ĥ =

PT
t=1 h(t)û

2
(t)PT

t=1 û
2
(t)

=

PT
t=1 htû

2
tPT

t=1 û
2
t

: (7)

Szroeter (1978) proposes that, given his assumption about the pattern of variances under

the alternative hypothesis, H0 : �2t = �
2 for all t should be rejected if the criterion of (7) is

signi�cantly greater than

�h = T�1
TX
t=1

h(t) = T
�1

TX
t=1

ht: (8)
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If �̂ = ĥ� �h, it is easy to show that

p
T �̂ =

T�1=2
PT

t=1(û
2
t � �̂2)ht

�̂2
; (9)

in which p lim �̂2 = �2 under homoskedasticity. The numerator of the right-hand-side of

(9) is, however, just the quasi-LM criterion for testing 2 = 0 in the Koenker-type arti�cial

regression, say,

û2t = 1 + 2ht + wt: (10)

Using m = 2 and zt2 = ht in Koenker�s approach will, therefore, produce a test statistic that

is equivalent to Szroeter�s criterion. A one-sided Studentized score test can be obtained by

using the t-ratio for testing 2 = 0 against 2 > 0 after OLS estimation of (10).

2.2.5 Goldfeld-Quandt statistics

As in Szroeter�s (1978) framework, the statistic proposed by Goldfeld and Quandt (1965),

hereafter GQ, is based upon the assumption that there is a known ordering by some speci�ed

exogenous rule such that �2(t) > �2(t�1), t = 2; : : : ; T . The null hypothesis is �2(t) = �2(t�1),

t = 2; : : : ; T , and, under the alternative hypothesis, �2(t) > �
2
(t�1), for at least one value of t.

After reordering according to the rule, the sample of T observations is partitioned into

three subsamples: the �rst and third are used for separate OLS estimations and must have

more than k observations; and the second is discarded. Let T1, T2 and T3 denote the numbers

of observations in the three subsamples, so T = T1 + T2+ T3, with T1 > k and T3 > k. The

sums of squared OLS residuals from the �rst T1 and last T3 observations are denoted by S1

and S3, respectively. The general form of the GQ statistic is then

GQ(T1; T3; k) =
S3=(T3 � k)
S1=(T1 � k)

: (11)

Provided the strong auxiliary assumption of normality is made, an exact test can be

obtained by treating the statistic of (11) as being distributed as F (T3� k, T1� k) and using

critical values from the right-hand tail of this distribution. The assumption of normality
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also implies that ŷt and ûs are independent for all t and s. Consequently the data can be

ordered according to the values of the predicted values ŷt, rather than a nonrandom choice,

without complicating the �nite sample distribution theory for GQ tests. Dufour et al : (2004)

point out that this result will also be applicable for any nonnormal error distribution that

implies the independence of OLS predicted and residual values. E¤ects on the behaviour of

GQ tests, based upon ordering by ŷt, when the errors are not normal and independence of

OLS predicted and residual values cannot be guaranteed are examined below.

For future reference, it is important to investigate whether the GQ statistic in (11) is an

asymptotic pivot.6 Under the null, it is Op(1) but has a degenerate limit null cdf, since

its probability limit, as T ! 1, is clearly �
2

�2
= 1, on the assumption that both T1 and

T3 are proportional to T . Therefore, in order to construct a statistic with a non-degenerate

distribution, centering and norming are required. Assuming, following standard practice

and Dufour et al : (2004), that T1 = T3 / T , it is straightforward to show that, writing

GQ � GQ(T1; T3; k),

p
T1 (GQ� 1) =

1p
T1

�
S3 � S1
�2

�
+ op(1): (12)

Under fairly standard conditions, the �rst term on the right hand side of (12) is Op(1) with

a limit null distribution which is normal, zero mean but with a variance depending upon F ,

the error distribution, through its fourth moment. Hence, the centred and normed GQ test

statistic is not an asymptotic pivot. Note that: (i) this result applies for unspeci�ed error

distributions when the ordering rule is exogenous; and (ii) the statistic de�ned by (12) is a

known linear transformation of GQ with a positive slope coe¢ cient, so that p-values of the

two statistics are equivalent and there is no need to work with the former, rather than the

latter.

6 The classi�cation of the other test statistics discussed in this subsection as asymptotically pivotal/non-
pivotal has been examined (explicitly or implicitly) by Godfrey and Orme (1999). If calculated by using
a t-test of 2 = 0 in the Koenker-type regression (10), the Szroeter test statistic based on

p
T� of (9) is

asymptotically pivotal.
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2.3 Comparisons of powers of tests

While the main purpose of this paper is to provide evidence and comments on the �nite

sample signi�cance levels of tests for heteroskedasticity, a brief discussion of power com-

parisons is worthwhile. There are several di¢ culties associated with comparing powers and

attempting to draw conclusions about the relevant merits of di¤erent procedures.

First, it is important that power comparisons are not contaminated by important di¤er-

ences in signi�cance levels. A thoughtful discussion of empirically relevant critical values for

Monte Carlo studies of power is given by Horowitz and Savin (2000). They conclude that,

in general, bootstrap methods should be used to estimate critical values. This conclusion

is supported, in the context of tests for heteroskedasticity, by the Monte Carlo results of

Godfrey and Orme (1999). When the true error distribution is known (apart from the value

of �2), the MC tests of Dufour et al : (2004) are exact and so there are no di¤erences in

signi�cance levels to impair comparisons of their powers.

Second, apparently general remarks about, say, �the�Koenker test, �the�Szroeter test,

and �the�GQ test can be misleading because each procedure requires speci�c choices to be

made for its implementation. For BP, Glejser and Koenker tests, the variables of zt must

be speci�ed. For Szroeter�s test, an ordering must be selected, along with the single test

variable ht. For GQ-type checks, the values of T1, T2 and T3 must be chosen after applying

a speci�ed rule for reordering the data yt (or equivalently the residuals ût).

Third, there is the complicating factor that tests being compared may be based upon dif-

ferent alternatives, with not all (or even any) of these alternatives being (locally) equivalent

to the true variance model. In order to obtain a fair basis for comparisons, attention must be

given to what is being assumed about information concerning the alternative. Farebrother

(1987) provides some interesting comments on the interaction between the information about

the alternative that is used and the power of a test. Godfrey (1996, Appendix 1) gives re-
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sults on the e¤ects on asymptotic local power of using an incorrect alternative model that

are pertinent to the comparison of tests.

There will clearly be many possible outcomes of power comparisons for di¤erent combi-

nations of assumed and true alternative models. For example, as explained in Subsection

2.2.4, Szroeter�s test can be carried out using a one-sided t-test in the context of a Koenker-

type arti�cial regression in which the regressors are an intercept term and the selected scalar

ht. The results of Godfrey (1996, Appendix 1) imply that, under a sequence of contiguous

alternatives given by

�2t = �
2 + T�1=2(v0t�);

in which vt is a p-dimensional vector of exogenous variables and 0 < �0� <1, the asymptotic

local power of Szroeter�s test with test variable ht can be less than, equal to, or greater than

that of a Koenker check that uses the test variables of some vector zt. There is no generally

valid ranking by asymptotic local power: given vt and �; the outcome of a comparison will

depend upon the choices made for ht and zt in the Szroeter and Koenker tests, respectively.

In the special case in which p = 1, �1 > 0 and vt1 = ht, there is an unambiguous result which

is that the asymptotic local power of a general Koenker-type test cannot be greater that of

the Szroeter test.

Given the same information about the alternative, di¤erences between tests proposed by

di¤erent authors are often of small order or re�ect di¤erences in auxiliary assumptions about

distributions. For example, the version of Szroeter�s statistic given by Gri¢ ths and Surekha

(1986, eq: 5) is the positive square root of a modi�ed form of Koenker�s TR2 statistic: the

modi�cation is that the sample variance of squared residuals û2t is replaced by 2�̂
4 which is

valid when the errors of (1) are NID(0; �2).

In practical situations, applied workers may know little about the true variance model

(otherwise such knowledge would have been incorporated in the model�s speci�cation). They

may, therefore, have to resort to general information-parsimonious rules for choosing test

variables. Szroeter (1978) suggests the general purpose choice of h(t) = t, which, in combi-
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nation with the rule for ordering, implies the values of the terms ht. However, other choices

are possible; see Dufour et al : (2004, eqs. 30-32). Many choices of zt in Koenker�s procedure

can be made (including, when it is thought useful, Szroeter�s suggested variable with an

intercept term). Many researchers are likely to use xt of (1) to construct zt. Two obvious

choices of this type are fm = k; zt = xtg and fm = r; zt $ xt 
 xtg, where, in the latter

case, r is the number of nonredundant variables in xt 
 xt and $ indicates an equality that

holds after redundant variables are omitted. (The second choice for zt gives White�s (1980)

general check for heteroskedasticity.)

It is worth noting that, when discussing the behaviour of tests under alternatives in which

variances are functions of exogenous variables, Dufour et al : (2004) focus on two cases. First,

variances are assumed to increase monotonically with the values of a single regressor. Second,

the variances are assumed to increase monotonically with E(ytjxt). These two special cases

are obviously quite restrictive in the context of multiple regression models. Consequently

the generality of their remarks on the relative powers of di¤erent tests is limited.

3 Simulation-based tests

Here simulation-based tests, and their properties, are discussed. In general, let a typical

test statistic be denoted by � . Under the null hypothesis, � is assumed to be Op(1) with a

non-degenerate limit null distribution that satis�es Beran�s (1988) conditions given below.

The observed value of � is denoted � (0). When examining the asymptotic behaviour of � , an

important consideration is whether or not � is asymptotically pivotal, as de�ned by Beran

(1988). Speci�cally, if � is an asymptotic pivot, its limit null distribution is independent of

(�0; �2;F), within the context of (1) and (2). Whilst for all standard forms of � discussed

in this paper there is always independence with respect to (�0; �2), for some of these test

statistics the limit null distribution crucially depends upon F . In the latter case, � is not

asymptotically pivotal.
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3.1 Nonparametric bootstrap

The nonparametric bootstrap provides a simulation-based method of obtaining asymptoti-

cally valid inferences without assuming precise knowledge of F . Here, the unknown true cdf

for the errors is estimated by its empirical counterpart, F̂T , de�ned as follows:

F̂T : probability
1

T
on ût, t = 1; : : : ; T:

Observe that the residuals used to de�ne F̂T do not need to be centred since it is assumed

that (1) contains an intercept, thus implying
P

t ût = 0. Freedman (1981) shows that

d2(F̂T ;Fu) ! 0 almost everywhere, where d2 is the Mallows metric de�ned on the space of

distributions with �nite variance.7

As discussed by Godfrey and Orme (1999), B arti�cial samples of size T can be generated

from

y�t = x
0
t�̂ + u

�
t ; t = 1; : : : ; T;

where u�1; u
�
2; : : : ; u

�
T is a random sample drawn with replacement from F̂T . If the arti�cially

generated test statistics are denoted by � �1; �
�
2; : : : ; �

�
B, the p-value of � (0) can be estimated

by

PVBS =

PB
b=1 1

�
� �b > � (0)

�
B

:

The null hypothesis is then rejected when PVBS � �, where � is the desired signi�cance

level.

3.2 MC tests

In contrast to the nonparametric bootstrap approach, Dufour et al : (2004, eq: 3) assume

that the true error distribution is known. Let the cdf for " used in the method of Dufour

7 The metric d2 is de�ned as follows. Let Fw and Fz be two distribution functions on the real line withR1
�1 jwj

2dFw(w) <1 and
R1
�1 jzj

2dFz(z) <1, then

d2(Fw;Fz) = inf
M
fEjw � zj2g1=2;

where M is the set of all joint distributions of w and z whose marginal distributions are Fw and Fz,
respectively; see Mallows (1972).
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et al : (2004) be denoted by G. In this case, for any given statistic � whose distribution is

independent of (�0; �2), the MC approach generates test statistics which possess the same

�nite sample distribution, given the regressor values, as � , provided F = G. That is, using

iid drawings "+t with cdf G, N samples can be generated as

y+t = x
0
t�̂ + "

+
t ; t = 1; : : : ; T

which delivers test statistics, denoted �+1 ; �
+
2 ; : : : ; �

+
N . Notice that there is no need to scale

"+t by �̂, due the invariance with respect to (�
0; �2). (Indeed, the scheme y+t = "

+
t could be

used, although this would create di¢ culties if, say, the test variables employed, zt, contained

squared predicted values.)

If F = G, �+1 ; : : : ; �+N form a sample of iid random variables possessing the same �nite

sample distribution as � . Thus
�
� ; �+1 ; : : : ; �

+
N

�
is a simple random sample of N + 1 random

variables, under the null, leading to the rejection rule: reject H0 if PVMC � �, where

PVMC =

PN
i=1 1

�
�+i > � (0)

�
+ 1

N + 1
: (13)

Under regularity conditions provided by Dufour et al : (2004), this rule provides an exact

test when � (N + 1) is an integer.

3.3 Robustness properties of simulation-based tests

In contrast to the exact procedures a¤orded by the MC approach when F = G, the non-

parametric bootstrap approach only provides asymptotically valid inferences. However, it is

important to examine the properties of the MC test procedure when F 6= G, i.e: under an

incorrect choice of error distribution.8 The examination of the asymptotic robustness of

MC tests is based upon expansions of the type used by Beran (1988) to determine the orders

of magnitude of ERP functions for asymptotic and bootstrap tests. It will be useful to start

by outlining some of Beran�s analysis using notation similar to that employed in his article.

8 This issue is not pursued by Dufour et al : (2004), who assume that the correct choice is made.
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Let the limit null cdf of � under F be denoted by H(z;F), with the �nite sample null

distribution function being HT (z;F) = PrT (� � z), where (in both) possible dependence on

F is made explicit. It is assumed that the expansion given by Beran (1988) applies so that

HT (z;F) = H (z;F) + T�j=2h (z;F) +O(T�(j+1)=2); (14)

uniformly in z, and for some integer j � 1 de�ned so that h (z;F) = O(1). Following Beran

(1988), suppose that H (�;F) is continuous and strictly monotone over its support and that

h (�;F) is continuous. For the bootstrap statistic � � generated under the law of F̂T , the

expansion corresponding to (14), which is for � under F , is

HT

�
z; F̂T

�
= H

�
z; F̂T

�
+ T�j=2h

�
z; F̂T

�
+Op(T

�(j+1)=2): (15)

When � is not an asymptotic pivot, the limit null distribution depends upon F as de-

scribed above. In this case the ERP of the asymptotic test, which can be carried out by

rejecting if H
�
� (0); F̂T

�
> 1 � �; is O(T�ja=2); for some ja � j; see Beran (1988, p: 691).

By consideration of various expansions of the same general type, Beran (1988) shows that

the ERP of the bootstrap test is also O(T�ja=2) in this case: If, on the other hand, � is an

asymptotic pivot, so that H (z;F) = H
�
z; F̂T

�
= H (z) ; Beran (1998, p : 690) shows that

the bootstrap test now has an ERP which is O(T�(j+1)=2) whilst the asymptotic test has an

ERP which is O(T�j=2). (In the case of asymptotically pivotal chi-square statistics, j = 2.)

Therefore, the nonparametric bootstrap delivers asymptotically valid inferences regardless

of whether the test uses an asymptotic pivot, without any further assumptions about the

form of F , and is predicted to give better control over signi�cance levels than �rst order

asymptotic theory when the test statistic is an asymptotic pivot.

As noted above, if F is known, the MC methods of Subsection 3.2 can be used to obtain

exact tests. Consider now, though, the MC test procedure under G. Under this choice of

error law, the �nite sample null cdf of �+ can be expanded as

HT (z;G) = H (z;G) + T�j=2h (z;G) +O(T�(j+1)=2); (16)
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provided G satis�es the regularity conditions. If the test statistic is an asymptotic pivot, its

limit null distribution is independent of the error law, so H (z;F) = H(z; F̂T ) = H(z;G) =

H(z). In particular, the simulated statistics �+1 ; �
+
2 ; : : : ; �

+
N (generated under the arti�cial

process associated with G) and the actual statistic � (under the true distribution associated

with F) have the same limit null cdf, namely H(z). Since �+1 ; �+2 ; : : : ; �+N and � are asymp-

totically iid, the MC rejection rule (13) is asymptotically valid, with an ERP the same order

in T as that for the asymptotic test; i.e., O
�
T�j=2

�
.

If � is not asymptotically pivotal, H (z;F) 6= H (z;G). Consequently �+1 ; �+2 ; : : : ; �+N do

not constitute an asymptotically valid reference set for � because they do not possess the

same limit distribution as � . Therefore the MC rejection rule (13) can lead to asymptotically

invalid inferences.

The above asymptotic analysis provides the following conclusions:

1. If � is an asymptotic pivot:

(a) the MC test procedure with correct choice of G (G = F) delivers exact inference

in �nite samples (the ERP is zero);

(b) the MC test procedure with incorrect choice of G (G 6= F) has an ERP which is

of the same order in T as the asymptotically valid test procedure which employs

H(z) as the reference distribution, and therefore delivers asymptotically valid

inferences;

(c) the nonparametric bootstrap test procedure also delivers asymptotically valid

inferences, but has an ERP which is of smaller order in T than that of the asymp-

totically valid test procedure which employs H(z) as the reference distribution.

2. If � is not an asymptotic pivot:

(a) the MC test procedure with correct choice of G (G = F) still delivers exact infer-

ence in �nite samples (the ERP is zero);
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(b) the MC test procedure with incorrect choice of G (G 6= F) has an ERP which is

O(1) and therefore delivers asymptotically invalid inferences;

(c) the nonparametric bootstrap test procedure still delivers asymptotically valid in-

ferences, but has an ERP which is of the same order in T as that of the asymptot-

ically valid test procedure which employs H(z; F̂T ) as the reference distribution.

Thus, for example, the MC-based Koenker test with any choice of G (satisfying the appro-

priate regularity conditions discussed in Section 2) is asymptotically valid, but asymptotic

theory predicts that the nonparametric bootstrap version has smaller ERP in �nite samples.

On the other hand, the MC version of the Breusch-Pagan test with incorrect choice of G is

invalid both asymptotically and in �nite samples, whilst the MC version of the Glesjer test

is asymptotically valid when G 6= F , provided both G and F are symmetric.

Therefore, the value of the MC approach is that it has the potential to provide valid exact

inferences for all test procedures, but only if the correct choice of G is made. Since, in general,

the true error distribution is unknown, this is a very strong assumption. If G 6= F , then it

still provides asymptotically valid inferences but only for tests based on pivotal statistics. In

contrast, the nonparametric bootstrap, whilst not providing exact inferences, always yields

asymptotically valid inferences for all unknown F satisfying the regularity conditions.

In the light of the above discussion, it is important to compare and contrast the �nite

sample performances of MC and nonparametric bootstrap test procedures in order to provide

applied workers with general guidance concerning the e¢ cacy of the two approaches under

incomplete information concerning the error distribution. This is provided in Section 5,

which reports the results of a Monte Carlo study described in the next Section.

4 Monte Carlo design

To facilitate comparison with the results reported by Dufour et al. (2004), �nite sample

signi�cance levels are investigated using their Monte Carlo data generation process which

17



can be written as

yt =

6X
j=1

xtj�j + ut; ut iid(0; �
2); t = 1; : : : ; T; (17)

in which: xt1 = 1, so that �1 is an intercept term; the regressor values xt2; : : : ; xt6 are inde-

pendent drawings from the uniform distribution U(0; 10); �j = 1 for all j; and T = 50; 100.

In practical situations, the regressors may not be approximately uniformly distributed and,

since the design matrix can have an impact on the �nite sample performance of tests, it

seems useful to conduct a second set of experiments.

The second set of experiments uses the same basic regression model as the �rst set,

i.e: (17). However, the regressors are taken from a data set provided by Greene (2003,

Table F6.1), rather than being obtained from pseudo-random number generators. This data

set contains 27 cross-section observations on the following production-activity variables:

V A, a measure of value added; LAB, a measure of labour input; and CAP , an index of

capital stock. These variables are used to construct the k = 6 regressors for (17) with

xt1 = 1, xt2 = log(LABt), xt3 = log(CAPt), xt4 = x2t2, xt5 = x2t3, and xt6 = xt2xt3 for

t = 1; : : : ; T . The values of the parameters of (17) in experiments that use Greene�s data

are the corresponding OLS estimates that he reports for a regression in which log(V A) is

the dependent variable; see Greene (2003, p: 103). In order to obtain samples sizes similar

to those in the �rst set of experiments, the genuine observations for T = 27 are reused to

obtain T = 54 and T = 108, according to

xtj = xt+27;j = xt+54;j = xt+81;j for t = 1; : : : ; 27 and j = 1; : : : ; 6:

For both sets of experiments, the speci�cation of regressor values and model coe¢ cients

allows the calculation of conditional mean values E(ytjxt), t = 1; : : : ; T , that are �xed over

replications. The addition of a pseudo-random error to the mean function gives an arti�cial

observation: all random number generators are taken from the NAG library and are used

in FORTRAN programs. The choice of distributions to be employed for drawing error
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terms is based upon established usage. More speci�cally, the following distributions are

often used in Monte Carlo studies and satisfy the regularity requirements given by Koenker

(1981): Normal; Student t(5); Uniform; �2(2); and Lognormal. In addition to these �ve

distributions, errors are also drawn using a pseudo-random number generator for the Cauchy

distribution. This last distribution does not have �nite moments and so does not satisfy the

usual regularity conditions. It is included because it is the subject of investigation and

comment by Dufour et al : (2004).

Having combined errors and means to obtain an arti�cial sample of T observations, (17)

can be estimated by OLS and tests of the assumption of homoskedasticity can be carried

out. The following eight test statistics are examined.

(a) Goldfeld-Quandt test with natural ordering of data

Using the notation of Section 2 above, this test is implemented in the �rst set of experi-

ments by setting T1 = 2T=5, T2 = T=5, and T3 = 2T=5 for T = 50; 100. In the second set of

experiments, the corresponding values are, as suggested by Johnston and DiNardo (1997, p:

168), Tj = T=3 for j = 1; 2; 3 and T = 54; 108. The test statistic obtained with the natural

ordering of the data is denoted by GQn.

(b) Goldfeld-Quandt test with ordering of data by values of squared OLS predictions

For this test, data are reordered according to the rank numbers of the squared predicted

values ŷ2t . After this reordering, the Goldfeld-Quandt test is applied using the same combi-

nations of T1, T2 and T3 as are used for test (a). The statistic calculated after ordering by

the ranks of the terms ŷ2t is denoted by GQo.

It should be noted that the Goldfeld-Quandt testsGQn andGQo are not included because

it is believed that there will often be su¢ cient information to permit an ordering of variances

under heteroskedasticity. Instead, these tests are used to provide some evidence about the

e¤ects of nonnormality on GQo, relative to GQn, when it cannot be assumed that OLS

predicted and residual values are independent; see the discussion in Subsection 2.2.5.
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(c) Breusch-Pagan test

The speci�c version of the general test statistic derived by Breusch and Pagan (1979),

under the assumption of normality, is computed from the arti�cial regression of the scaled

squared OLS residuals û2t=�̂
2 on the regressors of (17). This statistic is denoted by BPx.

(d) Glejser test

The statistic for the Glejser test is, following Dufour et al : (2004), the conventional F -

statistic for testing that all slope coe¢ cients equal zero in the arti�cial regression of jûtj

on the regressors of (17). The asymptotic properties of this test are discussed in Section 2

above. The test statistic is denoted by Gx.

(e) Koenker test (�rst version)

Koenker�s (1981) procedure is used in two forms. The �rst version has as its test statistic

T times the R2 from the OLS regression of û2t on the regressors of (17). This test statistic

is denoted by Kx.

(f) Koenker test (second version)

The second version of a Koenker-type check is a modi�cation of White�s (1980) general

test for heteroskedasticity. The test statistic is T times the R2 from the OLS regression of û2t

on the regressors and nonredundant squared regressors of (17). (The modi�cation of White�s

strategy is, therefore, that cross-products of regressors are not considered.) This statistic is

denoted by KW .

(g) MSSI modi�ed Glejser test (�rst version)

The modi�ed version of Glejser�s test that is proposed by MSSI is, like Koenker�s test,

implemented using two versions; see Section 2 for details of the modi�cation and its purpose.

In the �rst version, the test variables are the regressors of (17) and the associated statistic

is denoted by MSSIx.

(h) MSSI modi�ed Glejser test (second version)

The second version of the MSSI procedure uses the same test variables as KW and leads

to a test statistic denoted by MSSIW .
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The nominal signi�cance level for all of the tests is, as in the experiments of Dufour et

al : (2004), set equal to 5%. Estimated rejection frequencies are derived from 25000 replica-

tions. For each test statistic (a)-(h), several evaluations of statistical signi�cance are made:

theory-based critical values, the MC approach of Dufour et al : (2004), and the nonparamet-

ric bootstrap recommended by Godfrey and Orme (1999) are all employed. Theory-based

critical values are not always even asymptotically valid in the experiments but are as follows:

the GQn and GQo statistics are assessed by reference to the F (T3 � 6; T1 � 6) distributions;

Gx is compared with critical values from F (5; T � 6) distributions; BPx, Kx, and MSSIx

all use the �2(5) distribution; and, in the �rst set of experiments, the common reference

distribution for KW and MSSIW is �2(10), while for the second group of experiments, in

which Greene�s data are used, this distribution is �2(8):

When MC test techniques are employed, N = 99 replications are used with all of the

six possible error distributions. Thus, for any given correct choice of the error distribution,

there are also �ve incorrect models being used. The six sets of estimates produced provide

evidence on the robustness of the MC method advocated by Dufour et al : (2004). As an

alternative to using a parametric setting, the nonparametric bootstrap is implemented, as

in Godfrey and Orme (1999), with B = 400 bootstraps.

5 Monte Carlo results

Before looking at the results from the Monte Carlo study, it is important to de�ne criteria

to evaluate the performance of the di¤erent tests considered. Given the large number of

replications performed, the standard asymptotic test for proportions can be used to test

hypotheses about the true signi�cance levels. Since some of the tests studied in these ex-

periments are exact, we can expect that the null hypothesis that their rejection frequencies

equal the nominal signi�cance level of 5% is accepted in most cases. In these experiments,

this null hypothesis is accepted (at the 5% level) for estimated rejection frequencies in the

range 4:73% to 5:27%. In practice, however, what is important is not that the signi�cance
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level of the test is identical to the chosen nominal size, but rather that the true and nominal

rejection frequencies stay reasonably close, even when the test is only approximately valid.

Cochran (1952) suggested that a test can be regarded as robust relative to a nominal value

of 5% if its actual signi�cance level is between 4% and 6%. Considering the number of repli-

cations used in these experiments, estimated rejection frequencies within the range 3:75% to

6:30% are viewed as providing evidence consistent with the robustness of the test, according

to Cochran�s de�nition.

Tables 1 to 4 display a set of selected results of the simulation experiments. To economize

on space, only a representative sample of results is provided. For each of the two regressor

sets, estimates are reported for three error distributions: normal, a symmetric nonnormal

distribution, and an asymmetric distribution. With the design of Dufour et al : (2004),

the error laws are normal, t(5) and �2 (2), and, when Greene�s (2003) data are used, the

distributions are normal, uniform, and lognormal. In these Tables, the results of the MC

tests obtained using the correct distributions are presented in bold face and the results

obtained using nonparametric bootstrap critical values are in italic.

Estimates for Cauchy errors are not reported in Tables 1-4. While the Cauchy distribution

has importance in various areas of econometrics, it is not clear that it is a useful choice for

the error model in the context of studying tests of the assumption of homoskedasticity in

regression models. If the errors were to be Cauchy, the mean and variance functions of yt

in (17), conditional upon any set of �nite values of the xtj, would not exist. Therefore,

although included in the simulation experiments, the case of Cauchy errors is not used to

illustrate general �ndings. However, the evidence that is obtained by using Cauchy errors

can be easily summarized: not surprisingly, given the failure to satisfy regularity conditions,

only the MC tests using the correct choice of Cauchy errors perform well.9

9 The results for Cauchy errors, along with those for all other error distributions, can be obtained from
the authors upon request.
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Table 1: Rejection frequencies at the 5% level (Dufour et al : design, n = 50)
Errors: Critical values GQn GQo BPx Gx Kx KW MSSIx MSSIW
Normal �2 or F 4.96 4.98 4.54 5.18 4.06 3.51 3.82 3.08

NP Bootstrap 4.96 5.17 4.12 5.72 5.23 5.38 5.27 5.39
MC/normal 4.78 4.76 4.90 5.02 5.12 5.08 5.12 5.06
MC/t(5) 1.84 1.75 10.61 5.36 5.99 5.55 5.28 5.43

MC/uniform 9.51 9.60 1.46 5.05 4.55 4.91 4.95 5.06
MC/�2(2) 0.69 1.38 22.94 13.45 6.92 6.82 5.62 6.06

MC/lognormal 0.01 0.12 49.03 20.32 8.87 7.33 6.52 6.80
t(5) �2 or F 10.49 10.21 22.01 5.37 3.88 3.79 3.82 3.33

NP Bootstrap 6.52 6.22 2.86 5.40 4.67 5.06 4.97 5.06
MC/normal 9.74 9.96 2.12 4.31 4.11 4.42 4.55 4.56
MC/t(5) 4.78 4.86 4.82 4.98 4.81 4.88 4.98 4.84

MC/uniform 15.62 15.33 0.65 4.47 3.95 4.24 4.64 4.77
MC/�2(2) 2.48 3.89 11.35 12.29 5.70 5.93 5.15 5.54

MC/lognormal 0.19 0.66 28.41 19.51 7.68 6.52 6.37 6.16
�2(2) �2 or F 15.12 20.19 41.98 21.31 6.62 5.32 7.28 5.10

NP Bootstrap 7.33 6.42 2.26 4.55 4.36 4.76 4.98 5.00
MC/normal 14.94 10.74 0.91 1.66 3.48 3.59 4.38 4.25
MC/t(5) 8.86 6.07 2.02 1.84 4.02 3.94 4.70 4.26

MC/uniform 20.66 15.63 0.27 1.64 3.23 3.33 4.36 4.14
MC/�2(2) 5.30 5.01 4.86 4.93 4.92 4.79 4.83 4.93

MC/lognormal 0.70 1.02 14.04 8.06 6.25 5.49 5.76 5.52

Table 2: Rejection frequencies at the 5% level (Dufour et al : design, n = 100)
Errors: Critical values GQn GQo BPx Gx Kx KW MSSIx MSSIW
Normal �2 or F 5.08 5.17 4.81 5.18 4.37 4.11 4.47 4.01

NP Bootstrap 5.60 5.19 4.53 5.47 5.23 5.32 5.22 5.16
MC/normal 5.38 4.87 4.93 4.95 5.02 5.12 4.98 4.98
MC/t(5) 1.20 0.94 13.83 5.06 5.76 5.72 4.96 5.14

MC/uniform 12.16 12.00 1.07 5.04 4.71 4.71 4.94 4.85
MC/�2(2) 0.32 0.49 29.95 13.96 6.48 6.62 5.30 5.49

MC/lognormal 0.00 0.00 68.48 21.65 8.02 7.70 5.94 6.26
t(5) �2 or F 12.69 12.18 31.66 5.37 3.93 4.15 4.40 4.40

NP Bootstrap 6.10 6.34 3.22 5.12 4.91 4.96 4.88 5.09
MC/normal 12.35 12.54 1.66 4.40 4.35 4.20 4.52 4.72
MC/t(5) 5.14 5.28 4.85 4.73 5.01 4.94 4.82 5.00

MC/uniform 20.53 20.83 0.34 4.35 4.17 3.89 4.42 4.72
MC/�2(2) 2.46 3.46 11.96 13.24 5.66 5.59 4.80 5.26

MC/lognormal 0.12 0.28 36.60 20.45 6.94 6.85 5.66 6.00
�2(2) �2 or F 17.36 20.99 53.78 24.57 5.62 4.92 6.50 5.25

NP Bootstrap 6.59 6.40 2.76 4.81 4.60 4.96 4.98 5.04
MC/normal 17.36 14.51 0.58 1.47 3.72 3.81 4.69 4.46
MC/t(5) 8.78 7.04 1.86 1.53 4.26 4.18 4.66 4.49

MC/uniform 25.04 21.42 0.13 1.54 3.58 3.56 4.45 4.30
MC/�2(2) 5.13 5.10 4.80 4.90 4.82 5.11 4.85 5.02

MC/lognormal 0.32 0.43 19.12 8.00 5.95 6.01 5.62 5.55
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Table 3: Rejection frequencies at the 5% level (Greene�s design, n = 54)
Errors: Critical values GQn GQo BPx Gx Kx KW MSSIx MSSIW
Normal �2 or F 4.84 4.81 4.47 5.66 4.68 5.13 4.27 4.31

NP Bootstrap 5.07 5.37 4.25 5.63 5.25 5.34 5.16 5.22
MC/normal 4.93 5.08 4.83 5.10 4.92 4.89 4.96 5.06
MC/t(5) 1.82 1.91 10.87 5.00 4.26 3.27 4.74 4.40

MC/uniform 9.92 9.36 1.59 5.93 6.33 8.22 5.87 6.56
MC/�2(2) 0.67 8.08 23.66 11.62 4.20 2.93 4.61 4.48

MC/lognormal 0.01 4.84 51.38 14.19 3.61 1.81 3.87 3.26
Uniform �2 or F 1.72 2.04 0.06 8.20 4.66 3.92 5.91 4.64

NP Bootstrap 4.23 4.24 6.02 5.14 4.77 4.61 4.58 4.93
MC/normal 1.93 2.11 13.42 3.94 3.72 2.92 4.04 3.87
MC/t(5) 0.53 0.57 26.24 3.90 3.15 1.74 3.80 3.36

MC/uniform 5.12 4.90 4.83 4.77 4.99 4.97 4.76 5.12
MC/�2(2) 0.11 4.27 47.82 9.94 3.13 1.76 3.62 3.38

MC/lognormal 0.01 2.09 79.25 11.70 2.62 0.97 3.05 2.46
Lognormal �2 or F 25.00 50.05 65.11 28.74 12.64 14.14 11.42 11.73

NP Bootstrap 7.92 5.95 1.39 4.36 6.05 6.36 5.16 5.72
MC/normal 23.70 5.24 0.17 1.13 7.97 12.25 6.65 7.73
MC/t(5) 17.79 3.31 0.45 1.14 6.29 8.40 6.24 6.65

MC/uniform 29.00 7.45 0.05 1.57 10.86 17.67 8.03 9.64
MC/�2(2) 12.98 7.59 1.39 3.81 6.36 7.88 5.90 7.05

MC/lognormal 4.80 6.14 4.91 4.83 4.94 4.90 4.82 4.91

Table 4: Rejection frequencies at the 5% level (Greene�s design, n = 108)
Errors: Critical values GQn GQo BPx Gx Kx KW MSSIx MSSIW
Normal �2 or F 4.85 4.84 4.84 5.37 4.62 4.73 4.71 4.44

NP Bootstrap 5.26 5.31 4.47 5.54 5.17 5.41 5.31 5.32
MC/normal 4.95 5.05 5.00 5.17 4.84 5.09 5.11 4.98
MC/t(5) 1.13 1.16 14.23 5.20 4.34 3.48 5.00 4.83

MC/uniform 12.01 11.69 1.10 5.46 5.20 5.95 5.38 5.39
MC/�2(2) 0.28 3.76 30.67 13.46 4.46 3.69 5.00 5.19

MC/lognormal 0.00 1.02 70.14 17.67 3.97 2.12 4.55 4.11
Uniform �2 or F 1.12 1.09 0.02 6.75 4.96 4.64 5.88 5.26

NP Bootstrap 4.40 4.63 6.30 5.39 5.37 5.25 5.12 5.26
MC/normal 1.22 1.34 19.41 4.80 4.78 4.22 4.84 4.74
MC/t(5) 0.10 0.12 41.95 4.89 4.34 3.04 4.77 4.53

MC/uniform 5.13 5.12 5.18 5.10 5.22 5.15 5.06 5.07
MC/�2(2) 0.01 0.75 68.24 12.36 4.49 3.15 4.79 4.76

MC/lognormal 0.00 0.18 95.92 16.22 3.84 1.72 4.28 3.75
Lognormal �2 or F 28.72 50.25 82.48 32.57 11.28 12.81 9.78 10.04

NP Bootstrap 7.10 7.46 2.01 4.91 5.90 6.18 5.34 5.51
MC/normal 28.94 10.35 0.11 1.06 6.52 10.92 5.53 6.02
MC/t(5) 21.08 6.46 0.31 1.10 5.78 7.88 5.46 6.00

MC/uniform 34.94 13.83 0.02 1.24 7.06 12.66 5.86 6.64
MC/�2(2) 16.18 10.01 0.96 3.53 6.07 8.27 5.37 6.20

MC/lognormal 5.06 6.52 5.08 4.90 4.77 4.90 4.89 4.88
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The results in Tables 1-4 show that, when critical values are taken from either �2 or F

distributions, asymptotically valid tests are not always reliable in �nite samples, and that,

not surprisingly, estimates for asymptotically invalid tests are not close to 5%. Both of these

features are illustrated in Table 1 by results for errors derived from the �2(2) distribution:

the estimate for the asymptotically valid MSSIx test is 7:28%; and the estimate for the

asymptotically invalid BPx test is 41:98%.

Given the evidence of the inadequacy of asymptotic critical values, which corroborates

that reported by Godfrey and Orme (1999), the simulation-based methods of Section 3 are

of interest. Consider �rst the cases in which MC tests are carried out with the correct error

distribution. Except for combinations with GQo tests and nonnormal errors, the results of

Dufour et al : (2004) imply exact validity of MC tests for such cases. As expected, with

25000 replications, the corresponding estimates are usually observed to be close to 5%. The

estimates for GQo tests with the correct choice of nonnormal error distribution are also quite

close to 5%, except when Greene�s data provide regressor values and the errors are lognormal.

Overall, with the right error model, the MC tests, as anticipated from the arguments of

Dufour et al : (2004), do well. However, the main purpose of our experiments is to gauge the

robustness of the MC tests to departures from the hypothesized error distribution. Therefore,

it is interesting to focus on the results for MC tests when the distribution used to compute

the critical values (or p-values) is di¤erent from the true distribution of the errors. When

discussing the estimates relevant to the issue of robustness, it is again useful to distinguish

between those test statistics that are asymptotically pivotal and those that are not.

For the asymptotic pivots, viz: Kx, KW , MSSIx and MSSIW , the MC method yields

asymptotically valid, but not exact, tests when the wrong error model is selected; see Sub-

section 3.3. The nonparametric bootstrap versions of test are not only asymptotically valid,

but also enjoy a re�nement in the ERP. The results obtained in our experiments, as il-

lustrated by the relevant parts of Tables 1-4, indicate that, despite being asymptotically

valid, MC tests based on the wrong error law often have estimates that fail to comply with
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Cochran�s criterion of robustness, as set out above. On the other hand, the nonparametric

bootstrap forms of Kx, KW , MSSIx and MSSIW are well-behaved and it is noteworthy that

they are not markedly inferior to MC tests that use the correct error distribution.

The statistics that are not asymptotically pivotal are BPx, Gx, GQn and GQo. The

results show how combining these statistics with an incorrect error law in a MC test can

produce large discrepancies between estimated rejection rates and 5%. Since, as argued in

Section 3, such combinations imply a lack of asymptotic validity, these discrepancies are

not unexpected. It is particularly interesting to consider the behaviour of the MC version

of the Glejser test under misspeci�cation of the error distribution. Dufour et al : (2004)

comment that the �estimation e¤ect� problem that a icts the Glejser test (see Godfrey,

1996) is irrelevant when their MC method is used. While this comment is certainly true

when the error distribution is correctly speci�ed, the results reported here clearly show that,

as a result of the estimation e¤ects problem, the size of the Glejser test is distorted when the

degree of skewness of the distribution is misspeci�ed. Speci�cally, the test systematically

underrejects (overrejects) the null when the assumed errors are less (more) skewed that the

true errors. (Recall, however, that the results in Section 3.3 predict that the MC version of

the Glesjer test will be asymptotically valid, despite misspeci�cation of the error distribution,

provided both the true and assumed distributions are symmetric, and satisfy the regularity

conditions.) In contrast, the kurtosis of the distribution has no signi�cant e¤ect on the

behaviour of the test. Therefore, the estimation e¤ect noted by Godfrey (1996) is critical for

the performance of the MC version of the Glejser test, under an incorrect choice of the error

distribution, and determines the direction of the bias of the estimated signi�cance level.10

The nonparametric bootstrap variants of (at least) BPx, Gx and GQn are asymptotically

valid, but the evidence suggests that these procedures are not reliable in �nite samples of

the magnitudes considered; see, for example, the results for BPx in Table 1.

10 Although it does not su¤er from the estimation e¤ects problem, similar results are found for the BP
test due to the incorrect estimation of the variance of u2t under non-normality. In this case it is the di¤erence
between the kurtosis of the true and assumed distributions that is important for the performance of the test.
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Overall there are two recommendations to applied workers that emerge from the Monte

Carlo study. First, avoid the use of test statistics that are not asymptotically pivotal:

use Koenker�s Studentized score, rather than the Breusch-Pagan version, and use the MSSI

modi�cation of Glejser�s test, rather the original procedure. If there is information about the

alternative that suggests a GQ-type test would be feasible, use the test variable identi�ed in

this alternative in a Koenker-type check. The Koenker test involving the OLS regression of

û2t on an intercept term and ŷ
2
t provides an example of such an alternative toGQ; see Godfrey

and Orme (1999) for results on the �nite sample behaviour of the former test. Second, having

selected an asymptotically pivotal test statistic, use the nonparametric bootstrap to assess

the statistical signi�cance of its sample value.

6 Conclusions

The main advantage of the MC procedure recently proposed by Dufour et al : (2004) to obtain

tests for heteroskedasticity is that, under parametric distributional assumptions, it leads to

simple exact tests, even when the test statistic used has an unknown asymptotic distribution.

This approach not only gives perfect control over the empirical signi�cance level of the tests,

but also increases the number of di¤erent tests available to practitioners. Based on simulation

experiments, Dufour et al : (2004) �nd that, indeed, their MC procedure leads to tests with

very good behaviour under the null and that the new tests it makes available have good

power properties. However, the authors do not evaluate the sensitivity of their tests to

departures from incidental assumptions on the shape of the error distribution. This paper

reassesses the usefulness of the MC tests for heteroskedasticity, focusing on the robustness

of this procedure to departures from the maintained distributional assumptions.

Dufour et al : (2004) show that, under correct distributional assumptions, all standard

heteroskedasticity tests are pivotal in �nite samples. However, this result critically depends

on the validity of the hypothesized error distribution since the distribution of the test statis-

tics depends on its shape, at least in �nite samples. When the assumed distribution of the
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error is incorrect, the MC-based tests are no longer exact, and their asymptotic validity de-

pends on whether or not the tests are based on asymptotically pivotal statistics. Whenever

they are based upon statistics that are not asymptotic pivots, the asymptotic validity of the

MC tests recommended by Dufour et al : (2004) cannot be guaranteed under misspeci�cation

of the assumed distribution.

The results in Section 3 imply that MC tests based on asymptotically pivotal statistics

have large sample validity, even if the error distribution is misspeci�ed. However, the results

of our simulation experiments suggest that, even with a correctly speci�ed error distribution,

the MC tests do not have an important advantage over analogous tests based on critical

values obtained by nonparametric bootstrap, at least for sample sizes of practical interest.

Moreover, under incorrect distributional assumptions, MC tests based on asymptotic pivots

are often outperformed by the corresponding tests based on the nonparametric bootstrap,

where the latter have an error in rejection probability that is of smaller order in T than

those of the MC and asymptotic tests.

Overall, although the results of Dufour et al : (2004) are certainly interesting and poten-

tially useful in cases where the researcher has con�dence in the maintained distributional

assumptions, the use of the MC tests for heteroskedasticity they suggest cannot generally be

recommended for the more standard situation in which little is known about the distribution

governing the errors of the model.11 It is instead recommended that the nonparametric

bootstrap be used when assessing the statistical signi�cance of checks for heteroskedasticity.

If the applied researcher is tackling a more di¢ cult problem of, e.g., looking at the minimum

of a set of p-values, as in the new tests given by Dufour et al : (2004), a double bootstrap

can be used to control �nite sample signi�cance levels. The use of double bootstrap schemes

with non-standard tests for heteroskedasticity is an interesting topic for future research; see

11 Our arguments do not, of course, apply to the MC test of normality proposed by Dufour, Farhat,
Gardiol and Khalaf (1998).
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Godfrey (2003) for an application to the minimum p-value of several tests of the regression

mean function.
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