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Modeling Indifference and Dislike:  
A Bounded Bayesian Mixed Logit Model of the UK Market for GM Food 

 

 

The use of random utility model models has a relatively long history in the area of environmental 

valuation (see [17]).  One of the central tenets of this analysis has been homogeneity in the utility 

function of agents which drive the valuations and choices made. For the analysis to be tractable one has 

typically had to assume that, at some level, agents have the same utility function, that the parameters of 

that function are common across individuals, and typically any heterogeneity is reduced to the residual, 

rationalized as the individual components that are not represented by the specified function.   

 

Where heterogeneity is explicitly considered, it is usually through the inclusion of individual specific 

variables such as age and gender which act to modify the values of the parameters of the utility function. 

For example, household characteristics are employed in studies of demand [10]; individual experience is 

used to modify recreational choice [24]; gender is used to modify preference functions over the 

environment [2]. 

 

Alternative specifications of the random utility model which approach individual heterogeneity from a 

different perspective have developed in recent years, stimulated by the development of simulated 

maximum likelihood estimation methods.  In these mixed logit or random parameter logit models [25, 

35] it is assumed  that the functional form and arguments of utility are common across individuals, but 

that the parameters vary across individuals.  The analysis in this case aims to identify the parameters of 

the distribution from which the individual-specific parameters are drawn.   

 

This approach represents a fundamentally different approach to modeling heterogeneity than that 

employed in more traditional fixed parameter logit models where the approach is to segment the sample, 

the attributes, or both and it is regarded by many as the most promising discrete choice analytical model 

available [16]1. 

 

The use of a mixed logit model brings with it a number of advantages, but also some issues of 

interpretation and application.  One of the key problems in moving away from the estimation of a single 
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1 An additional approach is the use of latent class models (see [6] for an application and [13] for a comparison with 
a mixed logit model). 



(or number of) point estimates of the parameter value and instead analyzing the distribution of 

parameters has been specifying the functional form for that distribution. The most commonly used has 

been the normal distribution, but as the following discussion indicates there are a number of 

circumstances in which this may be regarded as inappropriate and hence alternatives, such as the 

triangular or log-normal distribution have been implemented, again with a series of associated drawbacks 

which are also discussed in the paper. In the context of these developments regarding functional form 

and the remaining associated drawbacks, recent efforts have focused on the further development of 

mixed logit models using bounded distributions.  

 

This paper discusses developments regarding the distributions implementable in mixed logit models and 

presents an application of Train and Sonnier’s bounded mixed logit model [33] which is estimated using 

Bayesian techniques.  The model is applied to data regarding consumer preferences for food attributes, 

including genetic modification, from the UK.   

 

1. Modeling Heterogeneous Preferences 

 

The relaxation of the assumption that all agents in the economic setting under analysis have the same 

underlying utility function poses new challenges. Among these is the issue of how preferences or tastes 

are distributed over the population in question.  Consider the situation where person n chooses among J 

options in T periods. Person n’s utility from alternative j in the tth period is given by 

 

njtnjtnnjt xU εβ += '           (1) 

 

where vector xnjt contains variables of interest that drive choices made including choice attributes, 

respondent attributes etc.   βn and εnjt are not observed and the logit model assumes that εnjt is distributed 

IID extreme value.  The βn are assumed to vary across the population, and are drawn from some 

distribution: βn ~ F(b,Ω).  Thus the unobserved parameters can be considered to have two elements: the 

mean of the distribution and the stochastic distribution around the mean. 

 

In the mixed logit approach the stochastic elements are separated, hence utility from option j for person n 

(suppressing the t subscript) is: 
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][' njnjnjnnj xU εηβ ++=           (2) 

 

This model assumes that εnjt is IID extreme over alternatives with a mean of zero while ηnj can take on a 

number of functional forms.  Estimation involves identifying the distribution parameters for the assumed 

functional form (e.g. the mean and variance for a two parameter distribution).   A key issue therefore 

becomes the choice of functional form to employ. Most commonly normal and log-normal distributions 

[3, 4, 31, 28, 20] have been used, although triangular and uniform distributions have also been employed 

[28, 16, 34]. Clearly the choice of distribution is significant and the selection is neither simple nor, in 

many cases, amenable to testing.  Hence Hensher and Greene note that “distributions are essentially 

arbitrary approximations to the real behavioral profile. We select specific distributions because we have a 

sense that the “empirical truth” is somewhere in their domain. All distributions in common practice 

unfortunately have at least one major deficiency – typically with respect to sign and length of the tail(s)” 

[16: 146]. 

 

The normal distribution might be seen as a natural choice for the distribution of preferences, but one 

implication of this assumption is that it implies that there will be some individuals who have, with some 

finite if small probability, extreme positive and extreme negative valuations of an attribute.  In some 

cases this will be at variance with a priori reasoning. While there may be a distribution of marginal 

utilities of money, for example, it should in all cases be non-negative and, one could argue, positive.  

Assuming that the distribution is normal will violate this.  This problem is one of the reasons for the 

popularity of the log-normal distribution since it can be restricted to either the positive or negative sign, 

but in practice this advantage has been compromised by some of its other characteristics. These include 

the long tail which often generates a large range of infeasible WTPs in the case of economic studies, and 

also the zero probability mass at zero which make it unsuitable for modeling a situation where a section 

of the population are indifferent to an attribute whilst the remainder are positively (or negatively) 

disposed towards it. 

 

One resulting area of work has been development of estimatible forms of bounded distributions since, as 

Hensher and Greene observe, “truncated or constrained distributions appear to be the most promising 
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direction in the future”.  In this paper the bounded mixed logit model developed by Train and Sonnier 

[33] is applied to stated choice data regarding food attributes in the UK.   

 

The structure of the paper is as follow: the issues and data are first set out, the model is then formally 

presented and the results and their implications are then outlined and discussed. 

 

2. An Application  - Genetically Modified Food in the UK 

 

Food containing GMOs first became available in the UK in 1997.  Consumer unease and opposition to 

the use of GMOs in food grew in subsequent years and from 1998 the major UK food retailers began 

removing GM food and ingredients from their supply chain.  

 

A 2002 UK survey [9] reported that only 32% of respondents found the idea of food produced from a 

GM plant acceptable, with the figures for the acceptability of fish and farm animals which had been 

genetically modified being 11% and 13 % respectively. Indeed, the survey reported that 35% of 

respondents would not accept any of the food uses put to them (food produced using a GM plant, 

bacteria, yeast, fish or animals), indicating the strength of general opposition to GM food among a 

significant section of the UK population. 

 

This consumer concern in the UK is matched by widespread skepticism and concern in the rest of 

Europe, identified in a series of Eurobarometer attitudinal surveys. In 2001 [12] this pan-European 

survey reported 71% of respondents agreed with the statement “I do not want this type of food” and 95% 

agreeing that “I want to have the right to choose”, whilst only 15% agreed that “this kind of food does 

not present any particular danger”. Marris et al., report their qualitative work in the UK, Spain, France, 

Italy and Germany which found that: 

 

“Contrary to our expectations, there was an overwhelming similarity in the…results from the five 

countries studied, despite national differences in the amount of media coverage and the intensity of 

the public debate. There were some national differences in the emphasis placed on particular 

views, and in the examples used to support those views, but underlying those differences, we found 

a broad similarity in the repertoire of arguments mobilised by focus group participants in all five 

countries.” [22: 3]. 
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A key result of this work was the view that people were not ‘anti-science’ and did not demand risk-

free technological development but that, in addition to uncertainty about long-term environmental and 

health effects of the use of GMOs, questions were repeatedly raised regarding the distribution of the 

benefits of the technology.  This is reflected in the UK survey cited above [9] which found that in 

answer to a question regarding who would benefit most from the use of GM technology in food 

production, interviewees most frequently identified the companies developing the technology (24%), 

food manufacturers (18%) and farmers (13%). Developing countries were identified by 11%, with 

consumers named by only 5%, behind food retailers, the government, and scientists.  

  

The issues are extremely current and contentious in the UK with a number of policy decisions imminent.  

The UK government has recently undertaken a national public consultation on the issues associated with 

GM food leading to a decision, due in late 2003, on whether or not to move from field-scale trials of GM 

crops to commercial growing.  This is occurring in the context of the escalating trade dispute between the 

US and the EU with the US requesting the formation of a WTO dispute settlement panel to rule on the 

EU's refusal to allow the sale of 30 US biotechnology products on precautionary grounds.  This is despite 

the decision by the EU in July 2003 to move away from a ban on GM food and instead introduce a 

system of food labeling with the thresholds at which ingredients must be labeled tightened and labeling 

required for food ‘derived’ from GM crops regardless of whether or not it contains genetic material.   

 

Since there is no evidence of widespread enthusiasm among UK consumers for GM food, one might 

consider this an attribute of food that generates near indifference among a section of the population, 

while for others it generates disutility.  This combination of ambivalence and opposition toward the use 

of GMOs in food therefore represents a suitable case for estimating Train and Sonnier’s bounded mixed 

logit model. 

 

While there have been a large number of attitudinal studies of consumers’ responses to the use of GMOs 

in food, quantitative economic studies of preferences, in any country, are still relatively few.  The 

techniques which have been employed to estimate WTPs to avoid and/or WTAs to consume GM food 

have been contingent valuation [5, 1, 23, 26, 15], experimental auctions [18, 21, 19, 29, 30] and choice 

modeling [8, 7, 11]. 
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In this paper the data from the study by Burton et al, [8], which comprise choice modeling data regarding 

food choices in the UK, are reconsidered using a mixed logit model with bounded distributions used to 

model preferences for a number of food attributes. Since a full description of the data collection process 

and subsequent analyses are provided in Burton et al only a summary is provided here. 

 

The data were derived from a choice modeling survey of respondents in the UK in 2000, who were 

presented with a series of alternative 'food futures' comprising a number of attributes and associated 

levels and asked to choose between them.  These attributes and their levels are shown in Table 1. The 

attributes of the options were limited to the form of production technology used (conventional, gm1 

[plant to plant gene transfer], gm2 (animal to plant gene transfer]); level of agrochemical use (chem); 

food related health risks (risk); structure of the food system (food miles, fm); and the weekly food bill 

(pay). Changes in the weekly food bill were specified as percentage changes. 

 

Each choice set comprised 3 alternatives: the status quo and two alternatives. Each individual was 

presented with 9 choice sets to complete.  In total 228 individuals returned questionnaires, generating 

2030 completed choice sets.  In their analysis Burton et al., employ a range of alternative specifications 

and investigate the stability of preferences across sub-groups, consistency of the variance of the error 

term across sub groups, and the role of individual specific heterogeneity in determining choices.  This 

represents what has become the standard approach to capture preference heterogeneity within such 

models, that of data segmentation, where the difficulty is identifying the appropriate segments. 

 

In that original analysis the data were split into 3 groups, based on the individuals’ frequency of organic 

food purchasing, subsequently labeled as ‘Infrequent’, ‘Occasional’ and ‘Committed’ (Groups 0, 1 and 2 

respectively). Preferences were found to be highly differentiated between these 3 groups.  In addition, 

gender was used as an interaction term, affecting the value respondents placed on a number of attributes, 

notably the use of GM production technology. Finally, the alternative specific constant (asc) associated 

with the current food system  (the ‘status quo’, sq), was found to be strongly positively significant, 

indicating that there was a tendency to select the status quo irrespective of the attribute levels.. 
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3. The Bounded Logit Model 

 

The bounded mixed model employed here is described below with the exposition drawing heavily on 

Train and Sonnier [33].  Consider a person, n, choosing among J options in T periods. Person n’s utility 

from alternative j in the tth period is: 

 

njtnjtnnjt xU εβ += '           (3) 

 

with εnjt ~ iid extreme value and βn ~ N(b, Ω).  Denoting a person’s choice in period t as ynt, the sequence 

of choices over the T periods is defined as yn = 〈yn1,…,ynT〉 and the set of yn∀n as Y. The probability of 

person n’s sequence of choices is the product of standard logit formulas: 

∑∏=
j

x

x

t
nn njtn

tntnyn

e
eyL '

'

)|( β

β

β         (4) 

To obtain the unconditional probability the integral of this expression over all values of βn, weighted by 

the density of βn, is required: 

 

ΩΩ=Ω ∫ dbgyLbyP nnnnn ),|()|(),|( ββ       (5) 

 

where g(.) is the multivariate normal density. Representing a product of logits mixed over a density of 

marginal utilities2, this expression is referred to as the mixed logit choice probability.  Priors on the 

model parameters b and Ω are required for Bayesian implementation. The prior on b is normal with a 

large variance to generate an almost flat distribution, while the prior on Ω is  inverted Wishart with K 

degrees of freedom and parameter KI where I is the K-dimensional identity matrix. Defining this density 

as IW (Ω|K, KI), the joint posterior on βn∀n, b and Ω is given by: 

 

),|(),|()|()|,,( KIKIWbgyLYb
n

nnn ΩΩ∝Ω∀Λ ∏ βββ      (6) 
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2 Train refers to the β as “partworths”.  However, within the valuation literature this term has an established 
definition as the monetary valuation for a marginal change in an attribute, defined as the ratio of the attribute 
parameter to the parameter on the payment vehicle.  Given that later in this paper we wish to consider these 
monetary valuations, we reserve the term “partworth” for these, and instead refer to the β as “marginal utilities”.  



Gibbs draws are taken to obtain information about the posterior, with draws taken sequentially from the 

conditional posterior of each of the parameters given the previous draws of the other parameters (see 

Train and Sonnier for more details of this process). The sequence of draws from the conditional 

posteriors converges to draws from the joint posterior. 

 

This process is implemented using 30 000 iterations prior to convergence followed by 20 000 iterations 

with one in ten iterations retained for inference. More specifically, the mean of these draws represents the 

mean of the parameters and the standard deviation of these draws represents the standard error of the 

estimates.  

 

4. Results: Unbounded Estimation 

  

The model was initially estimated with all parameters normally distributed to allow comparison with 

both the original model estimated by Burton et al [8] and with subsequent specifications of the bounded 

model3.  The subsequent use of a bounded model and the desire for comparability meant that the 

negatives of the levels of payment, agrochemical use, food miles and both forms of genetic modification 

(pay, chem, fm, gm1 and gm2 respectively) were used. This does not alter the estimation of the model, 

but should be borne in mind when interpreting the parameters. 

 

The results of the estimation of this fixed parameter model are presented in Table 2 where the mean 

value of the draws of  b are shown which represent the estimated mean of the βn’s, while the variances of 

the βn’s displayed are the diagonal elements of Ω.  The results in Table 2 are largely as expected. The 

insignificant pay parameter for Group 2 (the ‘Committed’ Organic group) is something found in Burton 

et al., indicating that on average these respondents were not considering changes in the payment vehicle 

as significant in their choices. The gm1 and fm variables are insignificant at the 5% level for the 

Infrequent and Committed groups. Also the variances associated with status quo option and both GM 

attributes are very large across all 3 consumer groups. 

 

It appears highly unlikely that individuals in the UK prefer, ceteris paribus, increases in the price of their 

food, higher levels of agrochemical use, food being moved longer distances, either type of GM 
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technology, or increases in the likelihood of food poisoning. Hence while indifference by many towards 

these attributes is likely, the negative portions of the distributions of the parameters on these variables 

seems questionable4.  

 

Table 3 shows the proportion of the population in each of the 3 groups predicted as having parameter 

values that conflict with a priori expectations. For example, the results imply that  21%, 32% and 39% of 

the sample for each consumer group prefer increases in price, whilst 56%, 7% and 10% respectively gain 

utility from the use of GM technology involving plant genes only.  The values for food involving the 

transfer of genes from animals to plants are 3%, 4% and 5% respectively. 

 

These variables were therefore identified as appropriate for estimation assuming a bounded distribution 

for the parameter. There was no prior view of the distribution of the status quo parameter and hence this 

was assumed to be normally distributed.  The bounded distributions available using Train and Sonniers’s 

implementation are the log-normal, a normal censored from below at zero and Johnson’s SB distribution. 

Given the problems already noted regarding the zero probability mass at zero and the long tail of the log-

normal distribution, only censored normal and SB distributions were employed in this study. 

 

The bounded distributions all assume that the parameter of the utility function βn is replaced by cn, which 

is some transformation of a normal distribution.  With the normal distribution censored from below at 

zero there is a mass point at zero so that with β normally distributed with mean b and variance σ, the 

transformation is c = max(0, β), with the density above zero identical to the normal density of β. 

Estimation involves identifying b and σ , and hence c, and thus the proportion of the population massed 

at zero and the proportion above zero. 

 

In the case of the SB distribution an upper and lower bound is specified for the distribution, so that the 

transformation c = l +(u - l) . (exp(β)/(1+exp(β))) produces a distribution between l and u, with the shape, 

mean and variance determined by the normally distributed β’s mean and variance. As Train and Sonnier 

note, this distribution has the potential to resemble a log-normal distribution but with a specifiable upper 

bound, a plateau with sharp slopes on each side or be bi-modal. 
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4 Note that the negative of the value of all of these variables, except risk, is used. For risk a decrease in the value of 
the parameter represents an increase in the chance of food poisoning (i.e. from 1/10000 to 1/5000). 



Both the censored normal and SB distributions are transformations of a normally distributed β and, 

following Train and Sonnier, the expressions for a person’s utility and the probability of their sequence 

of choices can be specified as: 

 

njtnjtnnjt xTU εβ += )'(          (7) 

 

where T(βn) = cn is a transformation depending only on β, with the distribution of cn depending on the 

transformation implemented. 

 

The probability of person n’s sequence of choices is: 

 

∑∏=
j

xT

xT

t
nn njtn

tntnyn

e
eyL )'(

)'(

)|( β

β

β          (8) 

Hence βn may be considered a latent variable distributed ~N(b, Ω), which determines the utility function 

coefficients for an individual. For values of βn, coefficients cn are calculated with the distribution of βn 

mapping on to a distribution of cn. 

 

 

5. Results: Bounded Estimation 

 

Censored normal distributions were employed for the variables chem, fm, and risk while a normal 

distribution was used for the status quo asc (sq). Initial exploration of the data led to censored normal 

distributions of the GM parameters with exceptionally large variances, and hence  SB distributions, with 

specified upper and lower bounds were used for both forms of GM technology (gm1, gm2). An SB 

distribution was also used for the payment vehicle.  The SB distributions for the payment vehicle and 

both GM parameters were implemented using a lower bound of zero and an upper bound that was 

reduced in an iterative process.  The final SB distribution implemented for pay used a lower bound of 0 

and an upper bound at 0.3 while for both GM variables lower bounds of 0 were used with upper bounds 

at 10. 
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The results of this estimation procedure are shown in Tables 4, 5, 6 and 7 and in Figures 1 to 4. The 

results in Table 4 show the mean of the draws of  b and the diagonal elements of Ω, again representing 

the estimated mean and variance of the βn’s respectively.  In addition, the mean and variance of the 

transformed variables (cn) which represent the marginal utilities associated with the various attributes are 

shown. These distributions of marginal utilities are generated by making repeated draws from the 

distribution of βn implied by the estimates of b and Ω. Each of these draws is transformed to represent a 

draw of cn, the marginal utilities, and hence their distributions are identified.  It is immediately apparent 

when comparing the results of this bounded model with the unbounded model reported in Table 2 that 

the log-likelihoods of the models for all three groups are considerably higher than those for the bounded 

models. 

 

An additional advantage of this Bayesian implementation of the bounded mixed logit model is that it is 

possible to estimate the correlations between the estimated marginal utilities. Train and Sonnier note that 

this is a significant development since classical procedures do not accommodate fully correlated 

marginal utilities well because of the proliferation of parameters, while Bayesian procedures handle them 

without difficulty. However, they point out, generating marginal utilities that are bounded and correlated 

via either procedure had previously been problematic. 

 

Table 5 displays these correlations between the marginal utilities generated from the bounded model. As 

one might expect, the gm1 and gm2 terms are very strongly correlated across Groups 0, 1 and 2 

indicating that those who are concerned about gm1 tended to be concerned about gm2. The correlations 

between pay and gm1 and gm2 are markedly different across the 3 groups although in all 3 cases it is a 

negative correlation.  There is a small correlation between the payment level and the GM terms in Group 

0, these are greater in Group 1 and there is a very strong negative correlation evident in Group 2. 

 

Figure 1 shows the distributions of the SB distributed price parameters.  Regarding this plot, note that the 

upper limit of 0.3 appears to accommodate the full range of this parameter’s values (results with a higher 

upper limit did not change the distribution in any significant way). The flexibility of  the SB distribution 

is revealed in these plots, where the distribution for Group 0 in Figure 1a resembles a truncated normal or 

possibly a log-normal distribution, while for Groups 1 and 2 the plots in Figures 1b and 1c resemble 

more a censored normal distribution with a mass point close to zero.   
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Figures 2a-2c show the SB distributions of the parameters for the two GM variables, gm1 and gm2, for 

each of the 3 consumer groups.  The distribution of gm1 for Group 0 resembles a censored normal with a 

large probability mass close to zero, that is, near indifference to GM food involving only plant to plant 

gene transfer.  For Groups 1 and 2 the distribution of gm1 is bi-modal, although as one moves from 

Group 1 to Group 2 the portion of the sample in the lower end of the distribution reduces sharply with an 

increase in the number whose utility is strongly negatively affected by the presence of this attribute in a 

food choice. 

 

Regarding gm2, GM food involving animal to plant gene transfer, the parameter distributions in all three 

groups are again bi-modal.  The proportion of the sample at the upper mass point increases across the 

three groups. For Groups 1 and 2 the plots indicate large increases in the proportion of the population 

strongly opposed to food choices containing this option.  When the upper bounds on the gm2 distribution 

were raised above 10, most of the upper mass points shifted to the new upper limit, while the overall 

shape of the distribution was unchanged. These results imply a section of the population seeming to be 

unwilling to consume this foodtype at all.   

 

In the results presented so far, the focus has been on the estimated marginal utilities associated with each 

attribute.  Although the distributions of these are of interest, their values have no absolute interpretation.  

However, one can obtain monetary equivalents by dividing the parameter of the attribute by pay, the 

parameter on the payment vehicle, to give a partworth, which gives the equivalent marginal value of a 

change in an attribute in monetary terms.  One of the implications of having a lower bound at zero for the 

price parameter is the scope for a considerable density at values very close to zero and hence an 

associated upper range of WTPs for GM food which are infeasibly large.    

 

Two options one could employ are to raise the lower bound on pay marginally above zero, or 

alternatively consider only the lower, feasible, range of WTPs inferring that those above, say, a 100% 

discount are never likely to consume GM food knowingly.   The latter option is employed here. In 

Figures 3a-3c the simulated distribution of partworths for gm1 and gm2 are shown with the upper tail of 

the distribution above 100% reported as a single mass, accumulated at a partworth equivalent to 100% of 

the weekly food bill.  Similarly, in Figures 4a-4c the simulated distribution of partworths for chem are 
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shown again with the upper tail of the distribution above 100% reported as a single mass, accumulated at 

a partworth equivalent to 100% of the weekly food bill.  Table 6 provides additional details about the 

distribution of these chem, gm1 and gm2 partworths.  The median figures identified in Table 6 give an 

additional indication of discounts required to induce purchase of the good with such attributes. For 

example, while the mean discount required to induce purchase of gm1 food in Group 0 is 55%, the 

median figure is only 0.1%, a figure reflecting the mass point close to zero in the distribution of 

partworths. The equivalent figures for Group 1 are a mean of 830% for the purchase of gm1 food, with a 

median figure of only 7.7%  However in all three consumer groups the median partworths for gm2 food 

are infeasibly large. 

 

The bi-modal nature of the partworth distributions for GM food mean that while mean or indeed median 

partworths are high, sections of the market may be willing to purchase GM food at more reasonable 

discounts. The distributions of partworths for GM food are therefore re-considered in Table 7 which 

displays the simulated shares of the market in the three consumer groups willing to buy GM food at 

discounts of 10% and 20%.  The results for Group 0 indicate that 78% of people in this group are 

estimated as willing to consume gm1 food with discounts of up to 10% of current food costs.  For gm2, 

GM food involving the transfer from animals to plants, the market outlook is considerably less promising 

with the share of Group 0 willing to consume at discounts up to 10% reduced to about one quarter of the 

market. The additional market share generated by a discount of 20% is not large for Group O, with only 

an additional 3% and 4% induced to purchase gm1 and gm2 food respectively. For Groups 1 and 2 the 

shares at 10% discounts are lower, but the pattern of small additional market share gains when discounts 

are increased to 20% is repeated. 

 

 

6. Conclusions 

 

The development of computational techniques enabling the estimation of mixed logit models has 

stimulated the development of a number of advances in the way that preference heterogeneity can be 

modeled.   Mixed logits are a powerful analytical tool for accommodating diverse preferences in studies 

of consumer choice which may be regarded as attractive because the distribution in question may be 

more revealing than segmented point estimates. 
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The approach has intuitive appeal in so far as it allows explicitly for a range of attitudes towards 

attributes within the population.  This is likely to be important in circumstances where one is interested 

in potential market penetration, or levels of consumer resistance to the introduction of a new product: it 

is not the average attitude that is important to identify, but the size of the group who will or will not be 

prepared to accept a product.   

 

One of the key areas of research that has been prompted by the development of mixed logit models is the 

choice of  functional form of the mixing distribution of the parameters. As yet, there are no clear answers 

on this issue; the researcher needs to identify distributions that are, overall, best suited to the reality 

approximated in the model.  For some distributions (e.g. normal and log-normal) the inherent properties 

of the distribution may make them unattractive for modeling the preference distribution for some 

attributes.  In particular, the lack of a probability density at zero is particularly problematic in modeling a 

situation where one expects none or only trivial numbers in the population to be positively (negatively) 

disposed towards a choice attribute while there may be a significant proportion who are indifferent to it. 

 

The censored normal and SB bounded distributions made operational by Train and Sonnier therefore 

represent a significant development in this area.  While the use of such distributions brings with it its 

own issues of application and interpretation, such as the specification of the bounds to be used in the SB 

distribution, they appear to offer an attractive method of dealing with the issue.  In particular, the use of 

the SB distribution seems to offer a flexible approach to modeling preferences within a two parameter 

distribution.  In particular, its potential to generate bi-modal distributions which can mimic situations 

where the population is broadly divided into those who are largely indifferent and those who are strongly 

averse to an attribute is useful in a situation such as that of GM foods in the UK, where casual 

observation of community expression indicates that preferences are likely to follow such a pattern. 

 

The bi-modal distributions of gm1 and gm2 parameters and the associated partworths reported here 

indicate significant proportions of the population are indifferent to the GM technologies, while others 

strongly oppose them.  The size of these proportions changes as one moves from technology involving 

only plant to plant gene transfer to GM technology that has an animal component, a result which is 

consistent with other studies.  
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The results indicate also that while segments of the UK market (ranging between about a quarter and 

three quarters for gm1) may be prepared to buy GM food with discounts of up to 10%, the additional 

market share gained by further discounting is small. This price inelastic demand, in the range of 10% to 

20% discounts, supports the view that a significant section of the UK market is unwilling to trade-off the 

GM nature of food against price, certainly not over any range likely to occur in practice. 
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Table 1.  Attributes and their levels  
 
 
Attribute  Levels 

 
Level of weekly food bill  
(% change from current) 
 

 
pay 

 
-50, -40, -30, -20, -10, 0,  
+10, +20, +30, +40 
 

Form of production technology used 
 

 
gm1 
gm2 

Current,  
GM(plants),  
GM(plants and animals) 
 

Level of on-farm chemical use 
 

chem -30%, No change, +10% 

Structure of food system (food miles) 
 

fm -30%, No change, +10% 

Food health risk risk 1/15000, 1/10000, 1/5000   
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Table 2.  Unbounded mixed logit model: all coefficients normally distributed 
 
Group 0 βn 
 mean var t  
pay (-) 0.4172 0.2995 5.14

s.e. 0.0812 0.0683 4.39
chem (-) 0.5118 0.5874 4.37

s.e. 0.1172 0.1643 3.58
fm (-) 0.1358 0.4635 1.16

s.e. 0.1168 0.1190 3.89
risk 1.8451 6.2191 3.66

s.e. 0.5047 2.0271 3.07
sq 24.4519 184.6317 8.32

s.e. 2.9392 71.0255 2.60
gm1 (-) -1.4039 144.7591 -0.50

s.e. 2.8342 48.6312 2.98
gm2 (-) 17.4203 85.2059 8.39

s.e. 2.0770 33.3245 2.56
 log-likelihood= -546.3  
 
 Group 1 βn 
 mean var t  
pay  (-) 0.3311 0.5512 3.16

s.e. 0.1047 0.1371 4.02
chem (-) 1.0167 1.0749 5.62

s.e. 0.1810 0.3052 3.52
fm (-) 0.3144 0.5581 2.32

s.e. 0.1353 0.1338 4.17
risk 0.8802 9.5371 1.64

s.e. 0.5358 3.4068 2.80
sq 23.8852 1004.2546 4.78

s.e. 4.9935 278.8018 3.60
gm1 (-) 4.1021 7.4406 6.09

s.e. 0.6738 3.0714 2.42
gm2 (-) 37.4534 445.3675 10.42

s.e. 3.5946 123.6501 3.60
 log-likelihood=-609.6  
 
Group 2 βn 
 mean var t  
pay (-) 0.1944 0.4747 1.41

s.e. 0.1382 0.1421 3.34
chem (-) 1.2973 1.0759 4.50

s.e. 0.2885 0.4739 2.27
fm (-) 0.3278 0.7950 1.01

s.e. 0.3259 0.3064 2.59
risk -0.0627 17.7059 -0.06

s.e. 0.9971 9.3280 1.90
sq 25.3743 374.5147 3.57

s.e. 7.1007 199.1519 1.88
gm1 (-) 20.7198 269.5058 3.84

s.e. 5.3894 218.3582 1.23
gm2 (-) 65.7504 1548.9652 5.69

s.e. 11.5507 853.8783 1.81
 log-likelihood=-270.4  
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Table 3. Shares of parameter distributions above and below zero 
 

  
 Group 0  Group 1  Group 2 

 
 Share<0 Share>0  Share<0 Share>0 Share<0 Share>0 

pay (-) 0.21 0.79  0.32 0.68  0.39 0.61 
chem (-) 0.24 0.76  0.16 0.84  0.11 0.89 
fm (-) 0.43 0.57  0.36 0.64  0.37 0.63 
risk 0.22 0.78  0.39 0.61  0.50 0.50 
sq 0.04 0.96  0.23 0.77  0.10 0.90 
gm1 (-) 0.56 0.44  0.07 0.93  0.10 0.90 
gm2 (-) 0.03 0.97  0.04 0.96  0.05 0.95  
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Table 4. Bounded mixed logit model results 
 
Group 0 βn marginal utilities 
 mean var mean var 
pay  (-) -1.53 2.3119 0.0763 0.0045 

s.e. 0.3141 0.9722   
chem (-) -0.3822 0.5717 0.1560 0.1081 

s.e. 0.2047 0.2367   
fm (-) -2.1291 2.2096 0.0503 0.0581 

s.e. 0.5557 1.1085   
risk 0.0859 1.1749 0.4808 0.4272 

s.e. 0.2408 0.5901   
sq 3.5372 6.3976 3.5798 6.4559 

s.e. 0.6426 2.5002   
gm1 (-) -7.9878 39.7839 1.1573 7.1983 

s.e. 1.677 25.9933   
gm2 (-) 0.2306 24.505 5.2081 17.1447 

s.e. 0.9063 15.8493   
 log-likelihood= -413.3053 
     
Group 1 βn marginal utilities 
 mean var mean var 
pay  (-) -2.7708 2.8441 0.0383 0.0024 

s.e. 0.6207 2.099   
chem (-) -0.0506 0.3198 0.2076 0.1056 

s.e. 0.1111 0.0927   
fm (-) -5.2242 4.9789 0.0081 0.0098 

s.e. 1.4995 3.4212   
risk -1.4435 4.7891 0.3307 0.5735 

s.e. 0.9662 3.1608   
sq 2.3967 13.408 2.4454 13.6450 

s.e. 0.7978 6.8225   
gm1 (-) -4.2416 43.191 2.7106 15.1125 

s.e. 1.3848 22.0661   
gm2 (-) 3.9936 83.5188 6.6183 18.5157 

s.e. 1.6855 38.7554   
 log-likelihood= -411.2133  
   
Group 2 βn marginal utilities 

 mean var mean var 
pay  (-) -8.3252 27.1321 0.0195 0.0034 

s.e. 4.0454 24.5823   
chem (-) 0.0284 0.3375 0.2502 0.1286 

s.e. 0.1196 0.1095   
fm (-) -13.2222 50.887 0.0944 0.4272 

s.e. 2.7543 29.4601   
risk -2.2223 6.9941 0.2984 0.6472 

s.e. 1.4596 5.47   
sq 1.9749 4.0599 1.9904 4.1185 

s.e. 0.7948 2.644   
gm1 (-) -0.5 47.9577 4.6872 19.1307 

s.e. 1.4212 30.2863   
gm2 (-) 5.3083 38.7418 7.9848 11.8089 

s.e. 2.2532 35.3042   
 log-likelihood= -236.6731 
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Table 5. Correlations of marginal utilities 
 
 
Group 0     
 pay(-) chem(-) fm(-) risk sq gm1(-) gm2(-) 
 
pay(-) 

 
1.0000 

chem(-) 0.0533 1.0000 
fm(-) -0.1539 0.2932 1.0000 
risk 0.5126 0.1030 -0.1322 1.0000 
sq 0.5612 0.3807 0.1005 0.5556 1.0000 
gm1(-) -0.1042 0.4133 0.5726 -0.0464 0.2721 1.0000 
gm2(-) -0.1222 0.4050 0.5472 -0.0626 0.2362 0.8940 1.0000 
 
 
Group 1     
 pay(-) chem(-) fm(-) risk sq gm1(-) gm2(-) 
 
pay(-) 

 
1.0000 

chem(-) 0.0182 1.0000 
fm(-) -0.2127 0.0610 1.0000 
risk 0.3537 0.1307 -0.3734 1.0000 
sq 0.2923 0.4131 -0.0242 0.4266 1.0000 
gm1(-) -0.2696 0.2605 0.4042 -0.3479 0.3489 1.0000 
gm2(-) -0.2984 0.2494 0.4854 -0.4006 0.2920 0.9091 1.0000 
 
 
Group 2     
 pay(-) chem(-) fm(-) risk sq gm1(-) gm2(-) 
 
pay(-) 

 
1.0000 

chem(-) -0.1713 1.0000 
fm(-) 0.7638 -0.2131 1.0000 
risk 0.6659 -0.0519 0.6255 1.0000 
sq 0.0286 0.2911 -0.1263 0.2639 1.0000 
gm1(-) -0.8085 0.2149 -0.8921 -0.6844 0.1087 1.0000 
gm2(-) -0.6573 0.2471 -0.8350 -0.4378 0.2844 0.7748 1.0000 
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 Figures 1a-1c.  SB distribution of the price parameter 
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Figures 2a-2c. Bounded SB distributions of  gm1 and gm2 parameters 
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Figures 3a-3c. Distributions of gm1 and gm2 partworths 
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Figure 4. Censored normal distributions of chem partworths (%) 
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Table 6. Partworth distributions 
 
 

Group 0 chem gm1 gm2
 

n 2000 2000 2000
mean 6.4 55.1 278.7
std.dev 39.6 289.5 930.4
percentile – 25% 0.0 0.0 7.5
percentile – 50% 0.0 0.6 68.9
percentile – 75% 1.9 6.3 217.2
nos>100 17 208 835

 
Group 1 chem gm1 gm2

 
n 2000 2000 2000
mean 39.2 830.0 1652.9
std.dev 220.3 3983.5 5526.3
percentile – 25% 0.0 0.1 32.3
percentile – 50% 0.0 7.7 291.9
percentile – 75% 14.4 257.8 1120.2
nos>100 150 668 1322

 
Group 2 chem gm1 gm2

 
n 1079* 1079* 1079*

mean 698.1 10606.1 22060.2
std.dev 2069.1 24408.8 34902.8
percentile – 25% 0.0 0.2 128.0
percentile – 50% 0.0 82.0 2940.5
percentile – 75% 154.2 4387 24978.5
nos>100 289 527 827
 
 
 
* The presence of zero marginal utilities of money create missing partworth 
values in this group. 
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 30

Table 7. Population shares willing to consume GM food at 10% and 20% discounts 
 
 

 
         Discounts 

 
Group 0 10% 20%

 
gm1 78 81
gm2 27 31
 
   

Group 1 10% 20%
 
gm1 51 55
gm2 21 23
 
   

Group 2 10% 20%
 
gm1 22 23
gm2 7 8
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