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Abstract: An infinite-horizon, stochastic model of entry and exit with sunk costs and

imperfect competition is constructed. A subgame perfect Nash equilibrium for the general

dynamic stochastic game is shown to exist as a limit of finite-horizon equilibria. This equi-

librium has a relatively simple structure characterized by two numbers per finite history.

Under very general conditions, it tends to exhibit excessive entry and insufficient exit rel-

ative to a social optimum. Journal of Economic Literature Classification Numbers: C73,

D43, L13
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1 Introduction

Accepting the proposition that firms are forward-looking, economists have constructed myr-

iad dynamic models of industry evolution, that is, models that incorporate time and (some-

times) uncertainty. For tractability, many have been two-period models. While these

have yielded important insights, they suffer from the well-known drawback that the final

period behaves like a static (one-period) model. This is a potential problem because firms

expecting static behavior in the near future may behave differently than firms expecting

continued dynamic behavior. Circumventing this problem are the infinite-horizon models of

industry evolution. However, most of these—e.g. Jovanovic [8], Dixit [4], Lambson [10], Rob

[13], Hopenhayn [7], and Klepper [9]—posit infinitesimally-sized price-taking firms. Thus

they illuminate competitive processes but are ill-suited for exploring traditional industrial

organization questions regarding market structure and monopoly power.1

This paper formulates a stochastic infinite-horizon model where the number of active firms

must be an integer. Entry and exit are endogenously generated by exogenous shocks—such

as changes in demand or factor prices—that are external to the firms. The infinite horizon

avoids the “final period problem” while the integer constraint makes the model suitable for

addressing traditional industrial organization questions concerning imperfect competition.

Section 2 describes the model: a dynamic stochastic game in discrete time with countably

many time periods and countably many firms. In each period, inactive firms choose whether

to become active by paying an entry cost and active firms choose whether to become inactive

by exiting and receiving a scrap value. The framework is very general. The one-period

profits of active firms are modeled in reduced form, the only requirement being that per-

firm profit be decreasing in the number of active firms. Furthermore, the stochastic process

governing the exogenous shocks can be of any form—for example, it need not be Markovian—

as long some mild boundedness conditions are satisfied.

1An important exception is by Ericson and Pakes [5]. Their model is more general than ours in that

it allows firm-level investment, but less general in that the restrictions placed on the primitives rule out

deterministic processes and other cases of interest. (See Amir [1].) Another difference is that their

existence proof employs an abstract fixed-point argument whereas ours is constructive.
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Section 3 proves that the game has a subgame perfect Nash equilibrium that is the limit

of finite-horizon equilibria. The proof is constructive and provides a useful characterization

of the equilibrium path.

Section 4 contains an example of how the framework may be applied: an analysis of

the welfare implications of unregulated entry and exit. That there is a tendency for

excessive entry in a two-stage model—where firms make entry decisions in the first stage

and production decisions in the second stage—was established by Mankiw and Whinston

[12]. The stochastic infinite-horizon model analyzed here allows a deeper investigation. For

the class of equilibria constructed in Section 3, not only is there a tendency for excessive

entry when times are good but there is also a tendency for insufficient exit when times are

bad. Furthermore, these tendencies are not reversed in the present even when firms take

into account that there will tend to be too many firms in the future. Thus, these equilibria

tend to exhibit too many active firms in every period of every realization of the stochastic

process. Section 4 closes with a reminder that there can be equilibria that are not limits

of finite-horizon equilibria and that have very different properties. This reminder takes

the form of an equilibrium in which entry falls more than one short of the optimal number

of firms. Thus the tendency for an excessive number of firms in imperfectly competitive

markets is not universal.

2 The Model

Suppose countably many firms, indexed by i ∈ {1, 2, 3, ...} := I, exist for countably many

periods indexed by t ∈ {1, 2, 3, ...}. Let mt be the market condition in period t. Specifically,

mt lists all the relevant exogenous variables—e.g. factor prices, demand parameters, entry

costs, scrap values, etc.—at time t. Let h = (m1, ..., mt) be the market conditions in the first

t periods (to be called a t-period market history), let Ht be the set of possible t-period market

histories, and let H = ∪∞t=1Ht be the set of all possible finite market histories. Assume the set

of possible market conditions is finite or countable, implying that H is countable. Market

conditions are governed by an exogenous stochastic process. Let ρ(g | h) be the probability

that the market history g ∈ Hτ is realized given that the market history h ∈ Ht is realized,
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where τ ≥ t. Then ρ induces a partial ordering ≥ on market histories: g ≥ h iff ρ(g | h) > 0.

If g ≥ h and g 6= h then one can write g > h. If h ≤ f ≤ g then one can write f ∈ [h, g].

If h ∈ Ht and t ≥ 2, then h−1 ∈ Ht−1 lists the first t− 1 market conditions of h.

Finitely many (perhaps zero) firms are initially active and the others are initially inactive.

At the beginning of each period, t, and given the market history h ∈ Ht, an inactive firm

can enter (become active) by paying the entry cost ξh. Similarly, an active firm may exit

(become inactive) and recoup the scrap value χh (which may be negative). Then active firms

play a symmetric game (e.g. Cournot) yielding a current payoff of πh(yh) to each active

firm, where yh is the number of active firms. Note that ξh, χh, and πh depend only on the

current market condition rather than the entire market history, but it is convenient to use

market history subscripts rather than market condition subscripts. Thus, for example, ξh is

understood to be the entry cost in the market condition prevailing in the last period of the

market history h (or the “entry cost at h”).

Call ai
0 ∈ {0, 1} firm i’s initial activity index and call ai

h ∈ {0, 1} firm i’s activity index

at h; an index of 1 denotes activity and an index of 0 denotes inactivity. Call a0 = {ai
0}i∈I

and ah = {ai
h}i∈I the activity vectors initially and at h, respectively. A state is a pair

(m, a), interpreted as the current market condition and the previous period’s activity vector.

A t-period history, s, is a list of t states. Let St be the set of possible t-period histories and

let S = ∪∞t=1St be the set of all possible finite histories. A strategy for firm i is a decision

rule σi : S → {0, 1} that specifies firm i’s activity index as a function of the history. Given a

history s ∈ St, an induced strategy σi
s is the restriction of σi to histories that follow s (in the

sense that their first t states are the list s). Let Σi
s be the set of firm i’s induced strategies

given s. The induced strategy profile σs = {σi
s}i∈I induces a path, that is, a stochastic

sequence of activity vectors {ag}g≥h. Associated with that path is a value for firm i given s:

V
i

s(σs) =
∞∑

τ=t

δτ−t
∑

g≥h

ρ(g | h){−max(0, ai
g − ai

g−1)ξg + max(0, ai
g−1 − ai

g)χg + ai
gπg(yg)},

where δ ∈ [0, 1) is a discount factor. Equilibrium can now be formally defined.

Definition: A (subgame perfect Nash) equilibrium is a strategy profile σ̃ = {σ̃}i∈I such

that V
i

s(σ̃s) ≥ V
i

s(σ
i
s, σ̃

−i
s ) for all i ∈ I, for all s ∈ S, and for all σi

s ∈ Σi
s, where σ̃s is the

strategy profile induced by σ̃ for each s and where σ̃−i
s is σ̃s with the ith element removed.
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3 Existence of Equilibrium

This section contains a heuristic sketch of a constructive proof that a subgame perfect Nash

equilibrium exists. The formalities are relegated to the appendix. The constructed equilib-

rium is called a limit-lifo equilibrium because it is the limit of finite-horizon equilibria and

the last firms to enter are the first to exit. A limit-lifo equilibrium is characterized by a

collection of integer pairs, {Nh, Xh}h∈H , one for each market history. Suppose h ∈ Ht is the

market history in period t. If there were fewer than Nh active firms in period t− 1—that is,

if yh−1 < Nh—then there is entry and yh = Nh. If yh−1 > Xh then there is exit and yh = Xh.

Otherwise, there is neither entry nor exit in period t and yh = yh−1 . Thus the evolution of

the number of firms is governed by

yh = min{Xh, max{Nh, yh−1}}. (3.1)

To construct {Nh, Xh}h∈H , integer pairs {NT
h , XT

h }h∈∪T
t=1Ht

are constructed for each T -period

truncation of the model by backward induction. Then a limiting argument is invoked as T

increases without bound. For each T , t ≤ T , and each h ∈ Ht, NT
h (respectively, XT

h ) is the

largest integer such that the expected present value (through period T ) of the firm that will

be the first to exit is not less than the entry cost (respectively, scrap value), given that the

evolution of the number of firms is governed by

yh = min{XT
h , max{NT

h , yh−1}}, (3.2)

which is the finite-horizon analogue to (3.1).

Unfortunately, NT
h and XT

h are not necessarily monotonic in T , making it impossible to

verify that limits exist. Instead, a diagonalization argument is invoked so that Nh and Xh

can be derived for each h ∈ H as limits of an appropriately specified subsequence. Firms’

strategies are then constructed so that the number of firms is governed by (3.1) and such

that no firm ever has an incentive to deviate from its assigned strategy. This is done by

partitioning the set of initially inactive firms into countably many countable subsets. Firms

in each subset are ordered and each subset is assigned a market history. Each inactive firm

considers entry only in the last period of its assigned market history; if its index is sufficiently

6



low it enters. Active firms consider exit according to a last-in-first-out rule. Any firm that

deviates from its assigned behavior by becoming or remaining active becomes the “marginal

firm”—that is, the firm expected to exit first. Any firm that deviates from its assigned

behavior by becoming or remaining inactive loses its chance at further equilibrium activity

in the induced subgame.

Of course, some assumptions are required. First, the natural assumption that operating

profits do not increase with the number of firms is imposed:

A1. For all h ∈ H, πh(yh) is non-increasing in yh.

Next, it is proper to allow Xh to be infinite; this models situations where there is no exit

regardless of the number of active firms (e.g. due to the absence of scrap values and fixed

operating costs). However, it is desirable to bound entry in each period so that the number

of active firms is always finite. This is accomplished as follows. For each h ∈ H, let Bh be

the collection of subsets of H defined as follows. If βh ∈ Bh, then (1) g > h for all g ∈ βh,

and (2) if g ∈ βh and g′ ∈ βh then it is not the case that g > g′. In words, all market

histories in βh follow h but not each other. Given βh ∈ Bh, define

αh = {f ≥ h | f < g for some g ∈ βh}.

In words, all market histories in αh (weakly) follow h but do not follow any market history

in βh. The next assumption can now be stated.

A2. For each h ∈ H there exists a positive integer yh such that, for all y > yh,

sup
βh∈Bh

∞∑
τ=t

δτ−t

[ ∑
g∈Hτ∩αh

ρ(g | h)πg(y) +
∑

g∈Hτ∩βh

ρ(g | h)χg

]
< ξh.

Assumption A2 bounds the number of active firms at each market history h. Intuitively,

if there are yh > yh active firms in the last period of market condition h then the marginal

firm—that is, the first of the yh firms to exit—cannot have an expected present value ex-

ceeding the left hand side of the inequality in A2. Since this is less than the entry cost, no

more than yh can enter in the last period of h. Thus, since yh is finite for all h ∈ H, the

number of active firms is always finite. It may, however, increase over time without bound.
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Finally, a technical assumption is required to ensure that expected present values converge

as the horizon lengthens. This is accomplished by assumption A3:

A3. There exists κ ∈ (δ, 1] and M > 0 such that, for all t and for all h ∈ Ht,

|πh(1)| < M/κt and |χh| < M/κt.

The theorem can now be stated and rigorously proved. Note that the proof is construc-

tive, and thus provides a characterization of an equilibrium. In particular, the evolution of

the number of active firms over time is governed by (3.1).

Theorem 1: If A1-A3 are satisfied then a (subgame perfect Nash) equilibrium exists.

Proof : See appendix.

4 Excessive Entry and Insufficient Exit

The traditional industrial organization literature often assumed that there is insufficient

entry in imperfectly competitive markets. However, Mankiw and Whinston [12] established

a tendency for excessive entry in a simple two-stage framework where in the first stage firms

make entry decisions and in the second stage active firms make production decisions.2 Our

model allows a much stronger result. Limit-lifo equilibria not only exhibit a tendency for

excessive entry when times are good but also a tendency for insufficient exit when times are

bad. Furthermore, these tendencies are not reversed in the present even when firms take

into account that there will tend to be too many firms in the future. Thus, equilibrium

tends to exhibit too many active firms in every period of every realization of the stochastic

process.3 This theorem requires additional notation and assumptions—analogous to those

used by Mankiw and Whinston—which will now be introduced.

Assume each market condition is completely described by a differentiable downward-

sloping inverse demand function and a twice differentiable, convex cost function. Given

2“Tendency” means that the number of active firms is never more than one firm short of, but can greatly

exceed, the optimal number. That the number of firms can be one less than optimal is due to the integer

constraint.
3This result contrasts with Rob’s [13] continuum model where, due to learning externalities, the model

exhibits insufficient entry.
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an initial number of active firms, let y∗ = {y∗h}h∈H be the optimal stochastic sequence of

numbers of firms when the social planner controls entry and exit but not the production and

pricing decisions of active firms. Formally, y∗ maximizes

W (y) :=
∞∑

τ=1

∑

h∈Hτ

ρh{[
∫ Qyh

0

Ph(s)ds− yhch(qyh
)]

−max{0, yh − yh−1}ξh + max{0, yh−1 − yh}χh}

:=
∞∑

τ=1

∑

h∈Hτ

ρh [Sh(yh)−max{0, yh − yh−1}ξh + max{0, yh−1 − yh}χh]

where Qyh
= yhqh is total output when there are yh firms at h, Ph is the inverse demand

function at h, ch is the individual firm’s cost function at h, qyh
is the equilibrium per-firm

output given yh firms at the history h and ρh is the unconditional probability of the market

history h occurring. Sh(yh) will be called the current surplus at h. For all h, assume

(following Mankiw and Whinston):

A4. Qyh
> Qy′h for all yh > y′h and limyh→∞ Qyh

< ∞.

A5. qyh
< qy′h for all yh > y′h.

A6. Ph(Qyh
)− c′h(qyh

) ≥ 0 for all yh.

In words, in each period of each realization, industry output increases and is bounded

in the number of firms, per-firm output is decreasing in the number of firms, and price is

no less than the marginal cost given the number of firms. These assumptions are not very

restrictive: Amir and Lambson [2] provide (minimal) conditions sufficient for A4 and A5 to

hold for Cournot equilibria. Specifically, defining ∆ := −P ′(Q) + c′′(q), they show that the

first part of A4—namely Qyh
> Qy′h for all yh > y′h—holds if ∆ > 0 globally.4 This is a very

general condition, implied in particular by our assumption that P is downward-sloping and

c is convex. They also show that A5 holds if ∆ > 0 globally and log P is a concave function,

which still covers most examples of interest. On the other hand, they show that if ∆ < 0

globally (which requires a strongly concave cost function c), the opposite of the first part of

A4 holds. Also, with ∆ > 0, A5 may fail if log P is convex. Thus, while A4 and A5 are not

universal, they are satisfied under very broad conditions covering most cases of interest in

Cournot models. A6 follows from the best reply property of Cournot equilibria.

4The second part of A4—namely, limyh→∞Qyh
< ∞—holds, for example, if P (Q) < c′(0) for some Q.
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Given an initial number of active firms, let ye = {ye
h}h∈H be a stochastic limit-lifo equi-

librium sequence of numbers of firms. The theorem asserts that the equilibrium number of

firms never falls short of the optimal number by more than one. It is not difficult to construct

examples where the equilibrium number of firms greatly exceeds the optimal number.

Theorem 2: For all h ∈ H, ye
h ≥ y∗h − 1.

Proof: See appendix.

By construction, a limit-lifo equilibrium is the limit of finite-horizon equilibria. It is well

known that infinite-horizon games typically exhibit equilibria that are not limit equilibria,

that is, not limits of finite-horizon equilibria.. (See, for example, Fudenberg and Tirole

[6].) In spite of this, most studies of dynamic games restrict attention to limit equilibria.

This point is discussed in detail by Basar and Olsder [3] for the widely-employed class

of linear-quadratic games. Also, Tsutsui and Mino [14] provide a specific example of an

infinite-horizon equilibrium that is not a limit of finite-horizon equilibria in a continuous-time

(differential) game.

The following—due to an anonymous contributor—is a reminder that restricting attention

to limit equilibria is not without loss of generality in our framework either. In particular, the

Mankiw-Whinston tendency for excessive entry need not hold. Suppose the same Cournot

game is repeated in all periods, where inverse demand is P = 1 − Q and production costs

are zero. Thus per-firm operating profit in a period with y active firms is π(y) =
(

1
y+1

)2

.

Suppose ξ = 2, χ = 1.7, and δ = .99. It is straightforward to establish that a social planner

would maximize discounted producer and consumer surplus (subject to Cournot behavior)

by having three firms enter in the first period and allowing no further entry or exit. There

exist equilibria, however, that exhibit no entry at all along the equilibrium path. One of the

simplest is defined as follows. Given at−1, let ι be the index of the active firm at time t− 1

with the largest index; formally, ι = maxi∈{i|ai
t−1=1} i. (If there are infinitely many active

firms then ι = ∞.) Let #at be the number of active firms in period t and set #a0 = 0.

For each i, define firm i’s strategy as follows: for each t, ai
t = 1 if #at−1 = 6 and ai

t−1 = 1,

or if #at−1 /∈ {0, 6,∞} and i ∈ {ι + 1, ..., ι + 6}, or if #at−1 = ∞ and i ∈ {1, ..., 6}; ai
t−1 = 0

otherwise. Intuitively, since π(6)/(1− δ) > ξ > χ > π(7)/(1− δ), there are subgame perfect

Nash equilibria exhibiting entry by six firms and no further entry or exit. These equilibria
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can be used as “threats” to dissuade all entry. Specifically, given the strategies of the other

firms, if a firm ever enters it will enjoy monopoly profit for one period but will be joined

thereafter by six new firms; it will thus find it optimal to exit without having recouped its

entry cost.

5 Appendix

Theorem 1: If A1-A3 are satisfied then a (subgame perfect Nash) equilibrium exists.

Proof : For each positive integer T and each market history h ∈ H, define two integers,

NT
h and XT

h as follows. For t > T and h ∈ Ht , let NT
h = XT

h = 0. For h ∈ HT , define NT
h

and XT
h as the largest integer values of yh satisfying πh(yh) − ξh ≥ 0 and πh(yh) − χh ≥ 0,

respectively, if well-defined. Otherwise, if πh(1) − ξh < 0 let NT
h = 0; if πh(1) − χh < 0 let

XT
h = 0; and if πh(yh)− χh ≥ 0 for all yh let XT

h = ∞. (A2 implies NT
h is finite.) For t < T ,

and having defined NT
g and XT

g for all g ∈ Hτ and all τ > t, define NT
h and XT

h for each

h ∈ Ht as the largest integer values of yh that satisfy, respectively,

V T
h (yh) :=

T∑
τ=t

δτ−t

[ ∑
g∈Hτ∩Θ

ρ(g | h)πg(yg) +
∑

g∈Hτ∩Φ

ρ(g | h)χg

]
≥ ξh

and

V T
h (yh) :=

T∑
τ=t

δτ−t

[ ∑
g∈Hτ∩Θ

ρ(g | h)πg(yg) +
∑

g∈Hτ∩Φ

ρ(g | h)χg

]
≥ χh

where

Θ := {g ≥ h | yf ≥ yh∀f ∈ [h, g]}

Φ :=
{
g > h | g−1 ∈ Θ and yg < yh

}

and

yg = min
{
XT

g , max
{
NT

g , yg−1

}}
.

If NT
h or XT

h is not well-defined in this way then proceed as follows. If V T
h (1) − ξh < 0 let

NT
h = 0; if V T

h (1)− χh < 0 let XT
h = 0; and if V T

h (yh)− χh ≥ 0 for all yh let XT
h = ∞. Note
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that Θ, Φ, and the yg values all depend on yh, which dependency is suppressed for notational

clarity. The set Θ contains those future market histories before any of the active firms at h

exit. The set Φ contains those future histories at which, for the first time, some firm that

was active at h exits. Thus V T
h (yh) is interpretable as the value of the marginal firm, that

is, the active firm at h that will exit first.

Now index H by the positive integers and let g(j) be the market history assigned to the

integer j. Consider the sequences
{

NT
g(1)

}
T∈I

and
{

XT
g(1)

}
T∈I

. Since
{

NT
g(1)

}
T∈I

is bounded

(by A2), there exists I1 = {T11, T12, ...} ⊂ I such that the subsequences
{

NT
g(1)

}
T∈I1

and
{

XT
g(1)

}
T∈I1

converge to, say, Ng(1) and Xg(1), respectively (where Xg(1) may be infinite).

Having defined Ij−1, define Ij = {Tj1, Tj2, ...} ⊂ Ij−1 so the subsequences
{

NT
g(j)

}
T∈Ij

and
{

XT
g(j)

}
T∈Ij

converge to, say, Ng(j) and Xg(j), respectively (where Xg(j) may be infinite).

Finally, define the diagonal sequence I = {T11, T22, ...}. Then, by construction,
{
NT

g

}
T∈I

and
{
XT

g

}
T∈I

converge to Ng and Xg, respectively, for all g ∈ H (where Xg may be infinite).

Note that, by construction, V T
h (NT

h ) ≥ ξh > V T
h (NT

h +1) and V T
h (XT

h ) ≥ χh > V T
h (XT

h +1)

for all h ∈ H and for all T if NT
h and XT

h are positive and finite. Thus, by A3, if Nh and Xh

are both positive and finite then Vh(Nh) ≥ ξh ≥ Vh(Nh + 1) and Vh(Xh) ≥ χh ≥ Vh(Xh + 1)

for all h ∈ H, where for all h ∈ H,

Vh(yh) :=
∞∑

τ=t

δτ−t

[ ∑
g∈Hτ∩Θ

ρ(g | h)πg(yg) +
∑

g∈Hτ∩Φ

ρ(g | h)χg

]

where Θ and Φ are as before and yg = min {Xg, max {Ng, yg−1}}. If Xh is infinite then

Vh(yh) ≥ χh for all yh.

Construct firms’ strategies as follows. Let {Ih}h∈H partition the set of initially inactive

firms into countably infinitely many countably infinite subsets. Intuitively, Ih is the set of

firms assigned to consider entry at the market history h. Order the y0 initially active firms

by their indexes i and assign them the integers from 1 to y0. Let ι0(i) be the integer initially

assigned to the initially active firm i. Now, given a path of activity vectors, {ag}g≤h, and

having defined ιh−1(i) for each active firm at h−1, define ιh(i) for each active firm at h as

follows. First order the active firms at h that were also active at h−1 by ιh−1(i), then order

new entrants that belong to the set Ih by their indexes i, and finally order new entrants that
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do not belong to the set Ih by their index numbers i. (A new entrant is a firm for which

ai
h − ai

h−1 = 1.) Having ordered the active firms at h, assign the positive integers between

1 and yh to them and let ιh(i) be the integer assigned to the active firm i at h. For each

initially inactive firm, define

ηi :=
∑

j∈Ih(i)∩{j|j<i}
(1− aj

h(i)−1)

where h(i) is the history such that i ∈ Ih(i). Thus ηi is the number of firms in Ih(i) with lower

indexes than firm i that are not active coming into the last period of the market history h(i).

Firm i’s equilibrium strategy σ̃i is given by

If ai
h−1 = 0 then ãi

h = 1 iff h = h(i) and Nh − yh−1 > ηi.

If ai
h−1 = 1 then ãi

h = 1 iff Xh ≥ ιh(i).

Note that the construction of the strategies guarantees that

yg = min {Xg, max {Ng, yg−1}}

for all g ∈ H and that the most recent entrant is the first to exit. Thus the marginal firm’s

value—that is, the value of the active firm at h that will be the first to exit—is given by

Vh(yh) along the equilibrium path.

Now consider all possible one-shot deviations at an arbitrary history s. First suppose

an inactive firm deviates by entering when its equilibrium strategy dictates otherwise. By

construction, it will be designated as the marginal firm and will earn Vh(ỹh + 1) − ξh ≤ 0

where ỹh is the equilibrium number of firms at h. Next suppose an inactive firm deviates

by not entering when it is supposed to. It then receives a payoff of zero, which is no greater

than the Vh(ỹh)−ξh ≥ 0 it would gain by following its equilibrium strategy. Next suppose an

active firm exits when its equilibrium strategy dictates otherwise. It then receives a payoff

of χh which cannot exceed its equilibrium value of Vh(ỹh) ≥ χh. Finally, suppose an active

firm does not exit when its strategy dictates to exit. Then it will be designated as the

marginal firm and will have a value of Vh(ỹh + 1) ≤ χh, which cannot exceed its payoff of χh

for exiting. It follows that no one-shot deviation from equilibrium—and hence no deviation
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from equilibrium—is profitable. Thus the constructed strategy profile constitutes a subgame

perfect Nash equilibrium. Q.E.D.

Theorem 2: For all h ∈ H, ye
h ≥ y∗h − 1.

Proof: First note that, for all h ∈ H and for all yh > 1,

Sh(yh)− Sh(yh − 1) =

∫ Qyh

Qyh−1

Ph(s)ds− yhch(qyh
) + (yh − 1)ch(qyh−1)

= Ph(Qyh−1)qyh−1 − ch(qyh−1)

−
[
Ph(Qyh−1)qyh−1 −

∫ Qyh

Qyh−1

Ph(s)ds + yh [ch(qyh
)− ch(qyh−1)]

]

:= πh(yh − 1)−Myh

h .

Assumptions A4-A6 imply Myh

h > 0, because

Myh

h := Ph(Qyh−1)qyh−1 −
∫ Qyh

Qyh−1

Ph(s)ds + yh [ch(qyh
)− ch(qyh−1)]

≥ Ph(Qyh−1)qyh−1 − Ph(Qyh−1) [Qyh
−Qyh−1] + yh [ch(qyh

)− ch(qyh−1)]

≥ Ph(Qyh−1)qyh−1 − Ph(Qyh−1) [Qyh
−Qyh−1] + yhc

′
h(qyh−1) [qyh

− qyh−1]

= [Ph(Qyh−1)− c′h(qyh−1)] yh [qyh−1 − qyh
]

> 0.

The first line is definitional, the second is from A4 and P ′ < 0, the third is from c′′ ≥ 0, the

fourth is from Qy/y = qy (symmetry), and the fifth is from A5 and A6.

Consider the T -period truncation of the model. Let y∗(T ) be the optimal stochastic

sequence of numbers of firms for the T -period truncation of the model; that is, y∗(T ) maxi-

mizes

WT (y) :=
T∑

τ=1

∑

h∈Hτ

ρh [Sh(yh)−max{0, yh − yh−1}ξh + max{0, yh−1 − yh}χh] .

The strategy of proof is as follows. First show, by backward induction, that ye
h(T ) ≥ y∗h(T )−1

for all h ∈ Ht, all t ≤ T , and all T . Then limiting arguments as T →∞ establish ye
h ≥ y∗h−1

for all h ∈ H.
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Consider an arbitrary T and arbitrary h ∈ HT . If y∗h ≤ 1, then it is trivial that

XT
h ≥ NT

h ≥ y∗h− 1. If y∗h ≥ 2 then let y be the truncated path that is identical to y∗ except

that yh = y∗h − 1. By the optimality of y∗,

WT (y∗)−WT (y) = δT−1 [Sh(y
∗
h)− Sh(y

∗
h − 1)− γh]

= δT−1
[
πh(y

∗
h − 1)−M

y∗h
h − γh

]

≥ 0

where γh = ξh if y∗h > y∗h−1 and γh = χh otherwise. Since M
y∗h
h > 0, this implies πh(y

∗
h − 1) >

γh. Thus, XT
h ≥ y∗h − 1 and, furthermore, if y∗h > y∗h−1 then NT

h ≥ y∗h − 1.

Now consider h ∈ Ht for t < T and make the induction hypothesis that, for all g > h in

the truncated model, XT
g ≥ y∗g − 1 and, furthermore, that if y∗g > y∗g−1 then NT

g ≥ y∗g − 1. If

y∗h ≤ 1, then it is trivial that XT
h ≥ NT

h ≥ y∗h − 1. If y∗h ≥ 2 then consider the path y that is

identical to y∗ except yh = y∗h − 1 and yg = min
{
XT

g , max
{
NT

g , yg−1

}}
for g > h; in words,

y follows the optimal path until h, exhibits one less firm at h, and then is induced by the

equilibrium strategies thereafter. Define three sets:

A =
{
g ≥ h | yf = y∗h − 1 and y∗f = y∗h ∀ f ∈ [h, g]

}

B =
{
g /∈ A | g−1 ∈ A and y∗g ≥ y∗h

}

C =
{
g /∈ A | g−1 ∈ A and y∗g < y∗h

}
.

The first set, A, is the set of histories exhibiting no change in either path from the number

of firms at h. The second and third sets together are the set of “first times” that either of

the paths exhibits entry or exit; B is the set of such “first times” that exhibits no exit along

the optimal path (and hence exhibits entry or exit along the path y) and C is the set of such

“first times” that exhibits exit along the optimal path.

If g ∈ B then either y∗g > y∗h = y∗g−1 or y∗g = y∗h = y∗g−1 . If y∗g > y∗g−1 then, by the

induction hypothesis, NT
g ≥ y∗g − 1 > yg−1 ; thus V T

g (yg) ≥ ξg (because, intuitively, there is

entry along the path y induced by equilibrium strategies). If y∗g = y∗g−1 and g ∈ B then
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yg 6= yg−1 = y∗g − 1. Since, by the induction hypothesis, y∗g − 1 ≤ XT
g , it must be that

yg > yg−1 . Thus yg = NT
g and V T

g (yg) ≥ ξg. Thus V T
g (yg) ≥ ξg for all g ∈ B. Furthermore,

it is trivial that V T
g (yg) ≥ χg for all g ∈ C.

Now define the path y′ for the truncated model by y′g = y∗h − 1 for g ∈ A and y′g = y∗g

otherwise. By the optimality of y∗,

WT (y∗)−WT (y′)

=
T∑

τ=t

δτ−t

[∑
g∈Aτ

ρ(g | h)πg(y
∗
h − 1)−M

y∗h
g +

∑
g∈Bτ

ρ(g | h)ξg +
∑
g∈Cτ

ρ(g | h)χg

]
− γh

≥ 0

where γh = ξh if y∗h > y∗h−1 , γh = χh otherwise, and where Aτ := A∩Hτ , Bτ := B ∩Hτ , and

Cτ := C ∩Hτ . Since M
y∗h
g > 0 for all g, this implies

T∑
τ=t

δτ−t
∑
g∈Aτ

ρ(g | h)πg(y
∗
h − 1)

≥ γh −
T∑

τ=t

δτ−t
∑
g∈Bτ

ρ(g | h)ξg −
T∑

τ=t

δτ−t
∑
g∈Cτ

ρ(g | h)χg

By definition

V T
h (y∗h − 1) =

T∑
τ=t

δτ−t

[∑
g∈Aτ

ρ(g | h)πg(y
∗
h − 1) +

∑
g∈Bτ∪Cτ

ρ(g | h)V T
g (yg)

]

≥
T∑

τ=t

δτ−t

[∑
g∈Aτ

ρ(g | h)πg(y
∗
h − 1) +

∑
g∈Bτ

ρ(g | h)ξg +
∑
g∈Cτ

ρ(g | h)χg

]

where yg = min
{
XT

g , max
{
NT

g , yg−1

}}
. The previous two inequalities together imply

V T
h (y∗h − 1) ≥ γh.

Thus, XT
h ≥ y∗h − 1 and, furthermore, if y∗h > y∗h−1 then NT

h ≥ y∗h − 1. Thus, by induction,

for all h ∈ Ht and t ≤ T , XT
h ≥ y∗h − 1 and, furthermore, if y∗h > y∗h−1 then NT

h ≥ y∗h − 1.
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With this result in hand it follows immediately that, for the same initial conditions, the

equilibrium path satisfying ye
h = min

{
XT

h , max
{
NT

h , ye
h−1

}}
will always satisfy ye

h ≥ y∗h − 1

in the truncated model. Intuitively, when there is entry along the optimal path there will

be at least NT
h ≥ y∗h − 1 firms on the equilibrium path (because ye

h ≥ NT
h for all h). Thus

ye
h < y∗h− 1 could only arise if there is exit along the equilibrium path; but if there is exit at

h along the equilibrium path then ye
h = XT

h ≥ y∗h − 1.

Thus, for all T , the result holds for the truncated model. Taking limits (using diagonal-

ization arguments as for Theorem 1) then establishes the result. Q.E.D.
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