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Abstract

Extending the earlier work of Greene (1997) and Terza (1998), it is
shown how the mean of a count variable, suffering sample selection or
endogenous treatment effects, can be arbitrarily well approximated using
polynomial-type Heckman correction variables. This leads to a partic-
ularly simple estimator based on standard pseudo maximum likelihood
methods. A small simulation study is presented to demonstrate the util-
ity of the procedure.

1 Introduction

In Winkelmann (1998), various full information maximum likelihood (FIML)
procedures for count data models are considered when the dependent variable
suffers from selectivity or endogenous treatment effects. The basic idea is to in-
troduce a heterogeneity term into the regression specification of the count model
which is correlated, through a parameter p, with the error term in a probit
model for the selection/dummy endogenous variable. Under the distributional
assumptions made, the derived estimator is consistent and asymptotically effi-
cient. However, some authors have noted that such FIML procedures can be
operationally problematic; see, for example, Cameron and Trivedi (1997). A for-
mal treatment of the sample selection problem was also given by Greene (1994)
who suggested a simple Heckman-type two-step estimator. Both Cameron and
Trivedi (1997) and Terza (1998) argued that this Heckman-type procedure is not
based on a correct adjustment to the mean count and they, therefore, concluded
that this estimator will be inconsistent. By deriving the correct mean function,
Greene (1995) derived a two-step non-linear least squares (NLS) estimator, as
did Terza (1998) who termed it a two-step method of moments (TSM) estimator.
Terza (1998) also developed a non-linear weighted least squares (NWLS) estima-
tor, which is asymptotically more efficient than the TSM; he also extended the



analysis to endogenous treatment effects. Interestingly, Greene (1995,1997,1998)
points out that the exact mean function, for the observed count, has the same
linear expansion, in p, as that implied by the use of the Heckman correction (in
Greene, 1994), so that the latter might be assumed to be approximately correct.
Although Winkelmann, Greene and Terza all provide illustrative applications,
they offer no Monte Carlo evidence in support of their procedures.

In this paper new results are derived which show that the mean of the depen-
dent count can be arbitrarily well approximated, under selectivity or endogenous
treatment effects, by adding » > 1 Heckman-type correction variables to the
regression specification. These correction variables are simply the truncated cu-
mulants of a standard normal variate and include, in the case of sample selection,
the familiar inverse Mill’s ratio (the only correction variable used in Greene’s
(1994) approach). Moreover, it is shown that the quality of this approximation
improves as more of these correction variables are added (although a few may
be sufficient) since the approximation error is o(|p|"), which becomes small as r
increases. This suggests a very simple two-step estimation procedure similar in
spirit to Greene’s original approach: first, estimate a probit model which deter-
mines selection, or endogenous treatment effects, and construct the correction
variables (truncated cumulants); at the second stage, add these variables to the
set of regressors and obtain parameter estimates based on Poisson maximum
likelihood (ML) procedures. It is demonstrated that, to O(]p|"), this two-step
estimator is consistent (i.e., the inconsistency is o (|p|")) although standard er-
rors may need correcting for: (a) model misspecification and, (b) the generated
regressor problem induced by adding the correction variables. Therefore the
two-step estimator has the potential to offer a considerable improvement over
pseudo maximum likelihood methods which ignore the sample selection and for
which the inconsistency is O (|p|) . ' Indeed, Monte Carlo evidence suggests that
this procedure can work extremely well especially in comparison with Terza’s
approach, which can exhibit very poor behaviour. Since the quality of the ap-
proximation employed is the key to obtaining satisfactory inference, a method
for assessing the adequacy of the approximation is also discussed.

The plan of the paper is as follows: in the next section we derive an approx-
imation to the mean of a count variable, subject to selectivity or endogenous
treatment effects, which has the same Taylor expansion in p, to any order re-
quired, as the true mean function given by Terza (1998). In Section 3, the
two-step estimator is defined and its asymptotic distribution is given. The in-
consistency of this estimator is shown to be at most O(|p|"™"), thereby offering
a potential improvement over Greene’s (1994) estimator for which the inconsis-
tency is O(|p[?). Details of the analyses are relegated to Appendices. Section 4
provides a summary of Monte Carlo experiments which investigates the efficacy
of the proposed two-step procedure, relative to Greene’s (1995) NLS estimator
and Terza’s (1998) NWLS estimator. Section 5 concludes.

LA similar methodology has recently been proposed by Chesher and Santos-Silva (2001) for
estimating a heterogeneous logit model. However, in that case, the error in the approximating
model can not be made arbitrarily small, as it can for the count data models considered here.



2 The Count Model and Selectivity

To keep the notation and algebra to a minimum, we deal first with the sample
selection problem and then show how the results readily extend to the dummy
endogenous regressor case.

Consider, then, a count random variable, y*, which conditional on a (g x 1)
vector of covariates, x and a random variable u, representing possible neglected
heterogeneity (over-dispersion), has mean

Ely*|z,u] = exp(2'8 +ou) >0 (1)

where 3 and o are unknown parameters (vector and scalar, respectively) and
the regression specification, z’3, includes an intercept term. Conditional on
x and u, (1) includes the Poisson and Negative Binomial models for y*; see,
for example, Winkelmann (1997). Under sampling, observations {y; = v}, z;},
i =1,...,n, are only selected if s; = 1 where

s; =1(zly +¢ > 0), i=1,..,N, (2)

where 1(.) is the usual indicator function, with z; being (I x 1).

2.1 Approximate mean function: Selectivity

As in Terza (1998), and rather than fully specifying a parametric model for y,
we specify the mean of the observed count and use this is a basis for estimation.
Following previous work (for example, Winkelmann, 1998) it is assumed that
(u;,€;) are éid standard bivariate normal with correlation p. Then u = pe +

V1 — p?v, with v iid N (0,1) independent of e. From (1) and (2),

E[ylz,z] = Eye [exp (ﬂc’ﬁ—i—apg—i—m/l —p2v) |s = 1,m,z] ,

where expectations are taken first with respect to v and then with respect to ¢,
conditionally on s = 1. Thus, given z; and z;,

E [yla;, 2] = exp(a; 51 E [exp (0pe) |e > —2}7]
— exp (8" + ki (n)) 3)
in which 87 = 8 — 102 (1—p?), n = op and k; (n) is simply the cumulant
generating function (cgf) of a truncated standard normal variate; i.e.,?

2
n
i) = 2+ In® (2 + 1)~ In® (:09),

2Tt s readily shown that the moment generating function of e, given ¢ > 2zly is

2\ &(2i~v+
E [exp (ne) |e > z[y] = exp (112—) 2(z+m)

e (=)



where @ (.) denotes the standard normal distribution function and ¢ (.) will
denote the standard normal density function. An approximation, in n = op, to
(3) is obtained by expanding k; () in a Taylor series about n = 0, giving

.

ki () = 3 T+ o (al). @
j=1

where r;; denotes the j* cumulant of ¢, given e > —z/v. For example, r;1 = &,

where £, = ¢ (2fy) /P (zl) (the inverse Mill’s ratio) and k;o = 1—¢, (§; + 2/7),

etc. It will be useful to note that «;; is a function of z[v; ie., ki = &; (2]7)

where £ (a) is the j" cumulant of e conditional on € > —a. Substituting (4)

into (3) yields

— 7/ .
Elylwi, 2] =exp | ai8"+ ) =rij+o(lnl") | - (5)
=7

Therefore, the correct mean of the observed (selected) count can be approz-
imated as

r .
~ n’
E [y|xivzi] = €xXp x;ﬁT + Z ﬁﬁ’ij )
j=1

which differs from the true mean function (3) by terms which are o(|n|") =
O(|n|"**). However, since |p| < 1 and ¢ is (assumed) finite, the error in this ap-
proximation becomes negligible as r increases so that the quality of the approx-
imation improves as more cumulants are added to the regression specification.
For example, taking a second order approximation, r = 2, we might model the
conditional mean as

E[ylai, 1] = exp (278 + 61§, + 62 (1 = & (§; + 27))) -

Since y is still a count and the approximate mean specification is of the familiar
Poisson form with the regression function being linear in parameters (given ),
the results of Gourieroux, Monfort and Trognon (1984) indicate that standard
Poisson ML methods could be employed to correct the sample selection bias in
the estimation of 8. (This is not the case for Greene’s (1995) NLS and Terza’s
(1998) NWLS estimators.)

2.2 Approximate mean function: Dummy Endogenous Re-
gressors

The above analysis readily extends to the case of endogenous treatment effects;
i.e., dummy endogenous regressors. In this case s;, generated by (2), is the
dummy endogenous variable included in the regression specification. Similar



manipulations to those employed above reveal that

Ey|wi, 2i, 8i] = Eye [BXP (9625 +sia+ope+oy/1— PQU) |3, 2, Si]
=FE. [exp (xiﬁT + s+ Jpe) |z, 2, 51]
= exp(a} 8 + sia + k7 (n)

where

K (1), =5 +1n@ (25 = D(z}y +7) —In® (25 = Dz});

see, for example, Terza (1998). Expanding & () about n = 0, we can therefore
write

.
nj
Elylei a5 = | expalpl+sia+ Y Ty | + ol
j=1
x _ 97k (0) : r : \
where k7; = =55 and the remainder terms are o (|n|"), which go to zero as r
increases.

Specifically, for j =1, 2,

Ki1 = (281 1) giv 57, - ) ((281 _ 1) Z,:")/)’

Rip =1 =& (& + (25 — 1) 277)

which provide generalisations to the corrections employed in the sample selection
case (where s; = 1 for all 7). Notice that x}; = (2s; —1)&; is the first order
generalised residual associated with the probit model (2). As before, it will be

useful to think of x}; as w7 (2/7), a function of zjy.

3 Two-step Estimation

To make the procedure operational, one first estimates the probit model (2) to
obtain 4, which is then used to construct #;;, or I%;kj These generated regressors
are then added to the regression specification in a simple Poisson model whose
parameters are estimated by maximum likelihood at the second step.?
Focussing on the sample selection problem, and given ~y, the “Poisson” spec-

ification at the second step is modelled via its approximate mean as

Ely|zi, ki) = exp (276 + #;6) (6)
= exp(w.0), say,

3Inthe caser =1 only ki1 = él is added, which is the procedure proposed by Greene (1997).
Orme and Peters (2000) discuss similiar corrections in more general models of sample selection
and demonstrate that such a procedure provides an approximate model for the observed data
which is correct to O(n), where n = op.



and 0" = (8',6"); k. = (Ki1, ..., kir), and depends
on v, and w, = (a}, ml) It is assumed that there are no linear dependencies

among the regressors, w,. Then, using Poisson ML methods, the proposed two-
step estimator for 6 is the unique solution to the ¢ + r equations

Z hi (0,7) = (7)

i=

v 2 3
where § = (n,%—,%,. o

where h;(0,7) = (y; — exp(w;f))w;, § is unconstrained, and 4 denotes any
consistent (eg, Probit) estimator for v; ie., the x;; = k;j(2}y) are replaced
with A;; = k;(2/%) and treated as observed regressors. This solution will be

denoted 6, and it is unique since % is negative definite for all §. Observe

that the probability limit of 8 is 8* = 0, in general, since the assumed model
specification embodied in (6) is incorrect. However, it is shown in Appendix
1 that 6* = 61 + o(|p|"), where 0 = (ﬂT' '). (The probit MLE, 4, which
maximises LP (v), the probit log-likelihood function over N > n observations,

is consistent for v whatever the value of p.)
Standard tools, such as those employed by Newey and McFadden (1994),

can be exploited to derive the limiting distribution of \/n (9 - 9*) under the

assumption that n — oo such that n/N — ¢, a finite constant, and independent
observations; details are outlined in Appendix 2. The result is

Vi (0-07) SN (0,V) (8)
where, to O (|p|"),
V=11 {G+em, () gt
and

1
n 89/ 0>
100 <0*,~y>]

‘H, =plim 97

L
G=plim |23
—wmng 0",7)’

I*LP (y )} ol {iaﬂ” (v) L (v)
N 0vo0v N 0y ay'

7Y, = —plim {

The first term in V is Hy 1gH0_ 1, the “sandwich” covariance matrix (White
(1982), Gourieroux, Monfort and Trognon (1984)), which arises since the model
(6) is misspecified; the second term appears due to the fact that generated
regressors, i;j, are employed.



The calculations are particularly simple and lead to the following estima-
tor for the asymptotic variance of §. Let W be the (n x ¢+ r) matrix with

rows W, = (a},#;); Z the (N x ) matrix with rows 2/, i = 1,...,N, and Z;

17"

be the (n x ) matrix with rows z; corresponding to selected sample defined

1. .
by s; = 1. Then, Hy,G and 77, can be consistenly estimated by EW’DlVV,
1. 1 . .

EWDQW and FZ’DgZ, respectively, where Dy = diag (exp(u?éﬂ)) , (nxn)
" N 2
and Dy = diag <{yl — exp (12)29)} > , (n x n), are defined using only the ob-

servations in the selected equation. The (N x N) diagonal matrix Ds is defined

7 ~A\2
by D3 = diag (ﬁ%) , using all the observations in the probit model.

Differentiating H (6, ) with respect to v, yields

10H(0n) 1 Z {(yZ — exp(w;h)) ( V/Siz{ ) — exp(w}0)(8' V) wiz,|

n 0y n &

where Vk; = %}i, (r x 1), the vector of cumulant derivatives with respect to

a = zly. Our arguments imply that E[y; — exp(w!0”)|w;] = o(|p|") so that,

consequently, H, = O (|p|) and, to O(|p|"), it is consistently estimated by
1 . . . . .

——W'DyZy, with Dy = diag (5IV/%7; exp(ti)gﬂ)) , (n xn). It follows that for
n

r > 2 the asymptotic variance can be estimated as

Vi (0.4) = (WD) i {m +Duy (2'D,2) 121134} W (o)

whilst for an approximation which is correct to O (|p|), this estimator will be
. N B -1
Y (9,&) - (W’D1W) W Dy (W/Dlw) ,
the usual sandwich estimator, because the correction to the asymptotic variance

for the use of constructed regressors will be o (|p|).
For example, in the case of r = 2 we have s} = (§;,1 — &,(&, + 2}7y)) with

Tk — < —&;(& +2{7) )
' 263(& + 207) + &i(& + 2 () — &

_ < —&(& +27) >
T\ &G ) G+ -6 )
4 Monte Carlo Experiments

A simulation experiment was undertaken in order to investigate the performance
of the proposed correcting variables in alleviating the problem of sample selec-
tion bias in a standard count data regression model. The exploratory variable



design used is taken from Greene (1997), and is a random sample of a much
larger database on credit worthiness analysed in Greene (1998). The orignal
observed responses were the number of MDRs (Multiple Defaults Records, the
number of failures to pay an account). This gave a sample size of n = 1023
in the count data response equation, after selection. Sample selection was indi-
cated by ownership of a particular credit card. This gave a full sample size of
N =1319. The design coefficients used to generate both the count (3) and Pro-
bit (y) equations were based upon the actual estimates from the single equation
fits of the original data. The count equation contained the following variables:
Constant, Age, Income and Average Monthly Card Expenditure/Income, while
the selection equation contained: Constant, Age, Income, Has a Major Credit
Card, Home-owner, Number of Reported Cards and Number of Active Cards.

The selection equation (2) is used to generate an observed response for indi-
vidual 4; if the selection response is positive (g; > —z/7) a corresponding count
response is taken as the draw from a Poisson distribution with mean equal to
(1), in which u = pe; + /1 — p?v, with v id N (0,1) independent of ;. In
one set of experiments, p = 1, so that u; = ¢; and the mean of the observed
count is simply exp(z}3 + o¢;). In these experiments, o varied from 0.0 to 1.0,
in increments of 0.1, with ¢ = 0 corresponding to a simple Poisson model and
o > 0 corresponding to a Poisson model suffering sample selection. In the other
set of experiments, the value of o was fixed at o = 1 and values of p considered
were p = 0,0.1,0.2, ..., 1.0; when p = 0 there is no sample selection problem, but
the observed counts are heterogeneous Poisson.

Each experiment involved 1000 replications with each of the following esti-
mators calculated: (i) Poisson, (ii) Poisson with correcting variable #;; = &,
(iii) Poisson model with correcting variables #;; and &0 = 1—¢; (%Z + zﬁ) , (iv)
Greene’s Non-Linear Least Squares (NLS), and (v) Terza’s Non-Linear Weighted
Least Squares (NWLS). The resulting average coefficient biases are summarised
in Figure 1. Figures 2 and 3 report the ratio of average model standard errors
to the simulation Root Mean Square Errors (RMSE). Various standard errors
are considered as follows: (i) for the simple Poisson model, standard errors are
derived from the Hessian matrix and the sandwich matrix; (ii) for the Poisson
specifications that include #;1, or both &;; and A, they are derived from the
corresponding sandwich matrix and the corrected variance matrix, V; and, (iii)
for Greene’s (1995) NLS and Terza’s (1998) NWLS estimators, the standard
errors are calculated using the formulae provided by these authors. Tables A
and B report the performance of Wald procedures when used to test for sam-
ple selection bias (testing if inclusion of the generated regressors, or correction
variable for Terza’s model, is significant).* Results are reported to 3 significant
figures.’

4 A likelihood ratio procedure, based on Poisson ML estimation is not appropriate (even
approximately) due to the possibility of overdispersion.

5All computations were performed using Ox (Doornik,2001) running under RedHat Linux
5.1. The simulations used the default random number generator of Ox 2.10. ML estimation
was performed using Newton-Raphson optimisation, NLS estimation used Gauss-Newton re-
gression. Data configurations that caused problems for NLS estimation were ignored. This
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The first column of Figure 1 plots the percentage bias of the (3) coefficient
estimates as o increases, with p = 1. The coefficients can be identified from
the legend on the first plot, which illustrates the simple Poisson case. Here, as
expected, the bias on the constant coefficient increases as the sample selection
problem becomes worse. There is also evident bias in the remaining coefficient
estimators but this appears cured by including one or both of the constructed
variables for the ML case (second and third plots), or by using Terza’s NWLS
estimator (last plot). The second column deals with the situation where there
is a joint heterogeneity (o = 1) and sample selection problem (with p = 0 re-
sulting in heterogeneity only, and p = 1 sample selection only). In the standard
model (first plot) pure heterogeneity is only seriously affecting the intercept
coefficient estimator, however, as the sample selection effects become stronger,
the remaining “slope” coefficient estimates also begin to exhibit serious bias.
This, again, is largely rectified by using correcting variables in the Poisson case
(second and third plots), though the biases are marginally larger as the total
overdispersion in these experiments is greater than those reported in the first
column. Interestingly, these results suggest that the two-step procedure works
better than Terza’s NWLS estimator (last plot), in this case.’

The standard errors also exhibit an interesting picture, with the overall ef-
fect of overdispersion in this design resulting in under estimation of coefficient
estimator variability. In Figure 2, for the experiment with sample selection only
(p =1, o0 > 0), the Poisson ML standard errors, based on the Hessian, are se-
riously biased downwards (first plot, column 1). At worst, the slope coefficient
standard errors are approximately half the size they should be. This is par-
tially alleviated when the robust sandwich covariance matrix estimator is used
(first plot, column 2). Moreover, the addition of the first correcting variable
in the two-step procedure also improves matters considerably, while the addi-
tion of the second correcting variable also improves the estimated variability of
the intercept estimator, when using the sandwich estimator (second and third
plots, column 1). The performance of the corrected variance matrix estimator
(second and third plots, column 2) is very similar to the corresponding sand-
wich matrix when either one or two correcting variables are employed. Both
Greene’s NLS and Terza’s NWLS estimated covariance matrix performs poorly,
exhibiting behaviour similar to the raw Hessian’s performance.’

Figure 3 reports the corresponding standard error to RMSE ratios for the
experiments where there is both heterogenety and sample selection present (o =
1, p > 0). The extra overdispersion caused by the heterogeneity has depressed
the hessian-based standard errors considerably. On the other hand, when the
two-step procedure is employed, in conjunction with either the sandwich or
corrected matrix estimators, there is again substantial improvement. However,

occured when overdispsersion was severe (the highest number of occurences was six for Terza’s
estimator when p equalled 0.2).

5The results from using Greene’s NLS specification are not reported here, though its biases
exhibited similar behaviour to Terza’s.

"The performance of the outer product of gradient (OPG) covariance matrix estimator is
unreported. Its performance was worse than the Hessian’s in all cases investigated.

10
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both the NLS and NWLS standard errors again appear to behave more like
those obtained from the raw ML Hessian, and seriously underestimate the true
variability of the model coefficient estimates.

In conclusion, then, the two-step procedure analysed in this paper appears
to work remarkably well relative Greene’s NLS and Terza’s NWLS estimators.
With the addition of just a couple of the correcting variables, the sample selec-
tion bias in the slope estimators and corresponding standard errors, based on
the sandwich or corrected covariance matrix estimator, is largely removed.

At this stage, only the results associated with the regressors of interest have
been reported. Assessing the statistical significance of including the correcting
variables, in the two-step procedure, can be simply undertaken using a Wald
test. With reference to the mean specification given by (6), the hypotheses
tested are: (i) 6; = 0, given 62 = 0; (ii) §; = 62 = 0; and (iii) 6 = 0, given
61 # 0. The last is included as a means of assessing the adequacy of the two-
step estimator which only employs the first correcting variable. The motivation,
here, is that if the addition of the second correcting variable is statistically in-
significant, this provides evidence in support of inferential procedures based on
the two-step technique which employs just the first (Heckman) correcting vari-
able. Table A reports the rejection rates of the various tests. Table B reports
the rejection rates of Wald tests designed to check the statistical significance of,
respectively, the Greene and Terza correcting variables employed in their NLS,
respectively NWLS, procedures. Furthermore, we employ the following tests
based upon sample rejection rates to assess how close finite sample significance
levels «,, are to nominal values «, where «,, and « are both measured as per-
centages: Let the null hypothesis to be tested be that the actual finite sample
significance level «, satisfies H, : ar < a, < ay, where ay — ay, is O(1),
but small, e.g. 1%, and ay + ar = 2a. The asymptotic (as R, the number of
replications, goes to infinity) significance level is 5% and the implied decision
rule is that H, is rejected if the observed rejection frequency is outside the
interval

aL(100—aL) aU(100—aU)
S B —

For R = 1000 estimated rejection rates in the ranges 7.97 — 12.09, 3.42 — 6.69
and 0.13—2.13 are deemed to be consistent with true nominal significance levels
being within +0.5% of the nominal 10%, 5% and 1% levels, respectively, and
this is indicated by an asterisk (*) in the tables.

The first column of each table deals with the experiments when p = 0 and o
varies (sample selection only), while the second column deals with the case when
o =1 and p varies (heterogeneity and sample selection). The first two upper
blocks of Table A are estimated rejection rates when testing for the inclusion
of the variable £;; and, then, both %;; and &;s, respectively. The third block
reports rejection rates when testing for the inclusion of &;9, given the inclusion
of k;1 as a correction for the sample selection problem in the two-step estimation
procedure.

ar, —1.645 ay +1.645

13



Table A
Rejection rates for the Wald tests in the two-step procedure

"%il Ol’lly f%il Ol’lly
o 10% 5% 1% p 10% 5% 1%
0.0 10.8* 5.7 1.5* 0.0 10.2*  5.1* 1.0*
0.1 172 10.1 38 0.1 11.2* 6.2 1.8*
0.2 26.0 18.0 6.9 0.2 19.0 11.6 4.3
0.3 419 30.5 13.7 0.3 31.2  20.7 7.0
0.4 52.5 40.6 19.7 0.4 41.4  30.1 129
0.5 67.6 56.2 35.0 0.5 53.3 429 238
0.6 79.2 70.0 46.3 0.6 62.5 50.8 288
0.7 85.9 T77.0 56.8 0.7 73.7 622 399
0.8 89.9 834 65.5 0.8 83.9 73.7 50.2
0.9 92.7 875 70.0 0.9 89.0 82.7 63.2
1.0 92.7 879 744 1.0 92.7 879 744
IA{“ and /%»L'Q 1%1'1 and /%iQ
o 10% 5% 1% p 10% 5% 1%
0.0 114 6.2* 1.1* 0.0 12.3  6.1* 0.6*
0.1 147 105 3.9 0.1 1356 75 1.8*
0.2 247 173 170 0.2 19.0 10.8 3.5
0.3 352 239 120 0.3 26.6 18.7 4.7
0.4 45.8 335 16.3 04 372 26.6 10.8
0.5 61.6 49.5 272 0.5 49.5 38.0 20.3
0.6 75.9  63.6 40.1 0.6 57.1 43.3 232
0.7 79.9 T71.0 495 0.7 69.1 57.0 36.5
0.8 87.2 80.2 621 0.8 777 66.5 47.6
0.9 89.9 83.6 66.8 0.9 86.5 79.4 61.5
1.0 92.5 864 716 1.0 925 86.4 71.6
,‘%ig, given /Aiil I%ig, giV@H /Aiil

o 10% 5% 1% p 10% 5% 1%
0.0 11.5* 5.9 1.0* 0.0 122 68 1.1*
0.1 9.7 54 1.37 0.1 1.7 58" 1.2*
0.2 13.2 6.8 1.97 0.2 10.7*  5.6* 1.3*
0.3 1.7 51* 0.7* 0.3 12.0* 5.9* 0.9*
0.4 11.9* 5.7 147 0.4 11.9* 6.0 1.5*
0.5 114* 6.8 1.17 0.5 12.5 5.8 1.0*
0.6 12.2 6.1 1.5* 0.6 12.3  6.4* 1.3*
0.7 11.3* 5.9 1.5* 0.7 13.2 69 2.1*°
0.8 134 72 1.6* 0.8 10.9* 6.1 1.7*
0.9 11.7 6.3 1.17 0.9 128 74 1.7
1.0 142 78 24 1.0 142 78 24

When either 0 = 0 or p = 0, the results indicate that the usual asymp-
totic null approximation to finite sample distribution of the Wald test statistic
is adequate, at the 5% nominal significance level, when either one or two cor-
recting variables are present and, in particular, that the tests are robust to the
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presence of heterogeneity (as they should be asymptotically).® Moreover, the
lower block of Table A reveals relative insensitivity to the inclusion of the extra
correcting variable, indicating that inferential procedures may be taken to be
approximately valid if based on the two-step procedure employing just the first
correcting variable; i.e., the O (|p|) approximation appears reasonable. This is
consistent with Figures 1-3 where there was little gain from including the second
correcting variable unless inference concerning the intercept coefficient was of
concern. Indeed, since it was previously noted in Section 3 that the sandwich
agrees with the corrected covariance matrix estimator, to O (|p|), the fact that
the Wald test indicates that the O (|p|) is adequate provides some explanation
of the observed close agreement between these two covariance matrix estimators
when employing just the first correcting variable (see Figures 2 and 3).

Table B
Rejection Rates using NLS or NWLS estimation.
Greene’s NLS correction Greene’s NLS correction

o 10% 5% 1% p 10% 5% 1%
0.0 11.8* 6.4* 2.1* 0.0 146 89 36
0.1 174 10.7 3.8 0.1 155 9.7 3.0
0.2 258 16.6 7.3 0.2 21.8 13.8 5.5
0.3 372 275 129 0.3 29.4 188 7.3
0.4 482 36.9 195 0.4 36.3 26.6 12.2
0.5 61.2 49.0 27.3 0.5 47.3 375 20.3
0.6 69.1 57.2 35.8 0.6 53.3 43.0 244
0.7 774 67.7 475 0.7 62.3 50.7 304
0.8 81.8 75.3 57.0 0.8 69.4 60.8 424
0.9 82.0 75.5 56.3 0.9 79.1 70.9 54.2
1.0 84.4 T78.7 63.6 1.0 4.4 787 63.6
Terza’s NWLS correction. Terza’s NWLS correction.

o 10% 5% 1% p 10% 5% 1%
0.0 10.7* 64* 3.1 0.0 13.5 9.0 5.1
0.1 126 6.5 1.8 0.1 11.8 8.1 44
0.2 166 9.1 2.6 0.2 14.8 86 45
0.3 269 14.4 4.3 0.3 146 74 35
04 36.3 20.7 6.7 04 20.7 11.1 5.0
0.5 487 29.2 85 0.5 27.6 157 6.2
0.6 54.2 34.9 132 0.6 32.6 19.0 6.3
0.7 64.7 46.1 18.5 0.7 41.4 24.7 10.2
0.8 68.2 50.0 21.5 0.8 477 31.8 13.6
0.9 66.7 46.3 20.6 0.9 57.8 41.3 17.2
1.0 63.0 46.7 22.0 1.0 63.0 46.7 22.0

For the Greene NLS and Terza NWLS procedures (Table B), the finite sample

8The x2 forms of the test have been used here. This is just the empirical t-test squared

PO A ~
when one variable is tested, but 6.V[§]71.6 when two variables are tested together. V[é]
is the sub-block of the corrected variance covariance matrix associated with the estimated
coefficients, 6, of the correction variables.
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behaviour of the Wald tests does not compares well with two-step ML estimator.
These results indicate that the tests are mildly over-sized under the null (p = 0,
o = 1) and, in terms of detecting the statistical significance of the sample
selection correcting variable, the power of these tests are dominated by the
Wald tests based on the two-step ML procedure (when either p > 0 or o > 0).
Also note the drop in power associated with Terza’s estimator which appears
to be because, when there is a serious sample selection problem, the correction
factor can become large with a larger variance and smaller test statistic value.’

5 Conclusion

This article has presented an extension to, and theoretical justification of, the
empirical practice of using Heckman-type two-step estimators to correct for the
sample selection and related problems in count data models. The performance
of the extended method was investigated in a simulation study and found to
perform very well in correcting for sample selection bias in a model’s coefficient
estimates, being much preferable to two non-linear least squares estimators pre-
viously suggested in the literature (especially when there is extra non-sample
selection overdispersion present in the data).

On the basis of the evidence suggested here, the suggested empirical practice
would be to use the two correction variables &;1 and &;o to compensate for the
presence of a sample selection problem, and to test for it using a robust Wald
test. The test has its best performance when calculated using the corrected

covariance matrix form, V), @,ﬁ , although inference about the variates of in-

terest could be adequately taken using the sandwich matrix. The two-step ML
estimator and associated inferential procedures advocated in this paper can be
implemented in a variety of different econometric programs and avoid any com-
putational difficulties associated with other methods (FIML or NLS/NWLS).
Moreover, Wald procedures to assess the significance of #;o given &;1, could also
provide valuable information as to the appropriateness of simply employing the
first correcting variable, &;1, as originally suggested by Greene (1994).

Further research might usefully examine whether or not the method is ad-
equate in more complex count data situations (e.g. zero-inflated count data
models).

9Terza estimates n in ® (2] +n) /® (2}7). When 7 is large with respect to 2]y, the cor-
rection tends to either 0 or 1/® (z;'y) , and the derivative of the mean function with respect
to m becomes close to zero. This can cause problems with the calculation of the covariance
matrix used by Terza(1998), and with elements of the optimisation.
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Appendix 1: Consistency of ¢

In order to investigate the consistency properties of the two-step estimator,

define the true parameter value QT' = ( v 66) , where &, = (770,151,. ,%@) ,
and 7, = 0¢p,. Dealing spec1ﬁcally with the sarnple selection case, we now show
that the two-step estimator, 6, satisfies plim 6 = 9 +0(lpo|"), where pg is the
true value of p (similar analysis will apply for the dummy endogenous regressor
case).

Under fairly general conditions, such as (z;,z) being iid, 0* = plim0 will
be the unique solution to F [h(0*,v)] = 0, observing that plim¥y = ~, and
where expectations are conditional on s = 1. The solution is unique, since

My’w] = —F [exp(w'@)ww’] is negative definite for all § and ~, assuming
that there are no linear dependencies among the elements of w’' = (z/,x’).
Furthermore, F [pww’] will be positive definite for any positive random variable,
1. To proceed, re-parameterise the problem from 6 to ¢ =0 — 98 so that ¢* =
plim ) equals zero iff 6* = ). From (3), ¥* is the unique solution to

E [\ {exp (k (1)) — exp (') exp (5'80) } w] =0, )

where A = exp (m' ﬂﬂ;) > 0. Since non-zero 7, (through non-zero p,) will intro-

duce inconsistency in the parameter estimator, 9, we regard 1™ as a function of
No; 1., ¥* =™ (ny), such that " (0) = 0. Then, expanding ¥* about 7, = 0

we may write

0 ng) = Y 250,40 (ol )

J
= 9o

a;jo , repeatedly differentiate
o)

(9) with respect to 7, and evaluate the result at 7, = 0. This yields,

sl {av‘expwno)) & exp (+'8) Xpwwwexp(n'ao)}w] =0,

where §¢; = 17% /4! . To obtain expressions for

o o onp
(10)
where the following recursion holds
&7 exp (w JZ <] — 1> O™ exp (W) ¥ ™ (W™ ) (1)
8770 0 ong' oy "
Assuming that %91 =0 forallm=1,...,j — 1, implies
j 1, 0,% ] *
0 exp (w'y) U (0) "~

ol " on
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87 exp(k’'6o

Then, because k (n) = £'6 + o (|n|") implies ngy%mﬁhoﬂ) = o lno=0

for all j < r, and ¢*(0) = 0, the j* partial derivative of (9) evaluated at 17, = 0
satisfies

]' *
_E [Agww’} P97 (0) _ 0, j<r (13)
j
o
Therefore ajw:jo =0, j < r, because £ [Agww’} is positive definite, and
o

* r—+1
¥ (1) = O (Imol™")
By assuming that %92 =0, forallm =1,...,j—1, it was possible to show
) 0
that %92 = 0 and, in particular, if %91 = 0, then ai’_zapn§gz = 0, implying
] 0 0
%92 =0, for all j =1, ...,7. Thus, to prove that %}9 = 0, evaluate (10) at
Mo = 0 and j = 1. Thus yields

B [-uww| 812;5)0) =0,

from which it follows that %91 =0.

0
We conclude that 6* = 87 + o (|n,|"), in which the terms denoted o (|n,|")
are also o (|p,|") and become negligible as r increases.
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Appendix 2: Asymptotic Distribution of ¢

In this appendix we derive the asymptotic distribution of the general two-
step estimator defined in Section 3. The arguments involved follow Newey and
McFadden (1994). As in the main text, let * denote plim 6, in which @ is the
two-step estimator defined as the solution to (7) and let 4 be the probit MLE
from the selection equation which is consistent for 7; see Section 3.1.

Expanding H(@, #) = 0 about 6 = 6" and 4 = ~, yields

0= %H (0", 7) + Hov/n (8= 07) + VarH, VN (5 =) + 0,(1)

where ¢y =n/N — c. Re-arranging and substituting the linear expansion

VN G- = (@) T}Lz () + 0p(1)

LP
for the Probit maximum likelihood estimator, where L? () = 86—$Y), gives
N * —1 1 * -1 1 ]
NG (9 —0 ) =~y |2 H (0 7) + Ve, () ==k ()] + 0, (1).

Now, note that L? () = vazl e;z;, where e; = (2s; — 1), the first or-
der Probit generalised error, and H (6*,v) = Zf\;l s;h;(6*,7). Then, due to
independence of observations,

N
1
plim{n_l/QH 0*,7) x N_l/QL?; (7)'} = NG plimN_lZ{sihi(e*,’y)eizg}.
i=1

But each term in the sum on the right hand side is zero when s; = 0 and, to the
order of approximation employed in this paper, has expectation zero when s; = 1
(because, E [y — exp(w'0*)|w] = o(|p|")). Thus, N1 vazl {s5:hi (0%, 7)eizl} 2
0. Therefore assuming a suitable central limit theorem can be applied to 71;H Ca

and 7117L§ (7), both of which have zero mean, we obtain

Vi (0-07) SN0, (0°,7) (15)
where
V(07,9) = Hy ' GHy t + ey M (22,) T HLHG

and we have used the standard result that 71]7L£; () LN (0,22).

19

Y)



References

1]

2]

3]

[11]

[12]

Cameron, C. and Trivedi, P. (1997). Models for Count Data. Oxford Uni-
versity Press.

Doornik, J.A. (2001). Ox: An Object-Orrientated Matrix Programming
Language, London: Timberlake Consultants Press.

Gourieroux, C., Monfort, A. and Trognon, A. (1984). Pseudo-maximum
likelihood methods: applications to Poisson models, Econometrica, 52, 701-
720.

Greene, W.H. (1994). Accounting for Excess Zeros and Sample Selection
in Poisson and Negative Binomila Regression Models. Working Paper No.
EC-94-10, Department of Economics, Stern School of Business, New York
University.

Greene, W.H. (1995). Sample Selection in the Poisson Regression Model.
Working Paper No. EC-95-6, Department of Economics, Stern School of
Business, New York University.

Greene, W.H. (1997). FIML Estimation of Sample Selection Models for
Count Data. Unpublished mimeo. New York University.

Greene,W.H. (1998). Sample Selection in Credit Scoring Models, Japan and
the World Economy, 10, 299-316.

Newey, W.K. and D.L. McFadden (1994). Large Sample estimations and
Hypothesis Testing, in Handbook of Econometrics, Volume 4, edited by
Engle, R.F., and D.L. McFadden. Amstersdam: Elsevier Science B.V.

Orme, C.D. and S.A. Peters (2000). Linear Approximations to maxi-
mum Likelihood Models with Selectivity. Unpublished mimeo. University
of Manchester.

Terza, J.V. (1998). Estimating count Data Models With Endogenous
Switching: Sample Selection and Endogenous Treatment Effects. J. Econo-
metrics, 84, 129-154.

White, H. (1982). Maximum Likelihood Estimation of Misspecified Models.
FEconometrica, 50, 1-25.

Winkelman, R. (1997). Econometric Analysis of Count Data. 2nd Ed. Hei-
delberg, Germany: Springer-Verlag.

[13] Winkelman, R. (1998). Count Data Models With Selectivity. Econometric

Reviews, 17, 339-360.

20



