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Abstract 

The empirical literature examining the relation between expected returns and risk 
premium is voluminous and the results so far have been inconclusive. In this study we 
acknowledge that investors operate under a Mean-Variance framework where skewness 
and kurtosis are not relevant parameters in asset pricing models. However, in the 
estimation process skewness and kurtosis in the data contaminate this relation. Using a 
general framework that accounts for these effects, the results show a positive and 
statistically significant relation between risk and return. However, in case the effects of 
skewness are ignored in model specification, this relation usually turns insignificant with 
mixed signs. 
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1. Introduction 

 The tradeoff between risk and return has been one of the most important and 

extensively investigated issues in financial economics literature. The theoretical results 

predict a positive relation between the two.1 That is, in equilibrium, under a Mean-

Variance framework (which is the standard for popular asset pricing models) a larger 

expected return of an asset can only be justified by a larger standard deviation or variance 

of returns, the latter often used as measure of risk. 

 Many empirical investigations, based on parametric, semi- and non-parametric 

techniques, have been used in the determination of the risk-return tradeoffs. The findings 

however, so far have been inconclusive. Many well known scholars have found positive 

relationship, others a negative relationship and an equal number found no relationship.2 

 The main objective of this paper is to provide a framework that explains the 

contradictions in the aforementioned studies as well as determines the relation between 

risk and returns. As shown by the theoretical, simulations and empirical results the 

contradictions have their origins to the presence of skewness and kurtosis in the data used 

in empirical investigations.  

 In this study we acknowledge that the investors operate under the Mean-Variance 

(M-V) framework (such as the CAPM family models). In the M-V framework, skewness 

                                                 
1 There are however some studies that support the opposite (see for instance, Abel, 1998; Backus and 
Gregory, 1993; and Gennotte and Marsh, 1993). 
2 For instance, a positive relation is supported empirically by Bollerslev, Engle and Wooldridge (1988), 
Scruggs (1998), Harrison and Zhang (1999), Muradoglu, Berument and Metin (1999), Bansal and Lundblad 
(2002), Bali and Peng (2006),  Lanne and Saikkonen (2007), Ludvigson and Ng (2007), Lundblad (2007), 
Pastór, Sinha and Swaminathan (2008) while evidence of no relation is supported by  Poterba and Summers 
(1986), French, Schwert and Stambaugh (1987), Baillie and DeGennaro (1990), Cheung and Ng (1992), 
Chan, Karolyi and Stulz (1992) and Campbell and Hentschel (1992) Corhay and Tourani-Rad (1994) and 
Theodossiou and Lee (1995). In contrast to the above, a negative relation is documented by Fama and 
Schwert (1977), Campbell (1986), Breen, Glosten and Jagannathan (1989), LeBaron (1989), Pagan and 
Hong (1991), Nelson (1991), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), Fraser and 
Power (1997), Balios (2008) and Lettau and Ludvigson (2009). 
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and kurtosis are not relevant parameters in the asset pricing models, however, in the 

estimation process, skewness and kurtosis in the data, affect the coefficients between 

expected returns and risk, which is usually interpreted as the price of risk.3 This raises the 

question whether such coefficients are true measures of risk price, since they can be 

decomposed into two parts, the part of the real price of risk and the part that depends 

entirely on the skewness and indirectly on kurtosis.4  

 By decomposing these effects, our findings suggest a positive and statistically 

significant relation between risk and return once we account for the effects of skewness. 

However, in case the effects of skewness are ignored in model specification, this relation 

usually turns insignificant with mixed signs. 

 The rest of the paper is organized as follows. Section 2 presents the regression 

framework while Section 3 proceeds with Monte Carlo simulations. Section 4 provides an 

empirical illustration and reports the empirical results. Section 5 concludes. 

 

2. Impact of Skewness on the Pricing of Risk 

 This section provides analytical derivations of the impact of skewness on the 

relation between risk and return. The analysis is carried out using Engle’s autoregressive 

conditional heteroskedasticity in mean processes, under the skewed generalized t 

                                                 
3 See analysis in section 2. 
4 Although many studies stressed out the importance of skewness in stock returns and volatility (see for 
instance, Arditti,1967; Scott and Horrath, 1980; Campbell and Hentschel, 1992; Hansen, 1994; Harvey and 
Siddique, 2000; Kim and White, 2004; Guedhami and Sy, 2005; Lanne and Saikkonen, 2007; Barberis and 
Huang, 2008; Grigoletto and Lisi, 2009; Mitton and Vorkink, 2010; Chang, Christoffersen and Jacobs, 
2012; Conrad, Dittmar and Ghysels, 2013; among others) the current literature either omits the effects of 
skewness or treats skewness as an exogenous variable without accounting for its direct effects on the price 
of risk parameter.  
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distribution (SGT).5 We could have used any other skewed type parametric density with 

the results however remaining qualitatively the same. Nevertheless, the SGT distribution 

is chosen because of its flexibility to capture stylized facts often observed in financial 

data. More specifically, it provides flexibility in modeling fat-tails, peakness and 

skewness, which are common characteristics in financial returns.6 Furthermore, it 

encompasses several well known distributions often used in the finance literature, such as 

the GED, student t, Laplace and normal distributions. Therefore, the results are as general 

as they can be (see Theodossiou, 1998; Bali and Theodossiou, 2008; and Hansen, 

McDonald, Theodossiou and Larsen, 2010). 

The link between conditional mean and risk is modeled using the GARCH in 

mean process, which has been the standard in the literature (e.g. Engle, Lilien, and 

Robins, 1987; Glosten, Jagannathan and Runkle, 1993). The stochastic behavior of a 

stock returns is modeled as  

   1t t t ty c a by uσ −= + + + ,          (1) 

where ( )2
1vart t ty Iσ −= is the conditional variance of returns based on some information set 

It-1 available prior to the realization of yt, yt-1 are past values of the series included in It-1, 

a and b are typical regression parameters and c is a parameter linking the first conditional 

(unconditional) moment of yt to its conditional (unconditional) standard deviation. For 

practical purposes and without any loss of generality, we use a single lag value for yt. The 

results however, with more lag values remain qualitatively similar. 

Under the SGT framework, yt is modeled as  
                                                 
5 The latter specification allows for asymmetry in the response of conditional volatility to return 
innovations (a stylized fact which is particularly pronounce in financial data). 
6 Since its development in Theodossiou (1998), the SGT distribution, has been used widely by finance 
researchers (for instance in computing VaR measures, option pricing, estimating asset pricing models 
among others) and incorporated in econometric packages such as GAUSS.  
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where                         

   ( )1t t t t t tu y c a by y mσ −= − + + = −  ,                                                  (3) 

where 1t t tm c a byσ −≡ + +  is the mode of yt. The stochastic error, ut, would have been the 

residuals in case of estimating the model under a symmetric pdf. In the case of skewed 

data, ut, represents deviations from the mode rather that the mean of returns. tφ  is a time-

varying scaling function related to σt, k and n are positive kurtosis parameters controlling 

the shape of the density around the mode and tails, λ is a skewness parameter constrained 

in the open interval (–1, 1), sign(ut) equals –1 for ut < 0 and 1 for ut > 0 and 

( ) ( ) ( ) ( ),B x y x y x y= Γ Γ Γ + is the beta function.7  

 The existence of the conditional variance constrains the kurtosis parameter n to 

values greater than two (n > 2). Values of k below two are associated with leptokurtic 

(peaked) densities relative to the normal distribution and smaller values of n result in fat 

tailed densities. 

 Under the SGT specification and for n > 2, the conditional expected value and 

variance of ut (e.g., MacDonald, Michelfelder and Theodossiou 2009)8 are equal to 

    ( )1|t t tE u I pσ− =            (4)  

and 

   ( ) ( )2 2 2
1var |t t t tu I g rσ φ−= = − ,           (5)  

where  
                                                 
7 Setting λ = 0 in the SGT yields the generalized t (GT) of McDonald and Newey (1988). Similarly, setting 
k=2 yields the skewed t (ST) of Hansen (1994) which includes the student t distribution when λ = 0. 
8 See Appendix for the derivation of the moments of the SGT distribution.  
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    ( )2p r g r= − ,           (6)  
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           (7)  
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   ( )
2 1

2 1 2 3 11 3 , ,
kn n ng B B

k k k k k
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−+ −     = +      
     

.         (8)  

 

In a sense, the parameter p represents the price of risk due to skewness. The size of 

parameter p is purely determined by the extent of skewness and kurtosis present in the 

financial return series (see equations 6 and 7). It has the same sign as the skewness 

parameter λ, estimated internally by the data. In the absence of skewness, its size is zero 

(i.e. λ = 0, symmetric SGT with r = 0 and p= 0). The larger the value of skewness, the 

larger its impact on the parameter.   

 Figure 1, shows the relation of the bias in the price of risk as measured by the 

parameter p, with the skewness parameter λ and kurtosis parameter k. The larger the λ the 

larger the bias of p for specific values of k. Similarly, for larger values of k, the bias of p 

increases. 

 It follows easily from the above that the conditional expected values and conditional 

variance of the regression variable yt are 

   ( ) ( )1 1 1=t t t t t t tE y I c p a by a byµ σ ξσ− − −= = + + + + +              
(9) 

and 

   ( ) ( ) ( )2 2 2
1 1var | var |t t t t t ty I u I g rσ φ− −= = = − .

         
(10) 

 The regression equation in (1) can be written in the following equivalent form 
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   ( ) 1+t t t t t ty c p a byµ ε σ ε−= + = + + +         (11) 

Note that unlike ut, the error term t t t t ty u pε µ σ= − = − has an expected value of zero.9  

 Equation (11), provides the basis for measuring the impact of skewness on the 

relation between risk and return.10 The parameter c pξ = +  (equation 9) is the risk-return 

parameter and measures the total impact of risk (standard deviation) on mean returns 

contaminated with the effects of skewness. Parameter c is the price of risk parameter and 

accounts for the impact of risk on mean returns net or the effects of skewness and 

kurtosis. On the other hand, the parameter p is purely determined by the sign of parameter 

λ and is directly linked to skewness. Therefore, depending on the sign of skewness the 

risk is either overpriced or underpriced (i.e. for the case where λ>0, p>0 and ξ>c while 

for the case where λ<0, p<0 and ξ<c).  

 In general, the conditional variance 2
tσ is specified as a function of the past values 

of the error εt or its standardized measure t t tz ε σ= . In this paper we consider the linear 

symmetric GARCH model of Bollerslev (1986)  

     2 2 2
1 1t t tvσ δε γσ− −= + + ,                   (12a)  

and the GJR-GARCH specification of Glosten, et al. (1993): 

     2 2 2 2
1 1 1 1t t t t tv Nσ δε ζ ε γσ− − − −= + + + ,                  (12b)  

where 1 1 1 10 for 0 and 1for 0.t t t tN Nε ε− − − −= ≥ = ≤  

                                                 
9 Note that ( )t t tp mµ σ= − is the Pearson’s skewness parameter. 
10 Under equation 11, there are two distinct aspects of skewness: one allowing for this in the distribution of 
u and the second (additional one) where this enters the mean equation. 
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   In the above equations, long term persistence of volatility is mainly captured by the 

parameter γ and the short term persistence volatility by the parameter δ while parameter ζ 

captures the asymmetric effects in case of equation 12b.11 

Let [ ], , , , , , , ,c a b k nθ ν δ γ λ′ =  (or [ ], , , , , , , , ,c a b k nθ ν δ ζ γ λ′ =  in the case of GJR-

GARCH model) be a vector of location parameters related to the above process.  

Estimates for θ can be obtained via the quasi maximum likelihood method by  

   ( ) ( )1
1

max ln ,
T

t t
t

L f y I
θ

θ θ −
=

=∑ ,                               (13) 

where f is a conditional probability density function for yt. Estimation of the GARCH-M 

model without accounting for skewness will generally result in biased estimators for the 

in-mean effect. Moreover, computed error rates will not possess zero means and unit 

variance, thus the conditional variances will be inconsistent. 

 

3. Monte Carlo Simulations  

 In this section we demonstrate that the mixed empirical evidence of risk-return 

relation documented throughout the literature may be attributed to the fact that the effects 

of skewness are ignored. Therefore, the effects of skewness on the risk-return relation 

within the GARCH-M framework are analysed using Monte Carlo (MC) simulations of 

one thousand samples of two-thousand and a hundred observations each, i.e., N= 1,000 

and T= 2,100. 

 MC simulations proceed as follows: 

                                                 
11 The usual constraints (in order the unconditional variance to be defined) apply. The results remain 
qualitatively similar for other forms of GARCH specification. 
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1. For each sample, a standardized random vector [ ]0 1, , , Tz z z z=  of size T+1 is drawn 

randomly from the standardized SGT distribution with skewness parameter 0.25λ = − and 

kurtosis parameters k = 1.5 and n = 10, i.e.,  

   ( )~ 0, 1, 0.25, 1.5, 10= = = − = =z SGT k nµ σ λ . 

The skewness and kurtosis measures for these parameters (using equations A16 and A17 

in the appendix) are equal to -0.186 and 2.444 respectively.12 

2. The unconditional variance and unconditional mean of the regression variable yt are 

used as starting values for the conditional mean and conditional variance of yt, That is, 

    2
0

0.05 0.333
1 1 0.05 0.8

νσ
δ γ

= = =
− − − −

  

and  

   
( ) [ ]0

0

0.3 ( 0.344) 0.33 0.05
0.039.

1 1 0.1
c p a

b
σ

µ
+ − ++ +

= = =
− −  

Note that 0.344p = − is computed using equation 6. Starting values for the regression error 

and variable are computed using 0 0 0zε σ= and 0 0 0.y µ ε= +  

3. The values of the regression variable are generated using the following recursive 

equations: 

  2 2 2
1 10.1 0.05 0.8t t tσ ε σ− −= + +  

or             

  
2 2 2 2

1 1 1 10.1 0.05 0.05 0.8t t t t tNσ ε ε σ− − − −= + + +  

  t t tzε σ=  

and 

                                                 
12 Values employed in the MC, are calibrated to estimates from actual data. 
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  10.044 0.05 0.1t t t ty yσ ε−= − + + + , 

for t = 1, 2, …, T. Note that 0.3 0.344 0.044c p+ = − = − . 

 For each artificially generated sample we estimate an AR(1)-GARCH(1,1)-M and 

an AR(1)-GJR-GARCH(1,1)-M model under three sample likelihood environments, 

based on 1) the normal distribution, 2) the symmetric generalized t (GT) distribution and 

3) skewed generalized t (SGT) distribution. Note that the first two environments involve 

misspecified sample likelihood functions, thus cannot capture the impact of skewness in 

the regression variable yt on the relationship between risk and return.  To avoid problems 

arising from the starting values we use only the last two thousand observations of yt.  

 Tables 1, 2 and 3 present the Monte Carlo statistics for the GARCH-M and GJR-

GARCH-M models and all one thousand randomly generated samples. In each table, the 

first row of numbers presents the parameter values used in the simulation of data (true 

values). The remaining rows present the arithmetic means (Avg.), the standard deviations 

(Std. Dev.), the average standard deviations (Avg. Std. Dev.), and the percent of times, 

that the null hypothesis that the mean values of the parameters are statistically equal to 

their respective true values, is rejected (% rejected). 

 Tables 1 and 2 present the statistics for the Normal and GT distributions, 

respectively. The arithmetic means of all other parameters of the conditional means 

equations, except for that of c (GARCH-M effect), appear to be statistically similar to 

their expected values. The arithmetic mean of the parameter c is greatly influenced by the 

skewness due to the fact that it is not accounted in the estimation (misspecified likelihood 
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function).13 It seems pretty obvious from (9) that skewness affects the estimate of c. 

Since p is negative, it is anticipated that estimated parameter c will be downward biased. 

Interestingly, the parameters of the conditional variance equations are over-rejected under 

the Normal distribution while under the Symmetric GT these coefficients appear to be 

highly significant and statistically not different from their initial values. 

 Table 3 presents the Monte Carlo statistics of the estimated parameters of the 

GARCH-M and the GJR-GARCH-M based on the SGT distribution. Note that the means 

of all parameters are statistically similar to their expected values. Furthermore, the 

rejection rates of the hypothesis that the parameters are equal to their initial values (% 

rejection) are close to the significance level of 5% except from the case of asymmetry 

parameter ζ, which is slightly over rejected. Unlike the previous cases, the risk-return 

relationship, measured by the mean value of the estimated parameter c, is statistically 

similar to the true value used in the simulations.  

 Overall the results suggest that skewness has an important role in the risk-return 

relation. In case the effects of skewness are ignored, the relation is negative and 

insignificant. This downward bias will be due to the negative skewness assumed; 

otherwise this relation is positive and highly significant in line with the theory.14 In the 

next section, we introduce empirical evidence using real data from various international 

stock markets to examine how this relation behaves.  

 

 

                                                 
13 Misspecified models estimate the risk-return relation contaminated with the effects of skewness, i.e. they 
estimate risk-return coefficient, ξ. 
14 Theory assumes a linear positive relationship between risk and return and is based on assumptions of 
rational behavior and economic utilitarianism (Ross, 1973). 
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4. Empirical Illustration 

4.1 Data Description 

 In this section we use real data to examine the risk-return relation under the 

models developed in section 2 and we present the empirical results.  

 The financial series used (number of observations varies with the index and it was 

chosen according to the longest available period) are the S&P500 (US), FTSE100 (UK), 

Nikkei 225 (Japan), TSX 60 (Canada), CAC40 (France) and DAX30 (Germany) stock 

market indices. The series are transformed into continuously compounded daily 

percentage returns (logarithmic changes) using the formulae  

     ( )1100*lnt t ty P P−=           (14) 

where ln is the natural logarithm and Pt is the level of each series at time t.15, 16  

 Preliminary statistics reported in Table 4 (Panel A) for the daily returns on the one 

hand show positive average returns for all indices except from Nikkei 225 at daily and 

monthly frequencies, with S&P500 possessing the highest value followed by DAX30. On 

the other hand, the Euro Area and Japanese markets have substantially higher 

(unconditional) volatility, compared to the US and the UK. The same picture is given for 

weekly and monthly returns (Panels B and C respectively). 

 The third and fourth rows give the statistics for skewness (b1) and kurtosis (b2). 

These are calculated using the formulae b1=m3/m2
3/2 and for kurtosis is b2=m4/m2

2, 

where mj is the estimate for the jth moment around the mean. Under the null hypothesis 

of normality, the two statistics are normally distributed with standard errors se(bl)=√6/ T 

                                                 
15 Unlike the levels of the series, logarithmic changes are stationary processes (results are available upon 
request). 
16 Extreme values for each data series (i.e. values that are falling outside the range of plus-minus four 
standard deviations from the mean) are dropped from the sample. 
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and se(b2) =√24 / T, where T is the sample size. Mean returns at all frequencies are 

negatively (and statistically significant) skewed for all of the markets. In addition, all 

returns are highly leptokurtic with respect to the normal distribution. The fact that all 

returns are negatively skewed implies that the returns distribution of indices have a 

probability of earnings greater than the mean (in other words the median return is greater 

than the mean). 

 The fifth row gives the Kolmogorov-Smirnov (KS) statistic for detecting 

departures of the data from normality. This is calculated by comparing the empirical and 

normal cumulative distributions for yt, with the critical values being calculated using the 

formula 1.63/√ T (see for further details L. H. Miller, 1956).17 All KS values (at all 

frequencies) are greater than their respective critical values at the one-percent level of 

significance, rejecting the null hypothesis of normality for the data. 

 

4.2 Empirical Findings 

This section discusses the empirical findings using the AR(ρ)-GJR-GARCH-M 

model, where ρ denotes the lag order for the mean specification.18 We opt to set the 

autoregressive lag equal to 1 (i.e. ρ=1) since we anticipate that stock markets will quickly 

respond to new information.19 

The mean, volatility and SGT distribution estimates for the AR(1)-GJR-GARCH-

M specification at daily, weekly and monthly frequency are presented in Tables 5, 6 and 7 

                                                 
17 The KS is estimated by: KS = max[FE(yt) – FG(yt)], for t = 1, 2, …, T, where  FE(yt) and FG(yt) are the 
empirical and normal distributions for the indices, respectively. 
18 We adopt this specification because stock returns exhibit asymmetry in response of conditional volatility 
to positive and negative return shocks (Nelson, 1991 and Glosten et. al., 1993). Therefore, simple GARCH 
specification fails to account for asymmetric effect. Nevertheless, AR(p)-GARCH-M specification has also 
been estimated and the results (available upon request) are qualitatively the same. 
19 This is also supported by the Schwarz Information Criterion for the majority of the series. 
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respectively. Most of the series (at daily, weekly and monthly frequency) are 

characterized by statistically insignificant AR parameters with the exception of the 

S&P500 index (with positive and significant effects at daily frequency), CAC40 and 

TSX60 indices (with significant negative influence at weekly frequency) and TSX60 

index (with positive and significant prediction at monthly frequency). As far as the 

volatility is concerned, in common with many previous studies, the results show volatility 

to be highly persistent (see parameter γ).  Similarly, short term persistence (captured by 

parameter δ) is in line with the results found elsewhere in the literature while asymmetry 

parameter ζ points to leverage effects (i.e. negative shocks have greater impact on 

volatility than that of positive shocks of the same magnitude). Leverage effect disappears 

for the European markets as we move from daily to monthly frequency. 

As for the parameters of the SGT distribution, each combination of the location 

parameters k and n indicates that the distribution of each series exhibits kurtosis beyond 

that permitted by the normal distribution.20 The skewness parameter λ is negative and 

highly significant (at the 1% level) for all specifications at any frequency indicating that 

all series are negatively skewed, while parameter k for all series is around two indicating 

that all series are leptokurtic relative to the normal distribution. Furthermore, the 

skewness values (Sk) for the series calculated using equation A.16 in the appendix under 

both specifications range between -0.311 and -0.138 at daily frequency, -0.871 and -0.317  

at weekly frequency, and  -1.919 and -0.419  at monthly frequency. As for the kurtosis 

values (Ku) calculated using equation A.17 in the appendix, these range between 3.485 

and 4.149 at daily frequency, 3.758 and 6.402  at weekly frequency, and 3.234 and 4.221 

at monthly frequency. 
                                                 
20 For the cases where estimated value of n explodes, we fix it to 100. 
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 Because the normal distribution is nested within the skewed GT distribution, a 

log-likelihood ratio (LR) statistic could be used to test whether normal distribution is 

more appropriate.21 The LR statistic is asymptotically distributed as a chi-square, χ2(3), 

with three degrees of freedom. All LR values are greater than their critical value at the 

5% level of significance (11.34), rejecting the null hypothesis (exceptions are only the 

cases of CAC40 - significant at 10% - and Nikkei 225 – insignificant – both at monthly 

frequency, indicating that as we move towards to lower frequency we approach the 

Normal distribution). Similar results are obtained for the case of the Generalized t (GT) 

distribution.22 

 Finally, we employ the ARCH test of Engle to examine the null hypothesis (H0) 

of no remaining ARCH(1) effects. This test indicates that for most of the cases the chosen 

order is adequate. However there are some cases where the null is rejected. Therefore, we 

re-estimate the model using higher ARCH orders with the results remaining qualitatively 

the same.23 

 Turning to the results of the “in-mean-effects” we estimate the model twice. 

Firstly, we estimate the model without isolating the effects of skewness and the “in-

mean-effect” is denoted by ξ (i.e. we estimate equation 9) and then we re-estimate the 

model removing the effects of skewness from the impact of risk to the expected return 

(i.e. we estimate equation 11, where c denotes the real price of risk and p the price of risk 

attributed to skewness). 

 In the first estimation, at daily frequency, parameters ξ for S&P500, FTSE100, 

CAC40 and DAX30 are positively correlated with the expected returns and they are 

                                                 
21 The null hypothesis to be tested is H0: λ=0, k=2 and n=∞.  
22 The null hypothesis is now H0: λ=0 and the LR statistic is asymptotically distributed as χ2(1). 
23 These estimations are available from the authors upon request. 
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statistically insignificant. For the case of TSX60, it is negative but still insignificant, 

while for the Nikkei225 is negative and significant. The range of point estimates varies 

from -0.062 (Nikkei225) to 0.037 (CAC40). At weekly frequency, most of the parameters 

are negative and insignificant (FTSE100, CAC40 and DAX30) with exception, only as 

far as the sign is concerned and not the significance the case of S&P500. Nikkei 225 is 

still negative and significant while TSX60 is negative and significant, with the point 

estimates at this frequency varying from -0.305 (TSX60) to 0.048 (S&P500). Finally, at 

monthly frequency all signs of the risk-return parameter ξ appear to be similar to weekly 

frequency (except CAC40, which is now positive), however only TSX60 is significant. 

The point estimates are now bigger in magnitude and vary from -0.416 (TSX60) to 0.157 

(S&P500). 

 Overall, the above analysis reveals mostly insignificant relation between expected 

returns and volatility when the relation is contaminated with the effects of skewness (with 

some weak evidence of negative effects), supporting in that manner the 

insignificant/negative relation found in the related literature.  

 In the second estimation we modify the model to account for skewness and 

separate the “in-mean-effect” into two components: the real impact of risk to the expected 

return (parameter c) and the effect of skewness (parameter p).24 Under this specification 

the results are completely different compared to the first estimation. In that case, at all 

frequencies, the real impact of risk is positive and significant (with minor exceptions 

being the cases of Canada at weekly frequency, France and Germany at monthly 

frequency and Japan at all frequencies; where the effect is still positive but insignificant). 

                                                 
24 Parameter p is predetermined and equal to 2r g r− , see equation 6. 
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The point estimates of parameter c varies from 0.039 to 0.202, 0.095 to 0.361 and 0.045 

to 0.776 at daily, weekly and monthly frequency respectively.  

 This finding is in line with MC simulations and highlights the importance of 

skewness in uncovering the true relation between risk and returns. The positive effect is 

in line with the seminal work on the dynamic risk return tradeoff equilibrium of Merton 

(1973) who supports that market participants will demand higher returns to hold riskier 

assets. The fact that (once the effects of skewness are taken into account) the relation 

turns significantly positive in higher frequencies (daily and weekly) may be attributed to 

the fact that skewness is more pronounced in higher frequencies while the insignificant 

effect for three cases at monthly frequency is linked to the findings of Lundblad (2007) 

who documents that small samples may lead to the insignificant relation between risk and 

return. 

 Parameter p is negative and relatively big in magnitude as far as the point 

estimates are concerned (ranging from -0.230 to -0.082, -0.518 to -0.210 and -1.192 to -

0.350 at daily, weekly and monthly frequency respectively). The negative sign of the 

effects of skewness (p) is in line with the results of Boyer et. al. (2010) who propose that 

skewness-preferring investors are willing to pay a premium for riskier stocks in return for 

a chance at having greater returns. However, whether p significantly affects the relation is 

a matter of further investigation. 

 Since p is a function of other parameters (r and g), its standard error cannot be 

obtained directly; hence, we apply a parametric bootstrap procedure.25 Using this 

technique we are able to obtain a clearer picture regarding the uncertainty associated with 

                                                 
25 This procedure has been introduce by Rapach and Wohar (2009) in the context of intertemporal hedging 
demand under a VAR framework. 
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the point estimate of p. We assume that our series are generated by equations 11 and 12b, 

where the parameters of the model are set to their maximum likelihood estimates. In 

order to construct a pseudo sample for yt, we make a T+100 independent draws from 

SGT distribution. Using the randomly drawn innovations, equations 11 and 12b with

ˆθ θ′ ′= , we can build up a pseudo-sample of T+100 observations for yt.26 For the pseudo-

sample, we estimate the model repeating this process 1000 times,  obtaining in that 

manner an empirical distribution for each of the coefficients. We construct 90% 

confidence intervals for each of the coefficients from the empirical distributions using 

the percentile method described in Davidson and MacKinnon (1993, p. 766).27 

 For all cases we observe that the 90% confidence intervals for parameter p are 

relatively tight enough at all frequencies. This suggests that all estimates are significant 

and the  null hypothesis that p is equal to zero is rejected according to the 90% 

confidence intervals. Overall, our findings suggest that the omission of the effects of 

skewness could bias the sign\magnitude of the impact of risk on market returns. 

 

4.3 Time Varying behavior 

 An obvious concern regarding the above findings is whether the risk return 

relation changes over time. Our dataset includes different sample periods for the various 

returns and we expect that the characteristics of each series will vary with sample period 

and incidents occurred (such as crises). Therefore, assuming a time-invariant risk-return 

trade-off is rather a strong assumption. As indicated by Lundblad (2007) the risk-return 

                                                 
26 First 100 observations are discarded in order to avoid initialization problems leaving us with a pseudo-
sample of T observations for yt, matching the original sample. 
27 We report results only for the parameter ρ. For the rest of the parameters (where standard error is directly 
obtained from the estimation process) results are available upon request. 



18 
 

trade-off is described by risk aversion, which may vary with economic conditions, 

evolution of financial markets, improved risk sharing, etc. As a consequence of the 

above, a snapshot of this relation may conceal substantial differences over time.  

 To capture the time varying behaviour of the relation, we rerun the model using 

rolling windows of 2500 observations for all indices.28 A rolling window analysis of a 

time series is often used to assess parameter’s stability over time. In this technique the 

estimate of risk-return relation (with and without accounting for the effects of skewness) 

is updated by removing the first observation and incorporating the next observation in the 

sample. The process is then repeated until the last available observation in the sample is 

used. We assess the stability by plotting the time varying behaviour of the coefficients of 

interest. 

 Figures 2a to 2f, show the time varying pattern of risk-return trade-off: (i) real 

impact of risk – parameter c (solid black line) and (ii) impact of risk contaminated with 

the effects of skewness – parameter ξ (grey line). In addition to the above, the time 

varying pattern of skewness - parameter λ - is depicted in dotted black line. 

 As it can be seen by the plots, the magnitude of all parameters is changing with 

time, suggesting that risk-return relation is time varying. Nevertheless, over the available 

data period the full record of risk-return trade-off is consistently positive once we account 

for the effects of skewness with some minor exceptions for some periods for the case of 

Nikkei225.29 In contrast to the above, in case we do not account for the effects of 

skewness, the sign of risk-return tradeoff is mixed, supporting the often mixed findings 

reported in the literature. 

                                                 
28 The results are robust using windows of 1500 and 2000 observations. These are available upon request. 
29 During these periods estimated skewness (λ) appears to be higher than parameter (ξ).  



19 
 

 These findings, once again, suggest that the mixed results indicated in the 

literature may be attributed to the omission of important factors such as the effects of 

skewness. 

 

5. Conclusions 

 This paper revisits the puzzle of the relation between risk and return and attempts 

to explain the contradictory empirical findings in the literature. The theoretical and 

empirical investigation of the relationship between risk and return in large portfolios is 

carried out using the analytical framework based on the popular SGT distribution, on 

Monte Carlo simulations, on bootstrapping and on rolling window regressions. Based on 

analytical derivation, the risk-return parameter is decomposed into two components: a 

price of risk component and an idiosyncratic component, that depends purely on the 

skewness and kurtosis. We claim that this idiosyncratic component, which disappears in 

lower frequency data, should not matter for pricing purposes. This claim is also consistent 

with the assumptions of M-V framework, which has been widely used in stock return 

models. Under this framework, skewness and kurtosis are not relevant parameters in asset 

pricing models, therefore should not be priced. However, they contaminate the estimation 

of the risk-return relation, and particularly the price of risk parameter through the 

estimation process (where we are able to decompose the effect into the real risk price 

effect and the effect that depends entirely on skewness). 

 By decomposing these effects, the main findings (using Monte Carlo simulations 

and real data at daily, weekly and monthly frequency) indicate that once we account for 

the effects of skewness, the risk-return relation becomes positive and highly significant 
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(with the effect however becoming less influential as we move from daily to monthly 

data). The omission of the effects of skewness could bias the sign\magnitude of the 

impact of risk on market returns. These results are also supported when rolling window 

estimations are employed to uncover the time varying pattern of this relation. 

 Therefore, our study indicates that correctly specified parametric models that take 

into account the effects of skewness are able to deliver positive risk-return relations in 

line with the theory.  

 This finding has several important implications. Firstly, it helps to explain the 

often-mixed results in the literature because it demonstrates that the empirical relation 

between risk and returns is by the skewness in the data. Secondly, it is important for the 

estimation and measurement of required return in stock pricing models. Thirdly and more 

importantly, it has implications for international risk analysis and portfolio construction. 

For buy-and-hold investors, which includes the traditional institutional investors in a M-

V world, skewness, for practical reasons, is an irrelevant issue (since skewness is not 

typically present in higher frequency data such as monthly, quarterly, etc). Being able to 

decompose the pricing of risk parameter into its real and skewness impact components, 

we are able to get the true measure of risk pricing irrespective of the frequency of data 

used. Since, as demonstrated in this article, the effects of skewness should not be omitted 

in assessing the risk–return relation in stock markets, investors should consider it when 

they construct their portfolio.  

 Finally, the above findings encourage for further research in the area of 

parametric models and specifically in the multivariate version of our specification, which 
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has been used extensively so far, not only in finance but also in economic literature, 

however, without accounting for possible skewness effects in the data. 
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APPENDIX 1.A - DERIVATIONS FOR THE SGT DISTRIBUTION 

 

The rth non-central moment of the random variable u = y – m following the non-centered 

skewed generalized t (SGT) below 
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The above two integrals can be re-written as  
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where ( )( )( )1 1 k kq n k λ φ≡ + ±  and ( )1n k≡ +κ . Gradshteyn and Ryzhik (1994, p. 341) 

show that 
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For dF to be proper probability density function, 
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Substitution of C into the Mr equation gives, 
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The expected value of u, provided that n >1, is  
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The second non-centered moment of u, provided that n > 2, is 
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In this case, the variance of u is 
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where 2 0g r− >  (see below).   

 In the above expression the variance, expressed in terms of φ, exists for as long as 

n > 2, although the value of φ exists for any value of n > 0. Note that 
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because S(λ) > 0 (the latter can be proven using the Stirling’s approximation of the 

gamma function).  

 The third non-centered moment of u, provided that n > 3, is 
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The third centered moment is, 
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The fourth non-centered moment of u, provided that n > 4, is 
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The skewness and kurtosis measures are 
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Table 1: GARCH and GJR-GARCH under Normal distribution  
Panel a: GARCH-M 

 Conditional Mean Conditional Variance 

  a b c v δ ζ γ 

True Values  0.05 0.10 0.30 0.10 0.05 - 0.80 
Avg 0.038 0.099 -0.063 0.140 0.061 - 0.763 
St. Dev. 0.266 0.025 0.305 0.047 0.016 - 0.069 
Avg St. Dev. 0.285 0.025 0.329 0.095 0.028 - 0.137 
 % rejected 0.029 0.053 0.346 0.229 0.237 - 0.256 
Panel b: GJRGARCH-M 

 Conditional Mean Conditional Variance 
  a b c v δ ζ γ 
True Values  0.05 0.10 0.30 0.10 0.05 0.05 0.80 
Avg 0.045 0.100 -0.072 0.126 0.060 0.061 0.784 
St. Dev. 0.151 0.026 0.157 0.029 0.024 0.030 0.039 
Avg St. Dev. 0.157 0.025 0.165 0.045 0.035 0.046 0.059 
% rejected 0.041 0.048 0.690 0.179 0.144 0.198 0.176 

Notes: This table reports Monte Carlo simulation results for GJR and GARCH-in-mean specifications under 
Normal distribution without account for the effects of skewness, based on 1,000 randomly generated samples of 
2000 observations each. Avg. refers to the average value of the estimated parameters, St. Dev. to the standard 
deviation of the estimates,  Avg. St. Dev. to the average standard deviation of the estimated parameters, and % 
rejected  to the test of whether the difference of the estimated parameter from its true value is significant or not.  

 

 

 

 

 

 



 

Table 2: GARCH and GJR-GARCH under Symmetric GT distribution  
Panel a: GARCH-M 

 Conditional Mean Conditional Variance SGT parameters 

  a b c v δ ζ γ n k λ 

True Values  0.05 0.10 0.30 0.10 0.05 - 0.80 10 1.5 0 
Avg. 0.043 0.098 0.011 0.132 0.058 - 0.780 5.807 1.853 - 
St. Dev. 0.270 0.023 0.305 0.072 0.022 - 0.103 3.238 0.224 - 
Avg. St. Dev. 0.264 0.022 0.300 0.061 0.021 - 0.087 2.061 0.252 - 
% rejected 0.035 0.052 0.299 0.080 0.064 - 0.105 0.714    0.167    - 
Panel b: GJRGARCH-M 
 Conditional Mean Conditional Variance SGT parameters 

  a b c v δ ζ γ n k λ 

True Values  0.05 0.10 0.30 0.10 0.05 0.05 0.80 10 1.5 0 
Avg. 0.040 0.098 0.014 0.123 0.057 0.070 0.803 5.925 1.857 - 
St. Dev. 0.131 0.024 0.127 0.036 0.033 0.039 0.043 4.507 0.231 - 
Avg. St. Dev. 0.125 0.023 0.128 0.034 0.031 0.037 0.041 3.238 0.252 - 
% rejected 0.058 0.064 0.639 0.045 0.064 0.091 0.077 0.714 0.192 - 
Notes: This table reports Monte Carlo simulation results for GJR and GARCH-in-mean specifications under SGT 
distribution taking into account the effects of skewness, based on 1,000 randomly generated samples of 2000 
observations each. Avg. refers to the average value of the estimated parameters, St. Dev. to the standard deviation of 
the estimates,  Avg. St. Dev. to the average standard deviation of the estimated parameters, and % rejected  to the test 
of whether the difference of the estimated parameter from its true value is significant or not. To calculate % rejected  
for the case of parameter p we use St. Dev. 

 

 

 

 

 

 



Table 3: GARCH and GJR-GARCH under SGT distribution (taking into account skewness) 
Panel a: GARCH-M 

 Conditional Mean Conditional Variance SGT parameters Skewness effect 

  a b c v δ ζ γ n k λ P 

True Values  0.05 0.10 0.30 0.10 0.05 - 0.80 10 1.5 -0.25 -0.344 
Avg. 0.012 0.099 0.325 0.130 0.058 - 0.779 15.67 1.495 -0.251 -0.360 
St. Dev. 0.240 0.021 0.127 0.058 0.020 - 0.084 22.58 0.169 0.027 0.037 
Avg. St. Dev. 0.293 0.021 0.133 0.075 0.022 - 0.107 14.34 0.158 0.027 - 
% rejected 0.046 0.065 0.056 0.053 0.052 - 0.107 0.090 0.061 0.055 0.068 
Panel b: GJRGARCH-M 
 Conditional Mean Conditional Variance SGT parameters Skewness effect 

  a b c v δ ζ γ n k λ P 

True Values  0.05 0.10 0.30 0.10 0.05 0.05 0.80 10 1.5 -0.25 -0.344 
Avg. 0.046 0.099 0.285 0.120 0.051 0.084 0.803 16.52 1.489 -0.249 -0.358 
St. Dev. 0.120 0.022 0.121 0.031 0.027 0.036 0.038 21.99 0.165 0.027 0.038 
Avg. St. Dev. 0.118 0.021 0.120 0.033 0.027 0.037 0.041 15.62 0.155 0.027 - 
% rejected 0.044 0.049 0.052 0.053 0.037 0.156 0.078 0.081 0.073 0.050 0.066 

Notes: This table reports Monte Carlo simulation results for GJR and GARCH-in-mean specifications under SGT distribution taking into account 
the effects of skewness, based on 1,000 randomly generated samples of 2000 observations each. Avg. refers to the average value of the estimated 
parameters, St. Dev. to the standard deviation of the estimates,  Avg. St. Dev. to the average standard deviation of the estimated parameters, and 
% rejected  to the test of whether the difference of the estimated parameter from its true value is significant or not. To calculate % rejected  for 
the case of parameter p we use St. Dev. 

 

 

 

 

 

 



 

Table 4. Preliminary Statistics 
 S&P500 

(US) 
FTSE100 

(UK) 
NIKKEI225 

(JAPAN) 
TSX60 

(CANADA) 
CAC40 

(FRANCE) 
DAX30 

(GERMANY) 
Period 
  

03/01/1950-
05/06/2012 

02/04/1984- 
06/06/2012 

04/01/1984- 
06/06/2012 

03/01/1971- 
06/06/2012 

01/03/1990-
06/06/2012 

01/03/1990-
06/06/2012 

Panel a: Daily frequency 

Mean 0.031 0.024 0.000 0.016 0.007 0.025 
Variance 0.839 1.169 1.950 1.586 1.961 2.074 
Skewness -0.090*** -0.203*** -0.130*** -0.269*** -0.176*** -0.230*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Kurtosis 6.013*** 5.603*** 5.437*** 6.175*** 5.336*** 5.707*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
KS  0.089*** 0.042*** 0.050*** 0.051*** 0.047*** 0.049*** 
 (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) 
Panel b: Weekly frequency 

Mean 0.137 0.123 0.003 0.053 0.055 0.141 
Variance 4.135 5.215 7.961 7.148 8.684 9.642 
Skewness -0.312*** -0.295*** -0.279*** -0.515*** -0.253*** -0.296*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Kurtosis 5.035*** 5.051*** 4.755*** 6.122*** 4.401*** 5.145*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
KS  0.167*** 0.188*** 0.221*** 0.198*** 0.251*** 0.253*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Panel c: Monthly frequency 

Mean 0.589 0.497 -0.045 0.182 0.164 0.575 
Variance 17.411 20.365 37.890 22.059 32.668 39.341 
Skewness -0.461*** -0.601*** -0.480** -0.947*** -0.486*** -0.724*** 
 (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) 
Kurtosis 4.157*** 3.995*** 3.872*** 4.729*** 3.244*** 4.904*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
KS  0.361*** 0.399*** 0.367*** 0.382*** 0.389*** 0.423*** 
 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 
Notes: The statistics for skewness is b1=m3/m2

3/2 and for kurtosis is b2=m4/m2
2, where mj is the estimate for the jth 

moment around the mean. The Bera-Jarque statistic for testing normality is BJ=T(b1
2/6 + b2

2/24). This is asymptotically 
distributed as χ2(2) with 2 degrees of freedom. Its critical value at the one-percent level is 9.21. KS is the Kolmogorov-
Smirnov statistic for testing the null hypothesis of normality. p-values in the brackets. 
 

 

 

 

 

 

 

 

 

 

 



 Table 5. AR(1)–GJRGARCH-M Skewed GT Estimates – Daily Returns 
 S&P500 FTSE100 NIKKEI225 TSX 60 CAC40 DAX30 
 (US) (UK) (JAPAN) (CANADA) (FRANCE) (GERMANY) 
Panel a: Maximum Likelihood Estimates 

a 0.013 0.003 0.094*** 0.040 -0.027 0.030 
 [0.015] [0.034] [0.031] [0.057] [0.050] [0.039] 
b 0.096*** 0.016 -0.003 -0.028 0.001 -0.008 
 [0.008] [0.012] [0.012] [0.017] [0.013] [0.013] 
c  0.106*** 0.200*** 0.039 0.202*** 0.180*** 0.161*** 

 [0.027] [0.052] [0.039] [0.076] [0.055] [0.049] 
ξ 0.024 0.030 -0.062** -0.029 0.037 0.006 
 [0.022] [0.041] [0.030] [0.050] [0.045] [0.037] 
v 0.006*** 0.015*** 0.018*** 0.015*** 0.026*** 0.019*** 

 [0.001] [0.003] [0.004] [0.004] [0.006] [0.005] 
δ 0.022*** 0.028*** 0.032*** 0.007 0.008 0.022*** 
 [0.004] [0.006] [0.006] [0.009] [0.008] [0.006] 
ζ 0.092*** 0.080*** 0.111*** 0.109*** 0.106*** 0.103*** 
 [0.009] [0.010] [0.014] [0.018] [0.013] [0.015] 
γ 0.925*** 0.916*** 0.903*** 0.926*** 0.924*** 0.916*** 
 [0.006] [0.008] [0.008] [0.011] [0.009] [0.009] 
n 11.622*** 11.307*** 10.551*** 24.908 14.712*** 13.135*** 
 [2.178] [2.741] [2.250] [30.785] [5.565] [4.619] 
k 1.824*** 2.271*** 1.916*** 1.818*** 2.057*** 1.912*** 
 [0.072] [0.143] [0.109] [0.177] [0.145] [0.132] 
λ -0.054*** -0.108*** -0.066*** -0.150*** -0.092*** -0.100*** 
 [0.011] [0.018] [0.016] [0.025] [0.020] [0.019] 
Panel b: Confidence Intervals for parameter p using Rapach and Wohar (2009) bootstrapping procedure 

p -0.082 -0.170 -0.101 -0.231 -0.143 -0.155 
 {-0.114  -0.056} {-0.219  - 0.126} {-0.142  -0.065} {-0.298  -0.170} {-0.193  -0.092} {-0.207  -0.111} 
logL -18169.7 -9577.2 -11154.5 -4515.0 -9100.7 -8707.3 
LR 469.56*** 83.03*** 190.7*** 65.53*** 73.31*** 131.75*** 
Sk -0.138 -0.207 -0.165 -0.311 -0.184 -0.229 
Ku 4.139 3.485 4.100 3.609 3.510 3.842 
ARCH(1) 21.999*** 0.317 0.401 3.396* 2.949* 5.661** 
p-value (0.004) (0.574) (0.527) (0.065) (0.086) (0.017) 
Notes. Series are expressed as continuously compounded daily returns (logarithmic changes). Standard errors for the estimators are included in 
squared brackets. Bold letters denote significance at 10% (*), 5% (**) and 1% (***) level respectively. LR is the log-likelihood ratio for testing the 
null hypothesis that the series are distributed as normal against the alternative hypothesis that the series are distributed as skewed GT. The LR 
follows χ2(3). Its critical value at the one-percent level of significance is 11.34. Sk and Ku, are the skewness and kurtosis measures calculated using 
equations (A16) and (A17) in the appendix. ARCH denotes the LM test statistic for remaining ARCH effects in the series. p-values in the brackets. 

 
 
 
 
 
 
 
 
 
 
 
 



Table 6. AR(1)–GJRGARCH-M Skewed GT Estimates –Weekly Returns 
 S&P500 FTSE100 NIKKEI225 TSX 60 CAC40 DAX30 
 (US) (UK) (JAPAN) (CANADA) (FRANCE) (GERMANY) 
Panel a: Maximum Likelihood Estimates 

a 0.071 0.189 0.457** 0.714*** 0.099 0.201 
 [0.107] [0.207] [0.236] [0.186] [0.249] [0.270] 
b -0.017 -0.028 0.000 -0.115*** -0.065*** -0.051 
 [0.019] [0.027] [0.028] [0.041] [0.030] [0.032] 
c  0.336*** 0.180** 0.095 0.183 0.261** 0.361*** 

 [0.076] [0.091] [0.120] [0.177] [0.136] [0.133] 
ξ 0.048 -0.030 -0.160* -0.340*** -0.013 -0.010 
 [0.062] [0.107] [0.095] [0.087] [0.098] [0.097] 
v 0.123*** 0.225*** 0.0317** 0.072 0.330*** 0.441*** 

 [0.037] [0.075] [0.144] [0.048] [0.129] [0.187] 
δ 0.037*** 0.014 0.029 -0.011 0.029* 0.037* 
 [0.011] [0.017] [0.019] [0.039] [0.017] [0.022] 
ζ 0.0122*** 0.156*** 0.162*** 0.184*** 0.158*** 0.182*** 
 [0.029] [0.034] [0.057] [0.052] [0.041] [0.062] 
γ 0.869*** 0.863*** 0.851*** 0.918*** 0.852*** 0.822*** 
 [0.023] [0.027] [0.037] [0.031] [0.026] [0.046] 
n 10.006*** 7.979*** 5.088*** 100 6.790** 8.269*** 
 [3.033] [2.984] [0.995] [.] [1.864] [3.739] 
k 2.201*** 2.254*** 2.806*** 1.423*** 3.023*** 2.381*** 
 [0.217] [0.332] [0.436] [0.398] [0.527] [0.395] 
λ -0.186*** -0.135*** -0.166*** -0.360*** -0.173*** -0.240*** 
 [0.027] [0.041] [0.043] [0.055] [0.050] [0.049] 
Panel b: Confidence Intervals for parameter p using Rapach and Wohar (2009) bootstrapping procedure 

p -0.288 -0.210 -0.255 -0.522 -0.274 -0.371 
 {-0.359  -0.230} {-0.313  - 0.108} {-0.352  -0.137} {-0.990  -0.457} {-0.428  -0.156} {-0.483  -0.266} 
logL -6550.0 -3155.7 -3482.9 -1433.3 -2784.9 -2699.6 
LR 94.99*** 38.22*** 71.64*** 67.49*** 27.55*** 42.55*** 
Sk -0.390 -0.317 -0.485 -0.883 -0.323 -0.501 
Ku 3.834 4.144 6.402 4.662 3.758 4.058 
ARCH(1) 1.937 0.010 0.751 0.171 0.097 0.424 
p-value (0.164) (0.919) (0.386) (0.676) (0.755) (0.515) 
Notes. Series are expressed as continuously compounded daily returns (logarithmic changes). Standard errors for the estimators are included in 
squared brackets. Bold letters denote significance at 10% (*), 5% (**) and 1% (***) level respectively. LR is the log-likelihood ratio for testing the 
null hypothesis that the series are distributed as normal against the alternative hypothesis that the series are distributed as skewed GT. The LR 
follows χ2(3). Its critical value at the one-percent level of significance is 11.34. Sk and Ku, are the skewness and kurtosis measures calculated using 
equations (A16) and (A17) in the appendix. ARCH denotes the LM test statistic for remaining ARCH effects in the series. p-values in the brackets. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 7. AR(1)–GJRGARCH-M Skewed GT Estimates –Monthly Returns 
 S&P500 FTSE100 NIKKEI225 TSX 60 CAC40 DAX30 
 (US) (UK) (JAPAN) (CANADA) (FRANCE) (GERMANY) 
Panel a: Maximum Likelihood Estimates 

a -0.020 1.171 1.976 1.610** 0.060 2.462 
 [0.852] [0.733] [2.534] [0.692] [0.397] [1.726] 
b -0.003 -0.028 0.031 0.221** 0.078 0.005 
 [0.044] [0.057] [0.085] [0.108] [0.085] [0.059] 
c  0.507** 0.271* 0.045 0.776*** 0.462 0.105 

 [0.258] [0.165] [0.383] [0.220] [0.370] [0.298] 
ξ 0.157 -0.138 -0.341 -0.416*** 0.028 -0.295 
 [0.220] [0.174] [0.440] [0.141] [0.101] [0.288] 
v 1.803*** 1.020 8.392** 1.051 5.753 2.775** 

 [0.694] [1.450] [4.216] [0.900] [5.231] [1.332] 
δ 0.021 0.146 -0.089* -0.094 0.054 0.054 
 [0.036] [0.090] [0.047] [0.133] [0.095] [0.072] 
ζ 0.151*** 0.037 0.312** 0.399** 0.227 0.103 
 [0.054] [0.190] [0.101] [0.216] [0.182] [0.086] 
γ 0.793*** 0.800*** 0.695*** 0.885*** 0.642*** 0.830*** 
 [0.055] [0.124] [0.124] [0.090] [0.187] [0.041] 
n 8.627 29.344 57.494 100 100 3.600*** 
 [5.467] [120.69] [95.952] [.] [.] [0.967] 
k 2.201*** 1.631*** 1.960*** 2.238 1.972*** 3.250*** 
 [0.453] [0.562] [0.343] [1.706] [0.376] [1.282] 
λ -0.228*** -0.272*** -0.248*** -0.838*** -0.278*** -0.278*** 
 [0.056] [0.064] [0.086] [0.091] [0.077] [0.108] 
Panel b: Confidence Intervals for parameter p using Rapach and Wohar (2009) bootstrapping procedure 

p -0.350 -0.409 -0.386 -1.192 -0.434 -0.400 
 {-0.506  -0.206} {-0.626  - 0.209} {-0.625  -0.218} {-1.300  -0.263} {-0.689  -0.142} {-0.679  -0.105} 
logL -2083.4 -966.7 -1081.4 -416.4 -825.6 -816.1 
LR 30.84*** 19.97*** 0.474 22.14*** 9.427* 27.54*** 
Sk -0.512 -0.624 -0.419 -0.858 -0.450 -1.919 
Ku 4.221 4.132 3.290 3.503 3.244 3.648 
ARCH(1) 0.459 7.171*** 0.152 0.991 0.979 0.121 
p-value (0.498) (0.007) (0.696) (0.319) (0.323) (0.728) 
Notes. Series are expressed as continuously compounded daily returns (logarithmic changes). Standard errors for the estimators are included in 
squared brackets. Bold letters denote significance at 10% (*), 5% (**) and 1% (***) level respectively. LR is the log-likelihood ratio for testing the 
null hypothesis that the series are distributed as normal against the alternative hypothesis that the series are distributed as skewed GT. The LR 
follows χ2(3). Its critical value at the one-percent level of significance is 11.34. Sk and Ku, are the skewness and kurtosis measures calculated using 
equations (A16) and (A17) in the appendix. ARCH denotes the LM test statistic for remaining ARCH effects in the series. p-values in the brackets. 

 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. The Bias in the Price of Risk due to Skewness and Kurtosis  
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Figure 2. Time Varying Relation Between Risk and Returns  
 

 
(a) S&P 500 

 

 
(b) FTSE 100 

 
 

(c) NIKKEI 225 

 

 
(d) TSX 60 

 
 

(e) CAC 40 

 

 
(f) DAX 30

 
Notes. This figure shows the time varying pattern of risk-return tradeoff using rolling windows estimations. The real impact of risk – 
parameter c - is in red, the impact of risk contaminated with the effects of skewness – parameter ξ - is in green and the  In addition, the time 
varying pattern of skewness - parameter λ - is in blue. 
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