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Abstract

We develop a consistent procedure for testing the adequacy of parametric time series mod-
els. The approach is to extend Herman Bierens’idea of examining the covariances between
regression residuals and an exponential weight function, to check the full range of orthogo-
nalities predicted for the score contributions in quasi-maximum likelihood estimation. Tests
of this type, which involve nuisance parameters, are defined as either ‘sup’ed or integrated
conditional moment tests, and are often implemented using bootstrap methods. However, our
emphasis in this study is on practical implementation. We study a two-statistic approach that
aims to exploit the available power while keeping computing requirements to a minimum.

1 Introduction

In this chapter, we study some tests for consistent model specification in time series models. In
particular, we are interested in methods that have power to detect arbitrary deviations from the
null hypothesis, which may itself be a nonlinear time series model. The central idea is to construct
a test of an infinite number of moment restrictions by computing the covariance of a suitably
defined target series with a function of test variables admitting an infinite series expansion. The
exponential function is a natural choice. Pioneering work has been done on these methods, using
the regression residuals as the target series, by Bierens (1984, 1987, 1988, 1990), de Jong (1996),
and Bierens and Ploberger (1997), inter alia.

A number of extensions to Bieren’s work have been considered in recent literature. For exam-
ple, Hill (2005) extends Bierens’and de Jong’s approach to construct a consistent test that has
maximal power against smooth transition autoregressive (STAR) alternatives. Kasparis (2010)
extends Bierens test in the context of non-stationary regressors. Whang (2000, 2001) and Del-
gado, Dominguez and Lavergne (2006) propose consistent tests in an i.i.d. context using an
indicator function instead of the exponential weighting function of Bierens. Escanciano (2007)
provides a unified theory for both continuous and discontinuous weighting functions using ‘resid-
ual marked’empirical processes, to detect misspecifications in time series regression models. In
semiparametric dynamic models, Chen and Fan (1999) extend the Bierens (1990) approach to
testing conditional moment restrictions using the weighted integrated squared metric.

All these tests focus on regression model residuals, and accordingly test specification of the
conditional mean. Escanciano (2007) and, in the non-parametric framework, Hsiao and Li (2001)
propose consistent tests for conditional heteroskedasticity under the null of homoskedasticity.
However, they do not suggest a consistent test for the correct specification of the GARCH(1,1)
null model. The latter authors give some indication that such tests could be constructed using
the framework of de Jong (1996). De Jong himself considers an increasing number of lags as the
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sample size increases when constructing the weighting function. This has the shortcoming that it
requires numerical integration with dimension of the order of the sample size, which makes this
test effectively infeasible in large samples.

Another approach to consistent tests of functional form is to compare the fitted parametric
regression function with a nonparametric model. Within the framework of independently and
identically distributed observations, such tests have been proposed by Zheng (1996), Eubank and
Spiegelman (1990), Härdle and Mammen (1993), Hong and White (1996), Fan and Li (1996a),
inter alia. For time series, such developments include Fan and Li (1996b) and Hsiao and Li
(2001). Hong (1993) and Zheng (1994, 1996) propose consistent tests for heteroskedasticity under
the null hypothesis of i.i.d. for both the regressand and regressors. An extension to conditional
heteroskedasticity within the time series framework has been proposed by Hsiao and Li (2001).
Although these tests are consistent against all alternatives to the null hypothesis, they require
smoothing of the data and have nontrivial power only under local alternatives that approach the
null at a rate slower than the square root of the sample size.

In Davidson and Halunga (2012) we consider a natural extension of the moment testing
principle in the context of maximum likelihood (or quasi-maximum likelihood) estimation. This
is to test the full range of hypothesized orthogonalities implied by the model, specifically, choosing
as target process the vectors of score contributions. Our aim in the present paper is to extend these
approaches to consider tests of dynamic specification. We develop tests appropriate for routine
use in econometric modelling practice and pay particular attention to issues of computational
economy. Some proposed test procedures entail a great deal of calculation, involving numerical
integration or optimization over nuisance parameters combined with the use of the bootstrap
to generate p-values. Our view is that tests that take more than a few seconds to evaluate on
a standard computer system are likely to be neglected by practitioners, and compromises may
be necessary to meet these requirements. We focus our attention on refining the ‘two-statistic’
trick suggested in Bierens (1990), exploiting an optimized test statistic while allowing the use of
chi-squared critical values.

The paper is organized as follows. Section 2 sets out the theoretical background and describes
the procedures to be investigated. Section 3 states the assumptions underlying the asymptotic
analysis of the tests and proves the main results, showing the null distribution and the consistency
property. Section 4 provides additional details of our implementation of the tests and reports
the results of a range of simulation experiments. Section 5 concludes the paper, and an appendix
contains proofs.

2 Tests of dynamic specification based on score contributions

Correct dynamic specification of a model of a time series process yt is characteristically defined
by the (un)predictability of certain functions of data and parameters. Given a filtration Ft =
σ(ys, xs, s ≤ t} where xt is a vector of ‘conditioning variables’, consider a vector dt(θ) of Ft-
measurable random functions where θ ∈ Θ ⊆ Rp. Letting It = σ(ys, s < t;xs, s ≤ t} ⊆ Ft, the
null hypothesis of correct specification can be stated formally as the existence of θ0 ∈ Θ such
that

P (E [dt (θ0) |It] = 0) = 1 for t = 1, .., T (2.1)

with the alternative hypothesis

P (E [dt (θ) |It] = 0) < 1, for all θ ∈ Θ and at least one t. (2.2)

In the literature on consistent testing, dt is customarily a regression residual. Consider instead
the idea of basing a test on the p-vector of score contributions. In other words, define a quasi-log
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likelihood function as
LT =

∑T

t=1
lt (2.3)

and choose dt = ∂lt/∂θ (p × 1). The quasi-maximum likelihood estimator is θ̂ = arg minθ∈Θ LT ,
such that

∑T
t=1 dt(θ̂) = 0. Under the hypothesis of correct specification, E(lt|It) is maximized

at θ0 with probability 1 for each t, equivalent (subject to second order conditions) to (2.1).
We emphasize ‘quasi’ here because lt is not required to be the true log-density of the data.
Since Ft = σ(yt, It) and Ft−1 ⊆ It, the null hypothesis includes the condition that the score
contributions have the martingale difference property but may also imply a further orthogonality
restriction relating to ‘exogenous’variables xt, contemporaneously dated but treated as causally
prior, to yt. There’s no implication here that lt depends on all the elements of xt under H0, and
our test is focused equally on incorrect functional form and omitted effects.

Consider the standard case of the regression model with possible conditional heteroscedastic-
ity,

yt = mt(θ) + ht(θ)
1/2εt

where mt and ht are It-measurable random functions with ht = σ2 in the standard homoscedastic
case, and by hypothesis E(εt|It) = 0 and E(ε2

t |It) = 1. As is well-known, setting

lt = log ht +
(yt −mt)

2

ht
(2.4)

yields consistent and asymptotically normal QML estimators under a range of mild regularity
conditions, and in this case

dt = 2
(yt −mt)

ht

∂mt

∂θ
+

(
(yt −mt)

2

ht
− 1

)
1

ht

∂ht
∂θ

. (2.5)

The orthogonality conditions to be satisfied under the null hypothesis relate closely to the usual
conditions on the residuals yt −mt and their squares. However, (2.1) represents the full set of
orthogonalities predicted by the null hypothesis in this model, and it is natural to test them
jointly. A p-degree of freedom test can be based on this multiple restriction, or elements of dt can
be tested individually. Note that the principle of testing the scores extends to cases where unique
vectors of residuals do not naturally arise, such as discrete data models and Markov-switching
models.

The natural way to test H0 is by examining the sample covariances of the target process with
an It-measurable test function. Let wt (ξ) denote such a function, typically constructed as a
bounded scalar, where ξ is a vector of nuisance parameters falling in a compact set Ξ ⊂ RK to
be chosen by the investigator. Conditional M-tests can be constructed on the generic indicator

sT (θ̂, ξ) =
1

T

∑T

t=1
dt(θ̂)wt (ξ) (p× 1). (2.6)

The basic CM test statistic takes the form

ST (ξ) = TsT (θ̂, ξ)′V̂T (ξ)−1 sT (θ̂, ξ) (2.7)

where V̂T (ξ) is an estimator of the asymptotic covariance matrix

V (ξ) = R (ξ)−Q (ξ)M−1P (ξ)′ − P (ξ)M−1Q (ξ)′ +Q (ξ)M−1ΣM−1Q (ξ)′ . (2.8)

Here, M , Σ, Q (ξ), P (ξ) and R(ξ) are the limits as T →∞ of the matrices of expectations

MT =
1

T

T∑
t=1

E
[
−∂dt(θ)/∂θ′

]
θ=θ0

(2.9)

3



ΣT =
1

T

T∑
t=1

E
[
dt(θ)dt(θ)

′]
θ=θ0

, (2.10)

and for each ξ,

QT (ξ) =
1

T

T∑
t=1

E

[
−wt(ξ)

∂dt(θ)

∂θ′

]
θ=θ0

(2.11)

PT (ξ) =
1

T

T∑
t=1

E
[
wt(ξ)dt(θ)dt(θ)

′]
θ=θ0

(2.12)

RT (ξ) =
1

T

T∑
t=1

E
[
wt(ξ)

2dt(θ)dt(θ)
′]
θ=θ0

. (2.13)

Letting M̂T , Σ̂T , P̂T (ξ), Q̂T (ξ) and R̂T (ξ) denote the variants of formulae (2.9)-(2.13) with
expectations replaced by realized values evaluated at the consistent estimator θ̂, V̂T (ξ) is con-
structed by letting these matrices replace their limiting counterparts in (2.8). Under standard

regularity conditions,
√
TsT (θ̂, ξ)

d→ N (0, V (ξ)) pointwise in Ξ and hence ST (ξ)→d χ
2(p) when

the null hypothesis is true.
Following Bierens (1990) and de Jong (1996) inter alia, the chosen weight function has the

form
wt (ξ) = exp

{
ξ′ψ(z̃t)

}
(2.14)

where zt (K × 1) denotes the vector of It-measurable test variables, z̃t represents the vector
standardized to have mean 0 and variance 1, and ψ : RK 7→ (−π/2, π/2)K denotes the arc-
tangent function, ensuring that the arguments are bounded and possess all their moments. The
exponential is a natural choice of function to ensure that the test covariance involves an infinite
set of co-moments of the test variables and residuals, although any function having an infinite
series expansion could in principle be substituted (Stinchcombe and White, 1998).

The weight function must perform the exacting duty of capturing the dependencies of It-
measurable variables with the target series, and our choice of target series is motivated to provide
the best chance for this to happen. Considering the case of (2.5), compare our approach with the
usual choice of ut = yt−mt as target series. One set of functions to be tested for correlation with
ut have the form (∂mt/∂θ)wt/ht. The null hypothesis requires the orthogonality of ut with each
element of ∂mt/∂θ, and the sample correlations with wt should indicate the failure of any of these
conditions. When, as is normally the case, ∂mt/∂θ has a constant element corresponding to an
intercept, the original indicator based on ut itself is included in the test set. Similar considerations
apply to the test functions associated with u2

t /ht − 1.
It can be shown (see Lemma 3.1) that the set of points of Ξ for which the resulting test is

inconsistent has Lebesgue measure zero. Therefore, the strategy of picking ξ at random from a
uniform distribution on Ξ would suffi ce for consistency. However, optimal power considerations,
in addition to the desire for a single reproducible procedure, call for some form of averaging or
optimizing of the statistic with respect to ξ.

One can think of ξ as a vector of parameters defining a pseudo-alternative hypothesis and,
accordingly, not identified under the null hypothesis. A number of papers, notably Bierens
(1990), Bierens and Ploberger (1997), Andrews and Ploberger (1994) and Hansen (1996) have
considered the problem of eliminating dependence on such parameters by integrating them out
with respect to an auxiliary distribution, defining a class of integrated conditional moment (ICM)
tests. Letting ST (ξ) denote the conditional M-statistic, define

ŜAT =

∫
Ξ
ST (ξ)dξ (2.15a)
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ŜBT = 2 log

∫
Ξ

exp
{

1
2ST (ξ)

}
dξ (2.15b)

ŜST = sup
ξ∈Ξ

ST (ξ). (2.15c)

(Where we wish to discuss these alternatives collectively without distinguishing between them,
we henceforth write simply ŜT .) These statistics are special cases of the class of tests described
by Andrews and Ploberger. ŜAT is motivated by those authors as conferring best power for
local alternatives close to the null. (We think here in terms of local alternatives represented by
θ0 = (θ′10, T

−1/2δ′)′ where θ̂ = (θ̂1, 0
′)′ represents the estimator subject to the restrictions of the

null hypothesis.) Simple averaging is a reasonable strategy when the statistic ST (ξ) does not
vary greatly over Ξ. In the case of ŜBT , the statistic places more weight in the average on the
larger values of ST (ξ), and is said by Andrews and Ploberger to confer best power in larger cases
of the local alternative δ. The sup statistic, proposed originally by Davies (1977, 1987) can be
viewed as the limit of 2r−1 log

∫
Ξ exp

{
r
2ST (ξ)

}
dξ as r → ∞, and is said to be optimal for local

alternatives furthest from the null. All the tests in (2.15) can therefore be termed integrated
conditional moment (ICM) tests. Bierens (1982) and De Jong (1996) suggest analytic evaluation
of the ICM integrals, although in large samples the computational overhead can be non-trivial.
For the present work we have used Monte Carlo integration, which allows a flexible trade-off
between cost and numerical accuracy.

The diffi culty with the ICM statistics in applications is that their null distributions are de-
pendent on the generation process of the data, and hence are not amenable to tabulation. Their
distribution might be approximated by a direct Monte Carlo algorithm like that proposed by
Hansen (1996), but this still makes for a very computationally intensive procedure requiring inte-
gral evaluation at each Monte Carlo replication. A more practical approach is the one suggested
by Bierens (1990), in which the ICM statistic is computed just once, together with a case with
fixed ξ = ξ0, whose asymptotic null distribution is known. Consider the test statistic

S̃T =

{
ST (ξ0), ŜT − ST (ξ0) ≤ γT ρ

ŜT , ŜT − ST (ξ0) > γT ρ
(2.16)

for suitably chosen constants γ and 0 < ρ < 1. Under the null hypothesis the difference ŜT −
ST (ξ0) = Op(1), like the statistics themselves, and S̃T = ST (ξ0) with probability converging to
1 as T increases. Under the alternative hypothesis, either both statistics are Op(T ), or ŜT −
ST (ξ0) = Op(T ) and S̃T = ŜT with probability converging to 1 as T increases. With γ and ρ
chosen large enough, this scheme allows us to assert the known asymptotic distribution when the
null hypothesis is true, and at the same time, if γ and ρ are not too big, gain additional power
under the alternative. We call this the ‘two-statistic’test. While its behaviour in large samples
is known for arbitrary choices of γ and ρ, “large”here may need to be interpreted as very large
indeed. The behaviour of the procedure in samples of moderate size, and the critical choice of γ
in particular, is examined by simulation in Section 4.

In the dynamic context, we face a major diffi culty with the construction of truly consistent
tests, since in a consistent test the set of test variables needs to include all observed lags of the
relevant series. Truncating the length of lag arbitrarily carries with it the possibility of failing to
detect a specific departure from the null. However, the absence of any natural basis for truncating
the lags at a finite point carries the equally disagreeable implication that the number of nuisance
parameters is large and increasing with sample size. This is the scheme investigated by de Jong
(1996), but the computational burden associated with his procedure proves to be very severe.
Within our feasibility constraints, consistency in this literal sense appears diffi cult to achieve.
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Some other way must be found to deal with lag distributions, than assigning each lagged variable
its own weight.

Bierens (1988) offers an elegant argument to show (assuming a univariate process for conve-
nience of notation only) that

E(yt|σ(yt−1, yt−2, yt−3, . . .)) = E(yt|σ(
∑∞

j=1 τ
j−1yt−j))

for all τ in a set of Lebesgue measure 1 from (−1, 1). To ensure that the mapping from
yt−1, yt−2, yt−3, . . . to

∑∞
j=1 τ

j−1yt−j is Borel-measurable, Bierens’proof requires only that the
data series be rational-valued, a trivial requirement in practice. However, since the moving aver-
age would need to be stored with an arbitrarily large number of decimal digits for the information
it contained to be practically retrievable, this result is more in the nature of a possibility theorem
than a practical tool.

Let the dynamic test function have the basic form

wt(ξ) = exp
{∑c−1

j=0
λ′jψ(r̃t−j)

}
. (2.17)

We consider two approaches to including lagged variables in a feasible manner. The first is to
truncate the lag distributions at a finite point, so that zt = (r′t, r

′
t−1, . . . , r

′
t−c+1)′ where rt (m×1)

is It-measurable, ξ =
(
λ′0, ..., λ

′
c−1

)′
(cm × 1) and the λj are fixed m-vectors, so K = cm. In

this case the first c observations of the estimation sample will in this case be lost. The second
approach is to let c = t in (2.17) so that zt = (r′t, r

′
t−1, . . . , r

′
1)′, but to invoke an assumption of

smoothness of the lag distributions in the manner of Almon (1965), letting

λj =
∑P

i=1
(j + 1)−i−1ξi (2.18)

so that ξ =
(
ξ′1, ..., ξ

′
p

)′ and K = Pm. The weights are required to decline at least at the rate
O(j−2) to ensure summability. This option increases the dimension of Ξ only by a factor P ,
which can be chosen moderately large so that a variety of lag structures can be economically
approximated.

While the indicated specification of the function wt ensures that it is technically bounded for
all choices of data set, the question of scale variations is still crucial to the performance of these
tests. To take one extreme case, note that we were to choose wt = 1, then sT = 0 identically
and M = Q and R = P = Σ in (2.8). With too little scale variation the limit distribution is
undefined. On the other hand, under the exponential transformation even a technically bounded
argument could exhibit variations wide enough that the convergence of higher moments would
be slow and the Gaussian approximation correspondingly poor. Ensuring a suitable range of
variation is an important practical issue. Our approach is to normalize ξ′ψ(z̃t) to have a fixed
range independent of the variation of the underlying data. We set this range in our simulation
experiments at 3. In other words, we set the range of variation of so that 0.22 ≤ wt ≤ 4.48 in all
tests. In effect, this means that the boundaries of Ξ are being set dynamically to match the range
of variation of ψ(z̃t). Note however that the asymptotic analysis in Section 3 does not assume
this refinement, and accordingly covers a larger set of cases.

In addition to the test of joint restrictions, there are various other ways of extracting infor-
mation from the indicator to yield consistent tests. In particular, we construct one degree of
freedom tests based on the elements of the test vector. The basic test statistics are constructed
as

Si (ξ) =
T−1

(∑T
t=1 dti(θ̂)wt (ξ))

)2

{V̂T (ξ)}ii
(2.19)
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where dti(θ̂) = ∂lt/∂θi|θ=θ̂, for i = 1, ..., p, and {V̂T (ξ)}ii is the ith diagonal element of V̂T (ξ).
Individual tests are then defined for i = 1, . . . , p by computing any of the functionals (2.15) for
the cases Si (ξ).

3 Asymptotic Analysis

In this section we formally derive the asymptotic properties of the tests under specified assump-
tions. Since the definition of the dynamic weight functions involves variable truncations and hence
an implicit array framework, it is convenient to consider the case where the lags are extended to
infinity. Accordingly we write

w∞t (ξ) = exp
{∑∞

j=0
λ′jψ(z̃t−j)

}
(3.1)

where it is understood that the λ′j may either be zero for j ≥ c < ∞ so that w∞t = wt trivially,
or are otherwise subject to polynomial smoothness constraints and hence dependent on at most
P parameters, also forming an absolutely summable sequence at all points of Ξ. Expressions
depending on wt may be similarly decorated to indicate the substitution of w∞t .

Assumptions

1. The observed data (y′t, x
′
t)
′, t = 1, .., T form a sequence of strictly stationary and ergodic

random variables.

2. The parameter space Θ is a compact subset of Rp.

3. dt (θ) : RG+K × Θ 7−→ Rp is a Borel measurable function for each θ ∈ Θ and continuously
differentiable on Θ.

4. For all t and some s > 0, the following are bounded uniformly in t,1

(i) E
[
supθ∈Θ ‖dt(θ)‖2(1+s)

]
,

(ii) E
[
supθ∈Θ,ξ∈Ξ ‖dt(θ)w∞t (ξ)‖2(1+s)

]
,

(iii) E
[
supθ∈Θ

∥∥∂dt(θ)/∂θ′∥∥1+s
]
,

(iv) E
[
supθ∈Θ,ξ∈Ξ

∥∥∂dt(θ)/∂θ′w∞t (ξ)
∥∥1+s

]
.

5. M = limT→∞MT defined in (2.9) is finite and non-singular;

6. Under the null hypothesis (2.1),

(i) dt(θ0) is a vector martingale difference,

(ii)
√
T (θ̂ − θ0)

d→ N
(
0,M−1ΣM−1

)
, where Σ = limT→∞ΣT defined in (2.10).

These assumptions are deliberately set at a high level in respect of time series properties, specify-
ing required behaviour of objects such as dt(θ0) and θ̂, rather than specific conditions on the data
series suffi cient for them to hold. Such conditions are now well-known. Where appropriate we as-
sume that the functions of the data and parameters arising in the sequel preserve stationarity and
ergodicity, and that restrictions on the parameter space are such as to ensure this requirement.

The following lemmas establish the basis for the consistent test.

1Throughout the paper, ‖·‖ denotes the Euclidean norm of a vector or matrix.
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Lemma 3.1 If P (E [dt(θ)|Ft−1] = 0) < 1, then for any θ ∈ Θ the set

B0 = {ξ ∈ Ξ : E [dt (θ)w∞t (ξ)] = 0}

has Lebesgue measure zero.

Lemma 3.2 Under Assumptions 1-6 and H0 (2.1),

1√
T

T∑
t=1

dt(θ̂)wt(ξ)
d→ N (0, V (ξ))

pointwise in Ξ.

Assumption 7 The set B∗ = {ξ ∈ Ξ : rank (V (ξ)) < p} has Lebesgue measure zero.

Subject to Assumption 7, (2.7) provides a consistent specification test. V (ξ) should have rank p
under the same circumstances that Σ has rank p for all ξ except on a set of Lebesgue measure
zero. The asymptotic distribution of (2.7) for given ξ is established as follows.

Theorem 3.1 For every ξ ∈ Ξ−B0 ∪B∗, where B0 is the set defined in Lemma 3.1 for the case
θ = θ0, and B∗ is the set defined in Assumption 7, under H0 in (2.1) ST (ξ) →d χ

2(p), whereas
under H1 in (2.2), ST (ξ) /T → q (ξ) a.s., where q (ξ) > 0.

Next consider the statistics ŜT defined by (2.15). Let CΞ denote the metric space of real
continuous functions endowed with the uniform metric supξ∈Ξ ‖z1 (ξ)− z2 (ξ)‖. Since all three
statistics are continuous functionals with domain CΞ, we can treat them in comparable fashion,
by application of the following result.

Theorem 3.2 Under H0 and Assumptions 1-7,
√
TsT (θ̂, ξ) defined in (2.6) converges weakly to

a mean-zero Gaussian element z (ξ) of CΞ with covariance function

E
[
z (ξ1) z (ξ2)′

]
= V

(
ξ1,ξ2

)
where

V (ξ1, ξ2) = R (ξ1, ξ2)−Q (ξ1)M−1P (ξ2)′ − P (ξ1)M−1Q (ξ2)′ +Q (ξ1)M−1ΣM−1Q (ξ2)′

and R (ξ1, ξ2) = limT−1
∑T

t=1E [dt(θ)dt(θ)
′w∞t (ξ1)w∞t (ξ2)]θ=θ0, R (ξ, ξ) = R (ξ) .

Let G(·) denote any of the three continuous functionals defined for ST (ξ) in (2.15), so that G(ST )
denotes one of ŜAT , Ŝ

B
T and ŜST . Since the set B0 ∪ B∗ has Lebesgue measure zero, it follows by

the continuous mapping theorem that under H0

G(ST )
d→ G(z (ξ)′ V (ξ)−1 z (ξ)).

Finally, following Bierens (1990) note the following, letting G(·) be defined as above.

Theorem 3.3 Under Assumptions 1-7, let S̃T be defined by (2.16). Under H0, S̃T →d χ
2( p),

whereas under H1, S̃T /T → max(q(ξ0), G(q(ξ)) > 0 a.s. as T →∞.
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4 Monte Carlo Evidence

This section reports Monte Carlo experiments on the performance of the proposed tests in a set
of linear and nonlinear univariate time series models. In all these experiments, 10,000 replications
were performed to estimate rejection frequencies under the null hypothesis. 5000 replications were
performed on most cases of the alternative hypothesis, where the estimation of tail probabilities
is less critical.

In all cases the models are estimated by Gaussian (quasi-) maximum likelihood. Statistics of
the form S̃A and S̃B in (2.15) are computed by Monte Carlo integration, evaluating the statistic
at repeated random drawings from the uniform distribution on the set Ξ and cumulating these
outputs until the convergence criterion is met, here chosen as the absolute effect of an additional
draw on the average falling below 0.002. The set Ξ is defined as the K-dimensional hypercube
with upper bounds 1 and lower bounds −1, although in view of the re-scaling of the weights
noted in Section 2, this choice is essentially arbitrary.

To compute the ‘sup’statistic is somewhat trickier since it is important that the optimiza-
tion algorithm should perform independently of starting values, and should be able to handle
arbitrary functions with no assumption of differentiability or continuity. The method adopted is
to make uniform random drawings from a K-dimensional region, initially Ξ. At each iteration
the ST (ξ) statistics are evaluated at the drawn points, ranked, and the smallest two-thirds of the
cases discarded. The search region is then contracted to the smallest hypercube containing the
remainder, before adding new draws from this region to the set. The convergence criterion is that
both the diameter of the search set and the range of statistic values in the set falls below 0.002.
A maximum of 5000 statistic evaluations is imposed in all the procedures. Under reasonable
smoothness assumptions, note that highly accurate evaluation of these integrated statistics is not
essential.

The questions we seek to study here are of a practical nature. A key issue is the choice of
bound in the implementation of the ‘two-statistic’test. The baseline statistic ST (ξ0) is computed
with ξ0 = (1, . . . , 1)′. Optimally, γ and ρ need to be as small as is compatible with keeping the
probability of the bound being exceeded to a low level when the null hypothesis is true. Two
data-independent characteristics of the test likely to affect the distribution of ŜT − ST (ξ0) are
the degrees of freedom of the statistic (p) and the dimension of Ξ (K). We experimented with a
range of settings, and one thing that became evident is that in the case of S̃ST the distribution
depends markedly on whether K = 1 or K > 1. In the former case there is only a modest scope
for altering the statistic through the nonlinear mapping from scalar zt to wt, but much greater
scope exists when ξ is a vector. The value of K matters much less for the S̃AT and S̃

B
T statistics,

however. A range of formulations have been studied, and the general form finally adopted is

Bound = γ0T
ρ1Dρ2(1 + I(sup test, K > 1)Kρ3)

where T denotes sample size, D denotes the degrees of freedom of the test, I(·) is the indicator
function of its arguments and γ0, ρ1, ρ2, and ρ3 are constants to be selected. In all the experiments
reported, the parameters used are γ0 = 2.5, ρ1 = 0.2, ρ2 = 0.4 and ρ3 = 0.1. We do not report
the experiments that lead to these choices, but present evidence (see Table 1) showing that they
do a reasonable job of optimizing the procedure.

For each of our models, we first computed for comparison a residual-based consistent test in
the manner of Bierens (1990) but with one of our proposed weighting functions and integrated
variants. This is denoted B̃ in the tables. The joint score-based test in (2.7), having p degrees
of freedom, is denoted S̃, and the individual tests on score elements are then denoted Ŝθ for the
various cases of θ, as defined in (2.19). Each of these symbols may refer in the tables either to the
‘sup’version or the exponential ICM version of the test, respectively, as the context will indicate.
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(We do not report any experiments with the case S̃A in this paper.)
Finally, three cases of the weight function wt are compared. These are the polynomial lag

with P = 1, the polynomial lag with P = 3, and the free inclusion of the three leading lags. Since
our examples are univariate, this means that K = P in the first two cases, and K = 3 in the
third one. In the tables, these alternatives are labelled ‘Poly-1’, ‘Poly-3’and ‘3 lags’, respectively.
Given the nature of the alternatives actually simulated, it is to be expected that the truncated
lag case does no worse than the others. The object is to establish how far there is a cost to
choosing the procedure that is nominally consistent against general alternatives over the more
flexible one.

Consider Table 1, where we present evidence on the ‘two-statistics’procedure. The model
being simulated here is the AR(1),

yt = 1 + 0.5yt−1 + εt, εt ∼ N (0, 1) . (4.1)

The table shows the performance of the six variants of the tests, as described, for three sample
sizes. The two tests computed here are the usual Bierens test of the residuals (D = 1) and
the joint score contributions-based test. Here D = 3, the parameters being the intercept φ0,
autoregressive coeffi cient φ1 and residual variance σ

2.
Each cell of the table has three entries. The first (Roman font) is the estimated test size

expressed as the percentage of rejections of the (true) null. The second entry (sloping font) is the
percentage of the replications in which Excess > Bound, where ‘Excess’here denotes ŜT −S0T , or
B̂T −B0T as the case may be. For correctly sized tests based on chi-squared critical values, this
indicator needs to be either zero or very close to it. The maximum attained in these experiments
is 0.26% and the average is under 0.1%. The third entry (typewriter font) is the ratio to Bound
of the maximum value of Excess achieved over the replications. This should be as close to
1 as possible, or power will be sacrificed unnecessarily. The smallest value observed in these
experiments is 0.69, but there does not appear to be a discernable pattern that would suggest
modifying our choice of bound parameters. The evidence of this table shows that our choices of
Bound work well, at least for this simple model.

Table 2 shows the performance of the same tests in the context of estimation of the AR(1)
model when the true data generation process has the ESTAR form

yt = 1 + 0.5yt−1 exp
(
−0.4y2

t−2

)
+ εt εt ∼ N (0, 1) . (4.2)

This table shows additionally the individual tests based on each score element. In this table,
the percentage of cases where the bound was exceeded appear in square brackets following the
rejection percentages. Don’t overlook the fact that these values depend on the choice of ξ0, so
the comparisons across the different cases are more informative than the percentages themselves.

Next, Table 3 shows the result of testing in the context of over-fitted models. Autoregressions
of order 1, 2, 3 and 4 have been fitted with 500 observations, where the true model is ESTAR
as in (4.2). In addition, the performance of some conventional diagnostic tests are reported: the
Ljung-Box (1978) and McLeod-Li (1983) tests based on the autocorrelations of residuals and the
squared residuals, each with 12 lags; the Breusch-Godfrey LM test for autocorrelation (Breusch
1978, Godfrey 1978) and the Engle (1982) LM test for ARCH each with 4 lags specified, and
finally Ramsey’s (1969) RESET test based on the squared fitted values.

The idea behind this experiment is to throw light on the common modelling strategy of choos-
ing lag lengths in the light of residual autocorrelation tests. How does this strategy perform when
the true model is nonlinear? Two conclusions can be drawn. First, we note that the autocor-
relation tests have no power to detect mis-specification in an over-fitted model. The ESTAR
model involves second order lags, whose omission in the AR(1) is detected by the autocorrelation
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statistics, but the linear approximation represented by the AR(2) serves to effectively suppress
residual autocorrelation. The McLeod-Li and ARCH tests perform poorly, showing that squared
residuals are a poor proxy for the missing components. By contrast, the consistent tests retain
a good measure of power in the over-fitted cases. The striking feature of this table is the per-
formance of the individual score-based test corresponding to the second lag, which shows the
greatest rejection rate in all the over-fitted cases. This finding illustrates the claimed virtue of
the score-based approach, of pinpointing the source of the mis-specification. Here, in the AR(p)
cases for p ≥ 2, there is clear evidence that the second lag is problematic, while there is no issue
with the other parameters. While the tests cannot point us directly at the correct specification,
they at least offer a clue.

The remaining tables illustrate the performance of the tests in a range of different models,
both cases of the null hypothesis and of alternatives. To check null rejection frequencies Table 4
reports the results of simulating and then estimating the following models, where εt ∼ N (0, 1)
in each case.

ARMA: yt = 1 + 0.7yt−1 + εt + 0.3εt−1

AR2: yt = 1 + 0.5yt−1 + 0.3yt−2 + εt

GARCH1: yt =
√
htεt, ht = 0.05 + 0.1y2

t−1 + 0.4ht−1

AR-GARCH: yt = 1 + 0.5yt−1 + ut, ut =
√
htεt, ht = 0.05 + 0.1u2

t−1 + 0.4ht−1.

The tests reported here are ICM-B tests with three lags. In the case of the AR-GARCH model a
proportion of the replications reported convergence failure of the optimization algorithm. These
samples were discarded and the number of replications extended. The reported results relate to
the successful estimations only.

Table 5 reports the percentage of rejections in a range of nonlinear alternatives. The fitted
model is in every case the AR(1), and in this case the test is the ‘sup’version of the ‘3 lags’test.
The models simulated, in addition to those previously defined, are as follows where εt ∼ N (0, 1)
in every case.

SETAR: yt = 1 + 0.5yt−1 + (−1− 0.9yt−1) I (yt−1 > 1) + εt

SGN: yt = sgn (yt−1) + εt

BILIN: yt = 1 + 0.5yt−1 + 0.7yt−1εt−1 + εt

NLMA: yt = 1 + 0.5yt−1 + 0.3εt−1εt−2 + εt

MARKOV-SW: yt =

{
4 + 0.3yt−1 + εt if St = 1

1− 0.5yt−1 + εt if St = 2

}
with transition probabilities

P (St = j|St−1 = k) =

{
0.9, j = k
0.1 , j 6= k

}
j, k = 1, 2.

ARCH: yt = 1 + 0.5yt−1 + ut, ut =
√
htεt, ht = 0.05 + 0.8u2

t−1

GARCH2: yt = 1 + 0.5yt−1 + ut, ut =
√
htεt, ht = 0.05 + 0.4u2

t−1 + 0.4ht−1.

The most interesting feature of this table is the quite wide range of test powers in evidence.
While detection of some alternatives is very effective, with others it is not. In particular, the
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low rate of detection of conditional heteroskedasticity (the ARCH and GARCH2 cases) is quite
surprising, and this case deserves further investigation, notwithstanding that good tests for these
effects do of course exist. However, in the context of GARCH estimation the tests are powerful
in detecting functional form mis-specification. In Table 6, the estimated model is GARCH(1,1)
(whose performance under the null is shown in Table 4) and the data generation process is one
of the following GARCH variants:

GJR: yt = 1 + ut, ut =
√
htεt

ht = 0.005 + 0.17 |ut−1| (1 + 1.5I (ut−1 < 0)) + 0.6ht−1

EGARCH: yt = 1 + ut, ut =
√
htεt

ln(ht) = 0.005 + 0.17
∣∣∣ut−1/

√
ht−1

∣∣∣ (1 + 1.5I
(
ut−1/

√
ht−1 < 0

))
+ 0.6 ln(ht−1).

The tests work particularly well in discriminating between GARCH and EGARCH. In this table,
the GARCH intercept is denoted by γ and the coeffi cients by α and β as in the usual Bollerslev
(1987) notation

Finally Table 7 provides evidence on the effectiveness of the infinite lag options in constructing
the weight functions. While most of the models tested here are naturally suited to the truncated
lag option, the ARMA(1,1) is AR(∞) and so constructing the weight functions with an infinite
lag of the measured series is nominally appropriate. The results show that a polynomial order of
at least 6 is required for a powerful test in this case. The same number of free lags generally does
a little better, so there is evidently quite a fine trade-off between truncation and constraining the
form of the lag distribution.

5 Concluding Remarks

Monte Carlo evidence on a selection of models is inevitably anecdotal, and in this paper we have
not attempted a comprehensive coverage of the several combinations of test options available.
Nonetheless, some provisional conclusions emerge quite clearly. The tests are generally well sized,
even in the smaller samples according to Tables 1 and 4. The 1 degree of freedom tests tend if
anything to be undersized, which suggests that the deviation from the asymptotic distribution
of S0T makes a larger contribution to the error in rejection probability than the bounds device.
The tests do however have excellent power against a range of alternatives, although the frequency
with which the optimized statistic dominates the baseline case —such that it is the value reported
—is not always large. In other words, the baseline test can work well in its own right, in the cases
considered.

There is not much to choose in terms of rejection rates between the ‘sup’test and the ICM-B
test. (The ICM-A test has not been studied). The regular Bierens test on residuals generally
works well, and enjoys the benefit of being a 1-degree of freedom test and hence suffers a smaller
penalty in the two-statistics setup. While we expect the weight function based on a small number
of unrestricted lags to perform best against the alternatives considered, it is still a surprise to note
in Tables 2 and 7 that the ‘Poly-3’weight function based on a third-order polynomial generally
does worse than ‘Poly-1’, although in Table 7 the ‘Poly-6’cases does better than either. The
most reasonable explanation for this finding is the additional penalty imposed on the bound for
the case K > 1. However, reference to Table 1 indicates that this penalty cannot be dispensed
without compromising good size characteristics. The ‘free lag’options turn out to be the best
in spite of this handicap, reminding us that consistency against all alternatives must involve a
compromise. We have evidence of a fairly delicate trade-off involved in the specification of these
tests.
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A Appendix

Proof of Lemma 3.1. This follows from Lemma 1 of Bierens (1990) under the alternative
hypothesis in (2.2).

Lemma A.1 Consider ξ = (ξ1, . . . , ξK)′ ∈ [−b, b]K for b ≤ 1, and random vector q = (q1, . . . , qK)′

with support [−a, a]K . If ‖ξ1 − ξ2‖ ≤ τ then∣∣exp(ξ′1q)− exp(ξ′2q)
∣∣ ≤ τbK−1 exp(Ka)

holds with probability 1.

Proof. For arbitrary sets of numbers a11, . . . , a1K and a21, . . . , a2K , applying the convention∏n
p=m aup = 1 if m > n for u = 1, 2,

|a11 · · · a1K − a21 · · · a2K | =
∣∣∣∣∣ K∑j=1

(a1j − a2j)
j−1∏
p=1

a1p

K∏
p=j+1

a2p

∣∣∣∣∣
≤

K∑
j=1
|a1j − a2j |

j−1∏
p=1
|a1p|

K∏
p=j+1

|a2p| (A-1)

Applying the multinomial expansions of the terms in the power series representation of the
exponentials yields∣∣∣∣∣exp

(
K∑
k=1

ξ′1kqk

)
− exp

(
K∑
k=1

ξ′2kqk

)∣∣∣∣∣∣∣∣∣∣∣
∞∑
i=0

1

i!

( K∑
k=1

ξ′1kqk

)i
−
(

K∑
k=1

ξ′2kqk

)i∣∣∣∣∣∣
=

∣∣∣∣∣ ∞∑i=0

1

i!

i∑
k1,...,kK=0

(
i

k1, . . . , kK

)(
ξk111 · · · ξ

kK
1K − ξ

k1
21 · · · ξ

kK
2K

)
qk11 · · · q

kK
K

∣∣∣∣∣
≤ τbK−1

∞∑
i=0

1

i!

i∑
k1,...,kK=0

(
i

k1, . . . , kK

) ∣∣∣qk11 · · · q
kK
K

∣∣∣
= τbK−1 exp

(
K∑
k=1

|qk|
)

≤ τbK−1 exp (Ka) (A-2)

where the first inequality follows from (A-1), putting auj = ξ
kj
uj and noting that the majorant is

bounded by τbK−1, by assumption.

Lemma A.2 If

gu(j) =

K∑
k=1

ξukqk(j)

for u = 1, 2, where for each k, {qk(j)} is a sequence of random variables with support [−a, a],
|ξuk| ≤ b ≤ 1 and ‖ξ1 − ξ2‖ ≤ τ , then∣∣∣exp

(∑∞

j=0
(1 + j)−2g1(j)

)
− exp

(∑∞

j=0
(1 + j)−2g2(j)

)∣∣∣ ≤ Cτ
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holds with probability 1, where

C = bK−1ζ(2(K − 1)) exp (Ka(1 + 2bζ(2))

and ζ(·) denotes the Riemann zeta function.

Proof.∣∣∣∣∣∣exp

 ∞∑
j=0

(1 + j)−2g1(j)

 − exp

 ∞∑
j=0

(1 + j)−2g2(j)

∣∣∣∣∣∣
≤
∞∑
j=0

∣∣(exp((1 + j)−2g1(j)
)
−
(
exp((1 + j)−2g2(j)

)∣∣
× exp

(
j−1∑
l=0

(1 + l)−2g1(l)

)
exp

 ∞∑
l=j+1

(1 + l)−2g2(l)


≤ exp (ζ(2)Kab)

∞∑
j=0

∣∣(exp((1 + j)−2g1(j)
)
−
(
exp((1 + j)−2g2(j)

)∣∣
≤ exp (ζ(2)Kab) τbK−1

∞∑
j=0

(1 + j)−2(K−1) exp

(
K∑
k=1

|qk(j)|
)

≤ exp (ζ(2)Kab) τbK−1ζ(2(K − 1)) exp (Ka) (A-3)

where the first inequality in (A-3) follows by (A-1) applied to the bounded infinite products (that
is, infinite sums under the exponential). The third inequality applies Lemma A.1 term by term,
noting how the coeffi cients are in effect bounded absolutely by b(j + 1)−2 ≤ 1, and hence the
sequence of bounds is summable.

Lemma A.3 Under Assumptions 1-4

sup
θ∈Θ

∥∥∥∥ 1

T

T∑
t=1

dt(θ)dt(θ)
′ − lim

T→∞
E

[
1

T

T∑
t=1

dt(θ)dt(θ)
′
]∥∥∥∥ = op (1) (A-4)

sup
θ∈Θ,ξ∈Ξ

∥∥∥∥∥ 1

T

T∑
t=1

wt (ξ) dt(θ)− lim
T→∞

E

[
1

T

T∑
t=1

w∞t (ξ) dt(θ)

]∥∥∥∥∥ = op (1) (A-5)

sup
θ∈Θ,ξ∈Ξ

∥∥∥∥∥ 1

T

T∑
t=1

wt (ξ) dt(θ)dt(θ)
′ − lim

T→∞
E

[
1

T

T∑
t=1

w∞t (ξ) dt(θ)dt(θ)
′

]∥∥∥∥∥ = op (1) (A-6)

sup
θ∈Θ,ξ∈Ξ

∥∥∥∥∥ 1

T

T∑
t=1

(wt (ξ))2 dt(θ)dt(θ)
′ − lim

T→∞
E

[
1

T

T∑
t=1

(w∞t (ξ))2 dt(θ)dt(θ)
′

]∥∥∥∥∥ = op (1) (A-7)

sup
θ∈Θ

∥∥∥∥ 1

T

T∑
t=1

∂dt(θ)

∂θ′
− lim
T→∞

E

[
1

T

T∑
t=1

∂dt(θ)

∂θ′

]∥∥∥∥ = op (1) (A-8)

sup
θ∈Θ,ξ∈Ξ

∥∥∥∥ 1

T

T∑
t=1

(
wt (ξ)

∂dt(θ)

∂θ′

)
− lim
T→∞

E

[
1

T

T∑
t=1

(
w∞t (ξ)

∂dt(θ)

∂θ′

)]∥∥∥∥ = op (1) (A-9)

Proof. Firstly, (A-4) and (A-8) follow applying a uniform law of large numbers (ULLN) for
strictly stationary and ergodic processes (e.g., see Ling and McAleer (2003), Theorem 3.1). For
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a generic function qt (θ), to show that

sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

qt (θ)− lim
T→∞

E

(
1

T

T∑
t=1

qt (θ)

)∥∥∥∥∥ = op (1)

it is suffi cient to establish that E supθ∈Θ

∥∥∥ 1
T

∑T
t=1 qt (θ)

∥∥∥1+s
<∞ uniformly in t for some s > 0.

The condition follows by the Cauchy-Schwarz inequality and Assumption 4(i), and Assumption
4(iii), respectively.

The other components of the lemma are established as follows. Again for generic qt, let

rT (θ, ξ) =
1

T

T∑
t=1

wt (ξ) qt(θ).

and define r∞T (θ, ξ) similarly with w∞t (ξ) replacing wt (ξ) . Note that

sup
θ∈Θ,ξ∈Ξ

‖rT (θ, ξ)− E [r∞T (θ, ξ)]‖ ≤ sup
ξ∈Ξ,θ∈Θ

‖r∞T (θ, ξ)− E [r∞T (θ, ξ)]‖

+ sup
ξ∈Ξ,θ∈Θ

‖r∞T (θ, ξ)− rT (θ, ξ)‖ (A-10)

and it suffi ces to show that the two right-hand side terms of (A-10) are op (1) .
For the first term, the ULLN for strictly stationary and ergodic processes may be applied as

above, given Assumption 4. For the second term, note that we can write

wt(ξ) = exp

 t−1∑
j=0

(1 + j)−2g(j)


where, with λj defined by (2.18), g(j) = (1+ j)2λ′jψ(r̃t−j) is a sequence of almost surely bounded
random variables, and w∞t (ξ) has the corresponding representation. If Ξ = [−b, b]K then |g(j)| <
KbPπ/2 with probability 1. Since there exists C < ∞ such that

∣∣∣∑∞j=t(1 + j)−2g(j)
∣∣∣ < Ct−1

almost surely, it follows that

|w∞t (ξ)− wt(ξ)| = exp

 t−1∑
j=0

(1 + j)−2g(j)

∣∣∣∣∣∣exp

 ∞∑
j=t

(1 + j)−2g(j)

− 1

∣∣∣∣∣∣
≤ exp

 t−1∑
j=0

(1 + j)−2g(j)

∣∣exp(Ct−1)− 1
∣∣

= O(t−1). (A-11)

Therefore,

sup
θ,ξ
‖r∞T (θ, ξ)− rT (θ, ξ)‖ ≤ sup

θ
T−1

T∑
t=1
‖rt(θ)‖ sup

ξ
|w∞t (ξ)− wt(ξ)|

= Op(T
−1 log T )

= op(1) (A-12)

18



Proof of Lemma 3.2. The proof consists in establishing the following steps for fixed ξ ∈ RK :

(i)
1√
T

∑T
t=1 supθ∈Θ ‖dt (θ)w∞t (ξ)− dt (θ)wt (ξ)‖ = op (1) ;

(ii)
1√
T

∑T
t=1 dt(θ̂)wt (ξ) =

√
TzT (θ0,ξ) + op (1) where

zT (θ0,ξ) =
1

T

T∑
t=1

dt(θ0)w∞t (ξ)−Q∞T (ξ)M−1
T

1

T

T∑
t=1

dt(θ0) (A-13)

and QT (ξ) andMT are defined in (2.11) and (2.9) respectively, with Q∞T denoting the substitution
of w∞t for wt in QT .

(iii)  1√
T

∑T
t=1 dt(θ0)w∞t (ξ)

1√
T

∑T
t=1 dt(θ0)

 d−→ N

((
0

0

)
,

(
R (ξ) P (ξ)

P (ξ)′ Σ

))
,

where R(ξ), P (ξ) and Σ are the respective limits as T →∞ of RT (ξ), PT (ξ) and ΣT defined in
(2.13), (2.12) and (2.10).

Step (i), follows by (A-11) and an arguments similar to (A-12). Step (ii) follows using part (i),
consistency of θ̂, and a mean value expansion of 1√

T

∑T
t=1 dt(θ̂)w

∞
t (ξ) about the true parameter

θ0. Finally step (iii) is established by applying a CLT for martingale differences (e.g, Corollary
3.2 of Hall and Heyde (1980)).

Lemma A.4 Under H0 and Assumptions 1-6,

V̂ (ξ)−1/2
√
TsT (θ̂, ξ)− V (ξ)−1/2

√
TzT (θ0,ξ) = op(1) (A-14)

uniformly over ξ ∈ Ξ, where zT (θ0,ξ) is defined in (A-13).

Proof. We have that

sup
ξ∈Ξ

∥∥∥V̂ (ξ)−1/2
√
TsT (θ̂, ξ)− V (ξ)−1/2

√
TzT (θ0,ξ)

∥∥∥
≤ sup

ξ∈Ξ

∥∥∥V̂ (ξ)−1/2 − V (ξ)−1/2
∥∥∥ sup
ξ∈Ξ

∥∥∥√TsT (θ̂, ξ)
∥∥∥

+ sup
ξ∈Ξ

∥∥∥√TsT (θ̂, ξ)−
√
TzT (θ0,ξ)

∥∥∥ sup
ξ∈Ξ

∥∥∥V (ξ)−1/2
∥∥∥ (A-15)

By Lemmas 3.2 and A.3, and Slutsky’s Theorem

sup
ξ∈Ξ

∥∥∥V̂ (ξ)−1/2 − V (ξ)−1/2
∥∥∥ = op (1) .

Moreover, by Lemma 3.2
√
TsT (θ̂, ξ) =

√
TzT (θ0,ξ) + op (1)

= Op (1)

uniformly over ξ. Therefore,

sup
ξ∈Ξ

∥∥∥V̂ (ξ)−1/2 − V (ξ)−1/2
∥∥∥ sup
ξ∈Ξ

∥∥∥√TsT (θ̂, ξ)
∥∥∥ = op(1).
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Now
sup
ξ∈Ξ

∥∥∥√TsT (θ̂, ξ)−
√
TzT (θ0,ξ)

∥∥∥ = op (1)

by Lemma 3.2 and since supξ∈Ξ

∥∥V (ξ)−1/2
∥∥ = Op (1) , the second term in the expression (A-15)

is op (1) .

Lemma A.5 Under Assumptions 1-7 and H1, there exists for each ξ ∈ Ξ a function πξ : Rp → Rp
such that

V̂ (ξ)−1/2sT (θ̂, ξ)− V (ξ)−1/2πξ = op (1)

where V (ξ)−1/2πξ 6= 0 for all ξ ∈ Ξ except possibly in a set of Lebesgue measure zero.

Proof. We can write for each ξ ∈ Ξ∥∥∥V̂ (ξ)−1/2sT (θ̂, ξ)− V (ξ)−1/2πξ

∥∥∥ ≤ ∥∥∥V̂ (ξ)−1/2 − V (ξ)−1/2
∥∥∥ ‖πξ‖

+
∥∥∥sT (θ̂, ξ)− πξ

∥∥∥∥∥∥V̂ (ξ)−1/2
∥∥∥ . (A-16)

For the second right-hand side term, V̂ (ξ)−1/2 = Op (1) and (A-5) of Lemma A.3 establishes that

plim
T→∞

sup
θ∈Θ

∥∥∥∥sT (θ, ξ)− lim
T→∞

E [sT (θ, ξ)]

∥∥∥∥ = 0.

Therefore, set πξ = limT→∞E [sT (θ1, ξ)], where θ1 = plim θ̂ under H1. Moreover, in the first
term V̂ (ξ)−1/2−V (ξ)−1/2 = op (1) by Lemma A.3 and Slutsky’s Theorem and since ‖πξ‖ = O (1)
by Assumption 4(ii), the first term on the right-hand side of (A-16) is op (1). Therefore,∥∥∥V̂ (ξ)−1/2sT (θ̂, ξ)− V (ξ)−1/2πξ

∥∥∥ = op (1) .

Now by Assumption 7 and Lemma 3.1, V (ξ)−1/2πξ 6= 0 for every ξ ∈ Ξ− (B∗ ∪B0).

Proof of Theorem 3.1. The result under H0 follows from Lemmas 3.2 and A.4. Under
H1, it follows from Lemma A.5 that plimT→∞ SB/T = π′ξ0V (ξ)−1πξ0 = ρ (ξ), where πξ,0 =
limT→∞E [sT (θ0, ξ)] = 0 only on a set B0 of Lebesgue measure zero defined in Lemma 3.1.
Therefore, P [ρ (ξ) > 0] = 1 for each ξ ∈ Ξ−B0.

Lemma A.6 Under Assumptions 1-4 and H0,
√
TzT (θ0,ξ) defined in (A-13) is tight in Ξ =

[−b, b]K for any b > 0.

Proof. We prove this result for the case where the weight functions wt depend on lags of infinite
order in the limit. The finite-lag case is clearly subsumed in this one.

Following Newey (1991, p1163), it suffi ces to prove that for all η ∈ Rp such that η′η = 1,
(i)
√
Tη′zT (θ0,ξ0) = Op(1).

(ii) For each δ > 0 and ε > 0, there exists τ > 0 such that

P

(
sup

‖ξ1−ξ2‖<τ

∣∣∣√Tη′ (zT (θ0,ξ1)− zT (θ0,ξ2))
∣∣∣ ≥ ε) ≤ δ

for all T ≥ T0, where T0 <∞.
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Condition (i) follows from Lemma 3.2. From (A-13) and the Markov inequality, it is suffi cient
for condition (ii) to hold that

E

(
sup

‖ξ1−ξ2‖<τ

∣∣∣√Tη′ (zT (θ0,ξ1)− zT (θ0,ξ2))
∣∣∣)

≤ E
(

sup
‖ξ1−ξ2‖<τ

∣∣∣√Tη′ (s∞T (θ0,ξ1)− s∞T (θ0,ξ2))
∣∣∣)

+ E

(
sup

‖ξ1−ξ2‖<τ

∣∣∣η′ ([Q∞T (ξ1)−Q∞T (ξ2)]M−1
T

√
TdT (θ0)

)∣∣∣)
≤ δε. (A-17)

It further suffi ces to show that the two terms of the majorant of (A-17) are each O(τ) as τ → 0.
Note that

|w∞t (ξ1)− w∞t (ξ2)| ≤ Cτ (A-18)

with probability 1 for each t, by Lemma A.2. Therefore,

E

(
sup

‖ξ1−ξ2‖<τ

√
T
∣∣η′ (s∞T (θ0,ξ1)− s∞T (θ0,ξ2))

∣∣)

= E

(
sup

‖ξ1−ξ2‖<τ

∣∣∣∣ 1√
T

T∑
t=1

η′dt (θ0) (w∞t (ξ1)− w∞t (ξ2))

∣∣∣∣
)

= CτE

(
sup

‖ξ1−ξ2‖<τ

∣∣∣∣ 1√
T

T∑
t=1

η′dt (θ0)

(
w∞t (ξ1)− w∞t (ξ2)

Cτ

)∣∣∣∣
)

= O (τ) . (A-19)

The final equality in (A-19) follows since dt (θ0) (w∞t (ξ1) − w∞t (ξ2)) is a martingale difference
sequence for any (ξ1, ξ2) ∈ Ξ× Ξ, and

1√
T

T∑
t=1

η′dt (θ0)

(
w∞t (ξ1)− w∞t (ξ2)

Cτ

)
d→ N(0, v(ξ1, ξ2))

where v(ξ1, ξ2) ≤ η′Ση in view of (A-18). Since the supremum specified in the penultimate
member of (A-19) over the compact set Ξ × Ξ is at a point of the set, this random variable is
integrable in the limit.

Similarly

E

(
sup

‖ξ1−ξ2‖<τ

∣∣∣η′ ([Q∞T (ξ1)−Q∞T (ξ2)]M−1
T

√
TdT (θ0)

)∣∣∣)

= E

(
sup

‖ξ1−ξ2‖<τ

∣∣∣∣∣ 1

T

T∑
t=1

E

[
− (w∞t (ξ1)− w∞t (ξ2)) η′

∂dt(θ)

∂θ′

∣∣∣∣
θ=θ0

]
M−1
T

√
TdT (θ0)

∣∣∣∣∣
)

= CτE

(
sup

‖ξ1−ξ2‖<τ

∣∣∣η′M∗T (ξ1, ξ2)M−1
T

√
Tη′dT (θ0)

∣∣∣)
= O(τ) (A-20)

where

M∗T (ξ1, ξ2) =
1

T

T∑
t=1

E

[
−
(
w∞t (ξ1)− w∞t (ξ2)

Cτ

)
∂dt(θ)

∂θ′

∣∣∣∣
θ=θ0

]
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is a finite matrix, since the matrices E
[
− ∂dt(θ)

∂θ′

∣∣∣
θ=θ0

]
are positive semi-definite and finite and

the scalar weights in no case exceed 1 in absolute value. It follows from Lemma 3.2 that the
expectation in the penultimate member of (A-20) is finite.

Proof of Theorem 3.2. The result follows from Lemmas 3.2, A.6 and A.4.

Proof of Theorem 3.3. Under H0, since Ξ is a compact set it follows from from Theorem 3.1

that ŜT = Op(1) and ST0 = Op (1). Therefore, for any γ > 0, ρ ∈ (0, 1) , P
[
ŜT − ST0 > γT ρ

]
→ 0

as T → ∞. Thus, under H0, P (S̃T = ST0) → 1 as T → ∞ and hence S̃B
d→ χ2(p). Under

H1, the asymptotic distribution follows from Theorem 3.1.Note that T−1(ŜT − ST0) → G(q) −
q(ξ0) whereas γT ρ−1 → 0 and hence the limiting choice of statistic depends on the sign of the
difference.

22



Bierens Test (1df) Score-based Test (3 df)
Test Type T Poly-1 Poly-3 3 lags Poly-1 Poly-3 3 lags
Sup. 200 4.45 4.56 4.29 5.07 4.91 5.33

0.20 0.12 0.22 0.12 0.03 0.26
1.72 1.39 1.36 1.45 1.34 1.62

500 4.94 5.01 4.57 4.84 4.86 4.85
0.18 0 0 0.03 0 0
1.33 0.88 0.81 1.08 0.69 0.89

1000 4.84 4.77 4.61 4.85 4.93 4.80
0.04 0 0.03 0 0.01 0
1.16 0.80 1.16 0.78 1.02 0.93

ICM-B 200 4.33 4.37 4.32 5.04 4.99 5.32
0.11 0.17 0.22 0.041 0.15 0.26
1.54 2.12 1.69 1.13 2.01 2.05

500 4.83 5.08 4.70 4.82 4.88 4.94
0.07 0.07 0.07 0.01 0.02 0.07
1.18 1.62 1.47 1.02 1.19 1.72

1000 4.82 4.79 4.62 4.85 4.92 4.80
0.02 0 0.04 0 0.02 0
1.16 0.92 1.47 0.69 1.49 0.97

Table 1: Rejection frequencies (%) of AR(1) Null Hypothesis. (See text for full details)

Test Type T B̃ S̃ S̃φ0 S̃φ1 Ŝσ2

Sup. Poly-1 200 76.3 [0] 59.6 [0] 76.1 [0] 26.5 [0] 9.7 [0]
500 98.8[0] 95.4 [0] 98.8 [0] 62.1 [0] 15.5 [0]
1000 100 [0] 100 [0] 100 [0] 90.7 [0] 28.4 [1]

Poly-3 200 58.2 [4] 41.7 [3] 58.9 [7] 18.1 [0] 9.4 [0]
500 93.8 [20] 85.1 [10] 94.1 [22] 47.2 [4] 17.0 [0]
1000 99.9 [61] 99.4 [39] 99.9 [63] 82.5 [20] 30.9 [0]

3 lags 200 80.0 [2] 64.2 [3] 80.6 [3] 33.9 [2] 10.3 [2]
500 99.2 [6] 97.3 [7] 99.3 [9] 74.8 [6] 15.2 [1]
1000 100 [23] 100 [22] 100 [26] 97.0 [17] 27.3 [0]

ICM-B Poly-1 200 76.4 [0] 59.5 [0] 76.2 [0] 26.4 [0] 9.6 [1]
500 98.8 [0] 95.4 [0] 98.8 [0] 62.1 [0] 15.2 [0]
1000 100 [0] 100 [0] 100 [0] 90.7 [0] 40.5 [0]

Poly-3 200 58.1 [4] 44.3 [7] 58.3 [6] 17.7 [0] 9.5 [1]
500 93.7 [21] 87.2 [22] 94.2 [24] 46.4 [3] 16.9 [0]
1000 100 [69] 99.6 [67] 100 [70] 83.0 [25] 31.0 [0]

3 lags 200 80.0 [2] 65.5 [6] 80.9 [4] 33.2 [1] 9.3 [1]
500 99.2 [8] 97.39 [17] 99.2 [11] 74.7 [6] 15.2 [0]
1000 100 [29] 100 [45 100 [31] 97.4 [20] 27.4 [2]

Table 2: Rejection frequencies (%) : AR(1) model fitted to ESTAR series
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Test AR(1) AR(2) AR(3) AR(4)

Ljung-Box (12) 82.6 6.5 5.8 5.1
McLeod-Li (12) 8.8 8.2 7.8 7.6

Breusch-Godfrey LM (4) 92.3 3.4 1.5 7.6
Engle ARCH LM (4) 10.1 10.0 10.0 9.2
Ramsey RESET (Sq) 10.4 48.2 46.8 44.7

B̃ 99.2 57.8 65.9 67.0
S̃ 97.5 70.7 66.7 63.9
S̃φ0 95.0 58.0 65.6 66.3
S̃φ1 74.8 59.9 59.0 58.8
S̃φ2 - 84.4 84.6 84.2
S̃φ3 - - 5.8 5.6
S̃φ4 - - - 6.4
S̃σ2 15.2 6.1 6.3 6.3

Table 3: Rejection frequencies, AR(p) models fitted to ESTAR, ICM-B test, 3 lags, T = 500

T Model B̃ S̃ S̃φ0 S̃φ1 S̃φ2 S̃θ1 S̃σ2 S̃α Ŝβ
200 ARMA 4.95 6.04 3.50 4.50 - 4.6 6.92 - -

AR2 4.01 6.50 2.16 4.26 3.96 - 6.86 - -
GARCH1 4.48 5.02 5.62 - - - 7.36 3.32 2.92
AR-GARCH 1.71 3.64 2.49 2.68 - - 4.93 1.51 0.97

500 ARMA 4.98 5.61 4.52 4.68 - 4.64 6.24 - -
AR2 4.88 5.36 3.76 4.59 4.77 - 6.14 - -

GARCH1 4.80 3.92 5.48 - - - 6.23 3.76 3.86
AR-GARCH 3.21 4.75 5.42 3.65 - - 6.65 1.84 0.51

Table 4: Rejection frequencies (%) under the null hypothesis: IBM-B test with 3 lags

Simulated Model B̃ S̃ S̃φ0 S̃φ1 S̃σ2

AR2 99.0 98.7 98.5 15.6 6.8
ARMA 58.1 58.6 57.4 10.0 6.6
SETAR 100 100 100 100 6.3
SGN 81.6 99.9 76. 44.5 15.0
BILIN 13.1 99.8 6.9 21.8 99.0
NLMA 35.2 58.2 33.5 75.9 6.9

MARKOV-SW 100 100 100 98.8 83.8
ARCH 6.5 34.3 9.3 8.2 34.8
GARCH 5.2 20.7 6.9 6.2 26.8

Table 5: Rejection frequencies (%) : Sup test with 3 lags in AR(1) estimation, T = 500

24



Simulated Model B̂ S̃ S̃φ0 S̃γ S̃α S̃β
EGARCH 7.3 84.2 6.8 96.4 65.8 55.8
GJR 12.7 46.9 6.8 49.0 62.4 19.9

Table 6: Rejection frequencies (%) in tests of the GARCH(1,1). Sup test, 3 lags, T = 500

Test Type B̃ S̃ S̃φ0 S̃φ1 S̃σ2

Sup Poly-1 59.1 52.7 60.6 8.7 7.4
Poly-3 46.5 39.7 53.6 7.3 7.5
Poly-6 92.9 78.3 94.8 9.1 6.5
3 Lags 72.4 68.2 75.9 9.8 8.8
6 Lags 99.3 98.4 99.5 17.1 8.0

ICM-B Poly-1 55.3 52.5 56.7 8.6 7.2
Poly-3 52.0 50.8 58.2 7.3 7.5
Poly-6 96.3 93.3 97.1 8.2 6.3
3 Lags 71.6 69.6 74.4 9.7 7.8
6 Lags 99.2 98.5 99.4 17.9 7.1

Table 7: Rejection frequencies (%), Sup tests of the AR(1) against ARMA(1,1) alternative,
T = 500
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