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Abstract

Bootstrap methods have been applied extensively in testing for structural breaks in the past few decades, but the conditions

under which they are valid are, for the most part, unknown. In this paper, we fill this gap for the empirically important scenario

in which supremum-type tests are used to test for discrete parameter change in linear models estimated by least squares

methods. Our analysis covers models with exogenous regressors estimated by Ordinary Least Squares (OLS), and models with

endogenous regressors estimated by Two Stage Least Squares (2SLS). Specifically, we show the asymptotic validity of the (IID

and wild) recursive and fixed-regressors bootstraps for inference based on sup-F and sup-Wald statistics for testing both the

null hypothesis of no parameter change versus an alternative of parameter change at k > 0 unknown break points, and also

the null hypothesis of parameter change at ` break points versus an alternative of parameter change at ` + 1 break points.

For the case of exogenous regressors, Bai and Perron (1998) derive and tabulate the limiting distributions of the test statistics

based on OLS under the appropriate null hypothesis; for the case of endogenous regressors, Hall, Han, and Boldea (2012)

show that the same limiting distributions hold for the analogous test statistics based on 2SLS when the first stage model is

stable. As part of our analysis, we derive the limiting distribution of the test statistics based on 2SLS when the regressors are

endogenous and the first stage regression exhibits discrete parameter change. We show that the asymptotic distributions of the

second-stage break-point tests are non-pivotal, and as a consequence the usual Bai and Perron (1998) critical values cannot

be used. Thus, our bootstrap-based methods represent the most practically feasible approach to testing for multiple discrete

parameter changes in the empirically relevant scenario of endogenous regressors and an unstable first stage regression. Our

simulation results show very good finite sample properties with all the versions of the bootstrap considered here, and indicate

that the bootstrap tests are preferred over the asymptotic tests, especially in the presence of conditional heteroskedasticity of

unknown form.

JEL classification: C12, C13, C15, C22
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1 Introduction

Economists routinely apply structural change tests. Structural changes (breaks) affect models for the evolution

of key economic and financial time series such as GDP, inflation, exchange rates, interest rates, stock returns,

money demand and income.1 Structural breaks could reflect legislative, institutional or technological changes,

shifts in governmental and economic policy, political conflicts, or could be due to large macroeconomic shocks

such as the oil shocks experienced over the past decades and the productivity slowdown. A rich literature on

asymptotic tests used to detect structural breaks has developed in recent years, see among others Andrews (1993),

Andrews and Ploberger (1994), Bai and Perron (1998), and Hall, Han, and Boldea (2012). However, given the

current sample size of macroeconomic data, the asymptotic tests often provide inaccurate conclusions about the

number and location of breaks. Therefore, different bootstrap methods may be preferred, as shown in Christiano

(1992), Diebold and Chen (1996), Hansen (2000), Banerjee, Lazarova, and Urga (2002), de Peretti and Urga

(2004), O’Reilly and Whelan (2004), Clark (2006), Levin and Piger (2006), Antoshin, Berg, and Souto (2008),

Berg, Ostry, and Zettelmeyer (2012), Bergamelli and Urga (2013). With the exception of Hansen (2000)’s fixed-

regressor bootstrap, the asymptotic validity of these different bootstrap methods for structural change tests has

not been established in any of the above studies or elsewhere in the literature.

In this paper, we fill this gap for the empirically important scenario in which Supremum-type tests are used

to test for discrete parameter change in linear models estimated by least squares methods. Within this context,

two hypotheses are naturally of interest: (a) a null hypothesis of no parameter change versus an alternative of

parameter change at a fixed number of break points with unknown location; (b) the null hypothesis of parameter

change at ` break points against the alternative of parameter change at an additional break point of unknown

location. These tests are routinely used in a sequential procedure to estimate the number of breaks, and the

resulting estimator of the number of breaks approaches the true number of breaks with probability one in the limit,

provided that the significance level of each test shrinks to zero slow enough.2 Our analysis covers inferences about

the hypotheses in (a) and (b) based on F -type and Wald statistics in both models with exogenous regressors

estimated by Ordinary Least Squares (OLS), and also models with endogenous regressors estimated by Two

Stage Least Squares (2SLS). We consider the nonparametric IID bootstrap (which treats the regression errors

as independent and identically distributed (IID) from an unspecified distribution) and the wild bootstrap (which

allows for the regression errors to have unconditional hetereskedasticity and conditional heteroskedasticity in the

form of (G)ARCH and stochastic volatility models).3 Within this framework, we show the asymptotic validity of

the IID and wild recursive bootstrap (thereafter IR and WR bootstrap), which generates recursively the bootstrap

observations, and of the IID and wild fixed-regressor bootstrap (thereafter IF and WF bootstrap), which keeps all

the (lagged) regressors fixed, i.e. it simply adds the (IID or wild) bootstrap residuals to the estimated conditional

mean.4 Our analysis, therefore, proves the first order validity of the bootstrap applied in the papers cited in

the previous paragraph.5 To our knowledge, the form of the fixed bootstrap we consider is new, although it is a

1See for example: Bergamelli and Urga (2013); Christiano (1992); de Peretti and Urga (2004); Feldstein and Stock (1994); Hall,

Han, and Boldea (2012); Hansen (2001); Hsu (2005); Levin and Piger (2006); Morana and Beltratti (2004); Perron (1989); Perron

and Vogelsang (1992); Quintos, Fan, and Phillips (2001); Stock and Watson (2005); Stock (1994).
2See Bai and Perron (1998), Proposition 8.
3As illustrated in Bollerslev (1986), Hodrick (1992), Bekaert and Hodrick (2001), and Gonçalves and Kilian (2004), many financial

and macroeconomic series exhibit conditional heteroskedasticity.
4As opposed to the wild recursive bootstrap, the wild fixed-regressor bootstrap allows for a richer structure of conditional

heteroskedasticy such as (G)ARCH and stochastic volatility models with asymmetric errors.
5More exactly, Christiano (1992) employs the IR bootstrap to test for a break in the U.S. GNP. Diebold and Chen (1996) provide
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natural alternative to the recursive bootstrap.

Our proofs rest on showing that the bootstrap version of the tests has the same limiting distribution as the

analogous statistic in the sample. For the case of exogenous regressors, Bai and Perron (1998) derive and tabulate

the limiting distributions of the test statistics above based on OLS under the appropriate null hypothesis; for

the case of endogenous regressors, Hall, Han, and Boldea (2012) show that the same limiting distributions hold

for the analogous test statistics based on 2SLS when the first stage model is stable. As part of our analysis, we

derive the limiting distribution of the test statistics based on 2SLS when the regressors are endogenous and the

first stage regression exhibits discrete parameter change. It is shown that the asymptotic distributions of the

second-stage break-point tests are non-pivotal, and as a consequence the usual Bai and Perron (1998) critical

values can not be used. Our simulation results indicate that the differences between our limiting distributions

and the Bai and Perron (1998) distributions are non-trivial. This feature of the tests was recognized (although

not proved) by Hall, Han, and Boldea (2012) who proposed to divide the sample into subsamples within which

the first-stage equation is stable, and to test for parameter change in these sub-samples using the sup-F and

sup-Wald asymptotic tests for a stable first stage. However, these subsamples may be small given the current size

of macroeconomic datasets, meaning that it is infeasible to calculate the required tests or even if feasible, the tests

based on the subsamples are unreliable. In contrast, we propose bootstrapping the sup-F and sup-Wald tests that

are calculated from the full sample and that take account of the breaks in the first stage. Thus, our bootstrap-

based methods may represent the only practically feasible approach to testing for multiple discrete parameter

change in the empirically relevant scenario of endogenous regressors and an unstable first stage regression with

macroeconomic data.

It is not our aim here to establish that the bootstrap provides a superior approximation to the conventional

asymptotic tests in Bai and Perron (1998), in Hall, Han, and Boldea (2012) and in this paper. Instead, we

provide the assumptions under which both the asymptotic and bootstrap tests are asymptotically valid. Never-

theless, since the bootstrap incorporates sample information, we expect that the bootstrap provides a superior

approximation to the asymptotic tests which do not incorporate similar sample information. This expectation is

confirmed by our simulation results provided at the end of this paper. In addition, our simulations show that in

the presence of conditional heteroskedasticity, the WR and WF bootstraps outperform the asymptotic tests in

samples as large as 480, even though the latter tests provide asymptotically valid inference.

There are several differences between the bootstraps in this paper and earlier work on the bootstrap. First,

our fixed-regressor bootstrap is applied as in Kreiss (1997) and Gonçalves and Kilian (2004) in that a bootstrap

sample is obtained by adding the (IID or wild) bootstrap residuals to the conditional mean, as opposed to Hansen

(2000)’s fixed-regressor bootstrap which simply takes the (IID or wild) bootstrap residuals as the bootstrap sample

simulation results for testing for a single break in stationary autoregressive models using the IR bootstrap and conclude that the

bootstrap is preferred to the asymptotic test proposed by Andrews (1993). Clark (2006) confirms the conclusions of Diebold and

Chen (1996) by considering a larger diversity of data generating processes drawn from 1984-2002 estimates of autoregressive models

used for modeling inflation. In addition, Antoshin, Berg, and Souto (2008) show in Monte Carlo simulations that the IR bootstrap

is preferred to the asymptotic tests for multiple breaks proposed by Bai and Perron (1998), and Berg, Ostry, and Zettelmeyer

(2012) use the IR bootstrap to show evidence of structural breaks in the economic growth of 140 countries. Moreover, O’Reilly and

Whelan (2004) show by simulations that the WR bootstrap works well across a wide variety of data generating processes used in

macroeconomics. Building on this conclusion, Levin and Piger (2006) use the WR bootstrap to find evidence of structural breaks

in the intercept of autoregressive models for inflation for eight OECD countries. Finally, Banerjee, Lazarova, and Urga (2002),

de Peretti and Urga (2004) and Bergamelli and Urga (2013) show through Monte Carlo simulations that the IR bootstrap detects

multiple breaks in systems of equations.
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for the dependent variable. Second, our analysis allows for shrinking breaks in the marginal distribution of the

regressors and in the unconditional variance of the regression errors without requiring that the econometrician

estimates these breaks, whereas Hansen (2000) fixed-regressor bootstrap allows for the possibility of fixed breaks

in the marginal distribution of the regressors without having to estimate the breaks. Third, while Gonçalves and

Kilian (2004) focus on the WR and WF bootstrap in the presence of conditional heteroskedasticity only, we allow

for both conditional heteroskedasticity and unconditional heteroskedasticity provided a global homoskedasticity

assumption is satisfied, similar to Cavaliere, Rahbek, and Taylor (2010) in the context of cointegration rank

testing.6 Finally, our bootstraps for structural change tests rely on the existence of moments slightly larger than

four, as opposed to Gonçalves and Kilian (2004) who assume the existence of moments of order eight in the

context of bootstrapping the coefficients of autoregressive models.7

The paper is organised as follows. In Section 2 we introduce the model with possibly endogenous regressors

and the multiple break point tests. In Section 3 we introduce the assumptions needed to derive the asymptotic

distribution of the multiple break point tests. In Section 4 we derive the asymptotic distribution of the multiple

break point tests when the model has endogenous regressors and (un)stable first-stage equations, while in Section

5 we introduce the multiple break point bootstrap tests, their assumptions, and show the asymptotic validity of

the IR, WR, IF, and WF bootstraps when the first-stage is (un)stable, or when the regressors are exogenous. We

illustrate the finite sample performance of our bootstrap tests in a simulation experiment in Section 6 and compare

it with the finite sample performance of the asymptotic tests. Section 7 concludes. Appendix A contains the

VARX and VMAX representations of the model in (1) and (3). Appendix B contains definitions, and Appendix

C tables for the simulation section. All the proofs are relegated to the Supplemental Appendix.

Notation. The symbol [∙] denotes the integer part; rk(∙) denotes the rank of a matrix; bold small letters (latin

or greek) denote in general vectors, i.e. b; W (∙) denotes a vector of standard independent Brownian motions;

bold capital letters (latin or greek) denote matrices, i.e. Σ; Ia is the a × a identity matrix; ⊗ is the Kronecker

product; 0a denotes a a× 1 vector of zeros; Oa×a denotes a a× a matrix of zeros; dim(b) denotes the number of

rows of the vector b; diag(a1, . . . , an) denotes a diagonal matrix with element a1, . . . , an on the main diagonal; 1J

is the indicator function, and equals 1 if condition J is satisfied, and 0 otherwise; ⇒ denotes weak convergence

in Skorohod metric; E, var, cov denote the expectation, variance and covariance under the probability measure

P of the data;
p
→ denotes convergence in probability under P ; for a scalar random variable x, the Lp-norm of x

is || x ||p= (E | x |p)1/p, p > 0, where | ∙ | denotes the absolute value; |A| denotes the determinant of a square

matrix A; P b denotes the probability measure induced by the bootstrap conditional on the original sample; E b,

varb denote expectation and variance with respect to the bootstrap data, conditional on the data; ∨ denotes

the maximum and ∧ denotes the minimum. Corresponding to the Euclidian vector norm ‖v‖ =
(∑p

i=1 v2
i

)1/2
,

we define the matrix norm ‖A‖ = supv 6=0 ‖Av‖ / ‖v‖ for generic matrix A of size q × p and vector v of size

p× 1. Finally, U(Ta, Tb) denotes the uniform distribution on the interval [Ta, Tb], which generates integer values

between Ta and Tb, and IID(0, 1) denotes independently and identically distributed with mean zero and variance

one.
6For example, this allows for models with seasonal heteroskedasticity.
7The difference stems from the fact that Gonçalves and Kilian (2004) use a Functional Central Limit Theorem (FCLT) that

requires the convergence of the sample moments while we use the FCLT of Wooldridge and White (1988), Theorem 2.11 which

requires only verifying the convergence of the population moments.
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2 Model and test statistics

This section introduces the dynamic linear model and the multiple break tests calculated over the full sample, in

the general case with a mix of endogenous and exogenous regressors and with an unstable first-stage equation.

By construction, this framework can be specialized to cover the other two cases discussed in the introduction:

if all the regressors are exogenous, then the endogenous regressors can be dropped from the analysis; if some

regressors are endogenous but the first stage is stable, then the analysis is simplified to no breaks in the first

stage. Both these special cases are discussed further below. In Section 3 we present the assumptions necessary for

the derivations of the asymptotic distributions of the multiple break tests which are given in Section 4. However,

note that we adopt the so-called “shrinking breaks” assumption for both the equation of interest and the first

stage regression. Under this assumption, the parameters are different across different regimes for finite samples

but are converging toward some common limiting value at a controlled rate. This assumption is common in the

literature on structural break literature, e.g. Bai (1997), Bai and Perron (1998) (BP henceforth), and is designed

to provide an asymptotic theory that approximates the finite sample behaviour of statistics of interest when the

breaks are of “moderate” size.

To facilitate presentation, we first define the notion of partitions. For the equation of interest, if there

are m breaks in the sample 1, . . . , T , at T1, . . . , Tm, then an m-partition (of the sample) is defined through

the break fractions, and we write: λ = (0, λ1, . . . , λm, 1), where λi are the break fractions, i.e. Ti = [Tλi],

for i = 0, 1, . . . ,m + 1, and T0 = 0, Tm+1 = T . For the first-stage equation, if there are h breaks in the

sample 1, . . . , T , at values T1, . . . , Th, then the h-partition (of the sample) is defined through the break fractions:

π = (0, π1, . . . , πh, 1), where Ti = [Tπi], for i = 0, 1, . . . ,m + 1, and T0 = 0, Tm+1 = T . The true partitions

are denoted λ0, π0, with break points T 0
i = [Tλ0

i ], T ∗
j = [Tπ0

j ] and break fractions λ0
i , π0

j , and the estimated

partitions are denoted by λ̂, π̂, with estimated break points: T̂i = [T λ̂i], T̂ ∗
j = [T π̂j ] or estimated break fractions

λ̂i, π̂j , for i = 1, . . . ,m and j = 1, . . . , h.

As in Hall, Han, and Boldea (2012) (HHB henceforth), the equation of interest is a linear regression model

with m breaks (m + 1 regimes), that is:

yt = x′
t

︸︷︷︸
1×p1

β0
x,(i)

︸ ︷︷ ︸
p1×1

+ z′
1,t

︸ ︷︷ ︸
1×p2

β0
z1,(i)

︸ ︷︷ ︸
p2×1

+ ut = w′
t

︸ ︷︷ ︸
1×p

β0
(i)

︸ ︷︷ ︸
p×1

+ ut, i = 1, . . . ,m + 1, t = T 0
i−1 + 1, . . . , T 0

i , (1)

where p = p1 + p2, wt = (x′
t, z

′
1,t)

′, β0
(i) =

(
β0′

x,(i), β
0′

z1,(i)

)′
, β0
z1,(i) is the coefficient on the exogenous regressors

z1,t for subsample i and β0
x,(i) is the coefficient on the endogenous regressors xt for subsample i, and ut is a

mean zero disturbance correlated with xt. The exogenous regressors include lags of yt and distributed lags of xt:

z′
1,t

︸ ︷︷ ︸
1×p2

= ( r′
1,t

︸ ︷︷ ︸
1×q1

, yt−1
︸ ︷︷ ︸

1×1

, x′
t−1

︸ ︷︷ ︸
1×p1

, yt−2
︸ ︷︷ ︸

1×1

, x′
t−2

︸ ︷︷ ︸
1×p1

, . . . , x′
t−q̃1

︸ ︷︷ ︸
1×p1

), (2)

where r1,t includes the intercept and other exogenous regressors (possibly lagged) and p2 = q1 + p̃1 + q̃1p1, where

p̃1 are the number of yt lags included in z1,t and q̃1 are the number of xt lags included in z1,t. Given that xt is

endogenous, it is plausible that (1) belongs to a system of structural equations and thus, for simplicity, we refer

to (1) as the “structural equation” (SE). The reduced form equation (RF) for the endogenous regressors xt is a

linear regression model with h breaks (h + 1 regimes), that is:

x′
t

︸︷︷︸
1×p1

= z′
t

︸︷︷︸
1×q

Δ0
(i)

︸ ︷︷ ︸
q×p1

+ v′
t

︸︷︷︸
1×p1

, i = 1, . . . , h + 1, t = T ∗
i−1 + 1, . . . , T ∗

i , (3)
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where Δ0
(i) are the coefficients on the instruments zt for subsample i, and h is treated as a known fixed number.

To simplify the notation and the proofs, we assume throughout that when there are breaks in SE/ RF, the breaks

occur in all the parameters, but the results in this paper generalize to the situation when only some parameters

break. The instruments zt include z1,t and are uncorrelated with ut and vt. They are defined as:

z′
t

︸︷︷︸
1×q

= ( r′
1,t

︸ ︷︷ ︸
1×q1

, r′
2,t

︸ ︷︷ ︸
1×q2

, yt−1
︸ ︷︷ ︸

1×1

, x′
t−1

︸ ︷︷ ︸
1×p1

, yt−2
︸ ︷︷ ︸

1×1

, x′
t−2

︸ ︷︷ ︸
1×p1

, . . . , yt−p̃
︸ ︷︷ ︸

1×1

, x′
t−p̃

︸ ︷︷ ︸
1×p1

)

= ( r′
t

︸︷︷︸
1×(q1+q2)

, ỹ′
t−1

︸ ︷︷ ︸
1×(p1+1)

, ỹ′
t−2

︸ ︷︷ ︸
1×(p1+1)

, . . . , ỹ′
t−p̃

︸ ︷︷ ︸
1×(p1+1)

) = ( r′
t

︸︷︷︸
1×(q1+q2)

, ˜̃y′
t

︸︷︷︸
1×p̃(p1+1)

). (4)

Here, ỹt−j , j = 1, . . . , p̃, and ˜̃yt are defined as:

ỹ′
t−j =

(
yt−j , x

′
t−j

)
, ˜̃y′

t =
(
ỹ′

t−1, . . . , ỹ
′
t−p̃

)
(5)

and p̃ = max(p̃2, q̃2), where p̃2 is the number of yt lags in zt that have non-zero coefficients in (3), and q̃2 are the

number of xt lags that have non-zero coefficients in (3). Note that because zt includes z1,t, p̃ ≥ max(p̃1, q̃1).

To test for breaks in SE, we will explicitly consider only cases in which m = 0, 1, 2, but the results extend to

m > 2 in the obvious way. Within this framework, two natural hypotheses of interest are:

(a) H0 : m = 0 versus H1 : m = k, with k = 1, 2;

(b) H0 : m = 1 versus H1 : m = 2.

To implement tests for (a) and (b), we need to consistently estimate the RF, and therefore, in general, we

need to know the number of RF breaks h. We can estimate h via a BP sequential procedure in the RF: test the

RF for zero versus one breaks, one versus two breaks, and so on, until one can no longer reject; the last null

hypothesis gives the estimated number of RF breaks ĥ. Even though this is a sequential testing procedure, BP

show that ĥ approaches h with probability one as the sample size T grows, as long as the significance level in each

step shrinks to zero slowly enough (see their Proposition 8). The same consistency result holds if we estimate

h via the information criteria in Hall, Osborn, and Sakkas (2013). For this reason, in the rest of the paper, we

treat h as known.

Our goal is to construct tests for hypotheses (a) and (b). We first estimate the unknown regression coefficients

β0
(1), . . . , β

0
(m+1) and the m-break fraction partition λ0, via 2SLS.8,9 In the first stage, the RF for xt given in (3)

is estimated using the BP OLS estimated h-partitions π̂, obtained equation by equation and pooled, substituted

for the true h-partition π0.10 Let x̂t denote the resulting predicted value for xt from (3), which takes into account

that there are h RF breaks. In the special case of stable RF, h = 0 and x̂t is estimated over the full sample. In

the special case of no endogenous regressors, there is no xt, so estimation of the RF is skipped, and the analysis

below is done without xt and x̂t, and with z1,t = zt.

In the general case, we let ŵt = (x̂′
t, z

′
1,t)

′, and in the second stage, we first estimate, for each m-partition λ,

yt = ŵ′
tβ

0
(i) + residuals, i = 1, ...,m + 1; t = Ti−1 + 1, ..., Ti. (6)

8See the definition of partitions at the beginning of Section 2.
9 Our preferred estimation method is the 2SLS since HHB show that the minimization of the GMM criterion yields inconsistent

estimators of the break fractions, but the minimization of the 2SLS criterion yields consistent estimators of the break fractions.
10We can also use the multivariate methods in Qu and Perron (2007). For our purposes, it only matters that π̂j −π0

j = Op(T 2ρ−1),

where ρ is defined in Assumption 5, and not how they are obtained. The fact that π̂j − π0
j = Op(T 2ρ−1) follows by Assumptions

4-8, 10, introduced in Section 3, and Theorem 2 in HHB; see also the discussion after Assumption 10 is introduced.
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Therefore, the resulting OLS estimates β̂(i)(λ) = (β̂
′
x,(i)(λ), β̂

′
z1,(i)(λ))′ minimize:

SSRm(λ; β) = T−1
m+1∑

i=1

Ti∑

t=Ti−1+1

(
yt − ŵ′

tβ(i)

)2

(7)

with respect to β =
(
β′

(1), β
′
(2), . . . , β

′
(m+1)

)′
. The break fraction estimates λ̂ are defined through:

λ̂ = argmin
λ

SSRm

(
λ; β̂(λ)

)
, (8)

where the minimization is taken over all possible partitions λ. The corresponding break-point estimates are

T̂i = [T λ̂i]. The 2SLS parameter estimates are β̂ = β̂(λ̂) =
(
β̂
′
(1), β̂

′
(2), . . . , β̂

′
(m+1)

)′
associated with the

estimated m-partition λ̂. Theorem 2 of HHB and Lemma 1.2 of the Supplemental Appendix of this paper show

that, under the assumptions outlined in the next section, the break fractions in the RF and SE are converging fast

enough so that the asymptotic distribution of the parameter estimators (which is key to deriving the asymptotic

distributions of our structural change tests) is unaffected by the randomness in the break fraction estimates.

The hypotheses (a) and (b) outlined above are useful per se, but they can also be used to test the number of

SE breaks m sequentially; this estimate of the number of SE breaks will also approach m with probability one in

the limit, as in BP. We now consider hypotheses (a) and (b) in turn.

(a) The null hypothesis H0 : m = 0 against the alternative hypothesis H1 : m = k.

Denote

FT (λ) =

(
T − (k + 1)p

kp

)(
SSR0 − SSRk(λ; β̂(λ))

SSRk(λ; β̂(λ))

)

(9)

where SSR0 and SSRk are the 2SLS sum of squared residuals, based on the fitted value for xt under null and

alternative hypothesis, using the k-partition λ.11 Define Λε = {λ : |λi+1 − λi| ≥ ε, λ1 ≥ ε, λk ≤ 1− ε}. Then the

sup-F test statistic is defined as:

sup -FT = sup
λ∈Λε

FT (λ). (10)

Note that to perform this test, it is necessary to pre-estimate the RF breaks if h ≥ 1 and use them to compute

the first stage projections; for that reason it is new compared to HHB, who only provide tests for a stable RF.

The same statement holds for the sup-Wald test defined below.

To write the sup-Wald test of H0 : m = 0 versus H1 : m = k, we restate the null and alternative hypotheses

in terms of linear restrictions on the parameters. Accordingly, we define Rk = R̃k⊗Ip where R̃k is the k×(k+1)

matrix whose (i, j)th element, R̃k(i, j), is given by: R̃k(i, i) = 1, R̃k(i, i+1) = −1, R̃k(i, j) = 0 for i = 1, 2, . . . , k,

and j 6= i, j 6= i + 1. With this notation, the null and alternative can be equivalently stated as: H0 : Rkβ0 = 0

versus H1 : Rkβ0 6= 0 where β0 = (β0′

(1), . . . , β
0′

(k+1))
′. The test statistic is:

sup -WaldT = sup
λ∈Λε

WaldT (λ), (11)

WaldT (λ) = T β̂(λ)′R′
k

(
RkV̂ (λ)R′

k

)−1

Rk β̂(λ), (12)

11Note that if we compute SSR0 with wt instead of ŵt, SSR0 = T−1
∑T

t=1

(
yt −w′

tβ̂
)2

, and SSR0 − SSR1 (assuming k = 1)

contains the term T−1/2
∑Ti

t=Ti−1+1
utxt which will explode since this term is not mean zero under the assumption that xt is

endogenous.
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where:

V̂ (λ) = diag
(
V̂(1), . . . , V̂(k+1)

)
, V̂(i) = Q̂−1

(i) M̂(i) Q̂−1
(i) , Q̂(i) = T−1

Ti∑

t=Ti−1+1

ŵtŵ
′
t , (13)

M̂(i)
p
→ lim

T→∞
var



T−1/2
Ti∑

t=Ti−1+1

Υ 0′

(t, T )zt

(
ut + v′

tβ
0
x,(i)

)


 , (14)

where Υ 0′
(t, T ) =

∑h+1
j=1 1t∈[T∗

j−1+1,T∗
j
]Υ

0
(j), with Υ 0

(j) defined in Assumption 10 below.

(b) The null hypothesis H0 : m = 1 against the alternative hypothesis H1 : m = 2.

Following BP, a suitable statistic can be constructed as follows. For the model under the null hypothesis with

one break, the estimated break point, denoted by T̂1 = [T λ̂1], is obtained by a global minimization of the sum

of the squared residuals as in (8). For the model under the alternative hypothesis with two breaks, one of the

breaks is fixed at T̂1, and the location of the second break is chosen by minimizing the residual sum of squares

in the sub-sample before T̂1 and in the sub-sample after T̂1. Formally, let Λ1 = {τ1 : τ1 = [T̂1η1], η1 ∈ [ε, 1− ε]}

and Λ2 = {τ2 : τ2 = T̂1 + (T − T̂1)η2, η2 ∈ [ε, 1 − ε]} be the sets of candidate break-points for the sub-sample

before T̂1 and after T̂1, and

SSR1(τ̂1|T̂1) = inf
τ1∈Λ1

SSR1(τ1|T̂1) SSR2(τ̂2|T̂1) = inf
τ2∈Λ2

SSR2(τ2|T̂1), (15)

with τ̂1, τ̂2 the arguments at which the two infima are obtained, SSR1(τ1|T̂1) the 2SLS sum of squared residuals

in sample [1, T̂1] with one break at τ1 < T̂1, and SSR2(τ2|T̂1) the 2SLS sum of squared residuals in sample

[T̂1 +1, T ] with one break at τ2 > T̂1. Then the sup-F statistic for testing for one break in SE against two breaks

in SE is:

sup -FT (2|1) = max

(
SSR1(T̂1) − SSR1(τ̂1|T̂1)

SSR1(T̂1)/(T̂1 − p)
,
SSR2(T̂1) − SSR2(τ̂2|T̂1)

SSR2(T̂1)/(T − T̂1 − p)

)

, (16)

SSR1(T̂1) =
T̂1∑

t=1

(
yt − ŵ′

tβ̂(1)

)2

, SSR2(T̂1) =
T∑

t=T̂1+1

(
yt − ŵ′

tβ̂(2)

)2

, (17)

where β̂(1) is the 2SLS estimator calculated over the subsample [1, T̂1] and β̂(2) is the 2SLS estimator calculated

over the subsample [T̂1 + 1, T ].

To test H0 : m = 1 versus H1 : m = 2 via the Wald principle, the sup-Wald test statistic is:

sup -WaldT (2|1) = max
(
WaldT,1(2|1; T̂1), WaldT,2(2|1; T̂1)

)
, (18)

where WaldT,1(2|1; T̂1) and WaldT,2(2|1; T̂1) are the sup-Wald statistics for testing for zero breaks against one

break in the sub-sample before T̂1 and after T̂1 respectively:

WaldT,1(2|1; T̂1) = sup
τ1∈Λ1

T β̂(η1)
′R′

1[R1V̂ (η1)R
′
1]

−1R1β̂(η1), (19)

WaldT,2(2|1; T̂1) = sup
τ2∈Λ2

T β̂(η2)
′R′

1[R1V̂ (η2)R
′
1]

−1R1β̂(η2), (20)

where R1 is defined as Rk in case (a) but with k = 1 (the alternative hypothesis of an additional break in SE),

and β̂(ηi) =
(
β̂
′
(1)(ηi), β̂

′
(2)(ηi)

)′
. For the candidate second break in SE located before the first break in SE we

denote β̂(η1) =
(
β̂
′
(1)(η1), β̂

′
(2)(η1)

)′
where β̂(1)(η1) and β̂(2)(η1) are the 2SLS estimators in the sub-samples

I1(η1) = [1, τ1] and I2(η1) = [τ1 + 1, T̂1] respectively. For the candidate second break in SE located after the
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first break in SE we denote β̂(η2) =
(
β̂
′
(1)(η2), β̂

′
(2)(η2)

)′
where β̂(1)(η2) and β̂(2)(η2) are the 2SLS estimators

in the sub-samples I1(η2) = [T̂1 + 1, T̂1 + τ2] and I2(η2) = [τ2 + 1, T ] respectively. In addition, in (19), we let:

Q̂(i)(ηj) = T−1
∑

t∈Ii(ηj)

ŵtŵ
′
t , V̂ (ηi) = diag

(
V̂(1)(ηi), V̂(2)(ηi)

)
, V̂(i)(ηj) = Q̂−1

(i) (ηj) M̂(i)(ηj) Q̂−1
(i) (ηj), (21)

M̂(i)(ηj)
p
→ lim

T→∞
var



T−1/2
∑

t∈Ii(ηj)

Υ 0′

(t, T )zt

(
ut + v′

tβ
0
x,(i)

)


 , i, j = 1, 2. (22)

3 Assumptions

In this section we introduce the assumptions needed to derive the limiting distribution of the sup-F and sup-Wald

tests introduced in the previous section.

Assumption 1. (i) Let εt = (ut, v
′
t)

′. Then E(εsr
′
t) = 0 for all t, s = 1, . . . T , and E(εt−lr

′
t|F

r
t−l) = 0 for all

t and 1 ≤ l ≤ t − 1, and Fr
t is the σ-algebra generated by {rt, rt−1, εt−1, rt−2, εt−2, . . .} .

(ii) E(rt−lr
′
t−κ) = Γ|l−κ| for all t and l, κ > 0.

Assumption 1(i) states that the errors are uncorrelated with past or future values of the exogenous regressors

rt, and that we treat rt as given in all bootstraps. It is not a strong assumption given that we already include

lags of the dependent and the endogenous variables in the SE from (1).12 Assumptions 1(ii) is a stationarity

assumption useful in the bootstrap section.

We assume the following about the true break fractions and true parameters in each regime.

Assumption 2. T 0
i = [Tλ0

i ], where 0 < λ0
1 < . . . < λ0

m < 1.

Assumption 3. β0
(i+1) − β0

(i) = ν0
i,T = ν0

i r
∗
T , where r∗T = T−α, 0 < α < 0.5, i = 1, . . . ,m + 1 and ν0

i is a

vector of constants. Let β0 =
(
β0′
x , β0′

z1

)′
be the common limiting value of β0

(i) =
(
β0′
x,(i), β

0′
z1,(i)

)′
.

Assumption 4. T ∗
j = [Tπ0

j ], where 0 < π0
1 < . . . < π0

h < 1.

Assumption 5. Δ0
(j+1) −Δ0

(j) = S∗
j,T = S0

j s∗T where s∗T = T−ρ, 0 < ρ < 0.5, j = 1, . . . , h +1 and S0
j a matrix

of constants. Let Δ0 be the common limiting value of Δ0
(j), where rk(Δ0) = p1.

Assumption 6. The minimization in (8) is over all partitions λ such that Ti − Ti−1 = [Tλi] − [Tλi−1] >

max (q − 1, εT ) for some ε > 0 and ε < mini(λ
0
i+1 − λ0

i ) and ε < mini(π0
i+1 − π0

i ).

Assumption 2 implies the break points are asymptotically distinct in the SE, and Assumption 4 implies the

break points are asymptotically distinct in the RF. However, there can be common break points in the SE and

RF. By Assumption 3, β0
(i) = β0 + O(T−α) and by Assumption 5, Δ0

(j) = Δ0 + O(T−ρ), where β0, Δ0 are

the common limiting values of β0
(i) and Δ0

(j), so we assume shrinking breaks, but we allow for the RF breaks

to be smaller or larger than the ones in the SE.13 Assumption 6 requires that each segment considered in the

minimization contains a positive fraction of the sample asymptotically; in practice ε is chosen to be small so the

last part of the assumption holds. All these assumptions are standard in the break point literature.

Since SE (1) and RF (3) form a dynamic model, we also need stability assumptions. To introduce these

stability assumptions, we consider Case (I) when there are no SE breaks (m = 0), but there are RF breaks

12If, for example, E(εtrt−j) 6= 0, for j > 0, then any bootstrap method would have to mimic this correlation.
13 We can allow for fixed (large) breaks instead of shrinking (moderate) breaks. Our simulations show that the bootstrap works

well in both cases, but our theory is developed under shrinking breaks because the notation and the proofs are greatly simplified.
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(h > 0), and Case (II) when there are breaks in both SE and RF. For clarity, we focus on the case when there is

one SE break (m = 1) and there is at least one RF break (h > 0); the SE break can coincide with one of the RF

breaks. However, a closer inspection of our proofs shows that our results also extend to the case when m > 1.

To present the stability conditions, we derive an alternative representation for the data generation process under

Cases (I) and (II). It is shown in Appendix A below that we can write (1) and (3) in the VARX(p̃,0) form:14

ỹt
︸︷︷︸

(p1+1)×1

=
p̃∑

i=1

Ci(t, T )
︸ ︷︷ ︸

(p1+1)×(p1+1)

× ỹt−i
︸ ︷︷ ︸

(p1+1)×1

+ J(t, T )
︸ ︷︷ ︸

(p1+1)×(q1+q2)

× rt
︸︷︷︸

(q1+q2)×1

+ et
︸︷︷︸

(p1+1)×1

, (23)

where ỹt−i = (yt−i, x
′
t−i)

′ was defined in (5), Ci(t, T ) and J(t, T ) are matrices of coefficients given by (64)

for Case (I) and by (68) for Case (II) in Appendix A below. For Case (I), et = A−1
0 εt, while for Case

(II), et =
(
A−1

0,(1) 1t∈[1,T 0
1 ] + A−1

0,(2) 1t∈[T 0
1 +1,T ]

)
εt, where εt = (ut, v

′
t)

′ was defined in Assumption 1, and A0,

respectively A0,(1), A0,(2) are (p1 + 1) × (p1 + 1) matrices of coefficients for Case (I), respectively Case (II);

see (63) and (66) in Appendix A. In Appendix A, we denote by Ci the common limiting value of Ci(t, T ) for

Cases (I) and (II). We are now in position to state the following stability assumptions.

Assumption 7.
∣
∣Ip1+1 − C1(t, T )a − C2(t, T )a2 − ∙ ∙ ∙ − Cp̃(t, T )ap̃

∣
∣ 6= 0p1+1, for all t = 1, . . . , T, and for all |a| ≤

1.

Assumption 8.
∣
∣Ip1+1 − C1a − C2a

2 − ∙ ∙ ∙ − Cp̃a
p̃
∣
∣ 6= 0p1+1, for all |a| ≤ 1.

We allow the errors in (1) and (3) to be serially correlated and heteroskedastic via the following assumption.

Assumption 9. (i) ht = εt⊗zt is an array of real valued q̃×1 random vectors (where q̃ = (p1+1)q) defined on

the probability space (Ω,F , P ), and VT = var
(
T−1/2

∑T
t=1 ht

)
has eigenvalues γT,j = O(1), j = 1, . . . , q̃;

(ii) E(ht,i) = 0 and supt‖ht,i‖d < κ < ∞ for some d > 4, for all t and for i = 1, . . . , q̃, where ht,i is the ith

element of ht;

(iii) {ht,i} is near epoch dependent with respect to the mixing process {gt} such that ‖ht,i −E(ht,i|G
t+n
t−n)‖2 ≤ νn

with νn = O(n−1/2), where Gt+n
t−n is a σ-algebra based on (gt−n, . . . , gt+n);

(iv) {gt} is either φ-mixing of size n−d/(2(d−1)) or α-mixing of size n−d/(d−2).

Assumption 9 allows for substantial dependence and heterogeneity in ht but also imposes sufficient restrictions

to allow for a functional central limit theorem for T−1/2
∑[Ts]

t=1 ht; see Wooldridge and White (1988), Theorem

2.11.

We also assume that the instruments zt in (4) are strong via a standard rank condition for identification in

IV estimation of linear models:

Assumption 10. rk
(
Υ 0

(i)

)
= p, where Υ 0

(i) =
(
Δ0

(i), Π
)

is a matrix of size q × p, for i = 1, 2, . . . , h + 1,

Π ′ = (Ip2 , Op2,q−p2). Let Υ 0 be the common limiting value of the Υ 0
(i)’s.

15

By Assumption 5, Υ 0
(i) = Υ 0 + O(T−ρ). By Assumptions 4-8, 10 and Theorem 2 in HHB, it follows that

π̂j − π0
j = Op(T 2ρ−1), 0 < ρ < 0.5, j = 1, . . . , h. In addition, we show in the Supplemental Appendix (Lemma

1.2) that λ̂1 − λ0
1 = Op(T 2α−1), 0 < α < 0.5, i = 1, . . . ,m + 1. It follows that the SE and RF break fractions are

14We set the number of lags for rt to zero, but rt could involve lags at the expense of additional notation.
15The notation Υ 0

(i)
is convenient for calculations involving the augmented vector of projected endogenous regressors and observed

exogenous regressors in the second stage estimation.
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converging fast enough so that the asymptotic distribution of the parameter estimates (which we use to derive

the asymptotic distributions of the multiple break tests below) is unaffected by the randomness in the break

fraction estimates.

To develop tests for SE breaks, we need to impose further restrictions on the instrument cross-product matrix

and on the long-run variance of ht. Similar to Assumption A8 of BP, we impose Assumption 11 which allows for

shrinking breaks in the marginal distribution of the regressors and excludes the presence of trending regressors.

Assumption 11. T−1
∑[Ts]

t=1 zt−lz
′
t−l

p
→ sQzz uniformly in s ∈ [0, 1] for all l ≥ 0, where Qzz is a q × q positive

definite (hereafter pd) matrix of constants.

For the sup-F test, as usual, we need that the errors are serially uncorrelated and conditionally homoskedastic:

Assumption 12. Let Ft be the σ-field generated by zt, εt−1, zt−1, εt−2, zt−2, . . .. Then:

(i) E(εt−l | Ft−l) = 0, almost surely, for all t, l > 0.

(ii) E(εt−lε
′
t−l) = E(εt−lε

′
t−l | Ft−l) = Ω for all t, l > 0, with Ω =




σ2

u σ′
uv

σuv Ωv



,

where Ω and Ωv are (p1 + 1) × (p1 + 1), respectively p1 × p1 pd matrices of constants, and σuv is p1 × 1 vector

of constants.

For statistics based on the Wald principle, we allow for serial correlation and heteroskedasticity. We first

state the assumptions and then discuss them.

Assumption 13.

(i) lim
T→∞

VT (s) = lim
T→∞

T−1 var
(∑[Ts]

t=1 ht

)
= sΣ for all t uniformly in s ∈ [0, 1], with

Σ =




Σu Σuv

Σ′
uv Σv



 ,

where Σ, Σu and Σv are q̃ × q̃, q × q, respectively (p1q) × (p1q) pd matrices of constants.

(ii) E(hthl) = 0 for t 6= l, and lim
T→∞

VT (s) = lim
T→∞

T−1
∑[Ts]

t=1 E(hth
′
t) = sΣ̃ uniformly in s ∈ [0, 1], with

Σ̃ =




Σ̃u Σ̃uv

Σ̃′
uv Σ̃v



 ,

where Σ̃u, Σ̃uv and Σ̃v are q̃ × q̃, q × q, respectively (p1q) × (p1q) pd matrices of constants.

Assumption 13(i) is sufficient for deriving the asymptotic distribution of the sup -Wald test. It refers to

ht = zt ⊗ εt and allows for serial correlation and unconditional hetoroskedasticity in ht, and as a consequence in

the disturbances εt (because we assume that zt contains an intercept). If serial correlation is present, then no

lagged dependent variables are allowed in zt. Assumption 13(ii) states that Σ in Assumption 13(i) changes to

Σ̃ in the absence of serial correlation in ht.

4 Limiting distributions of sup-F and sup-Wald tests

When there are no RF breaks (h = 0) and the RF is estimated over the full sample, HHB show that the test

statistics introduced in Section 2 converge to the usual distributions tabulated in BP, and our theorems below
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include this case. However, if there are breaks in RF (h 6= 0), then these test statistics no longer converge to the

BP distributions. This has been noted in HHB, but we provide a formal proof here. The asymptotic distributions

we derive in this section are useful for two other purposes: first, to prove the validity of the bootstrap - in Section

5.2, and second, to compare the performance of the tests based on asymptotic critical values with that of the

bootstrap tests - in Section 6.

The limiting distribution of sup-FT (λ) for k = 1, 2, and h = 1, 2, . . . , hmax, under H0 : β0
(i) = β0, will be

given by a Gaussian process that we need to define. To that end, note that under Assumptions 9, 11, and 12, by

the multivariate functional central limit theorem in Wooldridge and White (1988), Theorem 2.11, we have:

T−1/2

[Ts]∑

t=1

ht ⇒ (Ω1/2 ⊗ Q1/2
zz )W (s), (24)

where Ω1/2 and Q
1/2
zz are the matrix square roots of Ω, respectively Qzz, and W (s) =

(
W ′

1(s), . . . , W
′
p1+1(s)

)′
,

where W (s) and Wi(s) are q̃ × 1 and q × 1 vectors of standard independent Brownian motions. Let n1 and

N2 be a (p1 + 1) × 1 vector and a (p1 + 1) × p1 matrix respectively, such that n′
1n1 = σu, n′

1N2 = σ′
uv and

N ′
2N2 = Ωv. Then, by arguments similar to HHB, Supplemental Appendix, p.22, we have:

T−1/2

[Ts]∑

t=1

ztut ⇒ (n′
1 ⊗ Q1/2

zz )W (s), T−1/2

[Ts]∑

t=1

ztv
′
t ⇒ Q1/2

zz W̃ (s)N2, (25)

with W̃ (s) = (W1(s), . . . , Wp1+1(s)), a q × (p1 + 1) matrix. Letting D(∙) ≡ (n′
1 ⊗ Iq)W (∙) and D∗(∙) ≡

W̃ (∙)N2β
0
x, both q × 1 vectors, we define the following processes below.

Definition 1. For any random process A(∙) : [0, 1] ⇒ Rd, and a k-partition λ, let

KA(λ) = (A′(λ1), A
′(λ2) − A′(λ1), . . . , A

′(λi) − A′(λi−1), . . . , A
′(1) − A′(λk))′ . (26)

Definition 2. Let K∗(λ; π0) = KD(λ)+KD∗(λ)−(P (λ, π0)⊗Iq) KD∗(π0), a q(k+1)×1 random vector, with

P (λ, π0) described in Definition B1 of the Appendix B, and Iq the q × q identity matrix. Also, let K∗∗(λ; π0)

be computed from K∗(λ; π0) by selecting and stacking, in order, from each block q × 1, the first p elements.

With these definitions, the asymptotic distribution of the sup-FT test is stated below.

Theorem 1. Under Assumptions 1 and 4-12, the test sup-FT (10) for testing for m = 0 breaks in SE against

m = k breaks in SE is:

sup -FT ⇒ sup
λ∈Λε

{
1

p σ2
1

K∗∗′(λ; π0) (H∗(λ) ⊗ Ip) K∗∗(λ; π0)

}

, (27)

where σ2
1 = σ2

u + 2β0′
xσuv + β0′

xΩvβ
0
x, and H∗(λ) is the k × k matrix with diagonal elements equal to (1 − λi +

λi−1)/(λi − λi−1), i = 1, . . . , k, and the rest of the elements equal to −1.

Theorem 1 characterizes the limiting distribution of sup -FT for any number of breaks h = 0, 1, 2, . . . , hmax

in RF, but the specific form of the distribution depends on h and π. To see the intuition behind (27), note

that in the special case with only exogenous regressors, we have that xt = vt = 0p1 , so we set z1,t = zt and

σuv = 0p1 . Therefore, K∗(λ; π0) = KD(λ), and the distribution of the sup-FT in Theorem 1 is the same

as in BP, since it is generated exclusively by partial sums of {z1,t ut}. In the other special case where some

regressors are endogenous but the RF is stable, h = 0 and we set π0 = 1. Hence, P (λ, π0) = (λ1, . . . , λk)′, and

KD∗(π0) = KD∗(1). Therefore, K∗(λ; π0) = KD(λ) + KD∗(λ) − ((λ1, . . . , λk)′ ⊗ Iq) KD∗(1), and it can be
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shown that the distribution of the sup-FT in Theorem 1 is the same as in BP, but it is generated instead by the

partial sums of zt(ut + vtβ
0
x) (this is also the result in HHB). However, when there are RF breaks (h 6= 0), then

this distribution is not pivotal, since it depends on the number of RF breaks and their location, as indicated

by the term (P (λ, π0) ⊗ Iq) KD∗(π0). HHB side-step this issue by splitting the RF into stable subsamples,

and proceeding with the tests for stable RF in these subsamples. However, given that these subsamples can be

small, further break point tests in sub-samples may be highly inaccurate. Therefore, in this paper, we propose

bootstrapping this test and other structural change tests over the full sample.

In the presence of autocorrelation and heteroskedasticity, we employ the sup-WaldT test instead of the sup-

FT . Similar to sup-FT , the asymptotic null distribution of the sup-WaldT test is a Gaussian process that we

need to define. To that end, note that under Assumptions 9, 11, and 13(i), by the multivariate functional central

limit theorem in Wooldridge and White (1988), Theorem 2.11, we have:

T−1/2

[Ts]∑

t=1

ht ⇒ Σ1/2W (s), (28)

where Σ is defined in Assumption 13(i). Let Ñ1 and Ñ2 be q̃ × q, respectively q̃ × p1q matrices such that

Ñ ′
1Ñ1 = Σu, Ñ ′

1Ñ2 = Σuv and Ñ ′
2Ñ2 = Σv. Let Ñ ′

2 =
(
Ñ ′

2,1, . . . , Ñ
′
2,p1

)
, where Ñ ′

2,i is of size q × q̃, for

i = 1, . . . , p1. Then:

T−1/2

[Ts]∑

t=1

ztut ⇒ Ñ ′
1W (s), T−1/2

[Ts]∑

t=1

ztv
′
t ⇒

˜̃W (s), (29)

where ˜̃W (s) =
(
Ñ ′

2,1W (s), . . . , Ñ ′
2,p1

W (s)
)

is a q × p1 matrix of Brownian motions. Letting the q × 1 vector

processes D̃(∙) ≡ Ñ ′
1W (∙), D̃∗(∙) ≡ ˜̃W (∙)β0

x, we define the following process below.

Definition 3. Let K̃∗(λ; π0) = KD̃(λ)+KD̃∗(λ)− (P (λ, π0)⊗Iq) KD̃∗(π0), with P (λ, π0) in Definition B1.

Then the limiting distribution of the sup-WaldT test is stated below.

Theorem 2. Under Assumptions 1, 4-11, and 13(i), the asymptotic distribution of sup-WaldT for testing for

m = 0 breaks in SE against m = k breaks in SE is:

sup -WaldT ⇒ sup
λ∈Λε

{
K̃∗′(λ; π0) (H∗(λ) ⊗ V ∗) K̃∗(λ; π0)

}
, (30)

with V ∗ = Υ 0(Υ 0′
Σ1Υ

0)−1Υ 0′
, where Υ 0 is the common limit value of the Υ 0

(i)’s, i = 1, . . . , h, Σ1 is as in

Definition B2 of the Appendix B, and H∗(λ) is as in Theorem 1.

Theorem 2 characterizes the limiting distribution of sup -WaldT for any number of breaks h = 0, 1, 2, . . . , hmax

in RF, but the specific form of the distribution depends on h and π. Note that the distribution in Theorem 2

is the BP distribution when the regressors are exogenous or the RF is stable, but it depends on the number and

location of the RF breaks when the RF is unstable.

Next, we derive the distribution of FT (2|1), based on the following Gaussian processes.

Definition 4. Let K∗
i (ηi; π

0, λ0
1) = KD(si) + KD∗(si) − (P (ηi, π

0) ⊗ Iq)KD∗(π0), where s1 = (0, η1, λ
0
1) is a

partition of the interval [0, λ0
1], s2 = (λ0

1, λ
0
1 + η2, 1) is a partition of the interval [λ0

1 + 1, 1], and P (ηi, π
0) are

defined in Definition B3 of the Appendix B, for i = 1, 2. Also, let K∗∗
i (ηi; π

0, λ0
1) be computed from K∗

i (ηi; π
0, λ0

1)

by selecting and stacking, in order, from each q × 1 block, the first p × 1 elements.

The asymptotic distribution of the test for one SE break against 2 SE breaks, sup -FT (2|1), is stated below.
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Theorem 3. Under Assumptions 1-12 the asymptotic distribution of sup-F under the null hypothesis m = 1

breaks in SE against the alternative m = 2 breaks in SE is:

sup -FT (2|1) ⇒ max
(
F1(η1; π

0, λ0
1), F2(η2; π

0, λ0
1)
)
, (31)

where

F1(η1; π
0, λ0

1) =
1

σ2
1λ

0
1

sup
τ1∈Λ1

{
K∗∗′

1 (η1; π
0, λ0

1) (H∗
1 (η1) ⊗ Ip) K∗∗

1 (η1; π
0, λ0

1)
}

,

F2(η2; π
0, λ0

1) =
1

σ2
1 (1 − λ0

1)
sup

τ2∈Λ2

{
K∗∗′

2 (η2; π
0, λ0

1) (H∗
2 (η2) ⊗ Ip) K∗∗

2 (η2; π
0, λ0

1)
}

,

H∗
1 (η1) =




1−η1

η1
−1

−1 η1
1−η1



 , H∗
2 (η2) =




1−η2

η2
−1

−1 η2
1−η2



 .

Theorem 3 characterizes the limiting distribution of sup -FT (2|1) for any number of breaks h = 0, 1, 2, . . . , hmax

in RF, but the specific form of the distribution depends on h and π.

Next, we derive the distribution of WaldT (2|1), based on the following Gaussian processes.

Definition 5. Let K̃∗
i (ηi; π

0, λ0
1) = KD̃(si) + KD̃∗(si) − (P (ηi, π

0) ⊗ Iq)KD̃∗(π0), where s1 = (0, η1, λ
0
1) is a

partition of the interval [0, λ0
1], s2 = (λ0

1, λ
0
1 + η2, 1) is a partition of the interval [λ0

1 + 1, 1], and P (ηi, π
0) are

defined in Definition B3, for i = 1, 2.

With this definition, the asymptotic distribution of the sup -Wald test for one SE break against two SE

breaks, WaldT (2|1), is stated below.

Theorem 4. Under Assumptions 1-11, 13(i) and H0 : m = 1 versus H1 : m = 2,

sup -WaldT (2|1) ⇒ max
(
Wald1(η1; π

0, λ0
1),Wald2(η2; π

0, λ0
1)
)
, (32)

where

Wald1(η1; π
0, λ0

1) =
1

λ0
1

sup
τ1∈Λ1

{
K̃∗′

1 (η1; π
0, λ0

1) (H∗
1 (η1) ⊗ V ∗) K̃∗

1 (η1; π
0, λ0

1)
}

,

Wald2(η2; π
0, λ0

1) =
1

1 − λ0
1

sup
τ2∈Λ2

{
K̃∗′

2 (η2; π
0, λ0

1) (H∗
2 (η2) ⊗ V ∗) K̃∗

2 (η2; π
0, λ0

1)
}

,

where V ∗ is as in Theorem 2, and H∗
j (ηj), j = 1, 2, is as in Theorem 3.

Theorem 4 characterizes the limiting distribution of sup -WaldT (2|1) for any number of breaks h = 0, 1, 2, . . . , hmax

in RF, but the specific form of the distribution depends on h and π.

As for Theorems 1 and 2, the distributions in Theorems 3 and 4 are the same as in BP for exogenous regressors

or for a stable RF, and for an unstable RF the distributions depend on the number and location of the RF breaks.

5 Bootstrap

In this section, we introduce the bootstrap analogues of the sup-F and sup-Wald statistics for multiple breaks.

In particular, we introduce the bootstrapped versions of (10) and (11) for the hypothesis in (a) and the bootstrap

analogues of the statistics (16) and (18) for the hypothesis in (b); these hypothesis are defined just after (5).

For the case when the error terms ut and vt are IID but potentially contemporaneously correlated (and the

regressors are exogenous or endogenous), we show that the IR (IID recursive) bootstrap and the IF (IID fixed-

regressor) bootstrap based on the bootstrap analogues of the sup-F tests in (10) and (16), are asymptotically
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valid. The ideas behind the IR and IF bootstraps are introduced by Efron (1979). In each case, the bootstrap

samples are obtained by re-sampling from the (joint) empirical distribution of the (centered) residuals. The IR

bootstrap computes the bootstrapped yt, xt recursively from the SE and RF, while the IF bootstrap computes

them by adding the estimated conditional mean to the bootstrap residuals, while keeping the lags of yt, xt

present in zt as fixed and equal to the sample values. The validity of these bootstraps for structural change tests

and unknown breaks has not been previously established even for models with exogenous regressors, although

these bootstraps have been used extensively in many papers.16 For example, Christiano (1992) has used the IR

bootstrap for testing for a break in the U.S. GNP. Diebold and Chen (1996) provide simulation results for testing

for a single break in stationary autoregressive models using the IR bootstrap and conclude that the bootstrap is

preferred to the asymptotic test proposed by Andrews (1993). Clark (2006) confirms the conclusions of Diebold

and Chen (1996) by considering a larger diversity of data generating processes drawn from 1984-2002 estimates of

autoregressive models used for modelling inflation. In addition, Antoshin, Berg, and Souto (2008) show in Monte

Carlo simulations that the IR bootstrap is preferred to the asymptotic tests for multiple breaks proposed by Bai

and Perron (1998), and Berg, Ostry, and Zettelmeyer (2012) use the IR bootstrap to show evidence of structural

breaks in the economic growth of 140 countries. Moreover, Banerjee, Lazarova, and Urga (2002), de Peretti

and Urga (2004) and Bergamelli and Urga (2013) show through Monte Carlo simulations that the IR bootstrap

detects multiple breaks in systems of equations.

The IID assumption of the disturbances does not always follow from economic models and the conditional

(and unconditional) heteroskedasticity in the residuals is more frequent in many estimated dynamic regression

models in finance and macroeconomics; see for example Bollerslev (1986), Hodrick (1992) and Bekaert and

Hodrick (2001). However, these papers impose a parametric structure for the conditional heteroskedasticity. In

addition, for multivariate conditional heteroskedastic models, it is difficult to obtain reliable numerical estimates

of conditional covariance without imposing additional restrictions on the covariance structure of the disturbances;

see among others Bollerslev (1990) and Ledoit, Santa-Clara, and Wolf (2003). In contrast, the wild bootstrap

allows for a nonparametric treatment of the conditional (and unconditional) heteroskedasticity, thus avoiding the

difficulties mentioned above. The wild bootstrap has been developed in Liu (1988) following suggestions in Wu

(1986) and Beran (1986) in the context of static linear regression models with (unconditionally) heteroskedastic

errors. We consider both the wild recursive (WR) bootstrap and the wild fixed (WF) version of the wild

bootstrap in dynamic models that takes into account the possibility of the errors ut and vt being conditionally

and unconditionally heteroskedastic, as well as contemporaneously correlated. The idea of the wild bootstrap

is to replicate heteroskedasticity by computing the bootstrap residuals as the product of the initial residual on

a particular observation multiplied by a random variable independent of the data, with mean 0 and variance

1. There are several choices for the distribution of the random variable (auxiliary distribution): Gonçalves and

Kilian (2004) use the standard normal distribution, while Mammen (1993) and Liu (1988) suggested a two-point

distribution. In this paper, we report simulation results for Liu’s two-point distribution, which performed the best

compared to the other distributions. This conclusion is similar to Davidson and Flachaire (2008) and Davidson

and MacKinnon (2010).

With unknown break location, the asymptotic validity of the WR and WF bootstraps for structural change

tests has not been shown previously, although the WR bootstrap has already been used in practice. For example,

16Hansen (2000) proves validity of a different IF bootstrap for a structural change test and exogenous regressors; see comments on

the next page.
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O’Reilly and Whelan (2004) show by simulations that the WR bootstrap works well across a wide variety of data

generating processes used in macroeconomics. Building on this conclusion, Levin and Piger (2006) use the WR

bootstrap to find evidence of structural breaks in the intercept of autoregressive models for inflation for eight

OECD countries.

In this paper, we show that the WR and WF bootstraps based on the bootstrap analogues of the sup-

Wald tests in (11) and (18) are asymptotically valid. As we will see next, the WR bootstrap requires more

stringent assumptions than the WF bootstrap on ut and vt, in order to ensure convergence to the correct

covariance matrix. The assumptions that guarantee the validity of the WR bootstrap allow, for example, for

the regression disturbances to be from (G)ARCH and stochastic volatility models with symmetric errors and

finite fourth moment, while the WF bootstrap covers also the (G)ARCH and stochastic volatility models with

asymmetric errors and finite fourth moments; see Gonçalves and Kilian (2004). Moreover, in contrast with

Gonçalves and Kilian (2004), we allow for both conditional and unconditional heteroskedasticity (of unknown

form) provided a global homoskedasticity assumption is satisfied (see Assumptions 13(ii) and 14). The global

homoskedasticity condition is satisfied for example by models with seasonal heteroskedasticity; see Cavaliere,

Rahbek, and Taylor (2010). The global homoskedasticity assumption is also satisfied when there are shrinking

breaks in the unconditional variance of the error term. Finally, our WR bootstrap for structural changes relies

on the existence of moments slightly larger than four, as opposed to Gonçalves and Kilian (2004) who assume the

existence of moments of order eight in the context of bootstrapping the coefficients of autoregressive models. 17

A different version of the IF and WF bootstraps was proposed by Hansen (2000) in the context of structural

breaks in dynamic models estimated by OLS when there are fixed breaks in the marginal distribution of the

regressors. In this paper, we do not allow for fixed breaks in the marginal distribution of the regressors but

we allow for shrinking breaks in the marginal distribution of the regressors.18 We show that the IF and WF

bootstraps, that simply add the (IID and wild) bootstrap residuals to the conditional mean, as in Kreiss (1997)

and Gonçalves and Kilian (2004), are asymptotically valid for structural change tests in dynamic models estimated

by OLS or 2SLS.19

In Section 5.1 we introduce the four bootstrap methods and the assumptions for their validity. We consider

the IID recursive bootstrap (IR bootstrap) (Section 5.1.1); the wild recursive bootstrap (WR bootstrap) (Section

5.1.2); the IID fixed-regressor bootstrap (IF bootstrap) (Section 5.1.3) and the wild fixed-regressor bootstrap

(WF bootstrap) (Section 5.1.4). In Section 5.2 we present the theorems that show the asymptotic validity of

all these bootstrap methods. In Section 6 and Appendix C we provide the results of a simulation study for all

these bootstrap tests and compare them to the asymptotic sup-F and sup-Wald tests based on the distributions

derived in BP, in HHB, and in Theorems 1-4 above.

5.1 Methods and assumptions

For each of the IR, IF, WR and WF bootstraps, we describe in detail how to generate the bootstrap disturbances

and the bootstrap samples. Once a bootstrap sample is generated, all the test statistics, parameter estimates,

17The difference stems from the fact that Gonçalves and Kilian (2004) use a Functional Central Limit Theorem (FCLT) that

requires the convergence of sample moments while we use the FCLT of Wooldridge and White (1988), Theorem 2.11 which requires

only verifying the convergence of the population moments.
18 We can allow for fixed (large) breaks instead of shrinking (moderate) breaks. Our simulations show that the bootstrap works

well in both cases, but our theory is developed under shrinking breaks because the notation and the proofs are greatly simplified.
19Hansen’s fixed-regressor bootstrap considers as bootstrap sample the (IID or wild) bootstrap residuals, while here a bootstrap

sample is obtained by adding the (IID or wild) bootstrap residuals to the estimated conditional mean (see Sections 5.1.3 and 5.1.4).
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sum of squared residuals that are calculated exactly as in the original sample, but on a bootstrap sample, are

referred to as bootstrap analogues and denoted with a b superscript. Only when this calculation is unclear, we

elaborate on it further.

5.1.1 IID recursive bootstrap (IR bootstrap)

(a) The null hypothesis H0 : m = 0 against the alternative hypothesis H1 : m = k.

Given the parameter estimates from RF which we denote by Δ̂(t, T ) =
∑ĥ+1

j=1 1t∈[T̂∗
j−1+1,T̂∗

j
] Δ̂(j), with ĥ ≥ 0

estimated breaks, and the parameter estimates from SE under the null hypothesis m = 0, which we denote by

β̂x and β̂z1 , an IR bootstrap sample is obtained recursively by adding to the estimated conditional mean the

bootstrap residuals obtained by resampling from the joint empirical distribution function of the centered 2SLS

residuals, i.e.

xb′

t = zb′
t Δ̂(t, T ) + vb′

t , yb
t = xb′

t β̂x + zb
1,tβ̂z1 + ub

t = wb′
t β̂ + ub

t , (33)

zb
t =

(
r′

t, y
b
t−1, x

b′

t−1, y
b
t−2, x

b′

t−2, . . . , x
b′

t−q̃2

)′
, zb

1,t =
(
r′
1,t, y

b
t−1, x

b′

t−1, y
b
t−2, x

b′

t−2 . . . , xb′

t−q̃1

)′
, wb

t =
(
xb′

t , zb′
1,t

)′
,

and the bootstrap residuals ub
t and vb

t , t = 1, . . . , T , are independently drawn with replacement from the joint em-

pirical distribution of the centered residuals (ût − ū, (v̂t − v̄)′)′, with ût = yt−x′
tβ̂x − z′

1,tβ̂z1 , ū = T−1
∑T

t=1 ût,

v̂′
t = x′

t − z′
tΔ̂(t, T ) and v̄ = T−1

∑T
t=1 v̂t. Drawing the bootstrap residuals from the joint distribution of the

residuals preserves the contemporaneous correlation between ut and vt. The residuals need not be re-scaled

before bootstrapping since sup-F and sup-Wald are scale invariant.20 Note that for constructing zb
t and zb

1t, in

all bootstraps, we use the true number of lags in the RF and SE, if known, that is, p̃2, p̃1 lags of yt and q̃2, q̃1 lags

of xt. Because zt contains z1,t, p̃2 ≥ p̃1 and q̃2 ≥ q̃1. The starting values for the recursions in (33) were set equal

to the first observations in the original sample, that is yb
s = ys, s = 1, . . . , p̃2, and xb′

s = x′
s, s = 1, . . . , q̃2, in line

with Davidson and MacKinnon (1993), but they can also be drawn at random from the full original sample (see

Berkowitz and Kilian (2000)).

The IR bootstrap analogue of (10) for testing H0 : m = 0 against H1 : m = k is

sup -F b
T = sup

λ∈Λε

F b
T (λ), F b

T (λ) =

(
T − (k + 1)p

kp

)(
SSRb

0 − SSRb
k(λ; β̂

b
(λ))

SSRb
k(λ; β̂

b
(λ))

)

, (34)

where F b
T (λ) is the bootstrap analogue of FT (λ) defined in (9), using SSRb

0 and SSRb
k(λ; β̂

b
(λ)) as the bootstrap

analogues of SSR0 and SSRk(λ; β̂(λ)). In computing these bootstrap analogues, the regressors generated from

the first-stage use the ĥ-break fraction partition π̂ previously estimated on the original sample. So the RF break

fraction estimates are not bootstrapped, because they are converging fast enough so that their randomness does

not affect the results. More exactly, we use x̂b′

t = zb′
t Δ̂b(t, T ), ŵb

t =
(
x̂b′

t , zb′
1,t

)′
, and we let Δ̂b(t, T ) be the

bootstrap analogue of Δ̂(t, T ), i.e.

Δ̂b(t, T ) =
ĥ+1∑

j=1

1t∈[T̂∗
j−1+1,T̂∗

j
]Δ̂

b
(j), Δ̂b

(j) =






T̂∗
j∑

t=T̂∗
j−1+1

zb
t z

b′

t






−1




T̂∗
j∑

t=T̂∗
j−1+1

zb
t x

b′

t




 . (35)

To show the asymptotic validity of the IR bootstrap based on (34), we impose the following assumption.

Assumption IR(a). Assumptions 1, 4-12 hold. In addition,

20See for example: Flachaire (1999), Davidson (2007), Davidson and MacKinnon (2010).
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(i) E(εtε
′
tεt−jε

′
t−i) = 0 for all t, i 6= j, i ≥ 1, j ≥ 1.

(ii) E(εtε
′
tεt−iε

′
t−i) = Ω2 is uniformly bounded for all t, i ≥ 0.

(iii) yb
t and xb

t are obtained as in (33) with the bootstrap residuals such that ub
t = ûςt

− ū, vb
t = v̂ςt

− v̄ with

ςt
IID
∼ U(1, T ), t = 1, . . . , T .

Assumption IR(a)(i),(ii) are homogeneity assumptions on the cross-moments of εtεt−i and εtεt−j , implied

by Assumptions 9 and 12, but stated here nevertheless, for clarity and ease of comparison to the corresponding

Assumption WR(a). For example, Assumption IR(a)(i) is implied by the martingale diffference Assumption

12(i), but it is more general. Assumption IR(a)(ii) does not allow εt to follow a GARCH model21, or to ex-

hibit (shrinking) variance breaks. These restrictions make sense as the IID bootstrap is not suited to handle

heteroskedasticity. Assumption IR(a)(iii) states that the bootstrap residuals are drawn independently with re-

placement from the joint distribution of the centered residuals, and so they can be written as ub
t = ûςt

− ū and

vb
t = v̂ςt

− v̄ with ςt
IID
∼ U(1, T ).

(b) The null hypothesis H0 : m = 1 against the alternative hypothesis H1 : m = 2.

To test the null of one SE break against one additional SE break, we now consider the bootstrap analogue of

(16). Under the null hypothesis of one SE break, estimated at T̂1 = [T λ̂1], the bootstrap samples are generated

recursively as follows:

xb′

t = z′
tΔ̂(t, T ) + vb′

t , (36)

yb
t = 1t≤T̂1

(
xb′

t β̂x,(1) + zb′

1,tβ̂z1,(1) + ub
t,(1)

)
+ 1t>T̂1

(
xb′

t β̂x,(2) + zb′

1,tβ̂z1,(2) + ub
t,(2)

)
= wb′

t β̂(t, T ) + ub
t , (37)

with β̂(t, T ) = β̂(1)1t≤T̂1
+ β̂(2)1t>T̂1

, β̂(1) =
(
β̂
′
x,(1), β̂

′
z1,(1)

)′
and β̂(2) =

(
β̂
′
x,(2), β̂

′
z1,(2)

)′
the 2SLS estimators

in samples [1, T̂1], respectively [T̂1 + 1, T ], ub
t = 1t≤T̂1

ub
t,(1) + 1t>T̂1

ub
t,(2), vb

t
′ = 1t≤T̂1

vb′

t,(1) + 1t>T̂1
vb′

t,(2), where
(
ub

t,(i), v
b′

t,(i)

)′
, i = 1, 2, are independently drawn with replacement from the joint distribution of the centered

restricted residuals
(
ût,(i) − ū(i), v̂

′
t,(i) − v̄′

(i)

)′
,

ût,(1) = yt − x′
tβ̂x,(1) − z′

1,tβ̂z1,(1), t = 1, . . . , T̂1, (38)

ût,(2) = yt − x′
tβ̂x,(2) − z′1,tβ̂z1,(2), t = T̂1 + 1, . . . , T, (39)

ū1 = T̂−1
1

∑T̂1
t=1 ût,(1), ū2 = (T − T̂1)−1

∑T
t=T̂1+1 ût,(2), and v̂′

t = x′
t−z′

tΔ̂(t, T ), v̂t,(1) = v̂t1t≤T̂1
, v̂t,(2) = v̂t1t>T̂1

,

where v̄(1) and v̄(2) are their sample means (p1 × 1 vectors), respectively.

In the bootstrap samples, we do not re-estimate T̂1 = [T λ̂1], we take it as given, because λ̂1 it converges fast

enough to λ0
1 so that its randomness can be ignored. Note that the bootstrap samples in (36)-(37) are generated

under the null hypothesis of m = 1 breaks in SE. 22

The IR bootstrap analogue of (16) is:

sup -F b
T (2|1) = max

(
SSRb

1(T̂1) − SSRb
1(τ̂1|T̂1)

SSRb
1(T̂1)/(T̂1 − p)

,
SSRb

2(T̂1) − SSRb
2(τ̂2|T̂1)

SSRb
2(T̂1)/(T − T̂1 − p)

)

, (40)

where SSRb
i (T̂1) and SSRb

i (τ i|T̂1) are the bootstrap analogues of SSRi(T̂1) and SSRi(τ i|T̂1) for i = 1, 2, com-

puted with the break T̂1 in the SE and the ĥ-partition π̂ in the RF.

To show the asymptotic validity of the IR bootstrap based on (40), we impose the following assumption.
21Suppose the regressors are exogenous, so that εt = ut. Also let ut follow a GARCH process. Then u2

t is an ARMA process, so

E(εtε′tεt−iε
′
t−i) = E(u2

t u2
t−i) will depend on i in general.

22 We can generalise (37) to m > 1 breaks in SE, in which case β̂(t, T ) =
∑m+1

i=1
β̂(i), where β̂(i) is the estimate for the sub-sample

[T̂i−1 + 1, T̂i].

18



Assumption IR(b). Assumptions 2-3 and Assumption IR(a)(i)-(ii) hold. Additionally,

(iii) yb
t and xb

t are obtained as in (36) and (37) with the bootstrap residuals such that ub
t,(i) = ûςt,(i) − ū(i),

vb
t,(i) = v̂ςt,(i) − v̄(i), i = 1, 2, with ςt,(1)

IID
∼ U(1, T̂1), ςt,(2)

IID
∼ U(1, T − T̂1).

Assumption IR(b)(iii) highlights the fact that bootstrap residuals are drawn independently and with replace-

ment from the joint distribution of the centered 2SLS residuals of each of the two subsamples, i.e. {ût− ū(1), v̂t−

v̄(1)}
T̂1
t=1 and {ût − ū(2), v̂t − v̄(2)}T

t=T̂1+1
, so that they can be written ub

t,(i) = ûςt,(i)
− ū(i), vb

t,(i) = v̂ςt,(i)
− v̄(i),

i = 1, 2, where ςt,(1)
IID
∼ U(1, T̂1), t = 1, . . . , T̂1 and ςt,(2)

IID
∼ U(1, T − T̂1), t = 1, . . . , (T − T̂1).

5.1.2 Wild recursive bootstrap (WR bootstrap)

(a) The null hypothesis H0 : m = 0 against the alternative hypothesis H1 : m = k.

The bootstrap samples are generated as for the IR(a) bootstrap, recursively as in (33) under the null hypothesis

that there are m = 0 breaks in SE, except that the bootstrap residuals are obtained as ub
t = ûtςt and vb

t = v̂tςt,

where ût and v̂t are the (non-centered) residuals under the null hypothesis, ςt
IID
∼ (0, 1) and they are independent

of ût and v̂t. For the WR bootstrap, the residuals need not to be centered because ςt has mean zero, so ub
t and

vb
t have mean zero.

The recursive wild bootstrap analogue of the sup-Wald statistic from (11) is

sup -Waldb
T = sup

λ∈Λε

Waldb
T (λ), (41)

with Waldb
T (λ) = T β̂

b
(λ)′R′

k

(
RkV̂ b(λ)R′

k

)−1

Rkβ̂
b
(λ) the bootstrap analogue of WaldT (λ); β̂

b
(λ) the boot-

strap analogue of β̂(λ) based on the k-partition λ under the alternative of k breaks;

V̂ b(λ) = diag
(
V̂ b

(1), . . . , V̂
b
(k)

)
; Q̂b

(i) = T−1
Ti∑

t=Ti−1+1

ŵb
t ŵ

b′
t ; V̂ b

(i) =
(
Q̂b

(i)

)−1

M̂ b
(i)

(
Q̂b

(i)

)−1

; (42)

M̂ b
(i) = T−1

∑Ti

t=Ti−1+1 Υ̂ b′(t, T )zb
t

(
ub

t + vb′
t β̂

b

x,(i)

)(
β̂

b′
x,(i)v

b
t + ub

t

)
zb′

t Υ̂ b(t, T ) the bootstrap analogue of M̂(i)

from (14) for i = 1, . . . , k + 1; Υ̂ b(t, T ) = (Δ̂b(t, T ), Π); Δ̂b(t, T ) the bootstrap analogue of Δ̂(t, T ) computed

using the ĥ-partition π̂ which was estimated on the original sample.

To show the validity of the WR bootstrap based on (41), we need to restrict Assumption 13(ii) and impose

additional assumptions.

Assumption 14. (i) Assumption 12(i) holds. In addition, for all l > 0,

(ii) lim
T→∞

T−1
∑[Ts]

t=1 E(εt−lε
′
t−l) = sΩ uniformly in s;

(iii) lim
T→∞

T−1
∑[Ts]

t=1 E(εt−lε
′
t−l | Ft−l) = lim

T→∞
T−1

∑[Ts]
t=1 Ωt−l = sΩ in probability uniformly in s. Moreover,

we have that E ‖εt−lε
′
t−l − E(εt−lε

′
t−l | Ft−l)‖d̄ < ∞, for some d̄ > 1.

Both Assumptions 13 and 14 impose a global homoskedasticity condition; see Davidson (1994) pp.454-455

and Cavaliere, Rahbek, and Taylor (2010) p.1723 and Note 1. They imply that E(εtε
′
t), E((εtε

′
t) ⊗ (ztz

′
t)) and

E(εtε
′
t | Ft) can change over time provided they are asymptotically stable.23 Assumptions 13(ii) and 14 allow,

for example, for models with seasonal heteroskedasticity (see Cavaliere, Rahbek, and Taylor (2010)), shrinking

23We mean that 1/(T (s′ − s))
∑[Ts′]

t=[Ts]+1
E(εtε′t) → Ω, 1/(T (s′ − s))

∑[Ts′]

t=[Ts]+1
E(εtε′t | Ft)

p
→ Ω, 1/(T (s′ −

s))
∑[Ts′]

t=[Ts]+1
E((εtε′t) ⊗ (ztz′t)) → Σ̃, for all s′ < s ∈ [0, 1].
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breaks in the conditional and unconditional variance of the error term εt, and shrinking breaks in the marginal

distribution of the instruments zt. Assumption 14(ii) is weaker than Assumption A(ii) in Gonçalves and Kilian

(2004) which requires covariance stationary error terms.

Assumption WR(a). Assumptions 1, 4-11, and 14 hold. In addition, Assumption 13(ii) holds with:

(i) lim
T→∞

T−1
∑[Ts]

t=1 E((εtε
′
t) ⊗ (εt−iε

′
t−j)) = 0 uniformly in s, i 6= j, for all t, i ≥ 1, j ≥ 1;

(ii) lim
T→∞

T−1
∑[Ts]

t=1 E((εtε
′
t) ⊗ (εt−iε

′
t−i)) = sΣ̃ε,ii uniformly in s, where

∥
∥
∥Σ̃ε,ii

∥
∥
∥ < ∞, for all t, i ≥ 0. When

i = 0, Σ̃ε,00 = Ω ⊗ Ω;

(iii) lim
T→∞

T−1
∑[Ts]

t=1 E((εtε
′
t) ⊗ (εt−ir

′
t−j)) = 0 uniformly in s, for all t, i ≥ 1, j ≥ 0.

Also, we have the following conditions:

(iv) lim
T→∞

T−1
∑[Ts]

t=1 E(εtε
′
t | Ft) ⊗

(
εt−iε

′
t−i

)
= sΣ̃ε,ii in probability uniformly in s, for all i ≥ 1;

(v) lim
T→∞

T−1
∑[Ts]

t=1 E(εt−lε
′
t−l | Ft−l) ⊗

(
rt−ir

′
t−j

)
= sΣ̃r,ij in probability uniformly in s, for all i, j, l ≥ 0;

(vi) yb
t and xb

t are obtained as in (33) with the bootstrap residuals such that ub
t = ûtςt and vb

t = v̂tςt where

ςt
IID
∼ (0, 1), t = 1, . . . , T ; Eb |ςt|

4+ε = c̄ < ∞, for some ε > 0, for all t.

These are further homogeneity conditions that facilitate the WR bootstrap validity proofs, in the absence

of the martingale difference and conditional homoskedasticity Assumption 12 on εt. To understand Assump-

tion WR(a)(i)-(iii), examine Assumption 13 and notice that it allows E((εtε
′
t) ⊗ (εt−iε

′
t−j)) 6= 0 for i 6= j.

However, by the WR bootstrap design, Eb((εb
tε

b′

t ) ⊗ (εb
t−iε

b′

t−j)) = (ε̂tε̂
′
t) ⊗ (ε̂t−iε̂

′
t−j) Eb(ς2

t ςt−iςt−j) = (ε̂tε̂
′
t) ⊗

(ε̂t−iε̂
′
t−j) Eb(ς2

t ) Eb(ςt−i) Eb(ςt−j) = 0 by Assumption WR(a)(vi) if i 6= j since Eb(ςt) = 0 for all t. In the WR

bootstrap proofs, we need partial sums of both these quantities to converge to the same number; therefore, we

impose Assumption WR(a)(i). By similar reasoning, we impose Assumption WR(a)(iii) to mimic the condition

Eb((εb
tε

b′

t ) ⊗ (εb
t−ir

′
t−j)) = 0 for E((εtε

′
t) ⊗ (εt−ir

′
t−j)) in the limit, at all t, i ≥ 1, j ≥ 0 .

Denote by s ˜̃Σ = s




˜̃Σu

˜̃Σuv

˜̃Σ′
uv

˜̃Σv



 = lim
T→∞

VT (s) when Assumption 13 restricted by Assumption WR(a)(i)-

(iii) is satisfied.

Assumption WR(a)(ii) and Assumption WR(a)(iv) can be interpreted as global homoskedasticity assumptions.

Unlike Assumption IR(a)(ii), Assumption WR(a)(ii) allows εt to follow (G)ARCH models and stochastic volatility

models with finite fourth moments and symmetric errors, and to exhibit shrinking variance breaks. Assumption

WR(a)(v) is just a regularity condition, and Assumption WR(a)(vi) states that the bootstrap residuals are

obtained by multiplying the actual residuals by a random variable, independent of the data, with mean 0 and

variance 1.

(b) The null hypothesis H0 : m = 1 against the alternative hypothesis H1 : m = 2.

The bootstrap samples are generated as for the IR bootstrap case (b), recursively as in (36)-(37) under the

null hypothesis that there are m = 1 breaks in SE, except that the bootstrap residuals are ub
t,(i) = ût,(i)ςt,(i) and

vb
t,(i) = v̂t,(i)ςt,(i), i = 1, 2, where ςt,(i)

IID
∼ (0, 1).

The WR bootstrap analogue of (18) is

Waldb
T (2|1) = max

(
Waldb

T,1(2|1; T̂1), Waldb
T,2(2|1; T̂1)

)
, (43)
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where Waldb
T,1(2|1; T̂1) and Waldb

T,2(2|1; T̂1) are the bootstrap sup-Wald statistics for testing for 0 breaks against

one break in the sub-sample before T̂1 and after T̂1 respectively:

Waldb
T,1(2|1; T̂1) = sup

τ1∈Λ1

T β̂
b
(η1)

′R′
1[R1V̂

b(η1)R
′
1]

−1R1β̂
b
(η1), (44)

Waldb
T,2(2|1; T̂1) = sup

τ2∈Λ2

T β̂
b
(η2)

′R′
1[R1V̂

b(η2)R
′
1]

−1R1β̂
b
(η2), (45)

where β̂
b
(ηj) =

(

β̂
b′

(1)(ηj), β̂
b′

(2)(ηj)

)′

are the bootstrap 2SLS counterparts of β̂(ηj) =
(
β̂
′
(1)(ηj), β̂

′
(2)(ηj)

)′
for

sub-sample Ii(ηj). As for the original sample, the second break can be located before the first break (j = 1) or

after the first break (j = 2). Let Q̂b
(i)(ηj) = T−1

∑
t∈Ii(ηj)

ŵb
t ŵ

b′
t , V̂ b(ηi) = diag

(
V̂ b

(1)(ηi), V̂
b
(2)(ηi)

)
, i, j = 1, 2,

V̂ b
(i)(ηj) =

(
Q̂b

(i)(ηj)
)−1

M̂ b
(i)(ηj)

(
Q̂b

(i)(ηj)
)−1

, (46)

and M̂ b
(i)(ηj) = T−1

∑
t∈Ii(ηj)

Υ̂ b′(t, T )zb
t

(
ub

t + vb′

t β̂
b

x,(i)(ηj)
)(

β̂
b′

x,(i)(ηj)v
b
t + ub

t

)

zb′

t Υ̂ b(t, T ), i, j = 1, 2.

To show the validity of the WF bootstrap based on (43) we need the following assumption.

Assumption WR(b). Assumption WR(a) holds with (vi) replaced by

(vi) yb
t and xb

t are obtained as in (36) and (37) with the bootstrap residuals such that ub
t,(i) = ût,(i)ςt,(i) and

vb
t,(i) = v̂t,(i)ςt,(i) where ςt,(i)

IID
∼ (0, 1), i = 1, 2; Eb |ςt|

4+ξ = c̄ < ∞, for some ξ > 0, for all t.

Assumption WR(b)(vi) states that the bootstrap residuals are obtained by multiplying the actual residuals

by a random variable (independent of the data, with mean 0 and variance 1) in each of the two subsamples of

residuals, i.e. {ût,(1), v̂t,(1)}
T̂1
t=1 and {ût,(2), v̂t,(2)}T

t=T̂1+1
.

5.1.3 IID fixed-design bootstrap (IF bootstrap)

(a) The null hypothesis H0 : m = 0 against the alternative hypothesis H1 : m = k.

Given the parameter estimates from RF, Δ̂(t, T ), with ĥ ≥ 0 estimated breaks, and the parameter estimates

from SE, β̂x and β̂z1 , under the null hypothesis m = 0, an IF bootstrap sample is obtained by adding to the

estimated conditional mean where all the regressors are kept fixed (including the lagged variables) the bootstrap

residuals obtained by resampling from the joint empirical distribution function of the centered 2SLS residuals:

xb′
t = z′

tΔ̂(t, T ) + vb′
t , yb

t = xb′
t β̂x + z′

1,tβ̂z1 + ub
t = wb′

t β̂ + ub
t , (47)

where vb′

t and ub
t are drawn as for the IR bootstrap case (a), wb

t =
(
xb′

t , z′
1,t

)′
which is different from wb

t in

(33) since z1,t is kept fixed in the bootstrap. The regressors z1t and zt are as in (2) and (4). The IF bootstrap

analogue of (10) is computed as in (34) but the bootstrap samples are generated as in (47), ŵb
t =

(
x̂b′

t , z′
1,t

)′
,

x̂b′

t = z′
tΔ̂

b(t, T ), and Δ̂b(t, T ) is the bootstrap counterpart of Δ̂(t, T ) with fixed regressors zt and using the RF

break-points T̂ ∗
j estimated in the original sample.

To show the asymptotic validity of the IF bootstrap based on sup-F test calculated as in (34), but with the

bootstrap samples generated as in (47), we need the following assumption.

Assumption IF(a). Assumption IR(a)(i)-(ii) holds and

(iii) yb
t and xb

t are obtained as in (47) with the bootstrap residuals such that ub
t = ûςt

− ū, vb
t = v̂ςt

− v̄ with

ςt
IID
∼ U(1, T ), t = 1, . . . , T .
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Notice that Assumption IR(a)(iii) and Assumption IF(a)(iii) are identical, except that for the IF bootstrap

zt and z1,t are kept fixed.

(b) The null hypothesis H0 : m = 1 against the alternative hypothesis H1 : m = 2.

Given the estimates of the RF estimated breaks ĥ ≥ 0, the RF parameter estimates Δ̂(t, T ), the SE break at

T̂1 and the SE parameter estimates before the break, β̂x,(1) and β̂z1,(1), and after the break, β̂x,(2) and β̂z1,(2),

the bootstrap samples are generated by adding to the estimated conditional mean (where all the regressors,

including lagged regressors, are kept fixed) the bootstrap residuals obtained by resampling from the empirical

distribution function of the centred 2SLS residuals, i.e.

xb′

t = z′
tΔ̂(t, T ) + vb′

t , (48)

yb
t = 1t≤T̂1

(
xb′

t β̂x,(1) + z′
1,tβ̂z1,(1) + ub

t,(1)

)
+ 1t>T̂1

(
xb′

t β̂x,(2) + z′
1,tβ̂z1,(2) + ub

t,(2)

)
= wb′

t β̂(t, T ) + ub
t , (49)

where ub
t,(i) and vb

t,(i) are drawn as for the IR bootstrap case (b). The IF bootstrap analogue of (16) is computed

as in (40) with ŵb
t = (x̂b′

t , z′
1,t)

′.

To show the asymptotic validity of the IF bootstrap of the sup-F test based on (40), but with the bootstrap

samples generated as in (48)-(49), we need the following assumption.

Assumption IF(b). Assumption IF(a) holds, except for (iii) which is replaced by

(iii) yb
t and xb

t are obtained as in (48) and (49) with the bootstrap residuals such that ub
t,(i) = ûςt,(i) − ū(i),

vb
t,(i) = v̂ςt,(i) − v̄(i), i = 1, 2, where ςt,(1)

IID
∼ U(1, T̂1), ςt,(2)

IID
∼ U(1, T − T̂1).

Note again that Assumption IR(b)(iii) and Assumption IF(b)(iii) are identical, except that for the IF bootstrap

zt and z1,t are kept fixed.

5.1.4 Wild fixed-design bootstrap (WF bootstrap)

(a) The null hypothesis H0 : m = 0 against the alternative hypothesis H1 : m = k.

The bootstrap samples are generated as in (47), with the regressors as in (2) and (4) respectively, and vb
t

and ub
t are generated as for the WR bootstrap case (a). The WF bootstrap analogue of the statistic from

(11) is calculated as in (41), with Q̂b
(i) = T−1

∑Ti

t=Ti−1+1 wb
tw

b′
t in (42), where wb

t = (x̂b′
t , z′

1,t)
′, and M̂ b

(i) =

T−1
∑

t∈Ii
Υ̂ b′(t, T )zt

(
ub

t + vb′

t β̂
b

x,(i)

)(

β̂
b′

x,(i)v
b
t + ub

t

)

z′
tΥ̂

b(t, T ), the bootstrap analogue of M̂(i) from (14), i =

1, . . . , k + 1.

The WF bootstrap is valid under a less stringent assumption than Assumption WR(a). While for the WR

bootstrap, we need to impose the equalities Eb((εb
tε

b′

t ) ⊗ (εb
t−iε

b′

t−j)) = 0 and Eb((εb
tε

b′

t ) ⊗ (εb
t−ir

′
t−j)) = 0

also for the original sample, for the WF bootstrap, due to its nonrecursive nature, we only need the values

Eb((εb
tε

b′

t ) ⊗ (εt−iε
′
t−j)) and Eb((εb

tε
b′

t ) ⊗ (εt−ir
′
t−j)) to be mirrored in the original sample. Since both these

latter values can be non-zero, we do not need to impose Assumption WR(a)(i) and (iii).

Assumption WF(a). Assumptions 1, 4-11, 13(ii), 14 and Assumption WR(a)(v) hold. In addition,

(i) lim
T→∞

T−1
∑[Ts]

t=1 E(εtε
′
t | Ft) ⊗ (εt−iε

′
t−j) = sΣ̃ε,ij in probability, uniformly in s, for all t, i ≥ 1, j ≥ 1.

(ii) lim
T→∞

T−1
∑[Ts]

t=1 E(εtε
′
t | Ft) ⊗ (εt−ir

′
t−j) = sΣ̃εr,ij in probability, uniformly in s, for all t, i ≥ 1, j ≥ 0.

(iii) yb
t and xb

t are obtained as in (47) with the bootstrap residuals such that ub
t = ûtςt and vb

t = v̂tςt where

ςt
IID
∼ (0, 1), t = 1, . . . , T ; Eb |ςt|

4+ξ = c̄ < ∞, for some ξ > 0. for all t.
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The WF bootstrap is more generally applicable than the WR bootstrap since Assumption WF(a)(i)-(ii) does

not restrict Assumption 13(ii) by Assumption WR(a)(i), (iii), thus allowing for leverage effects in the form of

an asymmetric response of volatility to positive and negative shocks of the same absolute magnitude, i.e. the

popular EGARCH model. Assumption WF(a)(iii) and Assumption WR(a)(vi) are identical, except that for the

WF bootstrap zt and z1,t are kept fixed.

(b) The null hypothesis H0 : m = 1 against the alternative hypothesis H1 : m = 2.

The bootstrap samples are generated as for the IF bootstrap case (b) with the bootstrap residuals drawn

as for the WR bootstrap case (b). The WF bootstrap analogue of (18) is calculated as in (43) with wb
t =

(x̂b′
t , z′

1,t)
′ (which is different from ŵt in case (a) since it takes into account the break at T̂1), and M̂ b

(i)(ηj) =

T−1
∑

t∈Ii(ηj)
Υ̂ b′(t, T )zt

(
ub

t + vb′

t β̂
b

x,(i)(ηj)
)(

β̂
b′
x,(i)(ηj)v

b
t + ub

t

)
z′

tΥ̂
b(t, T ), i, j = 1, 2.

To show the validity of the WF bootstrap based on (43), but with the bootstrap samples generated as

mentioned above, we need the following assumption.

Assumption WF(b). Assumption WF(a) holds, except that (iii) is replaced by

(iii) yb
t and xb

t are obtained as in (49) and (48) with the bootstrap residuals such that ub
t,(i) = ût,(i)ςt,(i) and

vb
t,(i) = v̂t,(i)ςt,(i) where ςt,(i)

IID
∼ (0, 1), i = 1, 2; Eb |ςt|

4+ξ
< ∞, for some ξ > 0. for all t.

Assumption WF(b)(iii) and Assumption WR(b)(vi) are identical, except that for the WF bootstrap zt and

z1,t are kept fixed.

5.2 Validity of bootstrap tests

In the following theorems, we prove that the difference between the bootstrap distribution and the asymptotic

distribution of the sup-F and sup-Wald statistics converges uniformly in probability to zero.

Theorem 5. Under Assumption IR(a) for the IR bootstrap or Assumption IF(a) for the IF bootstrap:

sup
c∈R

∣
∣P b

(
sup -F b

T ≤ c
)
− P (sup -FT ≤ c)

∣
∣ p
→ 0

as T → ∞, where P b denotes the probability measure induced by the IR bootstrap or the IF bootstrap, sup-FT

is given in (10), and sup-F b
T is given in (34) and computed as described in Assumption IR(a)(iii) for the IR

bootstrap or as described in Assumption IF(a)(iii) for the IF bootstrap.

Theorem 5 shows that under Assumption IR(a) or Assumption IF(a) the statistics sup -F b
T and sup -FT have

the same asymptotic distribution given in Theorem 1.

Theorem 6. Under Assumption WR(a) for the WR bootstrap or Assumption WF(a) for the WF bootstrap:

sup
c∈R

∣
∣P b

(
sup -Waldb

T ≤ c
)
− P (sup -WaldT ≤ c)

∣
∣ p
→ 0

as T → ∞, where P b denotes the probability measure induced by the WR bootstrap or the WF bootstrap, sup-

WaldT is given in (11), and sup-Waldb
T is given in (41) and computed as described in Assumption WR(a)(vi)

for the WR bootstrap or as described in Assumption WF(a)(iii) for the WF bootstrap.

Theorem 6 shows that under Assumption WR(a) or Assumption WF(a) the statistics sup -Waldb
T and

sup -WaldT have the same asymptotic distribution given in Theorem 2.
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Remark 1. Under Assumption WF(a), sup -WaldT ⇒ supλ∈Λε

{
K̃∗′(λ; π0) [H∗(λ) ⊗ V ∗] K̃∗(λ; π0)

}
with

V ∗ = Υ 0(Υ 0′
Σ̃1Υ

0)−1Υ 0′
, where Σ̃1 is as in Definition B2 of the Appendix B below, and the covariance of

the Gaussian process K̃∗(λ; π0) satisfies Assumption 13(ii) (included in Assumption WF(a)), namely K̃∗(λ; π0)

is defined as in Definition 3 with D̃(∙) ≡ Ñ ′
1W (∙), D̃∗(∙) ≡ ˜̃W (∙)β0

x where Ñ ′
1Ñ1 = Σ̃u, Ñ ′

1Ñ2 = Σ̃uv and

Ñ ′
2Ñ2 = Σ̃v; see the definitions just after (28) and replace Σu, Σuv and Σv with Σ̃u, Σ̃uv and Σ̃v.

Remark 2. Under Assumption WR(a), sup -WaldT ⇒ supλ∈Λε

{
K̃∗′(λ; π0) [H∗(λ) ⊗ V ∗] K̃∗(λ; π0)

}
with

V ∗ = Υ 0(Υ 0′ ˜̃Σ1Υ
0)−1Υ 0′

where ˜̃Σ1 is as in Definition B2 of the Appendix B, and the covariance of the Gaussian

process K̃∗(λ; π0) satisfies Assumption WR(a), namely K̃∗(λ; π0) is defined as in Definition 3 with D̃(∙) ≡

Ñ ′
1W (∙), D̃∗(∙) ≡ ˜̃W (∙)β0

x where Ñ ′
1Ñ1 = ˜̃Σu, Ñ ′

1Ñ2 = ˜̃Σuv and Ñ ′
2Ñ2 = ˜̃Σv; see the definitions just after

(28) and replace Σu, Σuv and Σv with ˜̃Σu, ˜̃Σuv and ˜̃Σ.

Theorem 7. Under Assumption IR(b) for the IR bootstrap and Assumption IF(b) for the IF bootstrap:

sup
c∈R

∣
∣P b

(
sup -F b

T (2|1) ≤ c
)
− P (sup -FT (2|1) ≤ c)

∣
∣ p
→ 0

as T → ∞, wherePb denotes the probability measure induced by the IR bootstrap or the IF bootstrap, FT (2|1) is

given in (16), and sup -F b
T (2|1) is given in (40) and computed as described in Assumption IR(b)(iii) for the IR

bootstrap or as described in Assumption IF(b)(iii) for the IF bootstrap.

Theorem 7 shows that under Assumption IR(b) or Assumption IF(b) the statistics FT (2|1) and F b
T (2|1) have

the same asymptotic distribution given in Theorem 3.

Theorem 8. Under Assumption WR(b) for the WR bootstrap and Assumption WF(b) for the WF bootstrap:

sup
c∈R

∣
∣P b

(
sup -Waldb

T (2|1) ≤ c
)
− P (sup -WaldT (2|1) ≤ c)

∣
∣→ 0

as T → ∞, where P b denotes the probability measure induced by the WR bootstrap or the WF bootstrap,

sup -WaldT (2|1) is given in (18), sup -Waldb
T (2|1) is given in (43) which is computed as described in Assumption

WR(b)(vi) for the WR bootstrap or as described in Assumption WF(b)(iii) for the WF bootstrap.

Remark 3. Theorem 8 shows that under Assumption WR(b) or Assumption WF(b) the statistics WaldT (2|1)

and Waldb
T (2|1) have the same asymptotic distribution given in Theorem 4. For Theorem 8, the Gaussian

process K̃∗
i (ηi; π

0, λ0
1), i = 1, 2, from Theorem 4, is redefined such that D̃(∙) ≡ Ñ ′

1W (∙), D̃∗(∙) ≡ ˜̃W (∙)β0
x with

(i) Ñ ′
1Ñ1 = Σ̃u, Ñ ′

1Ñ2 = Σ̃uv and Ñ ′
2Ñ2 = Σ̃v under Assumption 13(ii) included in Assumption WF(b), see

the definitions just after (28) and replace Σu, Σuv and Σv with Σ̃u, Σ̃uv and Σ̃v; and with (ii) Ñ ′
1Ñ1 = ˜̃Σu,

Ñ ′
1Ñ2 = ˜̃Σuv and Ñ ′

2Ñ2 = ˜̃Σv under Assumption WR(a)(i)-(iii) which is part of Assumption WR(b) and it

restricts Assumption 13(ii), see the definitions just after (28) and replace Σu, Σuv and Σv with ˜̃Σu, ˜̃Σuv and
˜̃Σv.

Remark 4. The proofs of Theorems 5-8 also include the proofs for the validity of the bootstraps for parameter

estimates under the null hypotheses considered. See for example the arguments in the Supplemental Appendix

leading to (2.97), (2.98), (2.109) from the proof of Theorem 5 or the arguments leading to (2.135)-(2.136) from

the proof of Theorem 7.

Remark 5. When there are no endogenous regressors in SE, then Theorems 1-4 hold with wt = z1,t instead

of wt = (x′
t, z

′
1,t)

′. In particular, the asymptotic distributions of the sup-FT , sup -FT (2|1), sup-WaldT and
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sup -WaldT (2|1) from Theorems 1-4 are as in BP and are generated exclusively by partial sums of {z1,tut}. The

IR and WR bootstrap samples are obtained by recursively generating yb
t (only): yb

t = zb′
1,tβ̂z1 + ub

t for testing

H0 : m = 0 against H1 : m = k with k = 1, 2, or yb
t = 1t≤T̂1

(
zb′

1,tβ̂z1,(1) + ub
t,(1)

)
+ 1t>T̂1

(
zb′

1,tβ̂z1,(2) + ub
t,(2)

)

for testing H0 : m = 1 against H1 : m = 2, where zb
1,t =

(
r′
1,t, y

b
t−1, x

′
t−1, y

b
t−2, x

′
t−2, . . . , x

′
t−q̃1

)′
. The IF

and WF bootstrap samples are obtained by only adding to the conditional mean of yt the IF and WF boot-

strap residuals, i.e. yb
t = z′

1,tβ̂z1 + ub
t for testing H0 : m = 0 against H1 : m = k with k = 1, 2, or

yb
t = 1t≤T̂1

(
z′

1,tβ̂z1,(1) + ub
t,(1)

)
+ 1t>T̂1

(
z1,tβ̂z1,(2) + ub

t,(2)

)
for testing H0 : m = 1 against H1 : m = 2,

where z1,t =
(
r′
1,t, yt−1, x

′
t−1, yt−2, x

′
t−2, . . . , x

′
t−q̃1

)′
, and for all bootstraps β̂z1 , β̂z1,(1), β̂z1,(2) are the param-

eter estimates under the null hypothesis. With these changes, the Theorems 5-8 hold with wt = z1,t instead of

wt = (x′
t, z

′
1,t)

′.

Remark 6. When there are endogenous regressors in SE, but the RF is stable, then Theorems 1-4 hold with x̂t

computed over the full sample, i.e. x̂t = z′
tΔ̂ and Δ̂ = (

∑T
t=1 ztz

′
t)

−1
∑T

t=1 ztx
′
t. Also, Theorems 5-8 hold with

xb′

t = zb′

t Δ̂ + vb′

t for the IR and WR bootstraps, and with xb′

t = z
′

tΔ̂ + vb′

t for the IF and WF bootstraps.

Remark 7. Theorems 1-8 can be straightforwardly generalised to more than two SE breaks.

6 Simulation study

In this section, we investigate the finite sample performance of the bootstrap versions of the sup-F and sup-Wald

statistics described in Section 5. We consider a number of designs that involve stability or instability in the SE

and/or the RF. In each case, the performance of the bootstrap tests is compared to that of the corresponding

tests based on the limiting distributions tabulated by BP. It should be noted that the latter limiting distributions

are only valid in scenarios involving stable RFs. For the designs with unstable RFs, we also report rejection

frequencies for asymptotic tests based on the correct limiting distribution derived in Section 4.24

Specifically, we consider the following scenarios:

1) There is no break in RF and no break in the structural equation SE. We test H0 : 0 break in SE against

H1 : 1 break in SE. The data generating process (DGP) is as follows:

xt = αx + r′
tδ

0
r + δ0

x1
xt−1 + δ0

y1
yt−1 + vt, for t = 1, . . . , T, (50)

yt = αy + xtβ
0
x + β0

r1
r1,t + β0

y1
yt−1 + ut, for t = 1, . . . , T. (51)

We consider αx = αy = 1, δ0
r = (1.5, 1.5, 1.5, 1.5) is a 4 × 1 parameter vector; rt = (r1,t, r

′
2,t)

′, rt
IID
∼

N(04, I4); β0
x = −0.6, β0

r1
= 1.5; δ0

x1
= δ0

y1
= 0.1, β0

y1
= −0.8. For these parameter values, the VARX(1,0)

corresponding to (50)-(51) has roots outside the unit circle: 1.17 and -10.67. We assume that the error

terms εt = (ut, vt)′ are:

(A) homoskedastic symmetric: ut and vt
IID
∼ N(0, 1), cov(ut, vt) = 0.5, t = 1, . . . , T .

(B) homoskedastic skewed: ut = (εu
t − 2)/2, vt = (εv

t − 2)/2, εu
t and εv

t
IID
∼ χ2(2), cov(ut, vt) = 0.5,

t = 1, . . . , T .

(C) conditional heteroskedastic: ũt = σũ,tξũ,t and ṽt = σṽ,tξṽ,t are GARCH(1,1) processes with ξũ,t and

ξṽ,t
IID
∼ N(0, 1), cov(ξũ,t, ξṽ,t) = 0.5, σ2

ũ,t = γ0 + γ1ũ
2
t−1 + γ2σ

2
ũ,t−1, σ2

ṽ,t = γ0 + γ1ṽ
2
t−1 + γ2σ

2
ṽ,t−1,

24The critical values are obtained by simulating the sampling distribution of the test statistic in question in samples of size 1000

and are based on 10, 000 replications.
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where γ0 = γ1 = γ2 = 0.1. We standardize et = (ut, vt) by the unconditional variance var(ut) =

var(vt) = γ0/(1−γ1−γ2) . Hence we consider ut = ũt/
√

var(ut) and vt = ṽt/
√

var(vt), T = 1, . . . , T .

For cases (A) and (B) we test H0 : 0 break in SE against H1 : 1 break in SE using the sup-F test based

on the critical values of the asymptotic distribution derived in BP and Bai and Perron (2003)25, and the

critical values obtained using the IR and IF bootstraps.

For the cases (A) and (C) we test H0 : 0 break in SE against H1 : 1 break in SE using the sup-Wald test

based on the critical values in BP,26 and those obtained by the WR and WF bootstraps.

2) There is a break in RF at [T/4] and no break in the structural equation (SE). We test H0 : 0 break in SE

against H1 : 1 break in SE. The DGP is as follows:

xt = αx + r′
tδ

0
r + δ0

x1
xt−1 + δ0

y1
yt−1 + vt, for t = 1, . . . , [T/4], (52)

= −αx − r′
tδ

0
r − δ0

x1
xt−1 − δ0

y1
yt−1 + vt, for t = [T/4] + 1, . . . , T, (53)

yt = αy + xtβ
0
x + β0

r1
r1,t + β0

y1
yt−1 + ut, for t = 1, . . . , T. (54)

We consider the same parameter values as in scenario 1). For the sup-F test we consider the errors as in

cases (A) and (B), and compute the rejection frequencies based on the BP critical values (which do not

take into account the break in RF), BCH critical values (based on the approximation of the asymptotic

distribution from Theorem 1), and the IR and IF bootstraps. For the sup-Wald test we consider the errors

as in cases (A) and (C), and compute the rejection frequencies based on the BP critical values (which

again do not take into account the break in RF), BCH critical values (based on the approximation of the

asymptotic distribution from Theorem 2), and the WR and WF bootstraps.

3) There is no break in RF, but there is a break in SE at [3T/4]. We test H0 : 1 break in SE against H1 : 2

breaks in SE. The DGP is as follows:

xt = αx + r′
tδ

0
r + δ0

x1
xt−1 + δ0

y1
yt−1 + vt, for t = 1, . . . , T, (55)

yt = αy − xtβ
0
x + β0

r1
r1,t − β0

y1
yt−1 + ut, for t = 1, . . . , [3T/4], (56)

= −αy + xtβ
0
x − β0

r1
r1,t + β0

y1
yt−1 + ut, for t = [3T/4] + 1, . . . , T. (57)

We consider the same parameter values as in scenario 1). For the sup-F test the errors are as in cases (A)

and (B) for which we compute the rejection frequencies based on the BP critical values, and the IR and IF

bootstraps. For the sup-Wald test, the errors are as in cases (A) and (C) for which we compute rejection

frequencies based on the BP critical values, and the WR and WF bootstraps.

4) There is a break in RF at [T/4] and a break in SE at [3T/4] . We test H0 : 1 break in SE against H1 : 2

breaks in SE. The DGP is as follows:

xt = αx + r′
tδ

0
r + δ0

x1
xt−1 + δ0

y1
yt−1 + vt, for t = 1, . . . , [T/4], (58)

= −αx − r′
tδ

0
r − δ0

x1
xt−1 − δ0

y1
yt−1 + vt, for t = [T/4] + 1, . . . , T, (59)

yt = αy − xtβ
0
x + β0

r1
r1,t − β0

y1
yt−1 + ut, for t = 1, . . . , [3T/4], (60)

= −αy + xtβ
0
x − β0

r1
r1,t + β0

y1
yt−1 + ut, for t = [3T/4] + 1, . . . , T. (61)

25We use their Table 2c with q = 4. Note that their nominal value is α = 1 − α1, while α1 = 0.01, 0.05, 0.1 denote our nominal

values.
26Note that the BP critical values for sup-Wald are the same as the critical for the sup-F .

26



We consider the same parameter values as in scenario 1). For the sup-F test we compute the rejection

frequencies based on the BP critical values (which do not take into account the break in RF), BCH critical

values (based on the approximation of the asymptotic distribution from Theorem 3), and the IR and IF

bootstraps. For the sup-Wald test we compute the rejection frequencies based on the BP critical values

(which do not take into account the break in RF), BCH critical values (based on the approximation of the

asymptotic distribution from Theorem 4), and the WR and WF bootstraps.

For the WR and WF bootstraps the auxiliary distribution (from Assumptions WR(a), WR(b), WF(a), WF(b))

is the Rademacher distribution proposed by Liu (1988) which assigns 0.5 probability to the value ςt = −1 and

0.5 probability to ςt = 1, t = 1, . . . , T . The same ςt is used to obtain both the bootstrap residuals ub
t = ûtςt and

the bootstrap residuals vb
t = v̂tςt in order to preserve the contemporaneous correlation between the error terms.

For the IR and IF bootstraps, the bootstrap residuals ub
t and vb

t are obtained by resampling with replacement

from the joint distribution of the centered residuals
(
ût − T−1

∑T
t=1 ût

)
and

(
v̂t − T−1

∑T
t=1 v̂t

)
. Each scenario

1)-4) was repeated N = 10, 000 times considering T = 120, 240, 480 for the sample size and B = 399 bootstrap

replications.

In Tables 1-8, we report the rejection rates of the IR, IF, WR and WF bootstraps for scenarios 1)-4):

N−1
∑N

j=1 1tj≥tb
1−α1,j

, where α1 = 0.10, 0.05, 0.01 are the nominal values of the tests; tj is the statistic (sup-F or

sup-Wald) computed from the original sample; tb1−α1,j is 1−α1 quantile of the bootstrap distribution calculated

as (1 − α1)(B + 1) bootstrap order statistic from the sample of bootstrap statistics in simulation j = 1, . . . , N .

The rejection rates of the asymptotic test in Tables 1-8 from Appendix C are computed similarly, with tb1−α1,j

replaced by the 1 − α1 quantile of the asymptotic distribution approximated using a large sample, T = 1000,

N = 10000, the errors taken as in case (A), and assuming the date of the breaks in RF and SE is known.

For the sup-Wald tests, the sandwich covariance matrix V̂ (λ) (from (13) and (21)) and its bootstrap counter-

part V̂ b(λ) are estimated using a heteroskedasticity-consistent covariance matrix estimator (HCCME); see e.g.

Davidson and MacKinnon (1993) pp.552-554. We have tried all four versions of the HCCME in Davidson and

MacKinnon (1993): HC0, HC1, HC2, HC3, all giving similar results. In the tables we report the results for

HCCME-HC0. We also considered HAC estimators of the sandwich matrix, but their results are very poor in

finite sample and are omitted.

For the IR and WR bootstraps, the bootstrap samples were generated recursively with start-up values for yb
1

and xb
1 being given by the first observations from the sample (x1, y1); see Davidson and MacKinnon (1993). We

have also considered the case when the start-up values are drawn at random from the full sample of yt’s and xt’s;

see e.g. Berkowitz and Kilian (2000), but the results are similar.

In all tables, the bootstrap samples are generated by imposing the true null hypothesis. We also impose the

true number of breaks in RF (zero breaks for scenarios 1) and 3), and one break which we estimate, for scenarios

2) and 4)). For scenarios 3) and 4), the break in SE is estimated (but not tested for) prior to testing for the

second break in SE. We have experimented with the situation in which the first SE break is estimated and tested

for (H0: 0 SE break against H1: 1 SE break) before testing H0: 1 SE break against H1 : 2 SE breaks, and the

test had very good power (these results are not reported). The value of ε, the cut-off from Assumption 6, was

taken equal to 0.15 which is a typical value used in the literature.

Regarding the sup-F test, as it can be seen from Tables 1-4, the IR bootstrap works the best both when the

error term is homoskedastic and from a symmetric distribution (case (A)) and when it homoskedastic but from

a skewed distribution (case (B)). The IF bootstrap performs satisfactorily, but less well than the IR bootstrap
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since it does not take into account the recursive nature in the DGP.

In Tables 1 and 3, the RF is stable and so the BP critical values are valid asymptotically: for testing no breaks

versus one, the asymptotic test based on BP critical values performs well (Table 1), but for the test of one versus

two breaks, the asymptotic test only has empirical size close to the nominal level in the largest sample (Table 3).

If the RF is unstable then the BP critical values are invalid, and their (incorrect) use in testing no breaks versus

one leads to over-rejection (Table 2), and in testing for one versus two breaks leads to under-rejection (Table

4). When the RF is unstable, valid asymptotic tests can be performed using the critical values derived from the

limiting distributions presented in Section 4. These asymptotic tests possess empirical size equal or very close to

the nominal size in all sample sizes for the test of zero versus 1 break (Table 2), and in the largest sample size

for the test of one versus two breaks (Table 4); in each case see the column headed ’BCH asymptotic’.

Regarding the sup-Wald test, as it can be seen from Tables 5-8, the WR and WF bootstraps work very

well as opposed to the asymptotic tests (BP and BCH) which have large rejection probabilities. In Tables 6

and 8 (when there is a break in RF), the BCH distribution gives better results than the BP distribution as

expected. In particular, it can be noticed from these tables that the actual rejection probabilities based on the

BCH distribution decrease faster than those based on the BP distribution as the sample size increases.

In summary, within the simulation designs we consider, our results make a compelling case for the use of the

bootstrap-based tests.

7 Conclusion

In this paper, we prove the asymptotic validity of the (IID and wild) recursive bootstrap and of the (IID and

wild) fixed-regressor bootstrap for the most popular structural changes tests in dynamic models estimated by

ordinary least squares (OLS) or by two-stage least squares (2SLS) with stable or unstable first stages, when the

location of the break is unknown. This important result has been missing from the literature, although these

bootstraps have been extensively used in many applications in the past few decades. In addition, we derive the

asymptotic distribution of the structural break tests when the model is estimated by 2SLS and the first-stage

equation is unstable. We show that this distribution is different from the one derived in Bai and Perron (1998)

based on OLS and from the one in Hall, Han, and Boldea (2012) based on 2SLS with stable first-stage equation,

since it depends on the number of breaks in the first-stage equation and their relative position. Our simulation

results indicate that these bootstraps perform better than the asymptotic tests of BP/HHB and of this paper,

in particular in the presence of conditional heteroskedasticity.

A Appendix: VARX and VMAX representations of (1) and (3)

To derive the results in this paper, we use a VARX representation of the SE and RF. In this section we give the

VARX representation of (1) and (3) for the Case (I) when there are no breaks in SE (m = 0), but there are

breaks in RF (h > 0), and Case (II) when there are breaks in both SE and RF. For clarity, in Case (II) we

focus on the scenario in which there is a break in SE (m = 1) and there are breaks in RF (h > 0), and the break

in SE could coincide with one of the breaks in RF, but our results also extend to the case when m > 1.

Case(I). When there is no break in SE (m = 0), but there are breaks in RF (h > 0), we can write (1) and
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(3) in the following VARX(p̃,0) form:27

A0ỹt =
p̃∑

i=1

Ai(t, T )ỹt−i + B(t, T )rt + εt, (62)

with Ai(t, T ) =
∑h+1

j=1 Ai,(j)1t∈I∗
j

and B(t, T ) =
∑h+1

j=1 B(j)1t∈I∗
j
, where I∗j is the jth segment of the true RF h-

partition π0, i.e. I∗j = (T ∗
j−1 + 1, . . . , T ∗

j ) = ([Tπ0
j−1] + 1, . . . , [Tπ0

j ]), j = 1, . . . , h + 1, and

A0 =




1 −β0′

x

0p1 Ip1



 , Ai,(j) =




β0

yi
β0′

xi

δ0
yi,(j) Δ0′

xi,(j)



 , B(j) =




β0′

r1
0′

q2

Δ0′

r1,(j) Δ0′

r2,(j)



 , (63)

where the matrices of coefficients A0 and Ai,(j) are of size (p1 + 1) × (p1 + 1); the matrix B(j) is of size

(p1 + 1) × (q1 + q2); β0
r1,(j) is of size q1 × 1; β0

xi
is of size p1 × 1, possibly equal to zero if the SE has less lags

of xt that the RF ( i.e. if q̃1 < p̃, β0
xi

= 0 for i > q̃1); δ0
yi,(j) is of size p1 × 1; Δ0′

xi,(j)
is of size p1 × p1; β0

yi
is a

scalar parameter, possibly equal to zero if the number of lags is p̃1 < p̃ ( i.e. if p̃1 < p̃ then β0
yi

= 0 for i > p̃1),

and 0q2 is a q2 × 1 vector of zeros. Denote

Ci(t, T ) = A−1
0 Ai(t, T ) = A−1

0

h+1∑

j=1

Ai,(j)1t∈I∗
j
, J(t, T ) = A−1

0 B(t, T ), and et = A−1
0 εt. (64)

Then, (62) can be expressed as in (23) (see Section 3).

By Assumption 5, Δ0
(j) = Δ0 + O(T−ρ), hence Ai,(j) = Ai + O(T−ρ), B(j) = B + O(T−ρ), Ci,(j) =

Ci + O(T−ρ), J(j) = J + O(T−ρ), j = 1, . . . , h + 1, where Δ0, Ai, B, Ci and J are taken to be the common

limiting values of Δ0
(j), Ai,(j), B(j), Ci,(j) and J(j) respectively, for all segments I∗j .

Case (II). When there is a break in SE (m = 1) and when there are breaks in RF (h > 0), assume

π0
k−1 < λ0

1 ≤ π0
k, k = 1, . . . , h + 1. Define ` = h if λ0

1 = π0
k; ` = h + 1 if λ0

1 < π0
k. Then,

A0(t, T )ỹt =
p̃∑

i=1

Ai(t, T )ỹt−i + B(t, T )rt + εt, (65)

with A0(t, T ) =
∑2

j=1 A0,(j)1t∈I0
j
, Ai(t, T ) =

∑`+1
j=1 Ai,(j)1t∈I∗0

j
and B(t, T ) =

∑`+1
j=1 B(j)1t∈I∗0

j
, where I0

j =

(T 0
j−1 + 1, . . . , T 0

j ), and if ` = h (the break in SE coincides with one of the breaks in RF), then I∗0j = I∗j =

(T ∗
j−1 + 1, . . . , T ∗

j ), for j = 1, 2, . . . , ` + 1. If ` = h + 1 (the break in SE does not coincide with any of the

breaks in RF), then I∗0j = I∗j = (T ∗
j−1 + 1, . . . , T ∗

j ) if j ≤ k − 1, I∗0k = (T ∗
k−1, . . . , T

0
1 ) = ([Tπ0

k−1], . . . , [Tλ0
1]),

I∗0k+1 = (T 0
1 + 1, . . . , T ∗

k ) = ([Tλ0
1] + 1, . . . , [Tπ0

k]), I∗0j = (T ∗
j−2 + 1, . . . , T ∗

j−1), j = k + 2, . . . , ` + 1, so that

A0,(j) =




1 −β0′

x,(j)

0p1 Ip1



 . (66)

Then if ` = h:

Ai,(j) =









β0

yi,(1) β0
xi,(1)

δ0
yi,(j) Δ0′

xi,(j)



 , for j < k,




β0

yi,(2) β0
xi,(2)

δ0
yi,(j) Δ0′

xi,(j)



 , for j ≥ k,

and B(j) =









β0′

r1,(1) 0′
q2

Δ0′

r1,(j) Δ0′

r2,(j)



 , for j < k,




β0′

r1,(2) 0′
q2

Δ0′

r1,(j) Δ0′

r2,(j)



 , for j ≥ k,

(67)

27We set the number of lags for rt to zero, but rt could involve lags at the expense of additional notation.
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but if ` = h + 1:

Ai,(j) =









β0

yi,(1) β0
xi,(1)

δ0
yi,(j) Δ0′

xi,(j)



 , for j ≤ k,




β0

yi,(2) β0
xi,(2)

δ0
yi,(k) Δ0′

xi,(k)



 , for j = k + 1,




β0

yi,(2) β0
xi,(2)

δ0
yi,(j−1) Δ0′

xi,(j−1)



 , for j > k + 1,

and B(j) =









β0′

r1,(1) 0′
q2

Δ0′

r1,(j) Δ0′

r2,(j)



 , for j ≤ k,




β0′

r1,(2) 0′
q2

Δ0′

r1,(k) Δ0′

r2,(k)



 , for j = k + 1,




β0′

r1,(2) 0′
q2

Δ0′

r1,(j−1) Δ0′

r2,(j−1)



 , for j > k + 1.

Then,

Ci(t, T ) =






2∑

j=1

A0,(j)1t∈I0
j






−1
`+1∑

j=1

Ai,(j)1t∈I∗0
j

, J(t, T ) =






2∑

j=1

A0,(j)1t∈I0
j






−1
`+1∑

j=1

B(j)1t∈I∗0
j

, (68)

et =
2∑

j=1

A−1
0,(j)1t∈I0

j
εt, (69)

where we use the same notation Ci(t, T ), J(t, T ), et as in Case (I) for the simplicity of notation, but these

matrices and vector are different (compare (64) to (68) and (69)). Then (65) can be expressed as in (23) (see

Section 3).

By Assumptions 3 and 5, β0
(i) = β0+O(T−α), Δ0

(j) = Δ0+O(T−ρ), for j = 1, . . . , h+1, and i = 1, . . . ,m+1,

as these assumptions imply that the limiting coefficients will be the same regardless of breaks. Hence, if ` = h

or ` = h + 1, A0,(j) = A0 + Op(T−α), Ai,(j) = Ai + O(T−γ), B(j) = B + O(T−γ), Ci,(j) = Ci + O(T−γ),

J(j) = J + O(T−γ), j = 1, . . . , ` + 1, where γ = ρ if I∗0j does not contain the break in SE, and γ = min(α, ρ) if

I∗0j contains the break in SE; see Assumptions 3 and 5.

Under Assumption 7 we have the vector VMAX representation of ỹt:

ỹt =
∞∑

l=0

Hl(t, T )J(t, T )rt−l +
∞∑

l=0

Hl(t, T )et−l, where
∞∑

l=0

‖Hl(t, T )‖ < ∞, (70)

where et = A−1
0 εt and Hl(t, T ) =

∑h+1
i=1 1t∈I∗

i
Hl,(i) for Case (I); et =

∑2
j=1 A−1

0,(j)εt1t∈I0
j

and Hl(t, T ) =
∑`+1

i=1 1t∈I∗0
i

Hl,(i) for Case (II).

Denote H(L, t, T ) =
∑∞

l=0 Hl(t, T )Ll and let C(L, t, T ) = Ip1+1 − C1(t, T )L − . . . − Cp̃(t, T )Lp̃, where

L is the backshift operator, Lỹt = ỹt−1. The explicit form of the Hl(t, T )’s is obtained using the fact that

H(L, t, T )C(L, t, T ) = Ip1+1. From Lutkepohl (2007) p.22. it follows that the Hl(t, T )’s can be computed

recursively as Hl(t, T ) =
∑min(l,p̃)

i=1 Hl−i(t, T )Ci(t, T ), with H0(t, T ) = Ip1+1 and Hl(t, T ) = 0 for l < 0, t =

1, . . . , T . For example, suppose p̃ = 1, then we have the VARX(1,0) model: ỹt = C1(t, T )ỹt−1+J(t, T )rt+et with

matrices of coefficients in the VMAX representation given by: H0(t, T ) = Ip1+1, H1(t, T ) = H0(t, T )C1(t, T ) =

C1(t, T ), H2(t, T ) = H1(t, T )C1(t, T ) = C1(t, T )2, . . .. If p̃ = 2, then we have the VARX(2,0) model: ỹt =

C1(t, T )ỹt−1 + C2(t, T )ỹt−2 + J(t, T )rt + et with matrices of coefficients in the VMAX representation given by:

H0(t, T ) = Ip1+1, H1(t, T ) = C1(t, T ), H2(t, T ) = H1(t, T )C1(t, T ) + H0(t, T )C2(t, T ) = C1(t, T )2 + C2(t, T ),

H3(t, T ) = H2(t, T )C1(t, T ) + H1(t, T )C2(t, T ) = C1(t, T )3 + C1(t, T )C2(t, T ), . . .. We emphasize again that

Hl(t, T ) of size (p1 +1)× (p1 +1) is different for Cases (I) and (II), and as seen above it is a nonlinear function

of the parameters Ci(t, T ), i = 1, . . . , p̃. For Case (I), the Ci(t, T )’s are given in (64), and for Case (II) they
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are given in (68). Denote ˜̃yt = (ỹ′
t−1, . . . , ỹ

′
t−p̃)

′ (as defined in (5)) and let

H̃l(t, T ) =








Hl−1(t − 1, T )
...

Hl−p̃(t − p̃, T )








, J̃l(t, T ) =








Hl−1(t − 1, T )J(t − 1, T )
...

Hl−p̃(t − p̃, T )J(t − p̃, T )








(71)

the matrices of coefficients of size p̃(p1 +1)×(p1 +1), for l = 1, 2, . . ., where recall that Hl(t, T ) = 0 for l < 0, and

J̃l(t, T ) = H̃l(t, T )J(t, T ). By Assumption 7,
∑∞

l=0 ‖Hl(t, T )‖ < ∞ which implies that
∑∞

l=0

∥
∥
∥H̃l(t, T )

∥
∥
∥ < ∞,

hence the VMAX representation of ˜̃yt is:

˜̃yt =
∞∑

l=0

J̃l(t, T )rt−l +
∞∑

l=0

H̃l(t, T )et−l. (72)

Assuming ỹ0 = 0p1+1, we can express (23) for t ≥ 2, for both Cases (I) and (II) as:

ỹt =
t−1∑

l=0

Hl(t, T )J(t, T )rt−l +
t−1∑

l=0

Hl(t, T )et−l. (73)

Assuming ˜̃y1 = (ỹ′
0, ỹ

′
−1, . . . , ỹ

′
−p̃+1)

′ = 0p̃(p1+1), for t ≥ 2,

˜̃yt =
t−1∑

j=1

J̃l(t, T )rt−l +
t−1∑

j=1

H̃l(t, T )et−l. (74)

For Case (I) denote by Hl the common limiting value of Hl,(i) for any segment I∗i , i = 1, . . . , h. For

convenience of notation denote also by Hl in Case (II) the common limiting value of Hl,(i) for any segment

I∗0i , i = 1, . . . , `. By considering first Case (I), notice that for the VARX(p̃, 0), for any integer p̃ ≥ 1, we

have H1(t, T ) = C1(t, T ) = C1 + O(T−ρ) = H1 + O(T−ρ), where H1 is the common limiting value of H1,(i),

i = 1, . . . , h. Moreover H2(t, T ) = H1(t, T )C1(t, T ) = (H1 + O(T−ρ))(C1 + O(T−ρ)) = H1C1 + O(T−ρ) =

H2 + O(T−ρ) for p̃ = 1, while for p̃ > 2, H2(t, T ) = H1(t, T )C1(t, T ) + H0(t, T )C2(t, T ) = H1C1 + C2 +

O(T−ρ) = H2 + O(T−ρ), where H2 is the common limiting value of H2,(i), i = 1, . . . , h. For p̃ = 1, H3(t, T ) =

H2(t, T )C1(t, T ) = H2C1+O(T−ρ) = H3+O(T−ρ); for p̃ = 2, H3(t, T ) = H2(t, T )C1(t, T )+H1(t, T )C2(t, T ) =

H2C1+H1C2+O(T−ρ); for p̃ > 2, H3(t, T ) = H2(t, T )C1(t, T )+H1(t, T )C2(t, T )+H0(t, T )C1(t, T ) = H2C1+

H1C2 + C1 + O(T−ρ) = H3 + O(T−ρ), where H3 is the common limiting value of H3,(i), i = 1, . . . , h. It can be

shown using mathematical induction that Hl(t, T ) = Hl+O(T−ρ) for any integer p̃ > 0, where Hl is the common

limiting value of Hl,(i), i = 1, . . . , h + 1. Similarly for Case (II) we can show that Hl(t, T ) = Hl + O(T−γ),

where Hl is the common limiting value of Hl,(i), i = 1, . . . , ` + 1. Thus we conclude that for Case (I),

H̃l(t, T ) = H̃l + O(T−ρ), where H̃l is the common limiting value of H̃l,(i), i = 1, . . . , h + 1, while for Case (II),

H̃l(t, T ) = H̃l +O(T−γ), where H̃l is the common limiting value of H̃l,(i), i = 1, . . . , `+1. Similarly, we conclude

that for Case (I), J̃l(t, T ) = J̃l +O(T−ρ), where J̃l is the common limiting value of J̃l,(i), i = 1, . . . , h+1, while

for Case (II), J̃l(t, T ) = J̃l + O(T−γ), where J̃l is the common limiting value of J̃l,(i), i = 1, . . . , ` + 1, and:

H̃l,(i) =








Hl−1,(i)

...

Hl−p̃,(i)








, J̃l,(i) =








Hl−1,(i)J(i)

...

Hl−p̃,(i)J(i)








, (75)

with i = 1, . . . , h + 1 for Case (I) and i = 1, . . . , ` + 1 for Case (II).
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B Appendix: Definitions for Section 4

Definition B1. P (λ, π0) is a (k + 1)× (h + 1) matrix, with k = 1, 2, which is equal to (λ1, . . . , λk+1)′ if h = 0,

and otherwise it is equal to:









π0
1∧λ1

Δπ0
1

[
π0

2∧λ1−π0
1

Δπ0
2

]

+

[
π0

3∧λ1−π0
2

Δπ0
3

]

+
...

[
π0

h∧λ1−π0
h−1

Δπ0
h

]

+

λ1−π0
h∧λ1

Δπ0
h+1[

π0
1∧λ2−λ1

Δπ0
1

]

+

[
π0

2∧λ2−π0
1∨λ1

Δπ0
2

]

+

[
π0

3∧λ2−π0
2∨λ1

Δπ0
3

]

+
...

[
π0

h∧λ2−π0
h−1∨λ1

Δπ0
h

]

+

[
λ2−λ1∨π0

h

Δπ0
h+1

]

+[
π0

1−λ2

Δπ0
1

]

+

[
π0

2−π0
1∨λ2

Δπ0
2

]

+

[
π0

3−π0
2∨λ2

Δπ0
2

]

+
...

[
π0

h−π0
h−1∨λ2

Δπ0
h

]

+

1−π0
h∨λ2

Δπ0
h+1









,

where ∨ stands for maximum, and ∧ for minimum, [a]+ = a ∨ 0 stands for the positive values of a, and Δπ0
i =

π0
i − π0

i−1, i = 1, . . . , h + 1. For example, if k = 1 and h = 1, then λ2 = π0
2 = 1; letting 1{∙} be the indicator

function, we have:

P (λ, π0) =




π0

1∧λ1

π0
1

1π0
1≤λ1

λ1−π0
1

1−π0
1

1π0
1>λ1

π0
1−λ1

π0
1

π0
2−π0

1∨λ1

1−π0
1



 .

Definition B2. Let Σ1 = Σu+⊕q×q

(
Σv �

(
(β0
xβ

0′
x ) ⊗ Eq

))
+2⊕q×q

(
Σuv �

(
(β0′
x ⊗ Eq

))
, a q×q matrix, where

⊕q×q is the operator that adds all q × q blocks of a p1q × p1q matrix, � is the operator that multiplies element-

wise two matrices of the same size, Eq is the q × q matrix of ones, and Σu, Σv, Σuv are defined in Assumption

13(i). Let Σ̃1 = Σ̃u + ⊕q×q

(
Σ̃v �

(
(β0
xβ

0′
x ) ⊗ Eq

))
+ 2 ⊕q×q

(
Σ̃uv �

(
(β0′
x ⊗ Eq

))
, where Σ̃u, Σ̃v, Σ̃uv are

defined in Assumption 13(ii). Let ˜̃Σ1 = ˜̃Σu + ⊕q×q

(
˜̃Σv �

(
(β0
xβ

0′
x ) ⊗ Eq

))
+ 2 ⊕q×q

(
˜̃Σuv �

(
(β0′
x ⊗ Eq

))
,

where ˜̃Σu, ˜̃Σv and ˜̃Σuv are the restricted versions of Σ̃u, Σ̃v and Σ̃uv when the errors ut and vt, t = 1, . . . , T ,

are heteroskedastic but not autocorrelated (see Section 5.1.2).

Definition B3. Let η∗
1 = η1λ

0
1, and η∗

2 = λ0
1 + η2(1 − λ0

1), and, for any scalar a, let [a]+ denote the positive

part, i.e. a = a 1a>0. Then, for h = 0, P (η1; π
0), P (η2; π

0) are 2× (h + 1) matrices, equal to (η∗
1, λ

0
1 − η∗

1)
′ and

(η∗
2 − λ0

1, 1 − η∗
2)

′. Otherwise, P (η1; π
0) is:






π0
1∧η∗

1
Δπ0

1

[
π0
2∧η∗

1−π0
1

Δπ0
2

]

+

[
π0
3∧η∗

1−π0
2

Δπ0
3

]

+
...

[
π0

h
∧η∗

1−π0
h−1

Δπ0
h

]

+

[
η∗
1−π0

h

Δπ0
h+1

]

+[
π0
1∧λ0

1−η∗
1

Δπ0
1

]

+

[
π0
2∧λ0

1−π0
1∨η∗

1
Δπ0

2

]

+

[
π0
3∧λ0

1−π0
2∨η∗

1
Δπ0

3

]

+
...

[
π0

h
∧λ0

1−π0
h−1∨η∗

1

Δπ0
h

]

+

[
λ0
1−π0

h
∨η∗

1
Δπ0

h+1

]

+






and P (η2;π
0) is:






[
π0
1∧η∗

2−λ0
1

Δπ0
1

]+

[
π0
2∧η∗

2−π0
1∨λ0

1
Δπ0

2

]

+

[
π0
3∧η∗

2−π0
2∨λ0

1
Δπ0

3

]

+
...

[
π0

h
∧η∗

2−π0
h−1∨λ0

1

Δπ0
h

]

+

[
η∗
2−π0

h
∨λ0

1
Δπ0

h+1

]

+[
π0
1−η∗

2
Δπ0

1

]

+

[
π0
2−π0

1∨η∗
2

Δπ0
2

]

+

[
π0
3−π0

2∨η∗
2

Δπ0
3

]

+
...

[
π0

h
−π0

h−1∨η∗
2

Δπ0
h

]

+

1−π0
h
∨η∗

2
Δπ0

h+1




 .

For example, if h = 1, then:

P (η1;π
0) =




π0
1∧η∗

1
π0
1

1π0
1≤η∗

1

η∗
1−π0

1
1−π0

1

1π0
1>η∗

1

π0
1∧λ0

1−η∗
1

π0
1

1λ0
1>(π0

1∨η∗
1)

λ0
1−π0

1∨η∗
1

1−π0
1



 and P (η2;π
0) =




1λ0

1<(π0
1∨η∗

2)
π0
1∧η∗

2−λ0
1

π0
1

1π0
1<η∗

2

η∗
2−π0

1∨λ0
1

1−π0
1

1π0
1>η∗

2

π0
1−η∗

2
π0
1

1−π0
1∨η∗

2
1−π0

1



 .

C Appendix: Tables for Section 6
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Table 1: Rejection probabilities for testing H0 : 0 breaks in SE, H1 : 1 break in SE; sup-F test; DGP: 0 break in

RF, 0 break in SE.

BP asymptotic IR bootstrap IF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.10 0.05 0.01 0.09 0.05 0.01 0.10 0.05 0.01

240 0.09 0.05 0.01 0.10 0.05 0.01 0.05 0.02 0.004

480 0.09 0.05 0.01 0.10 0.05 0.01 0.06 0.03 0.01

Case (B)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.11 0.06 0.02 0.10 0.05 0.01 0.10 0.05 0.01

240 0.10 0.06 0.02 0.10 0.05 0.01 0.06 0.03 0.004

480 0.10 0.05 0.01 0.10 0.05 0.01 0.05 0.02 0.002

BP critical values: 3.57, 4.05, 5.06 for 0.10, 0.05, 0.01 nominal levels

Table 2: Rejection probabilities for testing H0 : 0 break in SE, H1 : 1 break in SE; sup-F test; DGP: 1 break in

RF, 0 breaks in SE.

BP asymptotic BCH asymptotic IR bootstrap IF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.15 0.09 0.03 0.10 0.05 0.01 0.11 0.06 0.01 0.10 0.05 0.01

240 0.15 0.09 0.02 0.09 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

480 0.16 0.09 0.03 0.09 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

Case (B)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.17 0.11 0.04 0.11 0.07 0.02 0.11 0.06 0.01 0.12 0.06 0.01

240 0.16 0.09 0.03 0.10 0.05 0.01 0.11 0.06 0.01 0.10 0.05 0.01

480 0.16 0.09 0.03 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

BP critical values: 3.57, 4.05, 5.06, BCH critical values: 4.00, 4.53, 5.85.
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Table 3: Rejection probabilities for testing H0 : 1 break in SE, H1 : 2 breaks in SE; sup-F test; DGP: 0 break in

RF, 1 break in SE.

BP asymptotic IR bootstrap IF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.03 0.01 0.002 0.10 0.05 0.01 0.11 0.06 0.01

240 0.06 0.02 0.004 0.10 0.05 0.01 0.12 0.06 0.01

480 0.08 0.03 0.012 0.10 0.05 0.01 0.11 0.06 0.01

Case (B)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.07 0.04 0.01 0.12 0.06 0.01 0.14 0.07 0.02

240 0.09 0.04 0.01 0.11 0.06 0.01 0.12 0.06 0.01

480 0.09 0.04 0.01 0.10 0.05 0.01 0.11 0.05 0.01

BP critical values: 16.11, 18.11, 21.97 for 0.10, 0.05, 0.01 nominal levels

Table 4: Rejection probabilities for testing H0 : 1 break in SE, H1 : 2 breaks in SE; sup-F test; DGP: 1 break in

RF, 1 break in SE.

BP asymptotic BCH asymptotic IR bootstrap IF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.02 0.01 0.001 0.04 0.01 0.002 0.10 0.05 0.01 0.11 0.06 0.01

240 0.04 0.01 0.002 0.07 0.03 0.01 0.10 0.05 0.01 0.11 0.05 0.01

480 0.05 0.02 0.003 0.09 0.04 0.01 0.09 0.05 0.01 0.11 0.06 0.01

Case (B)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.05 0.02 0.01 0.09 0.04 0.013 0.12 0.06 0.02 0.13 0.07 0.02

240 0.07 0.03 0.01 0.11 0.06 0.013 0.11 0.06 0.01 0.12 0.06 0.01

480 0.06 0.03 0.01 0.11 0.06 0.012 0.10 0.05 0.01 0.11 0.05 0.01

BP critical values: 16.11, 18.11, 21.97, BCH critical values: 14.76, 16.43, 20.24
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Table 5: Rejection probabilities for testing H0 : 0 break in SE, H1 : 1 break in SE; sup-Wald test; DGP: 0 break

in RF, 0 break in SE.

BP asymptotic WR bootstrap WF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.43 0.34 0.19 0.10 0.05 0.01 0.10 0.05 0.01

240 0.26 0.18 0.07 0.10 0.05 0.01 0.10 0.05 0.01

480 0.18 0.10 0.03 0.10 0.05 0.01 0.10 0.05 0.01

Case (C)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.43 0.33 0.19 0.10 0.05 0.01 0.10 0.05 0.01

240 0.25 0.17 0.07 0.10 0.05 0.01 0.10 0.05 0.01

480 0.17 0.10 0.03 0.11 0.05 0.01 0.10 0.05 0.01

BP critical values: 14.26, 16.19, 20.23

Table 6: Rejection probabilities for testing H0 : 0 break in SE, H1 : 1 break in SE; sup-Wald test; DGP: 1 break

in RF, 0 breaks in SE.

BP asymptotic BCH asymptotic WR bootstrap WF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.52 0.41 0.25 0.36 0.27 0.13 0.12 0.06 0.01 0.11 0.06 0.01

240 0.35 0.25 0.12 0.20 0.13 0.04 0.11 0.06 0.01 0.11 0.06 0.01

480 0.25 0.16 0.06 0.12 0.07 0.01 0.11 0.06 0.01 0.11 0.06 0.01

Case (C)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.52 0.42 0.25 0.37 0.28 0.12 0.12 0.06 0.01 0.11 0.05 0.01

240 0.34 0.24 0.12 0.20 0.12 0.04 0.11 0.06 0.01 0.11 0.05 0.01

480 0.25 0.16 0.06 0.13 0.07 0.01 0.10 0.06 0.01 0.10 0.06 0.01

BP critical values: 14.26, 16.19, 20.23, BCH critical values: 17.28, 19.71, 26.12
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Table 7: Rejection probabilities for testing H0 : 1 break in SE, H1 : 2 breaks in SE; sup-Wald test; DGP: 0 break

in RF, 1 break in SE.

BP asymptotic WR bootstrap WF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.98 0.97 0.94 0.09 0.04 0.01 0.09 0.05 0.01

240 0.74 0.65 0.50 0.10 0.05 0.01 0.10 0.05 0.01

480 0.42 0.31 0.17 0.10 0.05 0.01 0.11 0.05 0.01

Case (C)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.98 0.97 0.94 0.08 0.04 0.01 0.10 0.05 0.01

240 0.74 0.65 0.47 0.10 0.05 0.01 0.10 0.05 0.01

480 0.42 0.31 0.17 0.11 0.05 0.01 0.10 0.05 0.01

BP critical values: 16.11, 18.11, 21.97

Table 8: Rejection probabilities for testing H0 : 1 break in SE, H1 : 2 breaks in SE; sup-Wald test; DGP: 1 break

in RF, 1 break in SE.

BP asymptotic BCH asymptotic WR bootstrap WF bootstrap

Case (A)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.99 0.98 0.96 0.98 0.96 0.92 0.08 0.04 0.01 0.06 0.03 0.004

240 0.75 0.67 0.53 0.62 0.51 0.32 0.11 0.05 0.01 0.11 0.06 0.01

480 0.41 0.31 0.18 0.26 0.17 0.07 0.11 0.06 0.01 0.11 0.06 0.02

Case (C)

T 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01 0.10 0.05 0.01

120 0.99 0.98 0.96 0.98 0.96 0.91 0.09 0.04 0.01 0.05 0.02 0.002

240 0.75 0.67 0.52 0.62 0.52 0.33 0.11 0.05 0.01 0.12 0.06 0.01

480 0.41 0.31 0.18 0.27 0.18 0.07 0.12 0.06 0.02 0.12 0.06 0.02

BP critical values: 16.11, 18.11, 21.97, BCH critical values: 19.21, 22.10, 29.23
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