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population structure and 
dependencies

• Notion of randomness, and independence 
makes sense sometimes e.g. in natural 
sciences, and keeps statistical theory 
relatively simple

• But people are not raffle tickets - 
population has structure, and people 
therefore have things in common; living in 
same area, going to the same school ... 
people cannot be regarded as ‘independent 
units’.

2



Examples

• Pupils in schools

• Individuals in areas

• Workers in organisations
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Brief History

• Problems of single level analysis, cross level 
inferences and ecological fallacy, highlighted 
in 1950s. 

• Ecological fallacy also Demonstrated in 
geography in 1970s and 80s e.g. work by 
Stan Openshaw
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Brief History

• In the 1980s then much discussion of 
school league tables (based on single level 
aggregate data), and the need to take pupil 
exam score variations into account when 
comparing schools, not just rely on a single 
level analysis of school means.

• Key papers and books by Aitkin and 
Longford, Goldstein and Raudenbush
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Brief History

• Advances in computing power and 
estimation methods such as IGLS allowed 
models to be fitted with specialist software

• VarCL, HLM, ML2 > ML3 > MLn > MLwiN
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Brief History

• Focus was initially on hierarchical structures and 
especially pupils in schools

• Also longitudinal, geographical studies

• More recently moved to non hierarchical situations 
such as cross-classified models.

• Also methods such as MCMC and ever increasing 
computing power have allowed more realistically 
complex models to be estimated
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Substantive applications in 
social statistics:

non exhaustive list

• Education

• Longitudinal studies

• Geography

• Health

• Social Networks

• Psychology
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Extensions: more levels

• Individuals in households in areas

• Pupils in classes in schools in regions
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Extensions: people not 
at level 1

• Longitudinal studies, where the occasion 
is the first level of a hierarchy

• Multivariate studies with several y variables 
per individual to capture a latent variable: 
e.g. various test scores for maths based 
subjects all taken by the individual may 
indicate numeracy
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Realistically complex 
structures

• Cross classifications: two pupils that sit 
next to each other in a school each live in a 
different local area of a city, but two people 
who live in the same local area each go to 
different schools

• Influence of neighbourhood and school on 
educational performance of individual
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Realistically complex 
structures

• Multiple membership models during the 
course of secondary education, some pupils 
attend more than one school, perhaps 
because their parents move. Some pupils 
therefore members of more than one 
group. Weights reflect this - number of 
years in each school. Most pupils stay at 
same school. 
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Let’s focus on the two 
level situation for the 

rest of the talk
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A simple 2-level 
hierarchy

school 1

pupil 1 pupil 2 pupil 3 pupil 1 pupil 2

school 2

pupil 3 pupil 4
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A simple 2-level 
hierarchy

school 1

pupil 1 pupil 2 pupil 3 pupil 1 pupil 2

school 2

pupil 3 pupil 4

Level 1
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A simple 2-level 
hierarchy

school 1

pupil 1 pupil 2 pupil 3 pupil 1 pupil 2

school 2

pupil 3 pupil 4

Level 2
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A simple 2-level 
hierarchy

school 1

pupil 1 pupil 2 pupil 3 pupil 1 pupil 2

school 2

pupil 3 pupil 4

Level 1

Level 2
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What data do we need?

• Individual units (often people), with their 
group indicators (e.g School,  Area). 

• One or more response variable(s)

• In general we need more than one person 
per group

• In general we would expect to have at least 
10 groups, 20 or more even better. Partly 
depends on what we want to do.
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Two level example: 
pupils in schools 

• Suppose we have data for 4000 pupils in 60 
schools

• Including a measure of exam performance 
at 16 (y) and exam performance at 11(x)

• perhaps also other explanatory variables: 
gender, age of school buildings, % pupils on 
free school meals.

• Suppose we want to relate y to x, what can 
we do. 
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Aggregate to school 
level

• We could aggregate the exam score at 11 and 
exam score at school level, so that we have 60 
pairs of school means, rather than 4000 pairs of 
exam scores.

• We could regress school mean y on school mean x

• However if we make inferences from that school 
level regression back to individual, we run into 
problems. 

• “Ecological Fallacy” (Robinson, 1950).
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Problems of single level 
analysis

• We could work at the pupil level, and 
ignore the schools. 

• Then we are ignoring the context: each 
pupil goes to a particular school

• We could add the 60 schools to the model 
as 59 dummy variables: fixed effects model

• But that’s a lot of dummy variables - model 
quickly becomes very full of parameters.
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Multilevel models
• Multilevel models allow us to look at different 

levels simultaneously: e.g. the pupil level and the 
school level

• Doesn’t require a huge number of parameters. 

• Also allows flexibility: e.g .the relationship between 
exam score at 11 and exam score at 16 can be 
different in different schools

• Takes into account different group sizes through 
the idea of ‘shrinkage’.
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Inferences and 
assumptions

• Multilevel models sometimes called random effects models: partly 
because groups are themselves regarded as a random sample

• Can make inferences about groups not in sample

• If we have all groups in population can still regard these as 
sample; realisation of underlying population generating process. In 
short, can use multilevel models even if all the groups in our data. 

• We can use multilevel models regardless of whether the 
population structure is directly of interest. or not. E.g. we can 
apply a model based approach to reflect the way that the data 
were collected.
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variance components 
model

• Multilevel model with no explanatory variables

• i,j subscripts for pupil i in school j

• variance of u school component; variance of e  
pupil component; u and e assumed uncorrelated

• Hence allows us to see how much variation in the 
response is at level 2 and how much at level 1 
prior to adding x variables to model

• level 1 and level 2 variance add up to total variance

yij = β0 + uj + eij
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Simple regression 
model

• Single level model

• relates response (y) for pupil i to explanatory 
variable (x) for pupil i

• Doesn’t take school into account

yi = β0 + β1xi + ei
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Random intercepts 
model

• Multilevel model: combines variance components 
with single level model

• Relates response (y) for pupil i in school j to 
explanatory variable (x) for pupil i in school j

• Also allows the school mean performance to vary

• Can plot school level residuals (u j) and their 
confidence intervals to fairly compare schools. 
“caterpillar plots”.

yij = β0 + β1xij + uj + eij
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Random slopes model

• Multilevel model

• Relates response (y) for pupil i in school j to 
explanatory variable (x) for pupil i in school j

• Also allows the school mean performance to vary

• Also allows relationship between y and x to be 
different from school to school 

yij = β0 + β1jxij + uj + eij
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Adding level 2 variables

• Multilevel model: extending the random intercepts 
model

• Adds two level 2 (school level variables)

• An aggregate variable: “x 2 bar j” is the % of pupils 
on free school meals in each school

• A true school level variable: “x 3 j” is whether the 
school built in the last 50 years.

yij = β0 + β1x1ij + β2x̄2j + β3x3j + uj + eij
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Cross level interactions

• Cross level interactions allow us to investigate the 
effect of an explanatory variable on the response 
in the context of another explanatory variable

• e.g the relationship between exam score at 11 and 
exam score at 16 in the context of % free school 
meals in the school

• Multilevel framework has powerful substantive use

yij = β0 + β1x1ij + β2x̄2j + β3x1ij × x̄2j + uj + eij
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ρ measures extent of clustering (similarity of y) in 
groups: known as intra class correlation
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• High clustering
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• no clustering • single level 
regression 
model could 
be used
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• Patterns of intercepts and slopes
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• Patterns of intercepts and slopes: random 
slopes model (1)
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• Patterns of intercepts and slopes: random 
slopes model (2)
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• Patterns of intercepts and slopes: random 
slopes model (3)
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Plot of school level residuals with their 
confidence intervals: pupil level variations 

and group size accounted for.
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Conclusion: what is 
multilevel modelling?

• Way to investigate variations and 
relationships for variables of interest, taking 
into account population structure and 
dependencies, even if these not of primary 
substantive interest.

• Flexible framework for testing 
sophisticated social (or other) theories, 
looking at individuals in context, including 
change over time. 
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Software

• MLwiN 

• HLM 

• R - e.g. lme4 package

• Stata - e.g xtreg, xtlogit

• SAS - e.g. Proc Mixed

• SPSS (limited range of models)
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Web / Books

• http://www.cmm.bristol.ac.uk

• Snijders and Bosker (1999) ‘Multilevel 
Analysis’. Sage.

• Goldstein *  (2003)

• Luke D (2008) Multilevel Models. Sage.

• Singer and Willett (2003) Applied 
Longitudinal Data Analysis. 
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Courses
• Here are just two places where you can 

learn more:

• CCSR / Social Statistics (Manchester) - 
MLM, Longitudinal, Social Networks

• Bristol - Comprehensive courses based on 
use of MLwiN; multilevel event history 
analysis etc. 

• Acknowledgement: graphs from slides 25 to 43 
adapted from CMM Bristol teaching materials.
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Example: variance components model

• school level variance = 0.169

• pupil level variance = 0.848

• intra class correlation = (0.169) / (0.169 + 0.848) = 0.166

• About 17% of variation of exam score at school level  
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Example: random intercepts model

• positive coefficient on x - previous exam score - makes sense

• some of the variation explained at each level, but not all.
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Example: random slopes model

• some school level variation in intercepts and slopes

• positive relationship between intercept and slope

• higher intercept tends to be associated with steeper slope
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Scatterplot of exam 16 on exam 11 for 
4059 pupils in 65 schools
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Predicted lines from random intercepts 
model: 65 lines one for each school
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Predicted lines from random slopes 
model: 65 lines one for each school
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Plot of school level residuals with their 
confidence intervals: pupil level variations 

and group size accounted for.
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