

What is GIS?

Dr Sarah Lindley School of Environment & Development (Geography) Dec 8th 2010

Overview

- Introduction: GIS & GISc
- Basic principles
- Key operations
- Analysis examples
- Conclusions: Reflective GIS
- Further information

Defining GIS

- GIS has been usefully defined as
 - 'a system for capturing, storing, checking, integrating, manipulating, analysing and displaying data which are *spatially referenced* to the Earth' (DoE, 1987)
 - Dept of the Environment (1987) Committee of Enquiry into the Handling of Geographic Information. London : HMSO (Chorley Report)
 - GIS has strong connections and shared principles with other spatial data handling techniques & technologies – now recognised as a distinct geography sub-discipline GISc

A Multifaceted GIS Community (GeoWorld January, 2007)

Principles: Conceptualising geographical space

- How we represent spatial and attribute data in GIS is affected by how we view the world
- Field vs. Entity-Oriented View

Discrete valleys &
hills or elevation
continually varying
in space?

Representing space

VECTOR

Simple **point, line** & **area** entity layers which can be visualised together giving the appearance of an OS map. They can also form the basis of more complex entities or represent a continuous surface

RASTER

Cells or pixels, like on a satellite image, which each contain a data value which can be interpreted as simple entities or used to represent a continuous surface

Representing the 'real world'

- Information about the real world is held in the form of **layers of data**
- Each layer has been carefully overlaid on the others & every location is precisely matched to its corresponding location on all the other maps.

Internet lecture - Foote and Lynch

Analysing the 'real world'

- Layers can be compared and *analysed* → new information
- GIS offers a means of:
 - searching for spatial patterns and processes.
 - answering research questions

Where are particular features found?What geographical patterns exist?Where have changes occurred over a given time period?Where do certain conditions apply?What will the spatial implications be if an organisation takes certain actions?

Digital elevation

$2D \rightarrow 2.5D$

Orthorectified aerial photo draped over DEM, Snowdonia National Park (Heywood et al)

A digital elevation model (DEM) contains x, y , z data (z = height) DEMs can be created from a range of data sources too (e.g. maps, GPS, RS)

Albrecht (2005) http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/jochen_albrecht/jochen.santafe.html

Example techniques & their application

- Data manipulation
 - Density estimation (MFF fire risk estimation, work with Julia McMorrow, Geography)
 - number of discrete objects per unit area
 - A means of going from object-based \rightarrow 'continuous' measure
 - Examples of point and line density measures
- Analysis techniques
 - Network analysis (Anna Mölter, PhD student)
 - Estimating shortest paths
- Overlay analysis
 - MCE/MCA (MFF fire risk)
- Case study
 - Historical GIS for material flow analysis (Hiroki Tanikawa, visiting research fellow in Geography, 2005)

Density estimation (point)

Point density estimation via kernels

Figure 4-41 Point data

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
						X	X	X		-	X		X						
0.25	0.25	0.25	0.25	0,25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
0.30	0.30	0.30	0.30	0.30	0.30	0,30	0.30	0.30	0.30	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20

Figure 4-42 Simple linear (box or uniform) kernel smoothing

http://www.spatialanalysisonline.com/output/html/Pointdensity.html

Figure 4-42 Simple linear (box or uniform) kernel smoothing

Spreading can be carried out via a normal distribution based kernel (highest weighting given to the centre of each point with reduced influence with increasing distance)

Relative path popularity Aug04 & Jan05 Bleaklow

• Individual paths digitised from *'Mark* your route on the map' question in MFF Visitor

> attitude surveys

 A line density estimation procedure then used to look for relative density of paths → path popularity

Overlay analysis for site selection

Waste disposal site selection Within a certain distance of roads (distance buffers)

Within areas of clav soil/geology

(a) Alternative 1

- Flexible methods
- 'What if' scenarios

Risk mapping : Which areas of PDNP are most at risk of ignition?

Based on:

- Where fires have been most common in the past; reported fires in Rangers' fire log, 1976-2004
 - Expert opinion: FOG and other stakeholders

Aim: To develop a stakeholder-informed map of the risk of wildfire ignition for Section 3 moorlands of Peak District National Park

• Network routing

MANCHESTER

- Find optimal path from A to B
 - Traveline journey planner \rightarrow public transport
- Network allocation
 - Area covered by supply centres
 - Emergency Services
 - Delivery depots
- Research application
 - Effect of air pollution on children's health
 - Estimate children's exposure at home, school, journey using geocoded home and school addresses
- Aim:

Determine shortest route between home and school

Slides courtesy of Anna Mölter, PhD student, Centre for Occupational and Environmental Health

Example: Multiple homes \rightarrow 1 school

MANCHESTER

1824

Slides courtesy of Anna Mölter, PhD student, Centre for Occupational and Environmental Health

Estimated NO₂ concentrations related to the road network

Spatial Estimation and Visualization of Regional MFA with GIS mapping

Hiroki Tanikawa

Associate Professor, Wakayama University, Japan Visiting Research Fellow, The University of Manchester, U.K.

Nigel Lawson

School of Environment and Development, The University of Manchester, U.K.

Seiji Hashimoto

National Institute
 for Environmental
 Studies, Japan

Yuichi Moriguchi

Studies, Japan

Contents:

- Linkage of Local MFA and Spatial Information
- How do we know Spatial Metabolism?
- Case study of Construction Sector, U.K. and Japan

For establishing Historical GIS...

Current GIS

1/2500 2004

Paper Maps

1/2500 1849 - current

Aerial Photos

1920 – current

1850 - current

Drawing each shape and adding "Urban attributes of some Morphology Types", "Floors of each Building", "Width of Roadways".

Historical Change of Material Stock #2 by construction material

In 2004, Aggregate and Stone Block is 28%, 24% of Concrete, 20% of Bricks.

www.wakayama-u.ac.jp/~tanikawa/

wakayama univ. 和歌山大学

Conclusion

- GIS/GISc is associated with many methods and many exciting opportunities for interrogating and analysing spatial data
- However, methods must (of course!) be used with care
 - Whose view?
 - Individuals vs. groups?
 - Ethics?
 - Too technology led?
 - Too positivist?
- Indeed, "Many geographers remain suspicious of the use of GIS in geography" Longley et al (2001:25)
- *Reflective* use is key!

Conceptual view of uncertainty

•Berry (online) "think with maps" instead of just "mapping."

- Some starter references are given at the end
- Courses

MANCHESTER

- MSc Geographical Information Science
- ESRI (ArcGIS) online training
- Academic data services
 - EDINA
 - Landmap
- Support
 - School of Environment and Development Spatial Data Officer

http://landmap.mimas.ac.uk/

Landmap is a free UK academic data service, based in the University of Manchester...please use it!

GIS support services

- Short consultancy e.g. on project start-up and data sourcing. Contact Karl Hennermann.
- Software. Our main software is ESRI ArcGIS Desktop. For download from IT Services website.

- ArcGIS training (online). Provided by ESRI. See IT Services software website.
- Geospatial data, e.g. administrative boundaries. Provided by EDINA Digimap. See EDINA Digimap website
- Equipment loan (GPS, etc) . Contact Karl Hennermann.

Paid for services, provided by SED:

- Consultancy
- Data processing and map production
- System analysis, design and implementation
- Instructor led training
- GIS project management

Contact Karl Hennermann about these services.

Further information:

Karl Hennermann, 0161 275 3655, karl.hennermann@manchester.ac.uk

Further reading

- Heywood, I, Cornelius, S & Carver, S. (2006) An Introduction to Geographical Information Systems' Third edition, Prentice Hall : Harlow. [Basic introductory text]
- Longley, P. Goodchild, M and Rhind, D. (2005) Geographic Information Systems and Science John Wiley and Sons : Chichester
- Schuurman, N (2000) Trouble in the heartland: GIS and its critics in the 1990s *Prog in Human Geog* 24,4 pp. 569–590
- http://www.innovativegis.com/basis/
- http://www.spatialanalysisonline.com/